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We study the meson contribution to the equation of state of the 2-flavor Polyakov-loop Nambu–
Jona-Lasinio model, including the full momentum dependence of the meson polarization loops. Within the
Beth-Uhlenbeck approach, we demonstrate that the contribution from the quark-antiquark continuum
excitations in the spacelike region ω2 − q2 < 0, i.e., the Landau damping, leads to an increase of the
pressure for temperatures ≳0.8Tχ

c and a significant meson momentum cutoff dependence in the mesonic
pressure and the QCD trace anomaly. We investigate the dependence of the results on the choice of the
Polyakov-loop potential parameter T0. From the dependence of the mesonic pressure on the current quark
mass, by means of the Feynman-Hellmann theorem, we evaluate the contribution of the pion quasiparticle
gas and Landau damping to the chiral condensate.
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I. INTRODUCTION

Elucidating the structure of the phase diagram of quantum
chromodynamics (QCD) is one of the challenging problems
in particle physics. Its experimental exploration is presently
performed at large existing heavy-ion collision (HIC) facili-
ties, such as the Relativistic Heavy-Ion Collider (RHIC) at
BNLBrookhaven, the Large Hadron Collider (LHC) and the
Super Proton Synchrotron (SPS) at CERN Geneva. In the
future it will be continued with dedicated experiments at
the Facility for Antiproton and Ion Research (FAIR) at
GSI Darmstadt, the Nuclotron-based Ion Collider Facility
(NICA) at JINR Dubna and the Japan Proton Accelerator
Research Complex (J-PARC) at the Tokai campus of JAEA.
In nature, the QCD transition from a quark-gluon plasma
(QGP) to a phase of confined quarks and gluons, a gas or
liquid of hadronic resonances, is realized in the Early
Universe and may also occur in the interiors of neutron
stars, their mergers and supernova explosions, being subject
to observations by multimessenger astronomy.
While at high energies QCD is in the regime of

asymptotic freedom allowing to apply the well-developed
methods of perturbation theory, a theoretical description of

the hadronization transition with its aspects of dynamical
chiral symmetry breaking and confinement (at low tem-
peratures also color superconductivity) is a notoriously
difficult task. It concerns the challenging domain of low
energy QCD, where nonperturbative methods must be
developed and applied. A first principles approach to
describe the QCD transition at finite temperatures uses
Monte Carlo simulations of the QCD partition function
formulated in lattice quantum field theory on a discretized
Euclidean space-time. The μB ¼ 0 sector of the QCD phase
diagram is well explored within lattice QCD, and a cross-
over transition with a pseudocritical temperature TLQCD

c ¼
156.5� 1.5 MeV is obtained [1]. This method, however,
is inapplicable at large values of the baryon chemical
potential μB because of the yet unsolved sign problem.
At low temperatures and densities n ≃ ð1 − 2Þn0, where
n0 ≃ 0.16 fm−3 is the nuclear saturation density, the chiral
effective field theory approach for the description of
hadronic degrees of freedom became a standard tool to
describe nuclear phenomena with theoretically controlled
uncertainties [2]. However, these uncertainties become
larger at larger densities, which renders it unsuitable for
a description of dense matter, e.g. in neutron star interiors.
Additional complications arise while extending this
approach to large temperatures.
With an increase of the density the QCD vacuum

can change from a state with massive constituent quarks
to one with light current quarks, referred to as the chiral
symmetry restoration transition. Another phase transition
relevant especially for astrophysical applications is the
appearance of color superconductivity at large densities,
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which is related to the appearance of diquark condensates.
This region of the QCD phase diagram is beyond the scope
of the current work.
The first step in theoretically assessing the hadronization

of quark and gluon degrees of freedom in a thermal quantum
field theory is to define an effective Lagrangian in the quark
sector of QCD that shares the essential symmetries with the
QCDLagrangian but is formulated in terms of quark currents
that should emerge from “integrating out” the dynamical
gluon degrees of freedom.When this current-current form of
the interaction Lagrangian is symmetric under chiral rotation
of the quark fields one arrives at a version of the Nambu–
Jona-Lasinio (NJL)model of low-energyQCD, see [3–6] for
standard reviews. A modern refinement of the model takes
into account the coupling of quark Dirac-spinors to a gluon
background field in the Polyakov gauge [7–11] which is
called the Polyakov-loop improved NJL model or in short:
Polyakov-loop Nambu–Jona-Lasinio (PNJL) model. The
traced Polyakov-loop Φ and its conjugate Φ̄ appear now
as additional order parameters in the model which are
vanishing in the confined phase due to the Z(3) center
symmetry of SU(3) color and signal deconfinement when
they approach unity under broken center symmetry. The
thermodynamics of this PNJLmodel for theQGP is generally
considered at the mean-field level, but the parameters of
the model can be tuned so as to reproduce the pion mass
mπ¼140MeV and pion decay constant fπ ¼ 93 MeV as
well as the chiral light quark condensate hūui1=3 ¼ −240�
20 MeV [6] (or a suitably chosen constituent quark mass) in
the vacuum, which satisfies the low-energy QCD theorems,
the Gell-Mann–Oakes–Renner [12] and the Goldberger-
Treiman [13] relations. To construct the pion simultaneously
as the Goldstone boson of the broken chiral symmetry
and a pseudoscalar bound state in the pseudoscalar quark-
antiquark channel in the vacuum, one quantizes the Gaussian
fluctuations around the mean-field (MF) solution. This is
achieved by solving the homogeneous Bethe-Salpeter
equation, which defines the bound state pole of the pion
propagator via the pseudoscalar-pseudoscalar polarization
loop integral. TheNJL and PNJLmodel details can be found,
e.g., in Ref. [14,15].
Refined versions of the NJL model include beyond-

mean-field corrections according to the 1=Nc power
counting [16–20]. The inclusion of such next-to-leading
order terms requires particular care in order to keep the
model consistent with the chiral symmetry. It was per-
formed in both local and nonlocal formulations of the NJL
and PNJL models and resulted in a change of the meson
properties [21–24], chiral condensate dependence on the
temperature and density [23,25–27], quark propagator [28],
as well as the equation of state [29]. Another important
feature often included in such models is the Nf dependence
of the Polyakov-loop effective potential proposed in [30],
which effectively results in a decrease of the T0 parameter
of the potential, which in a pure Yang-Mills theory has a

meaning of the critical temperature of the deconfinement
phase transition T0 ¼ 0.27 GeV.
The pion spectral features in PNJL-based models gen-

erally consist of a quasiparticle peak corresponding to a
long-lived propagating pion mode, and the “continuum”
part, which describes damped quark-antiquark correlations.
At zero momentum in the frequency region ω > 2mðTÞ,
wheremðTÞ is the constituent quark mass at temperature T,
the pion decay into a q̄q pair is possible. This leads to a
nonzero “correlation” contribution to the pion spectral
function. With an increase of the temperature mðTÞ rapidly
decreases near the pseudocritical temperature of the chiral
phase transition Tχ

