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We compute the azimuthal eccentricities arising from initial stage fluctuations in high energy proton-
nucleus collisions at proper times τ ≥ 0þ. We consider two sources of fluctuations, namely the geometrical
structure of the proton and the fluctuation of color fields carried by both proton and nucleus. Describing
these effects with Gaussian models allows us to analytically calculate the one- and two-point correlators of
energy density, from which the eccentricities are obtained. We compute the proper time evolution of these
quantities by approximating the Glasma dynamics in terms of linearized Yang-Mills equations, which we
solve by assuming free field propagation and adopting the dilute-dense limit.
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I. INTRODUCTION

Heavy ion collisions (HICs) allow experimental access
to the high energy and density limit of quantum chromo-
dynamics (QCD). Under such extreme conditions, it is
believed that a strongly interacting state made up of
deconfined quarks and gluons emerges: the quark gluon
plasma (QGP). This novel phase of matter is the main
object of study of the heavy ion programs at the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC). Throughout their history, both experiments have
provided (and continue to provide) precise measurements
hinting at the formation of the QGP and revealing its
physical properties (see, e.g., [1] for a review). One of the
most notorious examples is given by the measurement of
harmonic flow coefficients νn, which characterize collec-
tive azimuthal correlations of the outgoing particles after a
collision event. This observation finds a natural explanation
by assuming that the QGP is a low-viscosity fluid, whose
expansion (described by quasi-ideal relativistic hydrody-
namics) effectively maps the spatial deformation of the
initial state of the collision into a momentum anisotropy in
the final state.
The fluid paradigm has been highly successful in the

analysis of azimuthal correlations in HICs. However,
similar correlations were observed also in collisions of

smaller-sized and shorter-lived systems, i.e., proton-proton
(pp) and proton-nucleus (pA) collisions [2–7]. As such
systems were in principle not expected to exhibit collective
effects, these measurements opened up an intense discus-
sion on whether the observed flow originates from momen-
tum correlations intrinsic to the colliding objects or from
the final state response to the initial geometry of the system.
Regarding the contribution that arises from initial geom-
etry, multiple studies [8–14] suggest that the event-by-event
fluctuation of subnucleonic degrees of freedom plays an
essential role in the emergence of correlations in small
systems. The description of such fluctuations relies heavily
on phenomenological models, which include, e.g., ran-
domly changing partonic structures and/or quantum fluc-
tuations of color charge densities. These are often
considered as accessory contributions to the random
fluctuation of nucleonic positions, typically modeled in
the Glauber picture [15]. The chosen prescription can be
used to characterize the initial shape of the system, either
numerically or analytically through the calculation of
eccentricities εn. For example, in Ref. [16], a (mostly)
analytical hot spot model was applied to describe the initial
deformation of pA collision events. Models such as this are
typically used to generate initial conditions for the ensuing
expansion of the QGP. However, a complete description
also requires addressing the evolution of the early stage
before reaching the hydrodynamical regime. During this
short intermediate phase, the system undergoes multiple
interactions that lead it towards thermalization, in a process
that may as well have a substantial effect over its eccen-
tricity. In the present work, we explore this possibility in
high energy pA events by combining the initial stage
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picture presented in Ref. [16] with a description of the
subsequent evolution in terms of free fields, previously
applied in Refs. [17,18].
We employ the color glass condensate (CGC) formalism

(see, e.g., [19] for a review) as a natural way to describe the
partonic structures of proton and nucleus in the high energy
limit. In this picture, the density of low-x partons (assumed
to be predominantly gluons) is taken to be so large that one
can describe them as classical color fields. These fields are
generated by the large-x partons, which are represented as
an ensemble of static color charges. The local densities of
these charges fluctuate according to Gaussian models in
both proton and nucleus, as described by the McLerran-
Venugopalan (MV) model [20–22]. However, their respec-
tive spatial configurations are modeled very differently. In
the case of the proton, we assume that the large-x partons
are concentrated withinNq Gaussianly distributed hot spots
of size r, with their locations fluctuating on an event-by-
event basis within the proton radius R [16]. If one assumed
the origin of these hot spots to be the valence quarks of the
proton, the natural number of them would be Nq ¼ 3. In
this work, however, we will treat Nq as a free parameter up
until the numerical analysis. In any case, the proton is
assumed to be dilute on average (although sufficiently
dense within each hot spot). This will allow us to
approximate operators by the leading term of their expan-
sion in orders of the proton color charge density (weak field
approximation). On the other hand, the nucleus is taken to
be homogeneous on average, with its color charge density
fluctuations included to all orders in the corresponding
fields. Also, in order to obtain analytically tractable results,
for the nucleus, we apply the Golec-Biernat Wusthof
(GBW) parametrization [23] of the dipole amplitude,
whereas in the case of the proton, we use the result derived
from the MV model.
We note that many hot spot models with similar

