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We discuss the generalized parton distributions (GPDs) for unpolarized hadrons, as a continuation of our
recent work on hadronic structure on the light front. We analyze the unpolarized GPDs for the light nucleon
and delta, as well as generic mesons, using the lowest Fock states. We use these GPDs to reconstruct the
charge and gravitational form factors, and discuss their relative sizes. The results are also compared to
reported QCD lattice results.
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I. INTRODUCTION

Light cone distributions are central to the description of
hard inclusive and exclusive processes. Thanks to factori-
zation, a hard process factors into a perturbatively calcu-
lable contribution times pertinent parton distribution and
fragmentation functions. Standard examples can be found
in deep inelastic scattering (DIS), Drell-Yan process, and
jet production to cite a few.
The parton distribution functions (PDF) are forward

matrix elements of the leading twist operators of pertinent
light front wave functions. They are valued time-like and as
such not readily amenable to lattice simulations. As a
result, only few moments of the PDF have been accessible
to numerical simulations. To overcome this difficulty,
space-like quasi-parton distribution functions (qPDF) for
fixed hadron momentum have been suggested by Ji [1],
which are perturbatively matched to the light front PDF in
the large momentum limit.
The generalized parton distributions (GPD) are off-

forward matrix elements of the leading twist quark and
gluon operators on the light front. They capture more
aspects of the partonic content of the light front wave
functions. They provide a more comprehensive description
of the partons in a hadron on the light front, that correlate
the longitudinal momentum distribution (PDF), to its
spatial charge and current distributions as captured by
form factors (FF). GPDs are accessible by semi-inclusive

processes through deeply virtual Compton scattering
(DVCS), and deeply virtual meson production [2,3].
DVCS has been pursued by the CLAS collaboration at
JLab and the COMPASS collaboration at CERN, with more
planned experiments at the future electron ion colliders
(EIC, EIcC) [4,5].
Throughout, we will only discuss the GPDs in the

DGLAP or large-x region ξ ≤ x ≤ 1, with x the parton
fraction of the struck quark, and ξ its longitudinal skew-
ness, i.e., the fraction of light cone momentum transfer to
the nucleon, with the total 4-momentum transfer Δ and
Δ2 ¼ t < 0 [6] (and references therein). This regime
corresponds to the quark bag diagram in DIS kinematics.
The GPDs in the low-x region 0 ≤ x ≤ ξ are not accessible
with our LF wavefunctions. This regime corresponds to a
particle changing diagram, with different in-out Fock
states. Because of this kinematical limitation, the important
concept of Polynomiality cannot be checked from our
results. In the forward limit with ξ ¼ 0 and Δ ¼ 0, the
GPDs reduce to pertinent PDFs, and integrate along x to
form factors irrespective of ξ, bringing together the con-
cepts of parton densities and form factors.
The outline of this paper is as follows. In Sec. II we

recall the leading twist-2 definitions of the unpolarized
and polarized GPDs for generic mesons, and summarize
the pertinent kinematics. We also make explicit the
unpolarized GPDs for the light and heavy mesons, using
the generic form of the LF wavefunctions established in
our earlier work [7,8]. construct the leading and unpo-
larized GPD. In Sec. III we also detail the unpolarized and
polarized GPDs for generic and nonexotic baryons, with
their relevant kinematics. We carry the numerical analysis
of the unpolarized GPD for the nucleon and Δ-isobar,
using the LF wave functions in [9,10]. We show that the
nucleon shape at various parton-x scans on the light front,
is substantially different from the rest frame, especially for
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large-x. In Sec. IV we show that the electromagnetic Dirac
form factor of both the nucleon and Δ-isobar, are
recovered from the GPD for zero skewness. We make
explicit the gravitational form factor A, with a comparison
to the Dirac form factor. The results are also compared to
available QCD lattice results. Our conclusions are
in Sec. V.

II. TWIST-2 GPDs OF MESONS

The GPDs provide a complete description of the lead-
ing twist-2 quark and gluon substructure in QCD of a
hadron. They interpolate between the partonic densities
and hadronic form factors, and as such provide a richer
access to the hadronic structure [6] (and references
therein). More specifically, the GPDs are the twist-2
spin-j matrix elements of local quark- and gluon-operators,
measured using LFWFs. At low resolution below
μ0 ¼ 1 GeV, the LFWFs are composed of constituent
quarks, with the nonperturbative gluons giving rise to
the constituent masses, string tension and nonperturbative
spin forces.
With this in mind, the leading and unpolarized GPD as a

matrix element of solely the quark twist-2 spin-2 local
operator, in a generic meson state on the LF, is [6]

