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We demonstrate that fermion masses in the Standard Model (SM) can be constrained by the dispersion
relations obeyed by hadronic and semileptonic decay widths of a fictitious heavy quarkQ with an arbitrary
mass. These relations, imposing stringent connections between high-mass and low-mass behaviors of
decay widths, correlate a heavy quark mass and the chiral symmetry breaking scale. Given the known input
from leading-order heavy quark expansion and a hadronic threshold for decay products, we solve for a
physical heavy quark decay width. It is shown that the charm (bottom) quark mass mc ¼ 1.35 GeV
(mb ¼ 4.0 GeV) can be determined by the dispersion relation for the Q → dud̄ (Q → cūd) decay with the
threshold 2mπ (mπ þmD), wheremπ (mD) denotes the pion (Dmeson) mass. Requiring that the dispersion
relation for the Q → sud̄ (Q → dμþνμ, Q → uτ−ν̄τ) decay with the threshold mπ þmK (mπ þmμ,
mπ þmτ) yields the same heavy quark mass, mK being the kaon mass, we obtain the strange quark (muon,
τ lepton) mass ms ¼ 0.12 GeV (mμ ¼ 0.11 GeV, mτ ¼ 2.0 GeV). Moreover, all the predicted decay
widths corresponding to the above masses agree with the data. It is pointed out that our formalism is similar
to QCD sum rules for probing resonance properties, and that the Pauli interference (weak annihilation)
provides the higher-power effect necessary for establishing the solutions of the hadronic (semileptonic)
decay widths. This work suggests that the parameters in the SM may not be free, but arranged properly to
achieve internal dynamical consistency.
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I. INTRODUCTION

How to understand the flavor structures of the Standard
Model (SM), such as the hierarchy of quark and lepton
masses, and the dramatically different quark and lepton
mixing patterns, has been a long-term pursuit in particle
physics. Many proposals have been made in the literature,
which usually rely on additional symmetries or inter-
actions. For example, a flavor U(1) symmetry with a scalar
field called flavon was introduced and then spontaneously
broken in the Froggatt–Nielsen model [1]. The aforemen-
tioned flavor structures were generated in various models
with modular flavor symmetry [2], which has attracted
great attention [3–7]. The smooth confinement mechanism
without chiral symmetry breaking [8–10] was implemented
to explain the small Yukawa couplings of the first- and
second-family fermions, which are composites of ultra-
violet fields, while the third-family fermions are elementary
to be consistent with the Oð1Þ top Yukawa coupling [11].
Alternative scenarios, which do not resort to symmetries
but to localizations of fermions in extra dimensions [12] or

to the clockwork mechanism [13,14], were also attempted.
We will demonstrate, without any new ingredients beyond
the SM, that at least the fermion masses around the GeV
scale, including the strange quark, charm quark, bottom
quark, muon, and τ lepton masses, may be understood
through the internal consistency of SM dynamics.
We performed a dispersive analysis on the D meson

mixing recently [15], starting with the transition matrix
elements, which contain the flavor-changing four-quark
operators in effective weak Hamiltonians, for a fictitious D
meson of an arbitrary mass. Surprisingly, the solution to the
dispersion relation obeyed by the transition matrix elements
appears at the physical D meson mass mD. The emergence
of the scale mD in the dispersive analysis inspires two
speculations. First, an appropriate correlation function
defined by the four-quark effective operators can be
employed to establish the mass of a decaying heavy meson,
similar to the determination of a light resonance mass that
has been achieved extensively in QCD sum rules [16]. The
heavy quark invariant mass squared in the dispersive
analysis plays the role of the invariant momentum squared
injected into a current operator in sum rules. The heavy
quark expansion (HQE) for the evaluation of a heavy
meson matrix element corresponds to the operator product
expansion in sum rules. The distinction arises from the
operators (four-quark operators in the former and currents
in the latter) and the external states (heavy meson states in
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the former and the vacuum state in the latter), which
sandwich the operators, for defining a correlation function.
Second, the absorptive piece of the transition matrix
elements receives contributions from various fictitious D
meson decay channels. It is then likely to correlate a heavy
quark mass and masses of its light decay products, which
originate from the chiral symmetry breaking in QCD,
through the dispersion relation. The above two speculations
suggest the possibility of addressing at least partial flavor
structure of the SM in the dispersive analysis on inclusive
heavy quark decays.
We will study a hadronic matrix element of the four-

quark effective operators, whose absorptive piece defines a
decay width of a fictitious heavy quark Q with an arbitrary
mass mQ. The associated dispersion relation is derived,
which imposes a stringent connection between the high-
mass and low-mass behaviors of the decay width, and then
solved directly, namely, treated as an inverse problem [17].
It has been proved rigorously [18] that a unique solution
exists for this type of integral equation, when boundary
conditions are specified. The decay width at large mQ

approaches its HQE in powers of 1=mQ, which has been
known to accommodate the observed B and Bs meson
lifetimes well. It ought to vanish at a hadronic threshold,
which originates from the chiral symmetry breaking for
light quarks. This threshold depends on final states, taking,
for instance, 2mπ with the pion mass mπ for the channel
involving only up and down quarks. Following the proposal
in [19], we scale the dispersion relation by changing
m2

Q ¼ uΛ into a dimensionless variable u, which introdu-
ces the arbitrary scale Λ. A solution to the dispersion
relation must not be affected by this artificial variable
change. It turns out, given the boundary conditions at
infinity and the threshold, that only when mQ takes a
specific value, can the stability with respect to the variation
of Λ be realized.
It will be shown that the above specific mQ solved from

the dispersion relation does coincide with the mass of a
physical heavy (charm or bottom) quark. We first perform
the dispersive analysis of the hadronic decay Q → dud̄,
regarding the final-state up and down quarks as being
massless, with the leading-order (LO) HQE input and the
threshold 2mπ . The pion mass mπ is a result of the chiral
symmetry breaking in QCD as stated before. The charm
quark mass mc ¼ 1.35 GeV is then inferred, close to the
value extracted from measured D meson lifetimes [20].
We then proceed to the investigation of theQ → sud̄ decay
with the threshold mπ þmK , mK being the kaon mass. It is
encouraging to find that the strange quark mass ms must
take a value around ms ¼ 0.12 GeV in order to produce
the same charm quark mass from the Q → dud̄ analysis.
The relation between ms and mK is governed by strong
interaction as verified in lattice QCD [21] and sum
rules [22]. The above observations indicate the internal
consistency among the scales ms, mπ , mK , and mc, which

characterize strong andweak dynamics in the SM.Moreover,
the solved c → sūd decay width 3.3 × 10−13 GeV is rea-
sonable, compared with the data of the Cabibbo-favored
inclusive Dþ meson decay modes [23]. The semileptonic
decay Q → dμþνμ is examined in a similar manner by
considering the threshold mπ þmμ, mμ being the muon
mass. It is noticed that the dispersive constraint on the muon
mass is quite rigid, which must take the value mμ ¼
0.11 GeV in order to generate the same charm quark mass.
We repeat the dispersive analysis on the width of the

hadronic decay Q → cūd by inputting the charm quark
mass mc ¼ 1.35 GeV derived previously and the threshold
mπ þmD, which leads to the bottom quark mass
mb ¼ 4.0 GeV, consistent with the value extracted from
measured B meson lifetimes [24]. The relation between mc
andmD can be deduced in QCD, so no a priori information
on the bottom quark is introduced. The predicted decay
width at mb ¼ 4.0 GeV also agrees with the b → cūd
inclusive data in [23]. Demanding that the dispersion
relation for the semileptonic decay Q → uτ−ν̄τ with the
threshold mπ þmτ gives the same bottom quark mass, we
fix the τ lepton mass mτ ¼ 2.0 GeV. To sum up, the above
fermion masses can be determined, starting from massless
up and down quarks, by the dispersion relations which
correlate ultraviolet and infrared behaviors of meson weak
decays. We point out that the solution for a decay width
reduces to the HQE input, once the chiral symmetry is
restored, and no constraint on fermion masses can be
imposed. It is stressed that the Pauli interference (weak
annihilation) provides the higher-power effect essential for
establishing a solution of the hadronic (semileptonic) decay
width. For this reason, the semileptonic decay into the eνe
final state does not serve the purpose of constraining the
involved fermion masses efficiently because of the helicity
suppression on weak annihilation.
The rest of the paper is organized as follows. We

construct the dispersion relation obeyed by the absorptive
piece of a heavy meson matrix element of the four-quark
effective operators in Sec. II. The Q → dud̄ case with the
LO HQE input for massless decay products is explored in
detail to illustrate our formalism. The equation for speci-
fying the physical heavy quark mass is presented as a
consequence of the scale invariance in the arbitrary Λ,
which generates the charm quark mass mc. We study the
Q → sud̄, Q → cūd, Q → dμþνμ, and Q → uτ−ν̄τ decays
into massive final states for fixing the masses ms, mb, mμ,
and mτ, respectively, in Sec. III. It is corroborated that the
solved decay widths exhibit apparent stability under the
variation of Λ, and match the data satisfactorily. Section IV
contains the conclusion and outlook.

II. DISPERSIVE CONSTRAINTS

The nonperturbative approach based on dispersion rela-
tions for physical observables was proposed in [17], and
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then applied to the constraint on the hadronic vacuum
polarization contribution to the muon anomalous magnetic
moment [25], to the reformulation of QCD sum rules for
extracting properties of the series of ρ resonances [26],
glueball masses [19], and the pion light-cone distribution
amplitude [27], and to the explanation of the large observed
D meson mixing parameters [15]. Here we will extend it to
the analysis of heavy quark decay widths and demonstrate
that the involved fermion masses can be constrained, as
the hadronic thresholds are introduced into the relevant
dispersion relations. We concentrate on the Q → dud̄ case
with massless final-state quarks and the determination of
the charm quark mass in this section.