c and the threshold for q̄q pair production
becomes lower than the pion mass. It enables the pion
decay into the q̄q pairs and therefore there are no more
long-lived pionic excitations in the system, which is
dubbed “pion melting” due to chiral symmetry restoration.
For a finitemomentum, the pion spectral function has a so-

called Landau damping (LD) region with ω2 < q2, corre-
sponding to processes with absorption or emission of pions
with the momentum q⃗ by the quark thermal bath [5,31]. This
is a well-known feature observed in plasma physics, thermal
QCD andQED [32], as well in the lattice simulations at finite
momentum [33–35]. Its effect on the chiral condensate
within PNJL model was studied in [36], but its contribution
to thermodynamics was outside the scope of that work. In
[37] the off-shell mesonic contribution to the pressure was
included, but was absent in the published version of this
paper [38]. In many other implementations of chiral quark
models the assumption of Lorentz-invariance of the pion
polarization operator is often used, which allows obtaining
the pion spectral function (phase shift) at finite momentum
by simply boosting the q⃗ ¼ 0 result to a moving frame. As
was shown in [29], the inclusion of the full momentum
dependence changes the resulting dispersion relation of the
pion quasiparticles very little in comparison to the vacuum
case. Therefore, for the quasiparticle contribution, this
assumption is well justified. Furthermore, for a given
temperature the absolute value of the pion and sigma phase
shifts in the LD region is exponentially suppressed at large
momenta q [39,40]. However, given that the Bose distribu-
tion function diverges as the frequency goes to zero, it is
not possible to make a conclusion about the behavior of
thermodynamic quantities compared to the free pion gas
just from the qualitative consideration without further
examining of the momentum and temperature dependence
of this contribution.
In this paper we demonstrate that the presence of the

Landau cut in the meson propagators leads to a significant
enhancement and a strong threshold dependence of the
contribution to the total pressure from the pion and sigma
correlations in this model. The work is based on the PNJL
model in the simplest “mean-field + fluctuations” scheme
without taking into account the meson contribution to the
PNJL gap equation, similar to that used in [10,15,39–41].
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The work is organized as follows. In Sec. II we describe
the employed formalism of PNJL model and treatment of
meson correlations. In Sec. III we present our numerical
results, focusing on the continuum contributions to thermo-
dynamics from the meson correlations and their threshold
dependence, and the Sec. IV concludes the work. The
explicit expressions for the meson polarization operator and
an analytic estimate of the LD contribution to the pressure
at low temperatures are given in the Appendix.

II. MODEL SETUP

A. PNJL model

We implement the PNJL model with Nf ¼ 2 quark
flavors andNc ¼ 3 colors [8,10,42,43] at the baryon charge
chemical potential μ and temperature T. The model is
described by the Lagrangian

LPNJL ¼ q̄ðiD −m0Þqþ Gs½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2�; ð1Þ

where m0 ¼ 5.5 MeV is the bare quark mass assuming the
isospin symmetry, Dμ ¼ ∂

μ − iδμ0ðA0 þ μÞ is the covariant
derivative in the Polyakov-loop background field A0 and
the chemical potential μ, and τ⃗ are the Pauli matrices in
the isospin space. Gs ¼ 5.04 GeV−2 is the NJL 4-quark
coupling in the scalar-pseudoscalar channel. Below the
consideration will be limited to the μ ¼ 0 case, but we shall
keep μ in the expressions for completeness.
The traced Polyakov loop and its conjugate are defined as

Φðx⃗Þ ¼ 1

Nc
Trc⟪Lðx⃗Þ⟫;

Φ̄ðx⃗Þ ¼ 1

Nc
Trc⟪L†ðx⃗Þ⟫

Lðx⃗Þ ¼ P exp

�
i
Zβ
0

dτA4ðx⃗; τÞ
�
; ð2Þ

where A4 ¼ iA0, and β ¼ 1=T. For a pure Yang-Mills (YM)
SU(3) theory without quarks, we have Φ̄ ¼ Φ, and the
Polyakov loop is an order parameter for the deconfinement
phase transition, corresponding to the spontaneous breaking
of the Z(3) center symmetry. The thermodynamics of this
phase transition in pure gauge theory for SUð3Þc can be
described well by the effective potential UðΦ; Φ̄; TÞ, which
exhibits a unique minimum at Φ ¼ 0 for low temperatures
and develops a secondminimum atΦ ≠ 0 as the temperature
exceeds the critical temperature T0, corresponding to a first-
order SU(3) YM phase transition. In this work we use the
same form as in [10] chosen to reproduce the SU(3) Yang-
Mills thermodynamics obtained in lattice simulations [44]

UðΦ;Φ̄;TÞ
T4

¼−
b2ðTÞ
2

ΦΦ̄−
b3
6
ðΦ3þ Φ̄3Þþb4

4
ðΦ̄ΦÞ2;

b2ðTÞ¼ a0þa1

�
T0

T

�
þa2

�
T0

T

�
2

þa3

�
T0

T

�
3

; ð3Þ

with the coefficients a0;1;2;3 ¼ ½6.75;−1.95; 2.625;−7.44�,
b3 ¼ 0.75, b4 ¼ 7.5. The parameter T0 has the meaning of
the critical temperature of the first-order phase transition in
the pure YM theory and for this case T0 ¼ 0.27 GeV. In
presence of dynamical quarks the effect of running QCD
coupling can be translated into a rescaling of this parameter,
depending on the number of quark flavors [30]. In this paper
we will compare our results between T0 ¼ 0.27 GeV and
T0 ¼ 0.208 GeV obtained in [30] for Nf ¼ 2, and also for
T0 ¼ 0.178 GeV, corresponding to Nf ¼ 3, in order to
study the overall effect of such rescaling on the off-shell
pion contribution to the EoS.
The total grand canonical thermodynamic potential in

the PNJL model reads [10,14,39,40]

ΩðT;Φ; Φ̄;mÞ

¼ UðΦ;Φ̄;TÞþ ðm−m0Þ2
4Gs

− 2Nf

( Z
jp⃗j<Λ

d3p
ð2πÞ3NcεpþT

Z
d3p
ð2πÞ3 ½z

þ
Φ þ z−Φ�

)
; ð4Þ

where εp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. The coupling between quark and

gauge sectors leads to a modification of the pressure
integrand,

zþΦ ≡ Trc ln½1þ Ly� ¼ ln
n
1þ 3ðΦþ Φ̄yÞyþ y3

o
;

z−Φ ¼ zþΦðΦ ↔ Φ̄; μ → −μÞ; y ¼ e−ðεp−μÞ=T; ð5Þ

compared to the free quasi-fermion gas. For regularizing
the vacuum contribution of the constituent quarks in this
work we use the standard 3-momentum cutoff scheme,
integrating only over quark momenta jp⃗j < Λ [5,14]. We
use Λ ¼ 651 MeV throughout this work.
The convergent contribution of the thermal quark and

antiquark excitations is integrated over all momenta. This
regularization scheme allows the reproduction of the
expected Stefan-Boltzmann (SB) limit at large temper-
atures while keeping all other features of the model
qualitatively intact. A more detailed study of the effect
of the regularization scheme on thermodynamical quan-
tities can be found in [45,46]. The mean-field (MF)
equilibrium values of Φ; Φ̄, and m follow from minimiza-
tion of the thermodynamic potential:

∂Ω
∂Φ

¼ ∂Ω
∂Φ̄

¼ ∂Ω
∂m

¼ 0: ð6Þ
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The last of these equation leads to the PNJL gap equation

m −m0 ¼ 4GsNfNc

Z
d3p
ð2πÞ3

m
εp

×

�
θðΛ − pÞ −

�
fþΦðεpÞ þ f−ΦðεpÞ

��
; ð7Þ

where, using y ¼ e−βðε−μÞ,

fþΦðεÞ ¼
ðΦþ 2Φ̄yÞyþ y3

1þ 3ðΦþ Φ̄yÞyþ y3
;

f−ΦðεÞ ¼ fþΦðε;Φ ↔ Φ̄; μ → −μÞ: ð8Þ
In the limit Φ → 1; Φ̄ → 1, corresponding to the decon-
fined state, fþΦ → ð1þ 1=yÞ−1, which is the usual Fermi-
Dirac distribution.
The numerical solution of the MF approximation is

discussed in Sec. III A.

B. Mesonic correlations

The π- and σ-meson 1PI polarization operators read

ΠMðω; q⃗Þ ¼ T
XZ
P

Gðωn; p⃗ÞΓMGðωn − εk; p⃗ − q⃗ÞΓM; ð9Þ

where M ¼ fπ; σg, Γπ ¼ iγ5;Γσ ¼ 1. The imaginary part
of the polarization loop contains no divergences and can be
evaluated without regularization. Then we reconstruct the
real part using the Kramers-Kronig relation. The explicit
expression for ImΠM and the corresponding regularization
scheme for evaluating the real part are given in the
Appendix A. The RPA-resummed propagator of a quasi-
meson M is then determined as

DMðω; qÞ ¼ −
2Gs

1þ 2GsΠMðω; qÞ
: ð10Þ

Wedefine themassmM of a quasimesonM as a solution of

1þ 2GsReΠMðω ¼ mM; q ¼ 0Þ ¼ 0: ð11Þ
Theusefulness of this expression is limited to the temperature
region in which the meson is a bound state. All the physical
information about mesonic excitations in the medium is
encoded in the spectral function

ρMðω; qÞ ¼ −2ImDMðω; qÞ; ð12Þ
which is the subject of our study in this work. The mass of a
meson with finite width can be defined as the position of the
maximum of the spectral function at zero momentum [14],
which we will use further in this work.

C. Pressure of the meson gas

After integrating out the quarks in the Gaussian approxi-
mation and dropping the vacuum mesonic pressure, the
meson contribution to the pressure reads [17,29,37,47]

PM ¼ dM
X

k¼QP;LD

Z
jq⃗j<Λk

d3q
ð2πÞ3 w

k
Mðq; TÞ;

wQP
M ≡

Z∞
q

dω
π

δMðω; q; TÞ
eω=T − 1

;

wLD
M ≡

Zq
0

dω
π

δMðω; q; TÞ
eω=T − 1

; ð13Þ

where dπ ¼ 3, dσ ¼ 1, and

δMðω; q; TÞ ¼ − arctan
ImDMðω; q; TÞ
ReDMðω; q; TÞ

ð14Þ

is the quark-antiquark scattering phase shift in the corre-
sponding meson channel M. We have separated the part
coming from the Landau damping (LD) region 0 < ω < q
from the rest, which we label as the quasipole (QP)
contribution, with their respective momentum thresholds
ΛQP;ΛLD. For simplicity, we use ΛQP → ∞, which
gives a maximum possible quasipole contribution to the
thermodynamics, that is weakly dependent on the choice
of the threshold for T below Tχ

c. For the LD contribution
in this work we will vary the momentum threshold ΛLD in
the limits ΛLD ¼ ð1 − 2ÞΛ encountered in the literature
[20,37,39] in order to investigate its threshold sensitivity.

III. NUMERICAL RESULTS

In this section we discuss the numerical results of the
developed approach to mesonic correlations in the PNJL
model. We start in Sec. III A with the MF approximation
and proceed to discussing the meson spectral functions in
Sec. III B and their contribution to thermodynamic proper-
ties of PNJL matter in Sec. III C. Then we show the
correction to the chiral condensate by means of the
Hellmann-Feynman theorem arising from the LD contri-
bution to the pressure in Sec. III D. Finally, we discuss in
Sec. III E the dependence of the results on rescaling the
critical temperature parameter T0 of the Polyakov loop
potential for example of the interaction measure.

A. Mean-field solutions and meson masses

We start with discussing the temperature dependence of
the mean fields and meson masses in the PNJL model,
as these quantities will later define the meson contribution
to the pressure. In Fig. 1 we compare the temperature
dependence of the pion and sigma masses, constituent
quark mass, and the Polyakov loop variable between two
choices of the T0 parameter of the Polyakov loop potential
T0 ¼ ½0.27; 0.208� GeV. The characteristic temperatures of
the hadron-quark phase transition are the pseudocritical
temperatures related to the chiral symmetry restoration Tχ

c

and modeling of the deconfinement TΦ
c , respectively,

defined as
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Tχ
c ¼ argmax

∂hq̄qiðTÞ
∂T

; ð15Þ

TΦ
c ¼ argmax

∂ΦðTÞ
∂T

: ð16Þ

In Fig. 1 we plot the results as functions of T normalized
by the respective Tχ

c for these cases. The key parameters
extracted from these solutions are collected in Table I.
The temperature behavior of m and Φ is standard for the

PNJL model [14,39]. With increasing temperature the
quark mass monotonously decreases, while the Polyakov
loop expectation value grows. The results for mðT=Tχ

cÞ are
almost coinciding between the T0 ¼ ½0.27; 0.208� GeV
cases, with the respective Tχ

c. The main difference
between the cases T0 ¼ ½0.27; 0.208� GeV is the well-
known increase of the difference between TΦ

c and Tχ
c

[10,48]. Therefore, for T0 ¼ 0.208 GeV the ΦðTÞ and,
correspondingly, the quark distribution function (7) is
larger even for low T=Tχ

c than in the T0 ¼ 0.27 GeV case.
We note that, similarly to the findings of [45,46], the
temperature-dependent quark mass as solution of Eq. (7)
drops below the current quark massm0 outside the range of

temperatures displayed in this figure. This is a consequence
of applying the cutoff in the gap equation (7) only to the
vacuum term. This procedure follows from the definition of
the thermodynamic potential (4) by minimization (6) with
respect to the mass m [10]. Another possibility has been
used, e.g., in [15] based on the nonlocal formulation of the
low-energy QCD model [49] for which the cutoff appears
as a form factor under the integral of the gap equation and
thus extends to both vacuum and thermal contributions. In
that formulation, mðTÞ > m0 holds at all temperatures.
At low temperatures pion has zero width and its mass is

defined as a solution of Eq. (11). The pion pole position stays
almost constant below the corresponding critical temper-
ature. For T ≲ Tχ

c the σ mass is always slightly above the 2m
threshold, so σ has a finite width and its mass is defined as a
maximum position of a corresponding spectral function. For
temperatures exceeding the pion Mott temperature TMott,
defined by mπðTMottÞ ¼ 2mðTMottÞ, the pion quasiparticles
acquire finitewidth related to the decays into quark-antiquark
pairs, as well as a thermal mass which is defined as the
position of the maximum of a pertinent spectral function and
rises with an increase of the temperature. The σ mass follows
the threshold mass 2mðTÞ up to T ≃ Tχ

c and at larger
temperatures coincides with the thermal mass of the pion,
reflecting the chiral symmetry restoration.
As was mentioned above, the main effect of decreasing