Hðx; ξ; tÞ ¼
Z

dz−

4π
ei

x
2
Pþz−

× hMðpþÞjq̄ð0Þγþ½0; z−�qðz−ÞjMðp−Þi ð1Þ

with z− a timelike separation, for fixed zþ ¼ z⊥ ¼ 0.
The leading and polarized twist-2 meson GPD is defined
as [6]

iqi⊥ϵ
ij
⊥

2mM
Eðx;ξ; tÞ

¼
Z

dz−

4π
ei

x
2
Pþz−hMðpþÞjq̄ð0Þiσjþγ5½0; z−�qðz−ÞjMðp−Þi

ð2Þ

with ϵij⊥ the antisymmetric tensor in the transverse plane
with i, j ¼ 1, 2, and σjþ ¼ i

2
½γj; γþ�.H is chirally even and

E is chirally odd. The latter probes the spatial distribution
of a transversely polarized quark in the boosted meson
state. The GPD kinematics in the symmetric frame, is fixed
as follows

p� ¼ P� Δ=2; P ¼ ðP0; 0⊥; PzÞ;

P · Δ ¼ 0; t ¼ −Δ2; P2 ¼ −m2
M þ 1

4
t;

x ¼ kþ

Pþ ; ξ ¼ pþ
þ − pþ

−

pþ
þ þ pþ

−
¼ −

Δþ

2Pþ : ð3Þ

Note that we use the mostly-plus metric convention, so on-
shell squared momenta are negative, and t < 0. The light-
front longitudinal skewness is referred to as ξ. The Wilson
link will be set as ½0; z−� → 1 throughout.

A. Mesons

Any meson is characterized by three leading Fock state
wave functions, that mix values of Lz, Sz on the LF. The
classification of the states is done using Λ¼ðS1þS2ÞzþLz,
so the labeling Λ ¼ 0;�1. Although Λ ¼ �1 are tied by
symmetry modulo a trivial azimuthal phase, we will keep
the three-label assignment. For the net Λ ¼ 0 meson
pseudoscalar (P) and vector (V) states we have [11]

jPi ¼
Z

d½1�d½2� δijffiffiffiffiffiffi
Nc

p ½ψP
0 ðx; k⊥ÞðQ†

i↑ð1ÞQ̄†
j↓ð2Þ −Q†

i↓ð1ÞQ̄†
j↑ð2ÞÞ

þ ψP
−1ðx; k⃗⊥ÞQ†

i↑ð1ÞQ̄†
j↑ð2Þ þ ψP

þ1ðx; k⃗⊥ÞQ†
i↓ð1ÞQ̄†

j↓ð2Þ�j0i ð4Þ

jVi ¼
Z

d½1�d½2� δijffiffiffiffiffiffi
Nc

p ½ψV
0 ðx; k⊥ÞðQ†

i↑ð1ÞQ̄†
j↓ð2Þ þQ†

i↓ð1ÞQ̄†
j↑ð2ÞÞ

þ ψV
−1ðx; k⃗⊥ÞQ†

i↑ð1ÞQ̄†
j↑ð2Þ − ψV

þ1ðx; k⃗⊥ÞQ†
i↓ð1ÞQ̄†

j↓ð2Þ�j0i ð5Þ

with Nc ¼ 3, for the pseudoscalar and vector respectively.
The subscripts 0 and �1 on the wave functions, refer to Lz,
the z-projections of the orbital momentum. Note that
compared to the notations in [11], there are no explicit
factors of k�⊥ ¼ k1 � ik2 here because they naturally belong
to our wave functions, consistently defined not only for
m ¼ Lz ¼ 1, but for any m value. Inserting (4) into (1)–(2)

and carrying the contractions yields for the pseudoscalar
P-state and unpolarized GPD, at zero skewness

Hðx; 0; tÞ ¼
X

Λ¼0;�1

Z
dk⊥
ð2πÞ3 ψ

P�
Λ ðx; k0⊥ÞψP

Λðx; k⊥Þ ð6Þ
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while for the polarized P-state and zero skewness (j ¼ 1, 2)