A. Dispersion relation

Consider the analytical correlation function ΠðmQÞ for a
heavy meson HQ of the mass mHQ

formed by the fictitious
heavy quark Q, which is defined by the matrix element

ΠðmQÞ≡ 1

2mHQ
ðmQÞ

hHQjT jHQi ¼ MðmQÞ þ iΓðmQÞ:

ð1Þ

The transition operator T is written as

T ¼ i
Z

d4xT½H†
effðxÞHeffð0Þ�; ð2Þ

whereHeff denotes theΔQ ¼ 1 effective weak Hamiltonian.
The functions MðmQÞ and ΓðmQÞ represent the dispersive
and absorptive pieces, respectively. It has been observed that
power corrections are crucial for establishing a resonance
solution in QCD sum rules [26]. Hence, we stick to those
heavy meson decays, which contain sizable higher-power
corrections. It is known that theD0 meson lifetime receives a
dimension-six contribution only from the W-exchange top-
ology, which suffers chiral suppression under the vacuum
insertion approximation [28]. It is possible to constrain
the strange quark mass through the introduction of the
ms-dependent threshold into the dispersion relation, so we
will not discuss Ds meson decays. We thus analyze Dþ
meson decays below, whose widths in the HQE have been
available in the literature.
The inclusive hadronic (semileptonic) decay width of a

charged heavy meson is written, in the HQE, as [24,29,30]

ΓHQE
hðsÞ ðmQÞ ¼

G2
FjVCKMj2m5

Q

192π3

�
cð3ÞhðsÞ

�
1 −

μ2π − μ2G
2m2

Q

�

þ 2cð5ÞhðsÞ
μ2G
m2

Q
þ Γð6Þþð7Þ

hðsÞ ðmQÞ
�
; ð3Þ

where GF is the Fermi constant and VCKM represents the
Cabibbo-Kobayashi-Maskawa (CKM) factor. The heavy-
quark-effective-theory (HQET) parameters μ2π and μ2G are

defined by the matrix elements hHQjQ̄QjHQi and
hHQjQ̄σμνGμνQjHQi, respectively, with the gluon field
strength Gμν. The significance of the Darwin term is still
uncertain, which depends on how it is extracted [31]. Here
we do not take it into account according to [32]: a small
Darwin contribution, consistent with zero basically, yields a
better fit to the measured lifetime ratio τðBsÞ=τðBdÞ. The
coefficient functions of the penguin operators vanish at LO
in the strong coupling αs, the precision we will work on. It
has been postulated that the HQE can be truncated to a
good approximation after the dimension-seven terms [28],
as done in Eq. (3).
For our purpose, it suffices to adopt the LO expressions

for the hard coefficients [33]

cð3Þh ¼ A0ðμÞI0ðxqÞ; cð5Þh ¼ −A0ðμÞI1ðxqÞ − A2ðμÞI2ðxqÞ;
cð3Þs ¼ I0ðxlÞ; cð5Þs ¼ −I1ðxlÞ; ð4Þ

with the ratios xq ¼ m2
q=m2

Q and xl ¼ m2
l=m

2
Q, mq (ml)

being the mass of a final-state quark q ¼ s or c (charged
lepton l ¼ μ or τ), which will be touched on in the
next section. The functions Ai depend on the Wilson
coefficients C1;2,

A0 ¼ NcC2
1 þ NcC2

2 þ 2C1C2; A2 ¼ 8C1C2: ð5Þ

The functions Ii are given by [34,35]

I0ðxÞ ¼ 1 − 8xþ 8x3 − x4 − 12x2 ln x;

I1ðxÞ ¼ ð1 − xÞ4; I2ðxÞ ¼ ð1 − xÞ3: ð6Þ

The next-to-leading-order (NLO) corrections to cð3Þ can be
found in Refs. [34,36–40].
The term Γð6Þþð7Þ

hðsÞ ðm2
QÞ combines the dimension-six

and -seven hard spectator contributions, including that
from the Pauli interference (weak annihilation). The
coefficient functions of the dimension-six operators for
the hadronic decays were evaluated to LO in Refs. [41–43],
and to NLO in Refs. [44,45]. The dimension-seven
contributions were computed only partially to LO in
[20,24,28,46]. The LO results are summarized as

Γð6Þþð7Þ
h ðmQÞ ¼ 16π2

f2HQ
mHQ

m3
Q

ðC2
1 þ C2

2 þ 2NcC1C2Þ

× ð1 − xqÞ2
�
1 −

�
1þ xq
1 − xq

þ 1

2

�
2Λ̄
mQ

�
; ð7Þ

Γð6Þþð7Þ
s ðmQÞ ¼ 16π2

f2HQ
mHQ

m3
Q

xlð1 − xlÞ

×

�
3

2
ð1 − xlÞ − 3xlð1 − 2xlÞ

2Λ̄
mQ

�
; ð8Þ

DISPERSIVE CONSTRAINTS ON FERMION MASSES PHYS. REV. D 107, 094007 (2023)

094007-3



with the heavy meson decay constant fHQ
and the binding

energy Λ̄ ¼ mHQ
−mQ. The vacuum insertion approxima-

tions for the involved hadronic matrix elements have been
applied to simplify the expressions, and the weak annihi-
lation contribution to the hadronic decay width is negligible
compared with the Pauli interference one. Notice the two-
body phase-space enhancement factor 16π2 relative to the
three-body phase space. This clarifies why the spectator
effects, despite being power suppressed, are important.
Since the HQE result contains terms in various powers of

1=mQ, instead of in 1=m2
Q, the construction of a dispersion

relation begins with the contour integration in the complex
mQ plane [47], instead of the m2

Q plane [15], which
possesses different branching cuts. We have the identity

1

2πi

I
dm

ΠðmÞ
mQ −m

¼ 0; ð9Þ

in which the contour consists of two pieces of horizontal
lines above and below the branch cut along the positive real
axis, two pieces of horizontal lines above and below the
branch cut along the negative real axis, a small circle
around the pole m ¼ mQ located on the positive real axis,
and a circle CR of the large radius R as depicted in Fig. 1.
The radius R should not exceed the W boson mass mW in
order to validate the use of the effective weak Hamiltonians
in Eq. (2). The integral in Eq. (9) vanishes, for the contour
encloses only unphysical regions without poles.
The contribution along the small clockwise circle yields

MðmQÞ, and those from the four pieces of horizontal lines
lead to the dispersive integrals ofΓðmÞ. Equation (9) becomes

MðmQÞ ¼
1

π

Z
R

mF

dm
ΓðmÞ

mQ −m
−
1

π

Z
−mF

−R
dm

ΓðmÞ
mQ −m

þ 1

2πi

Z
CR

dm
ΠHQEðmÞ
mQ −m

; ð10Þ

where the hadronic threshold mF sums the masses in the
lightest final state. The unknown function ΓðmÞ acquires
nonperturbative contributions from the smallm region,where
the chiral symmetry is broken. It is the reason why the
thresholdmF, which is dynamically generated and of order of
the QCD scale ΛQCD, appears in Eq. (10). The integrand
ΠðmÞ, taking values along the large counterclockwise circle
CR, can be reliably replaced by the perturbative one
ΠHQEðmÞ; as stated before, the HQE accounts for the
measured B meson lifetimes well.
The dispersive part MHQEðmQÞ and the absorptive part

ΓHQEðmQÞ from the HQE respect the dispersion relation,

MHQEðmQÞ ¼
1

π

Z
R

0

dm
ΓHQEðmÞ
mQ −m

−
1

π

Z
0

−R
dm

ΓHQEðmÞ
mQ −m

þ 1

2πi

Z
CR

dm
ΠHQEðmÞ
mQ −m

; ð11Þ

where the thresholds for the first two integrals on the right-
hand side have been set to zero for the massless up and
down quarks with mq ¼ 0. There is no pole at mQ ¼ 0 up
to the power shown in Eq. (3). Though ΓHQEðmÞ does not
describe the low-mass behavior of a physical decay width
correctly, Eq. (11) holds simply owing to the analyticity of
the perturbative quark-level calculation. We equateMðmQÞ
and MHQEðmQÞ, i.e., Eqs. (10) and (11) at large enough
mQ ≫ mF, arriving at

Z
R

mF

ΓðmÞ
mQ −m

dm −
Z

−mF

−R

ΓðmÞ
mQ −m

dm

¼
Z

R

0

ΓHQEðmÞ
mQ −m

dm −
Z

0

−R

ΓHQEðmÞ
mQ −m

dm; ð12Þ

where the contributions from the large circle CR on the two
sides have been canceled.