T0 on the mean fields is the increase of the gap between TΦ
c

and Tχ
c. More subtle differences are the slight decrease of

the quark mass below Tχ
c for the case T0 ¼ 0.208 GeV, and

the noticeable decrease of the slope of the pion thermal
mass at T=Tχ

c > 1 with respective Tχ
c. In terms of the

absolute T the latter effect is still present, but less notice-
able in the magnitude. These observations will prove to be
useful for comparing the contribution of the low-energy
pionic excitations to the thermodynamics between the cases
T0 ¼ ½0.27; 0.208� GeV in the Sec. III E.

B. Pion spectral properties

In order to intuitively compare the contribution of
different regions of the spectral strength in the pion channel
to thermodynamic quantities, it is useful to consider the
dynamic structure factor in the axial channel,

TABLE I. Comparison of characteristic temperatures in units of GeV between PNJL models with various T0. T
χ
c and TΦ

c are the
pseudocritical temperatures of the chiral and Polyakov-loop phase transition temperatures, Tχ

c;fl are the T
χ
c recalculated with inclusion

of the pion contribution as described in the Sec. III D, and Tmax, Tmax;fl are the locations of the maximum of the trace anomaly IðTÞ=T4,
see Sec. III E.

Quantity

Tχ
c;fl Tχ

c;fl Tmax;fl

Model Tχ
c TΦ

c TMott ΛLD ¼ Λ ΛLD ¼ 2Λ Tmax ΛLD ¼ Λ

T0 ¼ 0.27 GeV 0.229 0.225 0.236 0.227 0.223 0.282 0.226
T0 ¼ 0.208 GeV 0.201 0.183 0.209 0.196 0.192 0.204 0.198
T0 ¼ 0.178 GeV 0.194 0.166 0.199 0.187 0.183 0.190 0.184

FIG. 1. Masses of pions (solid lines) and constituent quarks
(dashed lines), together with the Polyakov loop variable Φ (dash-
dotted lines) as functions of the temperature for PNJL models
with T0 ¼ ½0.27; 0.208� GeV. The mass of the sigma is shown by
the dotted line only for T0 ¼ 0.27 GeV case for clarity.
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Sπðω; q;TÞ ¼
1

2π

ρπðω; q;TÞ
eω=T − 1

; ð17Þ

as it was used, e.g., in [50] to illustrate the dilepton yield
enhancement due to the diquark dynamic fluctuations. For
ω < q, where the bound state is absent, its behavior is
qualitatively the same as of the quantity 1

π δπ=ðeω=T − 1Þ
entering Eq. (13). Therefore the plot of Sπðω; q;TÞ allows
to illustrate the enhancement of pressure integrand for
ω → 0 and suppression at ω ≫ T.
In Fig. 2 we show Sπðω; q;TÞ for temperatures T ¼

½0.18; 0.23; 0.27� GeV ≃ ½0.8; 1.0; 1.2�Tχ
c in the PNJL

model with T0 ¼ 0.27 GeV. The upper panels show the
heatmap plot of this quantity in the ω-q plane. For T ¼
½0.8; 1.0�Tχ

c the thick solid lines represent the poles of the
pion propagator (10) present the real axis. For T ¼ 1.2Tχ

c the
pion is dissolved, and the dashed line in the corresponding
panel shows the zero of the real part of the denominator
of (10). The shown contour levels are adjusted to be the
same in the pair production region and the LD region of
the spectral function. The main feature of this plot is the
enhancement of the LD region of Sπðω; q;TÞ by the thermal
factor even at T ¼ 0.8Tχ

c, where the quark and pion masses
are close to their respective vacuum values. However, for
T ¼ ½0.8; 1.0�Tχ

c the contribution to the pion pressure is
governedmainly by the pole contribution, see also Fig. 4 and
the description in the text. For T ¼ 1.2Tχ

c the threshold mass

2m ≃ 0.1 GeV is below the pion mass, and the pion pole is
absorbed into the continuum. In this case it is clearly seen that
for q ≳ 0.5 GeV the LD region gives the dominant contri-
bution to the weighed spectral function.
In the lower panels of the Fig. 2 we show ρπðω; q;TÞ

and Sðω; q;TÞ for momenta q ¼ ½0.2; 0.5� GeV indicated
on the lines. We see that the presence of the thermal
factor enhances the spectral function in the low-frequency
region by an order of magnitude, which is shown in the
figure by the shaded areas. Moreover, in the limit ω → 0
Sπðω; q;TÞ → const contrary to ρπðω; q;TÞ → 0 being an
odd function of the frequency. Simultaneously, the pair
production region ω2 > 4m2 þ q2 is suppressed by the
thermal factor. For T ≃ 1.2Tc the weighted spectral func-
tion Sπðω; q;TÞ in the LD region exceeds the quasipole
spectral function for q ¼ 0.5 GeV.
In the upper panel of Fig. 3 we show the pion phase

shift as a function of the frequency and temperature for
a fixed momentum q ¼ 0.5 GeV. For the temperatures
T < TMott the phase shift shows a jump from 0 to π at
ω ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πðTÞ þ q2
p

corresponding to the existence of
pion as a bound state. The LD contribution is negligibly
small for T ≲ 0.2 GeV. As the temperature increases, for
T ≳ TMott the pion bound state is dissolved, so the phase
shift never reaches π and changes continuously for
ω > 2mðTÞ, which corresponds to the resonance-shape
structure in ρðω; q;TÞ in the lower right panel of Fig. 2.