iΔj
⊥

2mM
Eðx; 0; tÞ ¼

Z
dk⊥
ð2πÞ3 ðð−iÞ

jðψP�
−1ðx; k0⊥ÞψP

0 ðx; k⊥Þ þ ψP�
0 ðx; k0⊥ÞψP

þ1ðx; k⊥ÞÞ

þ ðþiÞjðψP�
þ1ðx; k0⊥ÞψP

0 ðx; k⊥Þ þ ψP�
0 ðx; k0⊥ÞψP

−1ðx; k⊥ÞÞÞ ð7Þ

The kinematical arrangement is as follows: a/ active quark:
k0⊥ ¼ k⊥ þ ð1 − xÞΔ⊥; b/ passive quark: k0⊥ ¼ k⊥ − xΔ⊥.
The transferred momentum to the meson state is
t ¼ −Δ2⊥.
More specifically, we will assume that the struck quark is

the one with momentum fraction x, and that the kick
momentum Δ⃗⊥ is in transverse 1-direction. Then after
the kick, the longitudinal and transverse momenta in the
1-direction (in primed notations) are

x01 ¼
x − ξ

1 − ξ
; x02 ¼ 1 − x

k01 ¼ kþ Δ⊥
1 − x
1 − ξ

; k02 ¼ k − Δ⊥
x

1 − ξ
ð8Þ

Our detailed analyses in [9,10] show that the mesonic LF
wave functions can be well approximated by a Gaussian
ψðk; xÞ ∼ e−AðxÞðk21þk2

2
Þ, where AðxÞ depends on the specific

nature of themeson.As a result, themesonLFwave function
after the kick ψðk0; x0Þ follows through the substitution

ðk21 þ k22Þ → ðk021 þ k022 Þ. Using (6) to calculate the unpolar-
ized GPD Hðx; 0;−Δ2⊥Þ at zero skewness, yields

Hðx; 0;−Δ2⊥Þ ∼ e−AðxÞð3=4−xð1−xÞÞΔ2⊥ ð9Þ

III. TWIST-2 SPIN-2 GPDs OF THE NUCLEON

The leading nucleon GPDs are also driven by the
leading twist-2 and spin-2 vector and axial-vector currents
on the light front. As we noted earlier for the mesons,
our construction of the nucleon LFWFs restricts our
analysis of the GPDs to the DGLAP region, with particle
preserving in-out Fock states. Also at the resolution
below μ0 ¼ 1 GeV, the nucleon is limited to the lowest
3-quark Fock state, where the GPDs are limited to their
constituent quark content. In this section, we will quote the
general results for the unpolarized and polarized GPDs
for generic baryons. The unpolarized GPD for the nucleon
and Δ-isobar will be made more explicit using our
LFWFs in [7,8].

A. General expressions and kinematics

The quark GPDs of the nucleon are captured by the off-diagonal form factors [6]
Z

Pþdz−

4π
e
1
2
ixz−PþhpþΛþjq̄ð0Þγþ½0; z−�qðz−Þjp−Λ−i ¼ N̄ðpþ;ΛþÞ

�
Hðx; ξ; tÞγþ þ Eðx; ξ; tÞ iσ

þjΔj

2mN

�
Nðp−;Λ−Þ

Z
Pþdz−

4π
e
1
2
ixz−PþhpþΛþjq̄ð0Þγþγ5½0; z−�qðz−Þjp−Λ−i ¼ N̄ðpþ;ΛþÞ

�
H̃ðx; ξ; tÞγþγ5 þ Ẽðx; ξ; tÞΔ

þγ5
2mN

�
Nðp−;Λ−Þ ð10Þ

Here H, E are the unpolarized quark GPDs, and H̃, Ẽ their polarized counterparts. Note that for ξ ¼ 0, we have t ¼ −Δ2⊥,
and Ẽ drops out. The generic form of the nucleon wave function is

jpΛi ¼
Z Y3

i¼1

dxidki⊥ffiffiffiffi
xi

p δ

�
1 −

X3
i¼1

xi

�
δ

�X3
i¼1

ki⊥
�
ψΛð½xi; ki⊥; λi�Þj½xipþ; kiλ þ xipi⊥; λi�i ð11Þ

for a nucleon of total momentum pμ and helicity Λ ¼ �1. The conversion to the Jacobi coordinates is subsumed, with the
delta-functions readily enforced. At low resolution, the nucleon state ψΛ is a quark-diquark q½qq�0 Fock state.
To proceed, we note the identities for the matrix elements of the nucleon spinors in (10) on the right-hand side,

N̄ðpþ;ΛþÞγþNðp−Λ−Þ ¼ 2Pþ
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
1 − 1

2
ξ
δΛþΛ−

N̄ðpþ;ΛþÞ
iσþjΔj

2mN
Nðp−Λ−Þ ¼ 2Pþ

�
−
1

4

ξ2

ð1 − 1
2
ξÞ ffiffiffiffiffiffiffiffiffiffi

1 − ξ
p δΛþΛ−

þ Λ−q1 þ iq2

2mN

1ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p δð−ΛþÞΛ−

�
ð12Þ
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Inserting the free field decomposition of the good compo-
nent of the quark field in (10), and carrying the contractions
yield the respective GPDs.
Zero skewness:

Hðx; 0; tÞ ¼
Z
P
δðx − x1Þψþ�ð½x0i; k0i⊥; λi�Þψþð½xi; ki⊥; λi�Þ

Eðx; 0; tÞ ¼ −2mN

qL

Z
P
δðx − x1Þψþ�ð½x0i; k0i⊥; λi�Þ

× ψ−ð½xi; ki⊥; λi�Þ

H̃ðx; 0; tÞ ¼
Z
P
λ1δðx − x1Þψþ�ð½x0i; k0i⊥; λi�Þ

× ψþð½xi; ki⊥; λi�Þ ð13Þ

with qL ¼ q1 − iq2, and the phase space helicity sum and
integration

Z
P
¼

X
½λi�

Z Y3
i¼1

dxid2ki⊥δ
�
1 −

X3
i¼1

xi

�
δ

�X3
i¼1

ki⊥
�

ð14Þ

The kinematical arrangement is as follows: a/ active
quark i ¼ 1: x01 ¼ x1 and k01⊥ ¼ k1⊥ þ ð1 − x1ÞΔ⊥ and
λ1 ¼ �1; b/ passive quarks i ¼ 2, 3: and x0i ¼ xi
and k0i⊥ ¼ k1⊥ − xiΔ⊥.
Finite skewness:

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
1 − 1

2
ξ
Hðx; ξ; tÞ − 1

4

ξ2

ð1 − 1
2
ξÞ ffiffiffiffiffiffiffiffiffiffi

1 − ξ
p Eðx; ξ; tÞ

¼
Z
P
δðx − x1Þψþ�ð½x0i; k0i⊥; λi�Þψþð½xi; ki⊥; λi�Þ ð15Þ

and

−
qL
2mN

1ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p Eðx; ξ; tÞ

¼
Z
P
δðx − x1Þψþ�ð½x0i; k0i⊥; λi�Þψ−ð½xi; ki⊥; λi�Þ ð16Þ

The kinematical arrangement is as follows: a/ active
quark i ¼ 1: x01 ¼ ðx1 − ξÞ=ð1 − ξÞ and k01⊥ ¼ k1⊥ þ ðð1 −
x1Þ=ð1 − ξÞÞΔ⊥ and λ1 ¼ �1; b/ passive quarks i ¼ 2, 3:
and x0i ¼ xi and k0i⊥ ¼ k1⊥ − ðxi=ð1 − ξÞÞΔ⊥.

B. N, Δ GPDs from the LFWFs with ξ = 0

The unpolarized GPDs for the nucleon and Δ-isobar can
be explicitly evaluated using the explicit LFWFs developed
in [8], to which we refer for most of the details. Here, we
briefly recall for the flavor and spin symmetric isobar
Δþþ ¼ uuu, the LF Hamiltonian is the sum of the kinetic
energies of three u-constituents, plus their confining
potentials (the hyperfine spin forces are small and can
be added in perturbation). The proton uud is composed of a

flavor-spin asymmetric ½ud� diquark correlated by the
instanton-induced ’t Hooft interaction, treated in the qua-
silocal approximation. This diquark pairing is responsible
for the mass splitting between the nucleon and theΔ-isobar,
and the difference between their respective LFWFs.
For the proton with quark assignment uud, we assume

that the struck quark is d, with longitudinal momentum
fraction x3. In our (modified) Jacobi coordinates, this
momentum fraction is directly related to the longitudinal
variable λ. For the unpolarized d-quark GPD in (15), this
amounts to integrating the off-forward LFWFs over 5
variables, the transverse momenta p⃗ρ, p⃗λ and ρ for the
nucleon. To proceed, we approximate the dependence on
the transverse momenta p⃗ρ, p⃗λ by Gaussians, which is quite
accurate, and carry the integrals analytically. The remaining
integration over ρ is performed numerically. We recall that
the LFWFs are generated at a low renormalization scale,
below μ0 ¼ 1 GeV, with a nucleon composed of three
constituent quarks, without constituent gluons. (The non-
perturbative vacuum gluonic fields and hard gluons are all
repackaged in the constituent quark mass and chiral
condensate on the LF).
In Fig. 1 we show the unpolarized nucleon GPD for the

struck d-quark, as a function of x,Q2 and zero skewness. At
small Q2, the dependence on the longitudinal parton
momentum x, is that expected for a PDF with a maximum
at x ¼ 1