B. Solution of decay width

We decompose the HQE hadronic width ΓHQE
h ðmÞ

into the pieces, which are even and odd in powers of m,
ΓHQE
h ðmÞ ¼ ΓHQE

e ðmÞ þ ΓHQE
o ðmÞ, and the unknown func-

tion into ΓhðmÞ ¼ ΓeðmÞ þ ΓoðmÞ accordingly. For the
even piece, the variable change m → −m applied to the
second integrals on both sides of Eq. (12) results in

Z
R2

m2
F

ΓeðmÞ
m2

Q −m2
dm2 ¼

Z
R2

0

ΓHQE
e ðmÞ

m2
Q −m2

dm2: ð13Þ

Moving the integrand on the right-hand side to the left-hand
side, and regarding it as a subtraction term, we get

Z
∞

0

ΔΓeðmÞ
m2

Q −m2
dm2 ¼ 0: ð14ÞFIG. 1. Contour for Eq. (9), where the thick lines represent the

branch cuts.
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The subtracted unknown function ΔΓeðmÞ≡ΓeðmÞ−
ΓHQE
e ðmÞ is fixed to −ΓHQE

e ðmÞ in the interval ð0; mFÞ of
m, and approaches zero at large m, because of ΓeðmÞ →
ΓHQE
e ðmÞ in this limit. Though R should not exceedmW , we

extend it to infinity owing to the diminishing of ΔΓeðmÞ at
large m.
For the odd piece in m, the variable change m → −m

applied to the second integrals on both sides of Eq. (12)
gives

mQ

Z
R2

m2
F

ΓoðmÞ
mðm2

Q −m2Þ dm
2 ¼ mQ

Z
R2

0

ΓHQE
o ðmÞ

mðm2
Q −m2Þ dm

2:

ð15Þ

Moving the integrand on the right-hand side to the left-hand
side leads to

Z
∞

0

ΔΓoðmÞ
mðm2

Q −m2Þ dm
2 ¼ 0: ð16Þ

The subtracted unknown function ΔΓoðmÞ≡ ΓoðmÞ −
ΓHQE
o ðmÞ is fixed to −ΓHQE

o ðmÞ in the interval ð0; mFÞ,
and approaches zero at large m. The implication of
Eqs. (14) and (16) will be probed below. Since they hold
for an arbitrary large scale mQ, they impose a stringent
correlation between the nonperturbative behavior of ΓhðmÞ
at low mass and the perturbative behavior of ΓhðmÞ ≈
ΓHQE
h ðmÞ at high mass, thus among the relevant mass

scales. It is obvious that the trivial solutions ΔΓe;oðmÞ ¼ 0,
i.e., ΓhðmÞ ¼ ΓHQE

h ðmÞ exist as mF → 0. In other words,
there will be no constraint on fermion masses in the absence
of the chiral symmetry breaking. We emphasize that
Eqs. (14) and (16) hold for each decay channel of HQ,
because the associated CKM factor can vary independently
from a mathematical point of view.
We changem2

Q andm2 in Eq. (14) into the dimensionless
variables u and v via m2

Q ¼ uΛ and m2 ¼ vΛ, respectively,
obtaining

Z
∞

0

dv
ΔΓeðvÞ
u − v

¼ 0: ð17Þ

The purpose of introducing the arbitrary scaleΛwill become
clear shortly. Viewing the fact that ΔΓeðvÞ decreases at large
v, and the major contribution to Eq. (17) arises from the
region with finite v, we are allowed to expand Eq. (17) into a
power series in 1=u for sufficiently large u by inserting

1

u − v
¼
X∞
i¼1

vi−1

ui
: ð18Þ

Equation (17) then demands a vanishing coefficient for every
power of 1=u.
We start with the case of N vanishing coefficients,Z

∞

0

dvvi−1ΔΓeðvÞ ¼ 0; i ¼ 1; 2; 3 � � � ; N; ð19Þ

where N is a large integer, such that Eq. (17) is valid up to
negligible corrections down by a power 1=uNþ1. It hints
that ΔΓeðvÞ can be expanded in terms of the generalized

Laguerre polynomials LðαÞ
j ðvÞ with the support ½0;∞Þ,

which respect the orthogonality condition

Z
∞

0

vαe−vLðαÞ
i ðvÞLðαÞ

j ðvÞdv ¼ Γðiþ αþ 1Þ
i!

δij: ð20Þ

The first N polynomials LðαÞ
0 ðvÞ; LðαÞ

1 ðvÞ; LðαÞ
2 ðvÞ; � � �,

LðαÞ
N−1ðvÞ are composed of the terms 1, v, v2, � � �, vN−1

appearing in Eq. (19). Therefore, the expansion of ΔΓeðvÞ
contains the polynomials with degrees j not lower than N,

ΔΓeðvÞ ¼
XN0

j¼N

ajvαe−vL
ðαÞ
j ðvÞ; N0 > N; ð21Þ

with a set of unknown coefficients aj. The highest degree

N0 can be fixed by the initial conditionΔΓeðvÞ¼−ΓHQE
e ðvÞ

in the interval ð0; m2
F=ΛÞ of v. Since ΓHQE

e ðvÞ is a smooth
function, N0 needs not be infinite.
A generalized Laguerre polynomial takes the approxi-

mate form of a large j [48]

LðαÞ
j ðvÞ ≈ jα=2v−α=2ev=2Jαð2

ffiffiffiffiffi
jv

p
Þ; ð22Þ

up to corrections of 1=
ffiffi
j

p
, Jα being a Bessel function of the

first kind. Equation (21) becomes

ΔΓeðmÞ ≈
XN0

j¼N

aj

ffiffiffiffiffiffiffiffi
jm2

Λ

r
α

e−m
2=ð2ΛÞJα

 
2

ffiffiffiffiffiffiffiffi
jm2

Λ

r !
; ð23Þ

where the variable v has been written as m2=Λ explicitly.
Defining the scaling variable ω≡ ffiffiffiffiffiffiffiffiffiffi

N=Λ
p

, we have the
approximation N0=Λ ¼ ω2 þ ðN0 − NÞ=N ≈ ω2 for a finite
N0 − N. Equation (23) then reduces to

ΔΓeðmÞ ≈ yeðωmÞαJαð2ωmÞ; ð24Þ

where the common Bessel functions Jαð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2=Λ

p
Þ ≈

Jαð2ωmÞ for j ¼ N;N þ 1;…; N0 have been factored
out, and the sum of the unknown coefficients

P
N0
j¼N aj

has been denoted by ye. The exponential suppression factor
e−s=ð2ΛÞ ¼ e−ω

2m2=ð2NÞ has been replaced by unity for a
large N in the region with finite m and ω, which we are
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interested in (see the next subsection). The correction to
this replacement is of power 1=N, smaller than that
to Eq. (22).
We replicate the above procedure for Eq. (16), deriving

ΔΓoðmÞ
m

≈ yoðωmÞαJαð2ωmÞ; ð25Þ

with the same index α as seen in the next subsection.
A solution of the Q → dud̄ decay width is thus expressed,
in terms of a single Bessel function, as

ΔΓhðmQÞ ¼ ΔΓeðmQÞ þ ΔΓoðmQÞ

≈ ye

�
1þ yo

ye
mQ

�
ðωmQÞαJαð2ωmQÞ: ð26Þ

We stress that a solution to the dispersion relation should be
insensitive to the variation of the arbitrary scale Λ, which is
introduced via the artificial variable changes. The variation
of Λ is translated into that of ω. To explain how to realize
this insensitivity, we make a Taylor expansion ofΔΓhðmQÞ,

ΔΓhðmQÞ ¼ ΔΓhðmQÞjω¼ω̄ þ dΔΓhðmQÞ
dω

����
ω¼ω̄

ðω − ω̄Þ

þ 1

2

d2ΔΓhðmQÞ
dω2

����
ω¼ω̄

ðω − ω̄Þ2 þ � � � ; ð27Þ

where the constant parameter ω̄, together with α, ye, and yo,
are determined via the fit of the first term ΔΓhðmQÞjω¼ω̄ to

−ΓHQE
h ðmQÞ in the interval ð0; mFÞ of mQ.
The insensitivity to the scaling variable ω requires the

vanishing of the first derivative in Eq. (27),

dΔΓhðmQÞ
dω

����
ω¼ω̄

¼ 0; ð28Þ

from which roots of mQ are solved. Furthermore, the
second derivative d2ΔΓhðmQÞ=dω2jω¼ω̄ should be minimal
to maximize the stability window around ω̄, in which
ΔΓhðmQÞ is almost independent of the variation of ω.
Because the HQE result is independent of ω, the stability
of ΔΓhðmQÞ is equivalent to the stability of the decay
width ΓhðmQÞ. It will be shown that only when mQ takes
a specific value can the above requirements be met.
Equation (26) with this specific mQ establishes a solution
to the dispersion relation in Eq. (12) with the initial
condition in the interval ð0; mFÞ of mQ. This specific
mQ will be identified as the physical heavy quark mass,

at which the corresponding Γh ¼ ΔΓh þ ΓHQE
e represents

our prediction for the considered decay width. Once a
solution for the decay width is found, the degree N for the
polynomial expansion in Eq. (21) can be pushed, together
with the scale Λ, to arbitrarily large values by keeping the

scaling variable ω ¼ ffiffiffiffiffiffiffiffiffiffi
N=Λ

p
within the stability window.

Then all the arguments based on the large N scenario,

including the neglect of the exponential factor e−m
2
Q=Λ in

Eq. (23), are justified. It has been observed in the inves-
tigation of neutral meson mixing [15] that the optimal
choice of N for the polynomial expansion indeed increases
with Λ in the stability window.

C. Charm mass from the Q → dud̄ decay width

We deduce the charm quark mass from the dispersion
relation for the hadronic decay Q → dud̄, taking the Fermi
constant GF ¼ 1.1663788 × 10−5 GeV−2. Strictly speak-
ing, the decay constant fHQ

depends on the fictitious meson
mass mHQ

. However, the decay constants of the physical
pseudoscalar mesons do not vary much in the low mass
region, ranging from mπ ≈ 0.14 GeV to mBs

≈ 5.4 GeV.
Hence, we treat fHQ

as a constant, and set it to a typical
value fHQ

¼ 0.2 GeV. The expansion for the heavy meson
mass mHQ

¼ mQ þ Λ̄ in Eq. (7) is implemented. The
contribution down by the power Λ̄=mQ from the dimension-
six term is then grouped into the dimension-seven one. The
HQET parameters Λ̄, μ2π , and μ2G vary with mQ in principle.
We also treat them as constants, and verify that outcomes
have a weak dependence on them. We take Λ̄ ¼ 0.5 GeV,
μ2π ¼ 0.43 GeV2, and μ2G ¼ 0.38 GeV2, i.e., the central
values of the ranges inferred from the evaluations of B
and D meson lifetimes [20,31,32,49,50]

Λ̄ ¼ 0.5� 0.1 GeV; μ2π ¼ 0.43� 0.24 GeV2;

μ2G ¼ 0.38� 0.07 GeV2: ð29Þ

The renormalization group evolution of the Wilson coef-
ficients C1ðμÞ and C2ðμÞ with μ ¼ mQ is taken into account
to the leading logarithmic accuracy [51]. The fictitious quark
mass can run to a very low scale in the Q → dud̄ case. To
stabilize the running coupling constant which the Wilson
coefficients depend on, we introduce an effective gluon mass
mg into its argument:

αsðμÞ ¼
4π

β0 ln½ðμ2 þm2
gÞ=Λ2

QCD�
; ð30Þ

with the coefficient β0 ¼ 11 − 2nf=3. We adopt the one-
loop running with the QCD scale ΛQCD ¼ 0.324 GeV [52]
for the number of active quark flavors nf ¼ 3. The effective
gluon mass has been estimated to be about mg ≈ 0.4 GeV
[53,54]. We choose mg ¼ 0.41 GeV, and the reason for this
choice will be provided later.
The relative importance of various contributions to the

HQE hadronic width in Eq. (3) without the CKM factor,
AðmQÞ≡ ΓHQE

h ðmQÞ=jVCKMj2, is displayed in Fig. 2. The
dimension-six Pauli interference effect gives a negative
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contribution due to the combination of the Wilson coef-
ficients C2

1 þ C2
2 þ 2NcC1C2 < 0 at a small scale [24].