FIG. 2. Upper panels: dynamic structure factor Sπðω; q;TÞ in the pion channel in the units of GeV−2 in the ω-q plane for temperatures
T ¼ ½0.18; 0.23; 0.27� GeV ≃ ½0.8; 1.0; 1.2�Tc. Thick lines show the position of the pion pole for T ¼ 0.18 GeV and 0.23 GeV (solid
lines) and the solution of the dispersion relation for T ¼ 0.27 GeV, at which pion is dissociated (dashed line). Lower panels: the regular
part of the pion spectral function ρπðω; q; TÞ and the dynamics structure factor Sπðω; q;TÞ as functions of the frequency for two
momenta q ¼ ½0.2; 0.5� GeV indicated on the lines and shown by the dashed horizontal lines in the upper panels. Shaded areas in the
lower panels illustrate the enhancement of the spectral function due to the thermal factor.
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Simultaneously the LD contribution becomes noticeable,
with a characteristic maximum at ω ≃ q=2 and T ≃ Tχ

c. The
magnitude of the LD contribution is still around 5 times
smaller than the quasipole part for T ≃ Tχ

c. For T ≳ Tχ
c

the LD part of the phase shift decreases with an increase of
the temperature, which is due to the growth of the pion
thermal mass characterizing the overall magnitude of
ReΠπðω; q;TÞ that enters the denominator in (14).
In the lower panel of Fig. 3 we show the integrand of

the mesonic contribution to the pressure in Eq. (13), being
the pion phase shift multiplied by the Bose factor, at the
critical temperature T ¼ Tχ

c ¼ 0.229 GeV. In the QP
region ω > q the thermal factor leads to an exponential
suppression of the integrand at large ω. In the LD region,
as a consequence of thermal enhancement, the integrand
becomes comparable with the one in the QP region for
q≳ 0.5 GeV and exceeding it at large momenta. The
reason for this is that different characteristic temperatures
govern the large-momentum tails of the corresponding
contributions, being expð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mÞ2 þ q2

p
=2TÞ for the LD

part and expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πðTÞ þ q2
p

=TÞ for the QP contribution,
which can be seen from the explicit expressions in the
Appendix B.

C. Mean-field + fluctuations thermodynamics

Let us start with examining the contribution of the
regions of the spectral density described above to the
mesonic pressure integrand wπðq;TÞ, defined in (13). In
Fig. 4 we plot wπðq;TÞ as a function of pion momentum for
the temperatures ½0.18; 0.23; 0.27� GeV ≃ ½0.8; 1.0; 1.2�Tχ

c,
where for the Polyakov loop potential the T0 ¼ 0.27 GeV
is chosen. For T ¼ 0.18 GeV this function almost coin-
cides with the free pion gas case

wvac
π ðq;TÞ ¼ −T lnð1 − e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πðT¼0Þþq2
p

=TÞ; ð18Þ
because the q̄q-pair continuum threshold is still large and
the pair production region, which gives a negative con-
tribution to wQP, is exponentially suppressed by the thermal
weight. The LD contribution is two orders of magnitude

FIG. 3. Upper panel: pion phase shift in the PNJL model with
T0 ¼ 0.27 GeV as a function of the frequency and temperature
for a fixed momentum q ¼ 0.5 GeV. Lower panel: pion phase
shift weighed with the Bose factor as a function of momentum
and frequency for T ¼ Tχ

c. Separate color mappings are used for
ω < q and ω > q in both panels.

FIG. 4. The QP (solid lines) and LD (dashed lines) contributions to the pressure integrand wπðq;TÞ (13) as functions of momentum for
temperatures T ¼ ½0.18; 0.23; 0.27� GeV ≃ ½0.8; 1.0; 1.2�Tχ

c. Dotted lines show the free pion gas case.
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smaller than the QP one. With an increase of the tem-
perature to 0.2 GeV the q̄q-pair threshold becomes
lower, which enhances the negative contribution of
the ω > 2m region to the pion distribution function. For
T ¼ 0.27 GeV ≃ 1.2Tχ

c the pion pole moves away from the
real axis and the distribution function is suppressed
compared to the vacuum case. This corresponds to the
Mott dissociation of pions and leads to a decrease of the
pion QP contribution to the pressure for T ≳ Tχ

c, which is
well described in the literature [39,47].
However, simultaneously with an increase of the temper-

ature, the LD contribution starts playing a noticeable role.
The large-momentum tail of ImΠLD involves 2T in the
exponent, cf. Eqs. (A5), (A6), and is therefore enhanced in
comparison with the free pion gas case, as can be seen from
the middle and right panels of the Fig. 4. For T ≃ ½1; 1.2�Tc
the LD contribution to wπðq;TÞ is at least comparable to the
pole one, due to both its large value in the maximum and
twice the effective temperature in its large-momentum tail.
However, for low temperatures this expression is sup-
pressed by the same Polyakov-loop mechanism as quark
contribution to the thermodynamics, despite that the
Polyakov loop acts only on the colored partons. It follows
from the same expression (A6), which shows that ImΠLD is
proportional to the quark distribution function.
The correlation pressure then follows from integrating

the wQP;LD
π ðq; TÞ over the momentum. In the upper panel of

Fig. 5 we show the contributions to the pressure coming
from the MF approximation to the PNJL model and the
meson fluctuations, with and without inclusion of the LD
region for T0 ¼ 0.27 GeV. Without the LD contribution
meson pressure (solid line) grows with an increase of the
temperature towards the Stephan-Boltzmann (SB) limit
(dotted line) below TMott ≃ Tχ

c along the result for the
ideal pion gas with the vacuum pion mass (dash-dotted
line). For T > TMott the pion pressure decreases as the pion
bound state dissolves due to the lowering of q̄q continuum
threshold and the increase of the pion thermal mass. This is
the usual observed behavior of the pressure with Mott
dissociation of the bound states [38,39,47].
However, with the increase of the temperature the LD

contribution starts to play a noticeable role. We plot it as a
band corresponding to varying the LD cutoffΛLD fromΛ to
2Λ in order to demonstrate its sensitivity. The temperature
dependence of the contribution to the pressure from the LD
region at T ≲ Tχ

c is qualitatively in the same as the MF
pressure, as it is suppressed by the same thermal expo-
nential factor, see Appendix B. An analytic estimate for
the essential threshold dependence of PLD

π is given in
Appendix B. As the temperature increases, for any given
ΛLD this contribution to the pressure has a maximum near
Tχ
c and decreases with further increase of the temperature

due to the presence of the momentum threshold. The
overall result for the LD excitation pressure is heavily
dependent on the of the LD threshold Λπ , because the large

high-momentum tail of the pressure integrand, as shown in
Fig. 4. We see that the cutoff-related uncertainty can reach
2Pπ

SB for T ≃ Tχ
c.