3
. At larger Q2, the maximum of the GPD clearly

shifts toward larger values of x. The GDP is not simply
factorizable into the PDF times the form factor, which are
separable in x andQ2. The right shift in Fig. 1 shows that the
nucleon shape changes with x. This is a key point of interest
to us, as we now proceed to detail these shapemodifications.
Theoretical considerations [12] have suggested that the

GPDs can be approximated generically, by a “Gaussian
ansatz” in the momentum transfer Q2, with a width and a
preexponent that are x-dependent

FIG. 1. The nucleon GPD function HN
d ðx; ξ ¼ 0; Q2Þ for a

struck d-quark.
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GPDsðx;Q2Þ ∼ f1ðxÞe−Q2f2ðxÞ ð17Þ

We recall that the standard nucleon form factors are
dipolelike at low Q2 (say lower than 10 GeV2) with
FðQ2Þ ∼ 1=ðm2 þQ2Þ2. At very large Q2 it asymptotes
to a constant Q4FðQ2Þ → const which is fixed by the
perturbative QCD scattering rule. In between, the Q2

dependence remains an open issue.
Our LF form factors were found to be consistent with

these observations (see below), and our GPDs at fixed x are
indeed numerically consistent with the exponent

exp

�
−
Q2fsðxÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
�

ð18Þ

with no dependence of the preexponent on the skewness,
for x > ξ. We have checked that the x-integration of this
exponent with ξ ¼ 0, returns the expected form factor.
The GPDs calculated from our LFWFs are well

described by (17). In particular, the r.m.s. spatial size of
the struck d-quark for fixed x is

Rr:m:s:ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f2ðxÞ

p
ð19Þ

In Fig. 2 we show the effective Q-slope of the unpolarized
d-quark GPD, for the nucleon (filled-points) and Δ-isobar
(open-points). The r.m.s. size Rr:m:s:ðxÞ is maximal at x ∼ 1

3
,

and is numerically about 0.6 fm. It decreases sharply for
x ∼ 1, and moderately for x ∼ 0. This can be explained by
the fact that for x ∼ 1

3
, all three quarks carry about the same

longitudinal momentum on the LH, which corresponds to

three quarks at rest in the CM or rest frame. Semiclassically,
this means a configuration in which a struck quark is near a
“turning points” of the wave function, with their QCD
strings maximally stretched. In contrast, x away from 1

3
,

corresponds to a struck quark rapidly moving in the CM
frame, which must happen near the hadron center, The
corresponding size is therefore small. Note that for x → 1,
the distribution of the struck d-quark becomes nearly point-
like, with slopes close to zero. Our LFWFs show that the
magnitude of this effect is different for nucleon andΔ-isobar,
sensitive to the diquark substructure of the former.
The behavior of the GPDs near the edges x ∼ 0, 1, can be

gleaned from general QCD considerations. The small
x-region of the GPD is dominated by Regge physics [12],
while the large x-region of the GDP is fixed by the Drell-
Yan-West relation. A particular functional form for the
GPD that abides by these two limits, was suggested in [13]

Hðx; 0; tÞ ∼ etfðxÞ ð20Þ

with t ¼ −Q2, and

fðxÞ ¼ 1

4λ

�
ð1 − xÞ ln

�
1

x

�
þ að1 − xÞ2

�

with the parameters a ¼ :53 and λ ¼ ð0.548 GeVÞ2. In
Fig. 2 we show (20) (dashed-line) for comparison. The
sharp rise at small x is due to the parametrized Reggeon in
(20), a multiparton cloud around a baryon. It is absent in
our approach, which is limited to the lowest Fock state. The
decrease at large x is in qualitative agreement with our
results. However, at intermediate x there is a significant
disagreement, with our baryon r.m.s. size Rr:m:s:ðxÞ, which
is significantly larger.

IV. ELECTROMAGNETIC AND GRAVITATIONAL
FORM FACTORS

On the LF the GPDs are related to various form factors of
the nucleon. In particular, the n-Mellin moments of the
GDP is a polynomial of degree ξn, a property known as
polynomiality [6]. However, since the Mellin moments sum
over both the ERBL region (0 < x < ξ) and the DGLAP
region (ξ < x < 1), the polynomiality cannot be checked,
as the ERBL region falls outside the scope of our analysis.