The addition of the dimension-seven contribution turns
the width positive up to the mass mQ ≈ 1 GeV. The decay
width becomes positive definite, after all the contributions
are included. The sum of the dimension-six and -seven
contributions dominates the low mass region with mQ <
0.4 GeV. Therefore, we have the approximate Q → dud̄
HQE width at small mQ,

ΓHQE
h ðmQÞ ≈ Γð6Þþð7Þ

h ðmQÞ ∝ m3
Q − 2Λ̄m2

Q: ð31Þ

Utilizing JαðxÞ ∼ ðx=2Þα=Γðαþ 1Þ as x → 0, and com-
paring Eqs. (26) and (31) at low mQ, we identify the index

α ¼ 1 from the limiting behavior ΓHQE
h ∝ m2

Q, and the ratio

yo
ye

¼ −
1

2Λ̄
¼ −1 GeV−1: ð32Þ

The coefficient ye is fixed by the boundary condition
ΔΓhðmFÞ ¼ −ΓHQE

h ðmFÞ at mQ ¼ mF, which leads the
solution in Eq. (26) to

ΔΓhðmQÞ ¼ −ΓHQE
h ðmFÞ

�
1 −

mQ

2Λ̄

��
1 −

mF

2Λ̄

�
−1

×
mQJ1ð2ωmQÞ
mFJ1ð2ωmFÞ

: ð33Þ

The best fit of Eq (33) to −ΓHQE
h ðmQÞ in the interval

ð0; mFÞ, mF ¼ mπþ þmπ0 with the pion masses mπþ ¼
0.140 GeV and mπ0 ¼ 0.135 GeV, sets ω ¼ ω̄ ¼
3.166 GeV−1. We contrast the fit result with −ΓHQE

h ðmQÞ
in terms of the width without the CKM factor, ΔAðmQÞ≡
ΔΓHQE

h ðmQÞ=jVCKMj2, in Fig. 3. The excellent agreement
confirms that the simple solution in Eq. (26) works well,

and that other methods for determining ω̄, such as equating
Eq. (33) and −ΓHQE

h ðmQÞ at mQ ¼ mF=2, yield similar ω̄;
this equality produces ω̄ ¼ 3.280 GeV−1, close to the one
from the best fit.
As elaborated before, the charm quark mass takes the

physical value mc that vanishes the first derivative in
Eq. (28), namely,

D1ðmQÞ≡ d
dω

J1ð2ωmQÞ
J1ð2ωmFÞ

����
ω¼ω̄

¼ 0; ð34Þ

where the factors independent of ω in Eq. (33) have been
removed. At the same time, the second derivative

D2ðmQÞ≡ d2

dω2

J1ð2ωmQÞ
J1ð2ωmFÞ

����
ω¼ω̄

; ð35Þ

should be minimal as mQ ¼ mc. Figure 4 presents the
dependence of the first derivative in Eq. (34) on mQ, which
reveals several roots ofmQ in the smallmQ region. The first

FIG. 3. Comparison of ΔΓhðmQÞ in Eq. (33) from the fit (solid
line) with −ΓHQE

h ðmQÞ (dashed line) in terms of the width without

the CKM factor, ΔAðmQÞ≡ ΔΓHQE
h ðmQÞ=jVCKMj2.

FIG. 2. The HQE hadronic decay width without the CKM
factor, AðmQÞ≡ ΓHQE

h ðmQÞ=jVCKMj2, from the dimension-six
contribution (dotted line) only, from the sum of the dimension-
six and -seven contributions (dashed line), and from the total
contributions (solid line).

FIG. 4. Dependencies of the first derivative D1ðmQÞ (in units
of GeV, solid line) in Eq. (34) and the second derivative D2ðmQÞ
(in units of GeV2, dashed line) in Eq. (35) on mQ.
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root located at mQ ¼ mF ¼ 0.275 GeV, attributed to the
boundary condition of ΔΓhðmQÞ at this mQ, is trivial and
bears no physical significance. The dashed curve for
Eq. (35) in Fig. 4 manifests a larger second derivative
for, i.e., worse stability associated with a higher root, so a
smaller root is preferred for mc. It is known that a charm
quark can decay into two strange quarks with the hadronic
threshold 2mK ≈ 1 GeV. The second root at mQ ¼
0.84 GeV seems too low to be physical. We thus select
the third root at mQ ¼ 1.35 GeV as the physical solution
of the charm quark mass, which implies the Dþ meson
mass mDþ ¼ mc þ Λ̄ ¼ 1.85 GeV in accordance with the
measured value 1.870 GeV [55]. Another support for this
choice is that the corresponding decay width agrees with
the data as shown later. Our solution of mc ¼ 1.35 GeV is
consistent with the MS, kinematic, and pole masses of a
charm quark, which are all equivalent at LO, and range
between 1.28 GeV to 1.49 GeV at one loop [20].
We examine the sensitivity of the extracted charm quark

mass to the variation of the involved inputs. The result has a
weak dependence on the HQET parameters Λ̄, μπ , and μG.
Taking the binding energy Λ̄ as the representative example,
we find that the lower (upper) bound of the binding energy
Λ̄ ¼ 0.4 GeV (0.6 GeV) generates the solution mc ¼
1.37 GeV (1.34 GeV). That is, 20% change of Λ̄ makes
an impact of less than 2% onmc. The variation of the decay
constant fHQ

has a similar effect: a smaller (larger) value
fHQ

¼ 0.16 GeV (0.24 GeV) leads to mc ¼ 1.37 GeV
(1.33 GeV). Once the chiral symmetry is broken, up and
down quarks should become massive too. We thus check
the dependence on light quark masses by including the
down quark mass md ¼ 5 MeV into the calculation, and
assure that it has little influence on the outcome; the charm
quark mass just reduces frommc ¼ 1.35 GeV to 1.34 GeV.
The only parameter which mc is sensitive to is the effective
gluon mass mg: a smaller (larger) mg ¼ 0.40 GeV
(0.42 GeV) gives mc ¼ 1.29 GeV (1.40 GeV). This sensi-
tivity is expected, for the hadronic threshold mF, which the

Wilson coefficients can evolve to, is quite low in this case.
It is then understood why we chose mg ¼ 0.41 GeV: the
resultant Dþ meson mass mDþ ¼ 1.85 GeV would be
roughly equal to the observed one. We point out that the
Q → dud̄ decay is the only mode among those considered
in the present work whose analysis is sensitive to mg. Once
mg is set, it is employed in the investigations of the other
modes, and the agreement of the solved fermion masses
with the measured values will reinforce our claim that
fermion masses in the SM are dynamically constrained.
We also need to assess the theoretical uncertainty

inherent in our formalism. Though the large N approx-
imations for establishing a solution are justified, it is not
clear how large the highest degreeN0 in Eq. (21) is and how
reliable the expression in terms of a single Bessel function
in Eq. (26) is. This uncertainty is reflected by that of the
parameter ω̄ from matching the solution to the HQE input
in the interval ð0; mFÞ—if a true solution was available,
ω̄ should be determined unambiguously. Different ways of
matching return different values of ω̄, as having been
exemplified below Eq. (33), and different results of mc
accordingly. We estimate the error from this source by
computing the squared deviation

σ ≡
Z

mF

0

½ΔΓhðmQÞjω¼ω̄ þ ΓHQE
h ðmQÞ�2dmQ: ð36Þ

A value of ω̄ is accepted, as σ is lower than twice its
minimum, which corresponds to the best fit. Given this
prescription, it is straightforward to identify the allowed
ranges 3.012GeV−1< ω̄<3.306GeV−1 and 1.29 GeV <
mc < 1.41 GeV. Since the effective gluon mass will
be fixed hereafter, the uncertainties surveyed above
are dominated by the variation of ω̄, and sum to
mc ¼ 1.35þ0.07

−0.06 GeV.
We then include the CKM factor jVCKMj2 ¼ jVcdV�

udj2
with Vcd ¼ λ and Vud ¼ 1 − λ2=2, where the Wolfenstein
parameter takes λ ¼ 0.225 [55]. The subtracted width

(a) (b)