Another quantity characterizing the thermodynamics
of the model is the scaled trace anomaly IðTÞ ¼
T5dðP=T4Þ=dT shown in the lower panel of Fig. 5, which
is more sensitive to various contributions to the pressure.
The monotonous increase in the PNJL pressure results in a
positive contribution to IðTÞ, which has a characteristic
maximum. The quasipole correlation contribution is pos-
itive for T ≲ 0.8Tc and becomes negative as the temper-
ature increases, since the quasipole meson pressure
decreases as the mesons melt and acquire the thermal
mass, leading to the decrease of the QP pressure. The LD

FIG. 5. Upper panel: pressure as a function of the temperature
in the PNJL model with T0 ¼ 0.27 GeV with the contribution
from the meson correlations. Solid line denotes the QP contri-
bution of the excitations with ω > q, dashed line stands for the
PNJL pressure in the MF approximation, and dotted line is the
sum of MF and QP pressure. Shaded areas show the uncertainty
in the LD contribution and the total pressure coming from varying
the meson threshold ΛLD in the limits ½1–2�Λ. Lower panel: same
contributions to the trace anomaly as a function of the temper-
ature. Hatched area is the LD contribution from the σ-meson. The
ΛLD ¼ Λ case for the total IðTÞ is highlighted by a solid line.
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contribution to IðTÞ also changes sign as the presence of
the LD threshold leads to decreasing LD pressure with an
increase of the temperature. We note that even for a
conservative choice of ΛLD ¼ Λ the contribution of the
LD spectral region to IðTÞ is of the same order as the QP
one. For T ≳ Tc they both are negative and each lead to a
significant decrease of the overall IðTÞ.
The presence of the kink near Tc in the overall IðTÞ is

related to the rapid growth of the LD contribution as T
approaches Tχ

c from below. For a larger threshold
ΛLD ¼ 2Λ the kink is eliminated, since the LD contribution
is large enough to overwhelm the second maximum.
Therefore, in such a model the position of the characteristic
maximum of IðTÞ is affected by the magnitude of the
mesonic LD contribution. Later in the Sec. III E we will see
that even for a fixed threshold lowering of the T0 parameter
leads to an enhancement of the LD contribution and a
similar effect on the position of the IðTÞ maximum.

D. Perturbative correction to the chiral condensate

As it is seen from Fig. 5, in PNJL model at temperatures
below Tc the dominant contribution to the pressure comes
from the gas of mesonic excitations and the quark degrees
of freedom are statistically suppressed by the Polyakov
loop. The low-T behavior of the chiral condensate in a
physically acceptable model should be governed by the
pion contribution.
The pion polarization operator itself depends on the

constituent quark mass, which allows us to calculate the
“perturbative” contribution to the chiral condensate from
the meson M ¼ ðπ; σÞ fluctuation gas as

hq̄qiM ¼ −
∂PMðT;mÞ

∂m0

: ð19Þ

The presence of mesonic fluctuations does affect the
chiral condensate In the model “mean fieldþmeson
fluctuations” that we use in this study the back-relation
of the meson excitations to the quark MF sector is not
included. A way of estimating the pion contribution to the
chiral condensate perturbatively is to take the derivative
over the quark current mass m0 at the MF solution for m:

hq̄qitot ¼ hq̄qiMF þ hq̄qiQPπ;σ þ hq̄qiLDπ;σ: ð20Þ

In Fig. 6 we show the resulting contributions to the chiral
condensate. We separately show the contribution from the
“pole” pressure and the LD contribution to the pressure to
the total chiral condensate normalized by its vacuum value
hq̄qi ¼ −ð0.251 GeVÞ3. Both of these contributions are
negative, which reflects the fact that for a given temperature
the pion mass increases with an increase of the current quark
mass, therefore giving rise to the negative ∂Pπ=∂m0. For
comparison, we also show the pion contribution to the chiral
condensate obtained in [51] by the dash-dotted line. At low

temperatures the hq̄qipoleπ gives the dominant contribution
to the chiral condensate.We see that the low-temperature part
of the pion contribution in our approach is lower, but is
qualitatively the same as obtained in [51].
In the same temperature region T ≳ 0.18 GeV ≃ 0.8Tc

the LD region gives a noticeable contribution to the
temperature dependence of the chiral condensate, compa-
rable in magnitude with the hq̄qipoleπ;σ . The magnitude of this
contribution exhibits a maximum, corresponding to the
maximum of the pressure in the Fig. 5. Its temperature
dependence at T ≲ Tc is also qualitatively the same as that
of the hq̄qi in the MF approximation. At large temperatures
it decays with the same rate as the pole contribution in
line with what is described in Sec. III C for the pion
pressure. The total hq̄qi is then following the hq̄qipoleπ;σ at low
temperatures.
After calculating the perturbative contribution of the

pions to the chiral condensate at finite temperature, we can
define the “new” pseudocritical temperature Tχ

c;fl of the
chiral phase transition with an inclusion of both LD and QP
mesonic contributions as

Tχ
c;fl ¼ argmax

∂ðhq̄qiMF þ hq̄qiQPπ;σ þ hq̄qiLDπ;σÞ
∂T

: ð21Þ

The inclusion of the pole contribution affects Tχ
c;fl only a

little, because the most rapid decrease at T → Tχ
c;fl comes

from the quarklike contributions. In contrast with this,
near Tχ

c the LD contribution contribution starts playing
a noticeable role and enhances the chiral condensate
decrease, as its contribution to the thermodynamics for
T ≲ Tχ

c is qualitatively the same as that of the quark MF

FIG. 6. Contributions to the chiral condensate as functions of
the temperature for ΛT ¼ Λ. The line and shaded regions have the
same meaning as in Fig. 5. The dash-dotted line shows the results
of for the chiral condensate behavior with only pions included.
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contribution. In the model with T0 ¼ 0.27 GeV the inclu-
sion of the LD term shifts the pseudocritical temperature to
Tχ
c;fl ¼ ½227; 223� MeV, corresponding to ΛLD ¼ ½1; 2�Λ in

comparison with 229 MeV in the MF approximation to the
PNJL model. This reduction is rather small but nevertheless
important in the context of bringing the pseudocritical
temperature of a constituent quark model closer to the
observed in the lattice QCD.

E. Rescaling the Polyakov loop potential critical
temperature parameter T0

A rescaling of the Polyakov loop potential parameter T0

to lower values is often used for comparing the PNJL results
with the lattice QCD ones [10,29]. Such a simple replace-
ment is supported by the FRG calculations [52], which have
shown that the change of the Polyakov-loop potential due
to the quark backreaction onto the Polyakov-loop potential
can be approximated by with a similar rescaling of T0. In
this section we compare the results for the LD pressure
between T0 ¼ ½0.27; 0.208; 0.178� GeV, corresponding to
pure YM and the values obtained in [30] for 2 and 3 flavors,
respectively. For brevity, we omit the results of the pressure
and study only the trace anomaly as amore sensitive quantity
for the pion LD contribution than the pressure.
InFig. 7we show the trace anomaly forT0 ¼ ½0.27; 0.208;

0.178� GeV. The dashed lines show the MF contribution to
IðTÞ, and the solid lines are the total IðTÞwith contributions
from LD and QP regions of both π and σ excitations. For
clarity, we show only the ΛLD ¼ Λ case. We see that with a
decrease of T0 the wiggle in the total IðTÞ, observed also in
Fig. 5, disappears. The reason for this is the increase of the

overall magnitude of the LD contribution with a decrease of
T0 since the LD contribution contributes positively to the
IðTÞ maximum at a lower temperature and negatively to
the second one. For the cases T0 ¼ ½0.208; 0.178� GeV the
presence of the pion contribution leads to a decrease of the
location of the characteristic maximum of IðTÞ from
½0.212; 0.197� GeV in the MF case to ½0.197; 0.185� GeV
with the excitation contributions included.
This effect can be further examined by studying sepa-

rately the temperature dependence of the QP and LD
contributions to the scaled trace anomaly, as shown in
Fig. 8 as a function of temperature scaled with respective
Tχ
c for T0 ¼ ½0.178; 0.208; 0.27� GeV. We see that the QP

contribution behaves similarly within these 3 cases, while
the LD contribution for T ≲ Tχ

c becomes significantly
enhanced with a decrease of T0. This happens because
the QP contribution is sensitive only to the Mott transition
temperature, which is always close to Tχ

c, but the LD
contribution is also sensitive to TΦ

c through the quark
distribution function. The separation between TΦ

c and Tχ
c

grows if the T0 rescaling is used in the PNJL model [10],
which is also illustrated in Fig. 1. For instance, in the case
of T0 ¼ 0.178 GeV the TΦ

c is 28 MeV smaller than Tχ
c.