parameters have been used previously in the literature.
Many of them apply a fully numerical approach, which
allows for a more complete treatment of the problem at
hand. For example, the IP-Glasma model [12,24–26] uses
hot spots to describe various observables. The parameters
included in our model and in the IP-Glasma model are
mostly the same. However, our model puts some simpli-
fications in place, like the fact that it is formulated in the
dilute-dense limit of a pA collision. The nucleus we
consider is infinitely large and, on average, homogenous;
and does not have nucleon or hot spot fluctuations. Also,
our model does not have saturation scale ðQsÞ fluctuations
as IP-Glasma, and the model in Ref. [27] do. Implementing
this in our framework would require us to let the saturation
scale of each hot spot fluctuate independently. There are
other physics ingredients used in hot spot models that are
not included in the model we use, such as the repulsive
force between hot spots [9,28] and hot spots within hot
spots [29]. Another possible extension to our model (and a

way of making it more physically accurate) could be
considering a fluctuating number of hot spots. This feature
would account for large-x partons splitting into more large-
x partons, thus generating new hot spots on an event-by-
event basis. In this scenario, the computation of physical
observables would require performing an additional aver-
age over Nq. However, for the present work, we chose to
keep our model as simple and analytically tractable as
possible.
In the CGC picture, the evolution of the early pretherm-

alization phase (known as Glasma) is described by the
classical Yang-Mills (CYM) equations. Unfortunately,
these have no general analytical solution. Numerical
approaches like the one implemented in the IP-Glasma
model rely on lattice calculations initialized at an infini-
tesimal positive proper time τ ¼ 0þ. On this specific space-
time surface, it is possible to find an analytical solution to
the Yang-Mills equations, which serves as boundary con-
dition to the ensuing evolution. Several methods have been
proposed to approach this evolution analytically, such as
performing an expansion of the Glasma fields in powers of
τ [30–33]. However, the resulting series is found to be
dominated by UV divergences associated to the spatial
derivative, in such a way that each order is more divergent
than the previous one. In Ref. [31], it was proposed that
these divergences can be effectively resummed into Bessel
functions by keeping only the most singular terms of the
equations of motion (i.e., the higher order derivatives). This
turns out to be equivalent to simply linearizing the Yang-
Mills equations, an approach later applied in Refs. [17,18]
to pA and AA collisions, respectively. As will be detailed in
Sec. II, in this work, we use a similar strategy as [17], where
the linearized Yang-Mills equations are solved in the weak
field approximation and assuming free field evolution.
We use this framework to compute the energy density

one- and two-point functions in a pA collision in the dilute-
dense limit at proper times τ ≥ 0þ. To do this, we separate
the two-point function into four separate terms. These terms
contain, respectively: the averages of the fluctuations, the
fluctuations on the proton side, the fluctuations on the
nucleus side, and the fluctuations from both sides. In a
previous calculation performed for τ ¼ 0þ [16], the com-
bined fluctuation part was argued to be small in comparison
to the other contributions and was thus neglected. We
assume this is also the case for τ > 0. We use the remaining
correlators to compute the eccentricities at nonzero values
of τ. In [16], it was shown that the nucleus-side fluctuations
give a negligible contribution to the eccentricities in the
case ofNq ¼ 3 at τ ¼ 0þ, and on these grounds, we neglect
it as well. Finally, the non-negligible contributions to the
energy density two-point function are the average part and
the proton fluctuation part. Out of these two, only the
proton fluctuation part is a source of eccentricity, as the
average part of the energy density two-point function is
radially symmetric.
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The paper is structured as follows. In Sec. II, we briefly
introduce the models and approximations that we employ
in the description of initial stage fluctuations and their
τ-evolution. This framework is then applied in Sec. III to
the analytical calculation of the τ-dependent one- and two-
point correlators of the Glasma energy density. In Sec. IV,
these results are used in the computation of eccentricities at
some proper time values of τ ≥ 0þ. Then, in Sec. V, we
present our conclusions and discuss potential extensions of
this work.

II. THEORETICAL FRAMEWORK

The characterization of the medium generated in high
energy collisions requires us to describe the partonic
content of the colliding objects prior to the interaction.
Obtaining such a description from first principles has
proven elusive so far, because it demands knowledge of
physical phenomena at nonperturbative scales. As QCD is
still severely limited in this regime, the standard practice is
to adopt approximations and models tailored to describe
the hadronic structure in specific kinematical limits. In the
present work, we set out to describe the geometry of the
early stage of high energy pA collisions, and thus, we will
consider the dilute-dense regime. Such an asymmetric
situation requires us to model probe and target in different
ways, which are briefly discussed in the subsections below.
We also devote the last part of this section to introduce the
approximations adopted in the description of the sub-
sequent medium evolution.