A. Electromagnetic form factors

This notwithstanding, a number of electromagnetic and
gravitational form factors of the nucleon, can be extracted
from the present GPDs, allowing also for estimates of the
spin and mass sum rules. More specifically, the Dirac F1,
the Pauli F2 electromagnetic form factors and the axial
form factor GA, are all tied to the zeroth moment of the
GPDs on the LF, at zero skewness [6] (and references
therein)

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

FIG. 2. Closed and open points correspond to slopes
−d log½GPD�=dQ2 (at Q2 ≈ 1 GeV2) calculated from our LFWF
for the nucleon and Delta baryons, respectively. The dashed line
shown for comparison is the ansatz (20).

HADRONIC STRUCTURE …. VI. GENERALIZED PARTON … PHYS. REV. D 107, 094005 (2023)

094005-5



F1ðtÞ ¼
Z

dxHðx; 0; tÞ

F2ðtÞ ¼
Z

dxEðx; 0; tÞ

GAðtÞ ¼
Z

dxH̃ðx; 0; tÞ ð21Þ

In Fig. 3we show thenumerical results forQ4Fd
1 versusQ

2 in
GeV2, for a struck d-quark, following from the integration of
the unpolarized d-quark H GPD, for the nucleon (filled-
point) and Δ-isobar (open-point). The standard dipole-form
factor with the rho mass is depicted by the solid-curve, using
Q4=ð1þQ2=m2

ρÞ2 and mρ ¼ 780 MeV. The results follow
the dipole curve below 1 GeV2, and deviate substantially
above, to asymptote a constant atmuch largerQ2, as expected
from the QCD counting rules for both baryons. The rescaled
form factor for the isobar is found to fall faster than the
nucleon at largeQ2, which indicates that the nucleon is more
compact electromagnetically than the isobar, with a smaller
electromagnetic radius.

B. Gravitational form factors

As we noted earlier, our low-resolution LFWFs are
dominated by the lowest Fock state of three constituent
quarks. Hence, the GPD is mostly that of the constituent
quarks. The first moment of the unpolarized GPDs at zero
skewness, is tied to the A, B form factors of the quark
energy-momentum tensor [6]

AðtÞ ¼
Z

dx xHðx; 0; tÞ

BðtÞ ¼
Z

dx xEðx; 0; tÞ ð22Þ

They can be used to quantify the distribution of momen-
tum, angular momentum and pressurelike stress, inside the
nucleon [14] (and references therein). More specifically, the
total nucleon angular momentum at this low resolution, is
given by Ji0s sum rule [15]

J ¼ 1

2
¼ Að0Þ þ Bð0Þ ð23Þ

with the nonperturbative gluons implicit in the balance, as
they enter implicitly in the composition of the LF
Hamiltonian (mass, string tension, …) for the constituent
quarks. Since our LFWFs are so far unpolarized, we do not
have access to the B-form factor, as it involves the overlap
between spin flipped LFWFs. The polarized GPDs together
with the role of the spin forces, will be discussed elsewhere.
In Fig. 4 (top) we show the numerical results for Q4Ad

versusQ2 in GeV2, for a struck d-quark, following from the
integration of the unpolarized d-quark-A GPD, for the
nucleon (filled-point) andΔ-isobar (open-point). Again, we
observe that the isobar form factor falls faster than the
nucleon form factor, an indication that the nucleon is more
compact gravitationally than the isobar, with a smaller
gravitational radius. In Fig. 4 (bottom) we plot the ratio of
the gravitational form factor relative to the electromagnetic
form factor, for the struck d-quark in the nucleon (filled
points) and isobar (open points). The decrease in Q2 of the
gravitational form factor, is slower than the electromagnetic
form factor for both hadrons. This means that the spatial
mass distribution of the struck d-quark, is more compact
than the spatial charge distribution. More specifically,
we find

3AdðQ2Þ
Fd
1ðQ2Þ ¼ C0 þ

Q2

M2
fit

; ð24Þ

with slopes close to one CN
0 ¼ 1.05, CΔ

0 ¼ 0.95, MN
fit ¼

MΔ
fit ¼ 2.15 GeV. We have multiplied Ad by a factor of 3,

which accounts for the mean momentum hxi ¼ 1=3, to
bring the ratio close to 1.