This leads to an increase of the quark distribution function
at lower temperatures than in the case T0 ¼ 0.27 GeV, as
can be seen by the ΦðTÞ dependence in Fig. 1. This entails
a decrease of the quark effective mass and the subsequent
increase of the LD contribution, as it corresponds to the
emission (absorption) of pions by the quark medium.
For the caseT0 ¼ 0.178 GeVwehave evaluated the shifted

pseudocritical temperatures Tχ
c;fl as it was done in Sec. III D.

The results are collected in Table I. In the case T0 ¼
0.178 GeV we have obtained Tχ

c;fl¼½0.187;0.183�GeV with
ΛLD ¼ ½1; 2�Λ, respectively, which demonstrates a stronger
reduction of the pseudocritical temperature than in the case
T0 ¼ 0.27 GeV. This demonstrates again the enhancement
of the LD contribution in the case of a larger separation

FIG. 7. Scaled trace anomaly with the pion QP and
LD contributions (solid lines, ΛLD ¼ Λ) and the MF result
(dashed lines) for T0 ¼ ½0.178; 0.208; 0.27� GeV labeled on the
lines in GeV.

FIG. 8. Quasipole and LD contributions with ΛLD ¼ Λ to the
scaled trace anomaly for T0 ¼ ½0.178; 0.208; 0.27� GeV as func-
tions of T over the respective Tχ

c, as collected in Table I.
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between the chiral and deconfinement transition preudo-
critical temperatures, and its importance if the goal is set to
build a quantitative description of the QCD pseudocritical
temperature at μ ¼ 0 within a chiral quark model.

IV. CONCLUSION AND OUTLOOK

We have studied the 2-flavor PNJL model at finite
temperature for a baryon chemical potential μ ¼ 0 in the
mean-field approximation including the contributions to
the pressure from the from dynamical quark current
correlations in pion and sigma channels. The calculation
of the meson pressure was performed using the generalized
Beth-Uhlenbeck expression [17,47,53] through the quark-
antiquark scattering phase shifts in the pion and sigma
channels, which, as opposed to the standard Beth-
Uhlenbeck approach, are medium-dependent and encode
the Mott dissociation of the mesons. In this work, we paid
particular attention to the effect of including the full
momentum dependence of the pion phase shift as a
function of frequency ω and momentum q, including the
Landau damping (LD) kinematic region with s ¼ ω2 −
q2 < 0 on the thermodynamic quantities. In the LD region,
the values of the spectral function and the phase shift are
normally rather small and sometimes excluded out of
consideration in similar models [29,40]. In this paper,
we have demonstrated that the inclusion of the LD region
of the meson spectral strength to the calculation of the
thermodynamic functions in fact leads to a significant
contribution to the pressure centered around the chiral
pseudocritical temperature Tχ

c because of the thermal
enhancement of the low-frequency region by the Bose-
Einstein distribution, and can affect the characteristic
temperatures of the phase transition in the PNJL model.
Using the analytical expression of the 1-loop polarization

operator in the pion channel, we have illustrated the thermal
enhancement of the low-frequency mesonic excitations with
finite momentum on the example of the pion structure factor.
Such an increase leads to a significant contribution to the
pressure integrand in the Beth-Uhlenbeck formula and a
corresponding noticeable contribution to the pressure. Below
Tχ
c, the pressure originating from the LD region grows with

the same rate as the quark contribution, sinceLDcorresponds
to the emission and absorption of pions by the quark thermal
bath. The analytic expressions for the LD polarization loop
for nonrelativistic quarks contain a similar temperature
exponent expð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mÞ2 þ q2

p
=2TÞ, with the same depend-

ence on the quark effective massm as the quark pressure, but
with the large-momentum tail regulated by twice themedium
temperature. This is partially responsible for the significant
magnitude of the LD contribution. We have varied the
threshold in the LD region ΛLD ¼ ½1–2�Λ, where Λ is the
quark 3-momentum cutoff which regularized the PNJL
vacuum pressure, and have found a sizeable 4-fold enhance-
ment of the result for theLDpressure forT ≳ Tχ

c. For the case

of the NJL model we could obtain a semianalytic estimate in
the non-relativistic region, given in the Appendix B, which
confirms the numerical results in the corresponding appli-
cability range of temperatures. This contribution might be
responsible for the kinks in the pressure in [37], which are not
seen in the published version [38] where only the quasipole
contribution was left in the mesonic pressure. The LD
contribution to the pressure leads to a change in the trace
anomaly which is more sensitive to any additional contri-
bution since at μ ¼ 0 it is proportional to the temperature
derivative of the pressure. The LD contribution to the trace
anomaly changes sign at T ≃ Tχ

c, because the pion contri-
bution for T ≳ Tχ

c is decreased due to the pion dissociation.
We have studied the contribution of the meson gas to

the temperature dependence of the chiral condensate
melting, calculated perturbatively without iterating the
self-consistency condition, by means of the Hellmann-
Feynman theorem. The resulting chiral condensate at low
temperatures exhibits a decrease due to the pion pole
excitations only. As the temperature approaches Tχ

c, the
contribution of the LD region becomes important, which
qualitatively for T ≲ Tχ

c has the same temperature depend-
ence as the quark contribution. The inclusion of such a term
allows to make Tχ

c lower by several MeV depending on the
choice of ΛLD.
Finally, we have studied the effect of lowering the T0

parameter of the Polyakov-loop potential, suggested by the
renormalization-group arguments [30,52], on the LD con-
tribution to the thermodynamic quantities. By the example
of the trace anomaly, as the most sensitive quantity, we have
shown that decreasing T0 leads to an overall increase of the
LD contribution to the thermodynamics. This is a conse-
quence of the well-known fact of separation of Tχ

c and TΦ
c

under a decrease of T0, which leads to a relative increase of
the quark distribution function for T ≲ Tχ

c. In turn, this
enhances the LD contribution, because it corresponds to
emission/absorption of pions by quark thermal bath and is
therefore sensitive to the quark distribution function. All
these effects described above are expected to be present not
only in the mean-field-based approaches to the PNJLmodel
but also in those including the 1=Nc corrections to the
quark propagator if the mesonic polarization operators are
evaluated with quark quasiparticle propagators at the mean-
field level, as was done in this work.
This work is limited to Nf ¼ 2 case and focuses only on