A. Nucleus: MV model

Within the CGC framework the nucleus is modeled as a
cloud of small-x gluons emitted by a collection of large-x
partons. At high energies, the large densities that character-
ize the small-x degrees of freedom make it appropriate to
describe them as classical fields. The dynamics of said
fields are encoded in the CYM equations with an external
source, which represents the large-x degrees of freedom,

½Dμ; Fμν� ¼ Jν ¼ δþνρaAðx; x−Þta ≈ δþνρaAðxÞδðx−Þta: ð1Þ

Here, ρA is the color charge density of the nucleus, and ta is
the SUðNcÞ group generator in the fundamental or adjoint
representation (for fermionic or gluonic sources, respec-
tively). The ansatz proposed for the color current Jν reflects
the fact that, due to Lorentz dilation, the large-x degrees of
freedom appear to be static with respect to the small-x
gluons they radiate. Thus, for a nucleus moving close to the
speed of light in the positive x3 direction, the color charge
density ρA is taken as independent of the light cone time xþ.
Furthermore, the Lorentz contraction experienced by the
ultrarelativistic nucleus motivates the assumption that ρA is
very close to a delta function in the longitudinal direc-
tion x−. We also assume that the large-x partons do not

experience any recoil (eikonal approximation), which is
reflected in the current having only a þ component.
In order to account for the quantum fluctuations of the

nuclear wave function, ρA is treated as a random variable
that changes on an event-by-event basis. These fluctuations
are assumed to obey Gaussian statistics, which is the
defining feature of the MV model.1 This is also what
makes it an analytically tractable model, allowing us to
explicitly compute observables as functional averages over
the color charge distributions,

hOðρAÞi ¼
Z

½dρA� exp
�
−
Z

d2x
ρaAðxÞρaAðxÞ

2μ2

�
OðρAÞ: ð2Þ

The variance of the Gaussian weight, μ2, is a parameter
proportional to the saturation scale of the nucleus,
Q2

s ∼ g2μ2. All correlators of color charges are expressed
in terms of the following two-point function:

hρaAðxÞρbAðyÞi ¼ μ2δð2Þðx − yÞδab; ð3Þ

which is the basic building block in this framework. For the
purpose of this paper, however, it is more convenient to
work directly with the gauge fields generated by these color
charges, which we call α. By solving Eq. (1) in the light
cone gauge, said fields are obtained as gauge rotations of
the vacuum (i.e., pure gauge fields) confined to the plane
transverse to the motion of the nucleus [21,22],

αiðxÞ ¼ −
1

ig
UðxÞ∂iU†ðxÞ: ð4Þ

Here,U is the Wilson line, an SU(Nc) element that encodes
the interaction between an external probe with the gluon
field in the eikonal approximation,

UðxÞ ¼ P− exp

�
−ig

Z
∞

−∞
dz−

Z
d2zGðx − zÞρaAðz; z−Þta

�
:

ð5Þ

Here, Gðx − zÞ is the Green’s function for the two-
dimensional Laplace operator, which is inverted in order
to relate ρA to the Wilson lines,

Gðx − yÞ ¼
Z

d2k
ð2πÞ2

exp½ik · ðx − yÞ�
k2 þm2

: ð6Þ

In doing this, it is necessary to suppress the Coulomb-like
tails of the resulting color fields. This is done by

1This ansatz was devised for large nuclei. In such systems, the
color charge distribution is the result of the superposition of a
large number of nucleons assumed to be uncorrelated. However,
in practice, it is often applied to protons at sufficiently high
energies.
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introducing an IR regulatorm, which can be interpreted as a
confinement scale of order ΛQCD.
Along with the color charge densities, Wilson lines

constitute the basic elements of our theoretical framework.
More specifically, another building block of our calcula-
tions is the two-point function of Wilson lines, known as
dipole amplitude,

Dðx − yÞ ¼ 1

Nc
hU†ðxÞUðyÞi: ð7Þ

There are several parametrizations available for this object
in the literature. Although it is possible to compute it
explicitly within the MV model, in the case of the nucleus,
we adopt the GBW distribution [23],

DGBWðx − yÞ ¼ exp

�
−
Q2

sðx − yÞ2
4

�
; ð8Þ

as it gives rise to simpler final expressions. By doing this,
we effectively set the saturation scale Qs as the only scale
characterizing the nucleus, thus leaving μ2 andm as proton-
exclusive parameters in the remaining sections.