C. Comparison to lattice simulations

The moments of the GPDs at different momentum
transfer t, were evaluated on the lattice. Here, we will
follow the detailed analysis by the LHPC collaboration [16],
where detailed numerical tables for the moments of
the GPDs are given. More specifically, the longitudinal
moments of the unpolarized nucleon GPD are defined as

0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

FIG. 3. Scaled Dirac form factor Q4Fd
1ðQ2Þ in GeV4 versus Q2

in GeV2, for the nucleon (filled point) and Δ (open point),
obtained by integrating the unpolarized d-quark-H GDP. For
comparison we show a “dipole fit” curve Q4=ð1þQ2=m2

ρÞ2
(solid line).
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Hnðξ; tÞ ¼
Z

dxxn−1Hðx; ξ; tÞ ð25Þ

In their notations, the Dirac and gravitational form factors
at zero skewness ξ ¼ 0, are denoted by A1ð0; tÞ and A2ð0; tÞ
respectively. Before we start comparing their results to
ours, several warnings are in order.
(1) Although the simulations are done with domain wall

fermions, they are still done with large quark masses.
The pion mass varies between mπ ¼ 760 and
350 MeV for different datasets. The chiral extrapo-
lation to a small physical mass is clearly nonlinear,
and produce significant uncertainties.

(2) All reported results are quoted at a normalization
scale μ2 ¼ 4 GeV2, a standard value used for

internal and external comparison. As we repeatedly
emphasized in the previous papers of this set,
our LF wave functions and GPDs should correspond
to a much lower normalization point, and even
with “chiral evolution” are only taken up to
μ2χ ¼ 1 GeV2. The difference between them is sig-
nificant: if at μχ there are no gluons and the quark
fraction of momentum is 1, at μ2 ¼ 4 GeV2 it is
about twice smaller, and comparable to the gluon
momentum fraction. As the famous “spin crisis”
shows, a similar observation holds for the spin
fractions carried by the quarks and gluons.

(3) The lattice spacing a strongly limits the value of the
largest momentum transfer which can be used, to
roughly jtj < 1.2 GeV2. As one can see from our
previous plots, interesting deviations from simple
dipole fits only are visible at larger values.

With these issues in mind, we now address the main
qualitative findings. Perhaps the most important observa-
tion is that the Dirac form factor A1ð0; tÞ decreases faster
with jtj, than the gravitational form factor A2ð0; tÞ. This
implies that spatial distribution of quarks in the nucleon is
wider than that of the stress tensor. While this qualitative
phenomenon is by now established empirically [17],
the lattice data [16] quantify it. In Fig. 5 we compare
t-dependence for the ratio A2ð0; jtjÞ=A1ð0; jtjÞ, for our
isoscalar uþ d nucleon GPD (filled points), with the lattice
dataset 1 from [16] (open points).
The main take from this comparison is that the ratio

grows with the momentum transfer, and the growth slope is
similar for both results. However, the values of the ratio
itself are not the same. This is expected, since the evolution
of our results (filled points) to higher chiral scale

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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FIG. 5. The ratio A2ð0; jtjÞ=A1ð0; jtjÞ as a function of jtjðGeV2Þ
for our isoscalar uþ d nucleon GPD (filled points), and the
lattice dataset 1 (open points) from [16].
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FIG. 4. Scaled gravitational form factor Q4AdðQ2Þ in GeV4

versus Q2 in GeV2 (top), for the struck d-quark in a nucleon
(closed points) and the isobar (open points). Ratio of the
gravitational to electromagnetic form factors 3AdðQ2Þ=Fd

1ðQ2Þ
versus Q2 in GeV2 (bottom), for the nucleon (closed points) and
the isobar (open points).
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μ2χ ¼ 1 GeV2 should cause the quark PDFs to shift to
smaller x, therefore lowering down our curve toward the
reported lattice data points (open points).
A more recent lattice study in [18], extracts the full GPDs

from quasi-GPDs using the lattice momentum effective
theory (LaMET) [1,19]. Their result for the unpolarized
nucleon GPDHðx; ξ; tÞwith symmetric momentum assign-
ment (their Fig. 18), is shown in Fig. 6 (black-solid line),
for zero skewness ξ ¼ 0 and fixed t ¼ −0.69 GeV2. Note
that we only show the quark part of the lattice GPD, and
only for x > 0.05 (the validity of LaMET may even require
a larger lower bound, say x > 0.1 for current lattice nucleon
momentum, see discussion in [19]). Note also that the
reported lattice data were evolved to the standard normali-
zation scale μ2 ¼ 4 GeV2.
Our current baryonic LFWFs are limited tho the 3-quark

sector, and therefore to a low normalization point, where
there are no gluons and q̄q sea. As explained in our
previous works, after “chiral evolution” we used, the
ensuing DAs, PDFs, GPDs can be evolved to the chiral
normalization scale μ2χ ¼ 1 GeV2, and then by DGLAP, to
any higher scales, such as μ2 ¼ 4 GeV2. We have not
carried out any of this in the present comparison. Our
results are also shown in Fig. 6 for the unpolarized GPD
Hðx; ξ ¼ 0; t ¼ −0.69 GeV2Þ (black dashed line). For
comparison, we also show our GPD Hðx; ξ ¼ 0; t ¼ 0Þ
(dashed blue line), which is effectively the PDF. The
agreement between the lattice GPD and our GPD for
x > 0.4 is quite reasonable, modulo all the reservations.
This is nontrivial, as the underlying t dependence is rather
strong, as seen from comparison to the t ¼ 0 GPD curve.