the pion contribution, but after generalization to Nf ¼
2þ 1 even more meson degrees of freedom would give rise
to a similar contribution to the thermodynamics. Moreover,
a self-consistent solution of the gap equation and the
equation of motion for the Polyakov loop variable is
necessary and will be reported elsewhere. Physically the
Landau damping corresponds to a nondissipative process of
the energy transfer from meson system to the quark
subsystem and its inverse, and therefore the inclusion of
the quark back-reaction is necessary to provide reliable
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conclusions. However, the soft quark excitations are not
enhanced by the thermal Bose factor, and we expect our
conclusions about the mesonic contribution to be qualita-
tively unchanged. The inclusion of the backreaction can be
done within a self-consistent, e.g. Φ-derivable scheme,
which is a subject of our future work.
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APPENDIX A: EXPRESSIONS FOR THE MESON
POLARIZATION OPERATOR

The imaginary part of the polarization operator of the
mesonM ¼ ðπ; σÞ can be expressed for PNJL model in the
following compact form [5,37,47]:

ImΠMðω; q;TÞ ¼ −κM
NcNf

8πq

�
θðs− 4m2Þ

h
θðωÞJþpairðω; qÞ

þ θð−ωÞJ−pairðω; qÞ
i
þ θð−sÞJLDðω; qÞ

�
;

ðA1Þ

J�pairðω; qÞ ¼ T ln

�
ϕ∓ðE−Þϕ∓ð−E−Þ
ϕ∓ðEþÞϕ∓ð−EþÞ

�
;

JLDðω; qÞ ¼ T ln

�
ϕþðE−Þϕ−ðE−Þ

ϕþð−EþÞϕ−ð−EþÞ
�
; ðA2Þ

where m in the constituent quark mass, s ¼ ω2 − q2;

κπ ¼ s; κσ ¼ s − 4m2, E� ¼ ω
2
� q

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

ω2−q2

q
, and the

distribution function is defined as

ϕ�ðεÞ ¼
�

1

y3� þ 3y�ðΦ̄þΦy�Þ þ 1

�
1=3

; ðA3Þ

where y� ¼ eðε�μÞ=T . The NJL expressions can be restored
by taking the limit Φ; Φ̄ → 1. For calculating the real part
using a dispersion relation consistent with the employed
regularization scheme it is necessary to separate the zero-
temperature and thermal contribution as follows:

ReΠMðω;q;TÞ

¼−P
ZΛ2
4
ðqÞ

0

ds0

π

ImΠMð
ffiffiffiffi
s0

p
;q; 0Þ

ω2 − s0

−P
Z∞
0

ds0

π

ImΠMð
ffiffiffiffi
s0

p
;q;TÞ− ImΠMð

ffiffiffiffi
s0

p
;q; 0Þ

ω2− s0
ðA4Þ

where q ¼ jq⃗j, and the mass- and momentum-dependent
4-dimensional cutoff should be Λ2

4ðqÞ ¼ 4ðΛ2 þm2Þ þ q2

in order to keep thermodynamic consistency [5].
For μ ¼ 0 the LD part in the NJL model has the

following asymptotic expressions:

JLDðω; q;TÞ !
T→0

− 4T exp

 
−

q
2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

q2 − ω2

s !

× sinh
ω

2T
!
ω→0

− 2ω exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
2T

�
:

ðA5Þ

The dependence of the LD part on the constituent quark
mass over the temperature contains therefore the same
factor e−m=T as the quark contribution, while the large-
momentum tail has an effective temperature of 2T. The
factor ω in the low-frequency limit eliminates the pole of
the Bose-Einstein distribution in the integrals in Eq. (13).
A more general expression for the polarization operator
in the LD limit, which includes the PNJL case and is
valid for any T as long as ω ≪ q, is [39]

ImΠLD
π ðω; q;TÞ ≃ NcNf

ω2 − q2

4π

ω

q
fΦ

�
q
2
ξ

�
; ðA6Þ

with f ¼ fþΦ ¼ f−Φ for μ ¼ 0 is given by Eq. (8). This
expression also proves to be rather accurate for nearly all
0 < ω≲ q, if q ≲ 2T. In the limit Φ → 1; Φ̄ → 1 the NJL
case is restored, as fΦ becomes a usual Fermi-Dirac
distribution.

APPENDIX B: LOW-TEMPERATURE ANALYTIC
ESTIMATE OF THE LD CONTRIBUTION

TO THE PRESSURE

The asymptotic expression (A6) for ImΠπðω; qÞ allows
to estimate the parametric dependence of the LD pressure
analytically. Concerning the ReΠπðω; qÞ, in the nonrela-
tivistic case, corresponding to the best applicability range
of (A6), we can use the pole approximation for the real part
of the inverse pion propagator

K. MASLOV and D. BLASCHKE PHYS. REV. D 107, 094010 (2023)

094010-12



Re

�
1

2Gs
þ Ππ

�
≃ −

1

g2πqq

1

ω2 −m2
πðTÞ − q2

;

g2πqq ¼ −
�
∂ReΠπðω; q ¼ 0; TÞ

∂ω2

				
ω¼mπ

�
−1
;

ðB1Þ

where mπðTÞ is the pion mass, determined by Eq. (11), and
g2πqqðTÞ is the squared pion-quark coupling [3,5]. The
phase shift (14) in the LD region does not get close to π and
we can approximate it by the argument of the arctan. Then
the pion pressure reads

Pπ ≃
NcNfdπ
8π4

ZΛ
0

qdq
Zq
0

ωdω
jsj

m2
π þ jsj

1

e
q
2Tξðω;qÞ þ 1

×
1

expðω=TÞ − 1
; s ¼ ω2 − q2;

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

jsj

s
; ðB2Þ

In order to factor out the essential temperature
dependence, we replace the sharp momentum cutoff by
the dipole-type form-factor Lðα; xÞ ¼ α2=ðα2 þ x2Þ and
change variables to q ¼ Tx cosh χ;ω ¼ Tx sinh χ ≡ jsj · y
to transform the integration limits to the infinite quarter-
plane. After further nonrelativistic expansions in terms of
new variables, we arrive to an (underestimating) expression

PLD
π;NR ¼ NcNfdπg2πqq

8π4
m2

m2
π
T4e−m=TF

�
Λπffiffiffiffiffiffiffi
mT

p ;
mπffiffiffiffiffiffiffi
mT

p ;
m
T

�
;

ðB3Þ

where dπ ¼ 3 is the pion isospin degeneracy factor, and the
dimensionless function F is defined as

Fðα; β; γÞ ¼
Z∞
0

dxx3e−x
2=8Lðα; xÞLðβ; xÞG

�
1

x2
þ 1

8γ

�
;

GðβÞ ¼
Z∞
0

dy
ye−βy

2=2

ey − 1
:
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