FIG. 5. Dependencies of (a) the subtracted width ΔΓhðmQÞ and (b) the width ΓhðmQÞ of the Q → dud̄ decay on mQ for
ω ¼ 3.0 GeV−1 (dashed line), 3.166 GeV−1 (solid line), and 3.4 GeV−1 (dotted line).
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ΔΓhðmQÞ and the width ΓhðmQÞ ¼ ΔΓhðmQÞ þ ΓHQE
h ðmQÞ

of the Q → dud̄ decay for three values of ω around
ω̄ ¼ 3.166 GeV−1, i.e., for ω¼3.0GeV−1, 3.166 GeV−1,
and 3.4 GeV−1 are plotted in Figs. 5(a) and 5(b). Indeed all
three curves cross each other in the compact regions located
at mQ ¼ 0.84 GeV and 1.35 GeVas expected, evincing the
stability of the widths evaluated at these two values of mQ

under the variation of ω. The intersection area is smaller
at mQ ¼ 0.84 GeV than at mQ ¼ 1.35 GeV, in alignment
with the indication of the second derivative in Fig. 4.
However, we pick up the latter as the solution for the charm
quark mass as explained before. It is mentioned that the
similar phenomenon has occurred in the dispersive analysis
of neutral meson mixing; the curves for the mixing
parameters of a fictitiousDmeson corresponding to various
scales Λ also cross each other in a compact region located
at the D meson mass. We clarify that the crossing at
mQ ¼ 1 GeV, also seen in Fig. 5, is due to the vanishing of
the factor 1 −mQ=ð2Λ̄Þ in Eq. (33), which should not be
mixed up with the roots of Eq. (34). The diminishing of the
solved ΓhðmQÞ for smallmQ up tomQ ¼ mF ¼ 0.275 GeV
in Fig. 5(b) echoes the almost exact cancellation between
ΔΓhðmQÞ and ΓHQE

h ðmQÞ in the interval ð0; mFÞ, which has
been illustrated in Fig. 3.
The predicted widths at mQ ¼ mc ¼ 1.35 GeV read

ΔΓhðmcÞ ¼ 4.09 × 10−15 GeV and ΓhðmcÞ ¼ 1.79×
10−14 GeV. It signifies that the nonperturbative effect,
originating from the introduction of the hadronic
threshold, enhances the HQE result by about 30%. The
predicted hadronic decay width amounts to the branching
fraction Bðc → dud̄Þ ¼ 2.8% for the inclusive Cabibbo-
suppressed pionic modes, given the total decay width of
the Dþ meson Γtot ¼ 6.37 × 10−13 GeV [55]. This pre-
diction is reasonable compared with the relevant data [55].
The decay width Γhð0.84 GeVÞ ¼ 7.66 × 10−15 GeV at
mQ ¼ 0.84 GeV, amounting to the branching fraction
1.2%, is apparently too low; the single channel Dþ →
2πþπ−π0 contributes the branching fraction about 1.2%
already according to [55].

III. DISPERSIVE CONSTRAINTS ON OTHER
FERMION MASSES

We extend the formalism developed in the previous
section to the constraints on the other fermion masses,
including the strange quark mass ms from the Q → sud̄
decay, the bottom quark massmb from theQ → cūd decay,

the muon mass mμ from the Q → dμþνμ decay, and the τ
lepton mass mτ from the Q → uτ−ν̄τ decay. For the
constraints on ms, mμ, and mτ, we rely on the proposition
that dispersive analyses of different decay channels of a
fictitious heavy quark should conclude the same heavy
quark mass.

A. The Q → sud̄ and Q → cūd decays

We first derive a solution to the dispersion relation
obeyed by hadronic decay widths for massive final
states, e.g., with nonvanishing mq in Eq. (7). Similarly,
we decompose the HQE input into the sum of the even
and odd pieces ΓHQE

h ðmÞ ¼ ΓHQE
e ðmÞ þ ΓHQE

o ðmÞ, and the
unknown width into ΓhðmÞ ¼ ΓeðmÞ þ ΓoðmÞ. Note that
there exists an additional pole at mQ ¼ 0 in the HQE result
as shown in Eq. (7),

Γð6Þþð7Þ
h ðmQÞ ∝

ðm2
Q −m2

qÞ2
mQ

− 4Λ̄ðm2
Q −m2

qÞ; ð37Þ

where the expansion of the factor 1þm2
q=m2

Q ≈ 2þ
Oððm2

Q −m2
qÞ=m2

QÞ in the limitmQ → mq has been applied
to the second term. The single pole in the dimension-six
term requests a slightly different handling as elaborated
below. The dispersion relation for the even piece is similar
to Eq. (14), except that the lower bound of m2 is replaced
by the quark-level threshold m2

q,Z
∞

m2
q

ΔΓeðmÞ
m2

Q −m2
dm2 ¼ 0: ð38Þ

The unknown functionΔΓeðmÞ is fixed to −ΓHQE
e ðmÞ in the

interval ðmq;mFÞ of m with the hadronic threshold mF.
For the odd piece, we consider the contour integration of

the correlator m2ΠðmÞ=ðm2 −m2
qÞ, for which the high-

mass behavior of ΠðmÞ is not altered, and the m ¼ 0 pole
has been removed, so that Eq. (9) holds. The additional
poles at m ¼ �mq are introduced, but their contribution
mqMðmqÞ=mQ to the left-hand side of Eq. (10) is much
smaller thanMðmQÞ from the pole m ¼ mQ at large mQ. A
similar contribution from the poles at m ¼ �mq also exists
on the left-hand side of Eq. (11). We still equate the left-
hand sides of Eqs. (10) and (11), and this equality is
justified, as long as the odd piecem2ΓoðmÞ=ðm2 −m2

qÞ can
be solved from the dispersion relation

Z
R

mF

m2ΓoðmÞ
ðm2 −m2

qÞðmQ −mÞ dm −
Z

−mF

−R

m2ΓoðmÞ
ðm2 −m2

qÞðmQ −mÞ dm

¼
Z

R

mq

m2ΓHQE
o ðmÞ

ðm2 −m2
qÞðmQ −mÞ dm −

Z
−mq

−R

m2ΓHQE
o ðmÞ

ðm2 −m2
qÞðmQ −mÞ dm: ð39Þ
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Employing the variable change m → −m for the second
integrals on both sides and moving the integrands on the
right-hand side to the left-hand side, we get

Z
∞

m2
q

mΔΓoðmÞ
ðm2 −m2

qÞðm2
Q −m2Þ dm

2 ¼ 0; ð40Þ

where the upper bound of the integration variable m2 has
been extended to infinity. The unknown functionΔΓoðmÞ is
fixed to −ΓHQE

o ðmÞ in the interval ðmq;mFÞ.
The steps from Eqs. (17) to (25) can be carried out for

the current case with massive final states straightforwardly.
The only modification resides in the variable changes
m2

Q −m2
q ¼ uΛ and m2 −m2

q ¼ vΛ. We then construct
the solutions

ΔΓeðmÞ ≈ ye
�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

q

q 	α
Jα
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

q

q 	
; ð41Þ

mΔΓoðmÞ
m2 −m2

q
≈ yo

�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

q

q 	α
Jα
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

q

q 	
: ð42Þ

A solution of the hadronic decay width is written as

ΔΓhðmQÞ ¼ ΔΓeðmQÞ þ ΔΓoðmQÞ

≈ ye

�
1þ yo

ye

m2
Q −m2

q

mQ

��
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q −m2
q

q 	α
× Jα

�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q −m2
q

q 	
; ð43Þ

which reduces to Eq. (26) as mq ¼ 0 obviously.
We apply Eq. (43) to the channel Q → sud̄ with the

thresholds mq ¼ ms and mF ¼ mπþ þmK̄0 . Comparing
Eqs. (37) and (43) in the limit mQ → mq, we identify
the index α ¼ 1 and the ratio

yo
ye

¼ −
1

4Λ
¼ −0.5 GeV−1: ð44Þ

The boundary condition ΔΓhðmFÞ ¼ −ΓHQE
h ðmFÞ at

mQ ¼ mF leads Eq. (43) to

ΔΓhðmQÞ¼−ΓHQE
h ðmFÞ

�
1−

m2
Q−m2

s

4Λ̄mQ

��
1−

m2
F−m2

s

4Λ̄mQ

�−1

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q−m2
s

q
J1ð2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q−m2
s

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
F−m2

s

p
J1ð2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

F−m2
s

p
Þ : ð45Þ

With the same binding energy Λ̄ ¼ 0.5 GeV and effective
gluon mass mg ¼ 0.41 GeV, and the meson masses
mπþ ¼ 0.140 GeV and mK̄0 ¼ 0.498 GeV, we obtain
ω̄ ¼ 1.995GeV−1, 2.080 GeV−1, and 2.177 GeV−1 for
the strange quark mass ms ¼ 0.01, 0.12, and 0.30 GeV,

respectively, from the best fit of Eq. (45) to −ΓHQE
h ðmQÞ in

the interval ðms;mFÞ.
The stability of the solved decay width under the

variation of ω demands the vanishing of the derivative
dΔΓhðmQÞ=dω at ω ¼ ω̄, i.e.,

DðmQÞ≡ d
dω

J1ð2ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q −m2
s

q
Þ

J1ð2ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

F −m2
s

p
Þ

������
ω¼ω̄

¼ 0: ð46Þ

The dependencies of the above derivative on mQ for the
three values of ω̄ are exhibited in Fig. 6, where the first
roots located at mQ ¼ mF have no physical significance,
because they arise from the boundary condition. We read
off the second roots mQ ¼ 1.40, 1.35, and 1.31 GeV
for ω̄ ¼ 1.995 GeV−1, 2.080 GeV−1, and 2.177 GeV−1

(ms ¼ 0.01, 0.12, and 0.30 GeV), respectively, at which
the solutions possess the maximal stability as argued in the
previous section. Those roots at higher mQ with worse
stability are not selected. It is encouraging to find that the
strange quark must have a mass around ms ¼ 0.12 GeV in
order to maintain the charm quark mass mc ¼ 1.35 GeV,
the same as from the Q → dud̄ analysis. A lower (higher)
ms would give rise to a higher (lower) mc. We have also
checked that it is impossible to reproduce the charm quark
mass without the spectator contribution in Eq. (37); mc is
always higher than 3.0 GeV for any ms < mK, once the
spectator contribution is switched off. That is, the higher-
power effect is necessary for establishing the physical
solution.
The result ms ¼ 0.12 GeV is consistent with the one

derived from the known kaon massmK in QCD sum rules at
the scale μ ¼ mc ¼ 1.35 GeV [22]. The above observation
confirms the nontrivial correlation among the masses ms,
mπ , mK , and mc, which characterize strong and weak
dynamics in the SM, though their exact values may suffer
potential theoretical uncertainties from, say, higher-order