D. Nucleon tomography

The Fourier transform of the H GPD in the transverse part
of the momentum transferΔT withΔ2

T ¼ −t, yields to a map
for the spatial distribution of the partons (mostly constituent
quarks here), with a fixed longitudinal momentum x

qðx; ξ; bÞ ¼
Z

dΔ⊥
ð2πÞ2 e

−iΔ⊥·bHðx; ξ; t ¼ −Δ2
TÞ ð26Þ

For an estimate, we use the approximate form (18), to
obtain

qðx; ξ; bÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
fsðxÞ

e−
b2

ffiffiffiffiffiffi
1−ξ2

p
4fsðxÞ ð27Þ

in the DGLAP regime with x > ξ. This impact-parameter-
like representation of the GDP in transverse space, provides
a 1þ 2 tomographic description of the partons inside the
nucleon. In general, (26)–(27) allows for the characteriza-
tion of the x-dependence of the parton distribution in a
hadron. At large b it reflects on the chiral physics (pion
cloud), while at very low-x it is sensitive to the diffusion of
wee partons.

V. CONCLUSIONS

The interest in GPDs stems from their characterization of
the partonic substructure of hadrons, in terms of parton
longitudinal momentum, transverse position and spin. They
can be related to certain hard processes, allowing their
possible extraction from experiment. As such, they are
important tools for the understanding hadronic structures
in QCD.
The present work is a modest attempt along these

directions, to try to understand how the spatial distribution
of a struck quark in a hadron, depends on its longitudinal
momentum x. For that, we made use of some of the results
for the LFWFs, we have developed recently [7,8]. We recall
that these LFWFs are not just some parametrizations: they
diagonalize well defined LF Hamiltonians of increasing
complexity, subject to the strictures of nonperturbative
lattice QCD at low resolution (instantons, P-vortices, …).
In its simplest form, our LF Hamiltonian consists of the

kinetic and confining contributions for flavor-symmetric
(the Δ-isobar) LFWF, plus a diiquark pairing term between
flavor-asymmetric (light ud) quarks for the nucleon. So, for
the Δ-isobar, the LFWF exhibits triangular symmetry in the
longitudinal parton fractions, while for the nucleon this
symmetry is broken by diquark pairing.
Remarkably, our calculated GPDS for both the nucleon

and the Δ-isobar, are found to be numerically well
described by a proposed Gaussian ansatz (17), with x, ξ
dependent width. However, the width is substantially
different from that reported by other model calculations.
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FIG. 6. We show the lattice baryonic GPD Hðx; ξ ¼ 0;
t ¼ −0.69 GeV2Þ versus x following from LaMET in [18] (black
solid line), and our result (dashed black line). Our result for the
GPD Hðx; ξ ¼ 0; t ¼ 0Þ which is the PDF (dashed blue line), is
shown for comparison.
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The GPDs integrated over x give rise to the electromag-
netic and gravitational form factors. We have used our GPDs
with our LFWFs, to recover the electromagnetic form factors
from our earlier results [8]. We also derived anew, the
nucleon gravitational form factor A. While both the electro-
magnetic and gravitational form factors appear similar and
dipolelike, their ratio shows differences, an indication that
the charge and mass composition are spatially distinct.
The GPDs encapsulate a vast amount of dynamical

information regarding the partonic substructure of hadrons,
with fixed x, ξ, t kinematics. However, it is usually
challenging to tie the theoretical insights and results for
the GDPs, such as the ones based on the LFWFs we have
detailed, with their extraction from semi-inclusive data.
DIS probes the GPDs at the boundary x ¼ ξ of the finite

x − ξ-domain, and the convolution integrals of the empiri-
cal GPDs are limited to the ξ > 0 region. The sum rules
require integrating over the longitudinal momentum x for
fixed ξ, while the tomography is carried at ξ ¼ 0. To relate
these separate kinematic regimes, requires the use of the
GDP global analytical properties, and models constrained
by these properties, as well as lattice physics, as we have
pursued.
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