FIG. 6. Dependencies of DðmQÞ in Eq. (46) on mQ for ms ¼
0.01 GeV (dotted line), 0.12 GeV (solid line), and 0.30 GeV
(dashed line).
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corrections to the HQE input. It is verified that the
extractions from the Q → sud̄ decay width are less sensi-
tive to the variation of the effective gluon mass mg. It can
take a value as low (high) as 0.35 GeV (0.46 GeV) to
decrease (increase) mc to 1.30 GeV (1.40 GeV) for
ms ¼ 0.12 GeV. In the previous Q → dud̄ case, mg takes
0.40 GeV (0.42 GeV) to make the same amount of impact
to the solution of mc. The influence from the other
parameters, like the HQETones, is also milder. To estimate
the uncertainty from the variation of ω̄, we search for its
value for each ms, which generates mc ¼ 1.35 GeV from
Eq. (46). It is then examined whether the squared deviation
for this set of ω̄ and ms, defined similarly to Eq. (36) but
with the integration interval ðms;mFÞ, is below twice its
minimum. If it is, the considered ms value is accepted.
Iterating the procedure for various ms, we can acquire the
allowed range of ms in principle. It turns out that the
resultant range ms < 0.4 GeV is very wide. On one hand,
the above error estimate may be too conservative to
achieve effective bounds in this case. On the other hand,
it discloses the worse quality of the solution compared to
that for the Q → dud̄ decay. The worse quality could be
attributed to the more complicated functional form of the
HQE input for massive final states than for massless ones,
such that the simple solution in Eq. (45) is less accurate
than in Eq. (26). Therefore, we do not attach errors to the
determination of ms.
The mQ dependencies of the subtracted width ΔΓhðmQÞ

in Eq. (45) and the width ΓhðmQÞ of the Q → sud̄ decay
for three values of ω around ω̄ from the best fit, i.e.,
ω ¼ 1.9 GeV−1, 2.080 GeV−1, and 2.3 GeV−1, are plotted
in Figs. 7(a) and 7(b), respectively, where the CKM factor
jVCKMj2 ¼ jVcsV�

udj2 has been included with Vcs ¼
1 − λ2=2. The small ΓhðmQÞ in the interval ðms;mFÞ of
mQ with ms ¼ 0.12 GeV and mF¼0.638GeV in Fig. 7(b)
reflects the satisfactory match between ΔΓhðmQÞ and

−ΓHQE
h ðmQÞ. The three curves cross each other more tightly

at mQ ¼ 1.35 GeV, implying the stability of the widths at

this mQ under the variation of ω. The crossing occurring
at mQ ¼ mF ¼ 0.638 GeV, due to the boundary condition,
bears no physical significance. The predicted widths
ΔΓhðmcÞ ¼ 8.61 × 10−14 GeV and ΓhðmcÞ ¼ 3.33 ×
10−13 GeV at mc ¼ 1.35 GeV can be read off easily. It
indicates that the nonperturbative effect, originating from
the introduction of the hadronic threshold, enhances the
HQE result by about 35%. The above decay width amounts
to the branching fraction Bðc → sud̄Þ ¼ 52.3% for the
inclusive Cabibbo-favored modes. Since the branching
fraction of the semileptonic Dþ meson decays is about
34% [55], and the Cabibbo-favored modes dominate the
hadronic channel, our prediction is reasonable. Thanks to
the nonperturbative enhancement observed in our formal-
ism, the charmed meson lifetimes can be accommodated
without resorting to a large fitted charm quark mass
1.56 GeV [24].
We turn to the analysis of the Q → cūd decay width,

simply substitutingmc for the final-state quark massms and
mF ¼ mπþ þmD0 for the threshold mF ¼ mπþ þmK̄0 .
Another modification occurs in the choice of the QCD
scale ΛQCD ¼ 0.286 GeV for the active quark number
nf ¼ 4 [52]. Taking the same binding energy Λ̄ ¼ 0.5 GeV
and effective gluon mass mg ¼ 0.41 GeV, mc ¼ 1.35 GeV
extracted previously, and mD0 ¼ 1.865 GeV [55], we
derive ω̄ ¼ 0.712 GeV−1 from the best fit of the solution
in Eq. (45) to the constraint −ΓHQE

h ðmQÞ in the interval
ðmc;mFÞ. Figure 8 shows the dependence of the derivative
in Eq. (46) on mQ, and the second root located at mQ ¼
4.03 GeV corresponds to the physical bottom quark mass
mb, close to the running quark mass m̄bðm̄bÞ ¼ 4.248 GeV
[24]. We stress that the formula for ΓHQE

h ðmQÞ does not
carry any a priori information on a bottom quark, the
emergence of mb is nontrivial, and the dispersion relation
correlates the masses mc, mD, and mb. This correlation is
solid in the sense that it is not affected by the variation of
mg, because of the sizable threshold mF. For instance,
�25% change of mg induces only �0.5% change of mb.

(a) (b)

FIG. 7. Dependencies of (a) the subtracted width ΔΓhðmQÞ and (b) the width ΓhðmQÞ of the Q → sud̄ decay on mQ for
ω ¼ 1.9 GeV−1 (dashed line), 2.080 GeV−1 (solid line), and 2.3 GeV−1 (dotted line).
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We simply concentrate on the theoretical error inherent in
our formalism. The condition that the squared deviation,
defined similarly to Eq. (36), does not exceed twice its
minimum leads to the allowed range 0.706 GeV−1 <
ω̄ < 0.718 GeV−1. We thus get the range of the bottom
quark mass 4.01 GeV < mb < 4.06 GeV, and conclude
mb ¼ 4.03þ0.03

−0.02 GeV.
One may wonder that the predicted B meson mass

mB ¼ mb þ Λ̄ ¼ 4.53 is lower than the measured value
5.279 GeV [55]. It may be due to the same HQET input
Λ̄ ¼ 0.5 GeV assumed in the analyses of the D and B
meson decays. In fact, the binding energy Λ̄ can be
mQ-dependent as mentioned before. If Λ̄ðmQÞ increases
with mQ, we will be allowed to test a larger value, say,
Λ̄ ¼ 0.6 GeV for the Q → cūd decay, which yields
mb ¼ 4.42 GeV. It lifts the predicted B meson mass up
to 5.02 GeV, approaching the observed one.
We present the dependencies of the subtracted width

ΔΓhðmQÞ and the width ΓhðmQÞ of the Q → cūd decay
with three different ω values in Figs. 9(a) and 9(b),
respectively, where the CKM factor jVCKMj2 ¼ jVcbV�

udj2
has been included with Vcb ¼ Aλ2=2, A ¼ 0.826 being one
of the Wolfenstein parameters [55]. It is noticed that

the three curves corresponding to ω ¼ 0.64 GeV−1,
0.712 GeV−1, and 0.78 GeV−1 cross each other in the
small region located at mQ ≈ 4 GeV in Fig. 9(a). The
crossings at mQ ¼ mF ¼ 2.005 GeV resulting from
the boundary condition, and atmQ ¼ 2.680which vanishes
the factor 1 − ðm2

Q −m2
cÞ=ð4Λ̄mQÞ in Eq. (45), have no

physical significance. The three curves are on top of one
another in Fig. 9(b), and their intersection is barely seen, for
the magnitude of ΔΓhðmQÞ is much lower than ΓhðmQÞ.
The smallness ofΔΓhðmQÞ reveals a minor nonperturbative
contribution to B meson decays introduced by the hadronic
threshold mF, and explains the reliability of HQE for the
evaluation of B meson lifetimes. The solved ΓhðmQÞ
remains vanishing in the interval ðmc;mFÞ of mQ (in fact,
up to mQ ¼ 2.5 GeV) in Fig. 9(b), manifesting the perfect

match between ΔΓhðmQÞ and −ΓHQE
h ðmQÞ. We read off the

widths ΔΓhðmbÞ ¼ −2.16 × 10−15 GeV and ΓhðmbÞ ¼
3.61 × 10−14 GeV, which amounts to the branching frac-
tion Bðb → cūdÞ ¼ 9.0%, given the total decay width
of the B� meson Γtot ¼ 4.02 × 10−13 GeV [55]. The
dominant percent-level branching fractions of Bþ meson
decays, 0.47% from D̄0πþ, 1.34% from D̄0ρþ, 0.41%
from D̄0ωπþ, 0.56% from D̄0πþπþπ−, 0.52% from
D̄⋆ð2007Þ0πþ, 0.98% from D̄⋆ð2007Þ0ρþ, 0.45% from
D̄⋆ð2007Þ0ωπþ, 1.03% from D̄⋆ð2007Þ0πþπþπ−, 1.8%
from D̄⋆ð2007Þ0π−πþπþπ0, 0.57% from D̄⋆03πþ2π−,
and 0.57% from D̄⋆⋆0πþ [55], add up to 8.7%, in agreement
with our prediction.
A remark is in order. A bottom quark can also decay into

light quarks through the Q → uūd channel. It has been
found that the dispersion relation for a fictitious heavy
quark Q decay into light final states determines only the
charm quark mass. The larger bottom quark mass, even if it
appears as one of the roots that vanishes the first derivative
with respect to ω, will not be selected due to the worse
associated stability. In other words, the Q → uūd mode is
not efficient for the constraint of the bottom quark mass.
We have elucidated in Sec. II that an appropriate correlation

(a) (b)

FIG. 9. Dependencies of (a) the subtracted width ΔΓhðmQÞ and (b) the width ΓhðmQÞ of the Q → cud̄ decay on mQ for
ω ¼ 0.64 GeV−1 (dashed line), 0.712 GeV−1 (solid line), and 0.78 GeV−1 (dotted line).

FIG. 8. Dependencies of DðmQÞ in Eq. (46) on mQ for the
Q → cud̄ decay.
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function needs to be chosen for the purpose. For example,
the D0 meson decay width does not work for the deter-
mination of the charm quark mass owing to the chirally
suppressed dimension-six contribution. This guideline also
applies to analyses in lattice QCD and sum rules, which
require suitable correlation functions for extractions of
physical observables.

B. The Q → dμ+ νμ and Q → uτ − ν̄τ decays

The investigations on semileptonic and hadronic decay
widths should return the same heavy quark mass from the
viewpoint of the dynamical consistency, so the dispersion
relations for the former can be utilized to constrain lepton
masses. The weak annihilation contribution in semileptonic
decays plays a role similar to the Pauli interference effect in
hadronic decays for establishing a solution. Because the
eνe channel with a tiny electron mass contains a negligible
annihilation contribution, which does not provide a suffi-
cient power correction, the μνμ and τντ channels will be
studied here. Equation (8) is proportional, in the limit
mQ → ml, to

Γð6Þþð7Þ
s ðmQÞ ∝

3

2

ðm2
Q −m2

lÞ2m2
l

m3
Q

þ 6Λ̄
ðm2

Q −m2
lÞm2

l

m2
Q

;

ð47Þ

where the expansionmHQ
¼ mQ þ Λ̄ has been inserted and

the net dimension-seven contribution has been approxi-
mated by 3 − 7m2

l=m
2
Q ≈ −4þOððm2

Q −m2
lÞ=m2

QÞ to give

the second term. It is evident that the above expression
follows the aforementioned helicity suppression; namely,
the weak annihilation contribution diminishes with a lepton
mass. A feature different from hadronic widths is that the
dimension-six contribution is constructive in the present
case, and the dimension-seven contribution one is destruc-
tive. It turns out that the Q → dμþνμ decay width becomes
negative in the low mQ region, though it is positive at
mQ ¼ mc, and some adjustment of the HQE input is
necessary for solving the dispersion relation. Therefore,
we discuss the Q → uτ−ν̄τ decay first, whose width
remains positive in the whole range of mQ.
As indicated in Eq. (47), both the even piece ΓHQE

e ðmÞ
and the odd piece ΓHQE

o ðmÞ have poles at m ¼ 0. For the
even piece, we consider the contour integration of the
correlator m2ΠðmÞ=ðm2 −m2

τÞ with the perturbative
threshold mτ. The high-mass behavior stays the same,
and them ¼ 0 pole has been removed, so that Eq. (9) holds.
The similar procedure applied to Eq. (39) yields

Z
∞

m2
τ

m2ΔΓeðmÞ
ðm2 −m2

τÞðm2
Q −m2Þ dm

2 ¼ 0; ð48Þ

where the unknown function ΔΓeðmÞ is fixed to −ΓHQE
e ðmÞ

in the interval ðmτ; mFÞ (a neutrino is regarded as being
massless) with the physical threshold mF ¼ mπ0 þmτ. For
the odd piece, we consider the contour integration of the
correlatorm4ΠðmÞ=ðm2 −m2

τÞ2 to remove the triple pole at
m ¼ 0, and derive the dispersion relation

Z
R

mF

m4ΓeðmÞ
ðm2 −m2

τÞ2ðmQ −mÞ dm −
Z

−mF

−R

m4ΓeðmÞ
ðm2 −m2

τÞ2ðmQ −mÞ dm

¼
Z

R

mτ

m4ΓHQE
e ðmÞ

ðm2 −m2
τÞ2ðmQ −mÞ dm −

Z
−mτ

−R

m4ΓHQE
e ðmÞ

ðm2 −m2
τÞ2ðmQ −mÞ dm: ð49Þ

We then have, with the variable change m → −m for the
second integrals on both sides,

Z
∞

m2
τ

m3ΔΓoðmÞ
ðm2 −m2

τÞ2ðm2
Q −m2Þ dm

2 ¼ 0; ð50Þ

where the upper bound of the integration variable m2 has
been pushed to infinity. The unknown function ΔΓoðmÞ is
fixed to −ΓHQE

o ðmÞ in the interval ðmτ; mFÞ.
The solutions from Eqs. (48) and (50) are written as

m2ΔΓeðmÞ
m2 −m2

τ
≈ ye

�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

τ

q 	α
Jα
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

τ

q 	
; ð51Þ

m3ΔΓoðmÞ
ðm2 −m2

τÞ2
≈ yo

�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

τ

q 	α
Jα
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

τ

q 	
;

ð52Þ

respectively, whose combination gives the subtracted width
of the Q → uτ−ν̄τ decay

ΔΓsðmQÞ ≈ ye

�
1þ yo

ye

m2
Q −m2

τ

mQ

�
m2

Q −m2
τ

m2
Q

×
�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q −m2
τ

q 	α
Jα
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q −m2
τ

q 	
:

ð53Þ
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Comparing the behaviors of Eqs. (47) and (53) in the limit
mQ → mτ, we set the index α ¼ 0 and the ratio

yo
ye

¼ 1

4Λ̄
¼ 0.5 GeV−1: ð54Þ

The boundary condition ΔΓsðmFÞ ¼ −ΓHQE
s ðmFÞ at

mQ ¼ mF fixes the overall coefficient

ye ¼ −ΓHQE
s ðmFÞ

��
1þm2

F −m2
τ

4Λ̄mF

� ðm2
F −m2

τÞ
m2

F

× J0
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

F −m2
τ

q 	�−1
: ð55Þ

The parameter ω̄ is obtained from the best fit of Eq. (53)
to −ΓHQE

s ðmQÞ in the interval ðmτ; mFÞ with the same
binding energy Λ̄ ¼ 0.5 GeV. We get ω̄ ¼ 0.748 GeV−1,
0.570 GeV−1, and 0.460 GeV−1 for the three different τ
lepton massesmτ ¼ 1.5, 2.0, and 2.5 GeV, respectively. We
then search for the roots of the vanishing derivative

DðmQÞ ¼
d
dω

J0
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q −m2
τ

q 	
J0
�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

F −m2
τ

p 	
������
ω¼ω̄

¼ 0; ð56Þ

where the ω-independent factors in Eq. (53) have been
dropped. The dependencies of the above derivative on mQ

for the three values of ω̄ are exhibited in Fig. 10, where
the first roots located at mQ ¼ mF have no physical
significance, and the second roots read mQ ¼ 3.0, 4.0,
and 4.9 GeV for ω̄ ¼ 0.748 GeV−1, 0.570 GeV−1, and
0.460 GeV−1 (mτ ¼ 1.5, 2.0, and 2.5 GeV), respectively.
It is observed that the τ lepton must have a mass around
2 GeV in order to produce the bottom quark mass
mb ¼ 4.03 GeV, the same as that extracted from the
Q → cud̄ decay width. To be precise, the τ lepton takes
the mass mτ ¼ 2.02 GeV. A lower (higher) mτ would lead
to a lower (higher) mb. The value mτ ¼ 2.02 GeV, deviat-
ing from the measured one mτ ¼ 1.777 GeV [55] by 14%,
is satisfactory enough in the current preliminary attempt.
Following the prescription for estimating the uncertainty
involved in the Q → sud̄ decay, we determine the τ lepton
mass mτ ¼ ð2.02� 0.02Þ GeV, where the error comes
from the allowed range of ω̄. We remark that the above
analysis is independent of the effective gluon mass mg in
the absence of the Wilson coefficients, so the constraint on
mτ is quite rigid. Similarly, we emphasize the nontrivial and
stringent correlation among the concerned masses, instead
of their exact values.
The dependencies of the subtracted width ΔΓsðmQÞ

and the width ΓsðmQÞ on mQ are displayed for three values
of ω around ω̄ ¼ 0.570 GeV−1, i.e., ω ¼ 0.52 GeV−1,
0.570 GeV−1, and 0.62 GeV−1, in Figs. 11(a) and 11(b),
respectively. The CKM factor jVCKMj2 ¼ jVubj2 has been
included with jVubj ¼ Aλ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄2þ η̄2

p
, where theWolfenstein

parameters take the values ρ̄ ¼ 0.159 and η̄ ¼ 0.348 [55].
The diminishing of ΓsðmQÞ for mQ > mτ up to mQ ≈
2.5 GeV in Fig. 11(b) certifies the superb coincidence
between ΔΓsðmQÞ and −ΓHQE

s ðmQÞ in the interval

FIG. 10. Dependencies of DðmQÞ in Eq. (56) on mQ for mτ ¼
1.5 GeV (dotted line), 2.0 GeV (solid line), and 2.5 GeV
(dashed line).

(a) (b)

FIG. 11. Dependencies of (a) the subtracted width ΔΓsðmQÞ and (b) the width ΓsðmQÞ of the Q → uτ−ν̄τ decay on mQ for
ω ¼ 0.52 GeV−1 (dashed line), 0.570 GeV−1 (solid line), and 0.62 GeV−1 (dotted line).
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ðmτ; mFÞ. All three curves cross each other in the small
region located at mQ ≈ 4 GeV in Fig. 11(a), suggesting the
stability of the widths at this mQ under the variation of ω.
Though the magnitude ofΔΓsðmQÞ is smaller than ΓsðmQÞ,
the intersection of the curves is still visible in Fig. 11(b).
We read off the decay widths atmb ≈ 4.0 GeV:ΔΓsðmbÞ ¼
1.65 × 10−17 GeV and ΓsðmbÞ ¼ 8.06× 10−17 GeV, which
also imply a minor nonperturbative contribution to B
meson decays. The above prediction for ΓsðmbÞ is equiv-
alent to the branching fraction Bðb→uτ−n̄uτÞ¼2.0×10−4,
for which no data are available so far. However, it ought to
be lower than the measured b → ue−ν̄e branching fraction
1.65 × 10−3 [55], so at least its order of magnitude
makes sense.
Next we constrain the muon massmμ from the dispersion

relation for the semileptonic decay Q → dμþνμ. As stated
before, the destructive dimension-seven contribution ren-
ders the HQE width slightly negative in the low mQ region.
To be quantitative, we display the HQE width divided by
the CKM factor, AðmQÞ≡ ΓHQE

s ðmQÞ=jVCKMj2, with and
without the dimension-seven contribution in Fig. 12,
where the muon mass has been set to mμ ¼ 0.1 GeV for
illustration. The binding energy is kept as Λ̄ ¼ 0.5 GeV.
It is seen that the former is negative in the range
0.15 GeV < mQ < 0.95 GeV. Because the dimension-
seven contribution is not yet complete, it is likely that this
unphysical result would be amended in a full calculation.
One possibility to go around this annoyance is to neglect
the dimension-seven contribution, which is the least lead-
ing one in the HQE anyway. With the HQE input up to the
dimension-six weak annihilation contribution, Eq. (8)
becomes, in the limit mQ → ml,

Γð6Þþð7Þ
s ðmQÞ ∝

3

2

ðm2
Q −m2

lÞ2m2
l

m3
Q

�
1þ Λ̄

mQ

�
; ð57Þ

where the second term in the parentheses comes from the
expansion mHQ

¼ mQ þ Λ̄ for the dimension-six piece.
The similar procedure yields the solution

ΔΓsðmQÞ≈ ye

�
1þ yo

ye
mQ

� ðm2
Q −m2

μÞ2
m4

Q

�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q −m2
μ

q �
α

× Jα

�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q −m2
μ

q �
; ð58Þ

which is fixed to −ΓHQE
s ðmQÞ in the interval ðmμ; mFÞ of

mQ with mF ¼ mπ0 þmμ.
Comparing Eqs. (57) and (58) in the limit mQ → mμ,

we set the index α ¼ 0 and the ratio

yo
ye

¼ 1

Λ̄
¼ 2.0 GeV−1: ð59Þ

The boundary condition at mQ ¼ mF specifies the overall
coefficient

ye ¼ −ΓHQE
s ðmFÞ

��
1þmF

Λ̄

� ðm2
F −m2

μÞ2
m4

F

× J0

�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

F −m2
μ

q ��
−1
: ð60Þ

Matching Eq. (58) to −ΓHQE
s ðmQÞ in the interval ðmμ; mFÞ

determines the parameter ω̄¼2.008GeV−1, 1.475 GeV−1,
and 1.163 GeV−1 for the three different muon masses
mμ ¼ 0.08, 0.11, and 0.14 GeV, respectively. The fit does
not involve the effective gluon mass mg in the absence of
the Wilson coefficients.
The stability of the solved decay width requests the

vanishing derivative in Eq. (56) with mτ being replaced
by mμ. The dependence of the derivative on mQ is plotted
in Fig. 13, where the second roots mc ¼ 0.98, 1.32, and

FIG. 12. The HQEwidths of the semileptonic decayQ → dμþνμ
divided by the CKM factor, AðmQÞ≡ ΓHQE

s ðmQÞ=jVCKMj2,
with (solid line) and without (dashed line) the dimension-seven
contribution.

FIG. 13. Dependencies of DðmQÞ in Eq. (56) on mQ for the
Q → dμþνμ decay with mμ ¼ 0.08 GeV (dotted line), 0.11 GeV
(solid line), and 0.14 GeV (dashed line).
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1.67 GeV corresponding tomμ ¼ 0.08, 0.11, and 0.14 GeV,
respectively, endow the decay width with the maximal
stability under the variation of ω. A lower (higher) lepton
mass mμ would lead to a lower (higher) mc. It is obvious
that the muon mass mμ ¼ 0.11 GeV is preferred, because
the resultant mc ¼ 1.32 GeV is very close to 1.35 GeV
extracted from the hadronic decay widths. We would like to
make explicit that the choice mμ ¼ 0.112 GeV reproduces
mc ¼ 1.35 GeV exactly. It is amazing that the determined
muon mass deviates from the measured value 0.106 GeV
[55] by only about 6%. It is also noticed that the locations
of the roots are very sensitive to the values of mμ,
supporting the effectiveness of the dispersive constraint
on the lepton masses. Following the similar prescription for
estimating the uncertainty involved in the Q → sud̄ decay,
we determine the muon mass mμ ¼ ð0.112� 0.003Þ GeV,
where the error comes from the allowed range of ω̄.
The dependencies of the subtracted width ΔΓsðmQÞ in

Eq. (58) and the width ΓsðmQÞ on mQ are exhibited in
Figs. 14(a) and 14(b), respectively, for three values of ω
around ω̄ from the best fit: ω ¼ 1.3 GeV−1, 1.475 GeV−1,
and 1.6 GeV−1. The CKM factor jVCKMj2 ¼ jVcdj2 has
been included. The curves have a shape similar to that
of the Q → uτþν̄τ decay. The diminishing ΓsðmQÞ for
mQ > mμ up to mQ ≈ 0.9 GeV in Fig. 14(b) evinces the

perfect match between ΔΓsðmQÞ and −ΓHQE
s ðmQÞ in the

interval ðmμ; mFÞ. The three curves cross each other more
tightly at mQ ≈ 1.3–1.4 GeV in Fig. 14(a), implying the
stability of the widths evaluated around this mQ under
the variation of ω. Since the magnitude of ΔΓsðmQÞ is
much lower than ΓsðmQÞ, the three curves overlap almost
exactly in Fig. 14(b). We read off the decay widths at
mc ≈ 1.35 GeV: ΔΓsðmcÞ ≈ 1 × 10−16 GeV and ΓsðmcÞ≈
3 × 10−15 GeV. The negligible ΔΓsðmQÞ hints at a tiny
nonperturbative contribution to D meson semileptonic
decays, distinct from the case of hadronic decays. The
predicted ΓsðmcÞ amounts to the branching fraction
Bðc → dμþνμÞ ≈ 5 × 10−3. The sum of the branching

fractions 3.50 × 10−3, 1.04 × 10−3, 2.4 × 10−3, and 1.77 ×
10−3 for the ðπ0; η; ρ0;ωÞμþνμ modes, respectively, gives
8.71 × 10−3, not far from our prediction.

IV. CONCLUSION

We have shown that dispersive analyses of physical
observables can disclose stringent connections on high-
energy and low-energy dynamics in the SM. It has been
elaborated that the dispersion relations for inclusive heavy
quark decay widths, whose definitions involve flavor-
changing four-quark operators, correlate initial heavy quark
masses and light final-statemasses originating from the chiral
symmetrybreaking. Thedispersion relationwas reformulated
in terms of the subtracted decay width, i.e., the difference
between the unknown width and the HQE width. A solution
to the subtracted decay width was then constructed as an
expansion of the generalized Laguerre polynomials, which
satisfies the initial condition from the HQE input in the
interval bounded by the quark- and hadron-level thresholds.
Two arbitrary parameterswere introduced into the formalism:
the lowest degree N for the polynomial expansion and the
variable Λ, which scales the heavy quark mass in dispersive
integrals. A solution to the dispersion relation should be
insensitive toΛ, and this is possible only when a heavy quark
takes a specific mass. A crucial feature is that the solution
depends on the ratio ω2 ¼ N=Λ. Once the solution with a
physical heavyquarkmass is established, bothN andΛ canbe
extended to arbitrarily large values by keeping ω in the
stability window. All the largeN approximations assumed in
solving the dispersion relation are then justified.
Starting with massless up and down quarks, we have

determined the charm and bottom quark masses from the
dispersion relations for the hadronic decays Q → dud̄ and
Q → cūd, respectively. The strange quark, muon, and τ
lepton masses were constrained by the dispersion relations
for theQ→ sud̄,Q→dμþνμ, andQ→uτ−ν̄τ decay widths,
respectively, to generate the same parent heavy quark
masses. It is clear that the chiral symmetry breaking plays
an important role here, without which the initial interval

(a) (b)

FIG. 14. Dependencies of (a) the subtracted width ΔΓsðmQÞ and (b) the width ΓsðmQÞ of the Q → dμþνμ decay on mQ for
ω ¼ 1.3 GeV−1 (dashed line), 1.475 GeV−1 (solid line), and 1.6 GeV−1 (dotted line).
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bounded by the quark- and hadron-level thresholds shrinks,
the solution for a subtracted decay width becomes iden-
tically zero, and no constraint can be imposed on the
considered fermion masses. It has been scrutinized that the
decay widths corresponding to the physical heavy quark
masses agree with the available data. Except that the
Q → dud̄ decay width is sensitive to the effective gluon
mass, which is employed to stabilize the Wilson evolution
to a low scale, the other channels are insensitive to the
involved parameters. The observations made in this work
are thus quite robust. We emphasize that no a priori
information of a specific heavy quark was included: the
fictitious mass mQ in the HQE expressions for the decay
widths is arbitrary. All the inputs, such as the binding energy
of a heavy meson, the HQET parameters, and the effective
gluon mass, take typical values. Therefore, the emergence of
the charm and bottom quark masses in the stable solutions,
their correlations with the strange quark, muon, and τ lepton
masses, and the consistency of the predicted decay widths
with the data, are highly nontrivial.
Our goal is not to achieve an exact fit to the measured

quantities, but to demonstrate that at least the fermion

masses around the GeV scale, which characterize strong
and weak dynamics, can be understood by means of the
internal consistency of the SM, and that the dispersion
relations for heavy quark decay widths strongly constrain
those masses. No new symmetries or models beyond the
SM, as attempted intensively in the literature, are needed.
A more precise investigation can be invoked straightfor-
wardly by taking into account subleading contributions to
the HQE inputs, including those to the effective weak
Hamiltonian, and more accurate HQET parameters and bag
parameters. Though the present work is restricted to the
fermion masses, the outcome has been convincing enough
for conjecturing that other SM parameters can be also
explained via the internal dynamical consistency, which
wait for further exploration.
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