B. Proton: Hot spots+MV model

Basically, the same kinematic considerations as outlined
above apply to the case of the proton, up to a x− → xþ
change (due to the proton moving in the opposite direction
than the nucleus). Also, we denote the light cone gauge
field carried by the proton as

βiðxÞ ¼ −
1

ig
VðxÞ∂iV†ðxÞ; ð9Þ

with

VðxÞ ¼ Pþ exp

�
−ig

Z
∞

−∞
dzþ

Z
d2zGðx − zÞρaðz; zþÞta

�

ð10Þ

being the corresponding Wilson line. Apart from this
change of notation, the difference between our descriptions
of proton and nucleus lies fundamentally in their transverse
structures, encoded in ρa and ρaA, respectively. Whereas ρaA
is modeled as a dense and infinitely large homogenous
distribution, ρa is given an inhomogeneous, nontrivial
transverse structure that can be treated as dilute on average.
We will use the hot spot model formulated in Ref. [16] to

give the proton a nontrivial transverse structure. This model
allows to incorporate hot spot position fluctuations into
one’s computation. The physically relevant observables are
then found by performing a double averaging procedure,
where one performs the CGC average discussed above and
subsequently, the hot spot average. This model allows the

computation to be performed with any positive number of
hot spots ðNqÞ, but in this work, we are mainly focusing on
Nq ¼ 3, as this is the number of valence quarks (which are
the inspiration for this model). These hot spots are argued
to be carrying the pointlike color charges of the proton.
Using the CGC description, the proton is divided into the

color charge-carrying Gaussian hot spots and the gluon
fields produced by these color charges. The hot spots enter
the calculation through the color charge density two-point
correlators as

hρaðxÞρbðyÞiCGC ¼
XNq

i¼1

μ2
�
xþ y
2

− bi

�
δð2Þðx − yÞδab:

ð11Þ
Here, μ2 describes the profile of the Gaussian hot spot, Nq

is the number of hot spots and bi denote the coordinates of
the centers of the hot spots. This correlator is basically the
same as in the MV model, but with the added transverse
profile for the color charges of the proton. The exact profile
of the hot spot reads

μ2ðxÞ ¼ μ20
2πr2

exp

�
−

x2

2r2

�
: ð12Þ

Here, r denotes the radius of the hot spot and μ20 is a
parameter characterizing the amount of color charge in it.
Note that the dimensions of μ2 and μ20 are different.
The fluctuations of the positions of the hot spots are also

assumed to obey Gaussian statistics. We fix the center of
the proton ðBÞ to be at the center of mass of the hot spots
and let them be distributed Gaussianly around it, only
constrained by the center of mass requirement. The
Gaussian distribution of the hot spot positions is charac-
terized by the weight,

TðxÞ ¼ 1

2πR2
exp

�
−

x2

2R2

�
; ð13Þ

where R is the proton size parameter dictating how far from
the center of the proton the hot spots can reside.
Because the positions of the hot spots fluctuate from

event to event, we need to average over their fluctuations to
get physically relevant observables. For this end, we define
the following double average:

〈〈O〉〉≡ hhOiCGCiHotspot ¼
�
2πR2

Nq

�Z YNq

i¼1

½d2biTðbi −BÞ�

× δð2Þ
�

1

Nq

XNq

j¼1

bj − B

�
hOiCGC: ð14Þ

Here, the prefactor is chosen to ensure that 〈〈1〉〉 ¼ 1. In this
definition, we can see explicitly how we let each of the hot
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spots fluctuate Gaussianly around the center B, with the
restriction that the center of mass of the hot spot system is
fixed at the center of the protonB. Therefore, the procedure
to calculate an observable consists in: first, computing its
CGC average using the MV model two-point function with
the additional input of the transverse structure [Eq. (11)];
and then, averaging over the hot spot locations.

C. Freely evolving Glasma

Despite the relative simplicity of our treatment of proton
and nucleus, the Glasma state that results from their
collision is a complex, strongly out-of-equilibrium medium
whose τ-evolution cannot be computed analytically without
adopting some approximations. In this section, we discuss
the ones we applied.
In the CGC, the dynamics of the fields resulting from a

pA collision are described by the CYM equations with two
sources,

½Dμ; Fμν� ¼ JνA þ Jνp ≈ δþνρaAðxÞδðx−Þta
þ δ−νρaðxÞδðxþÞta: ð15Þ

Although these equations do not have a general analytical
solution, it is possible to obtain exact expressions for the
Glasma fields at τ ¼ 0þ by matching the τ → 0 singular-
ities in the left- and right-hand sides of Eq. (15) (see, e.g.,
[34,35] for details). By doing this in the Fock-Schwinger
gauge Aτ ¼ 0 (which works as an interpolation of the light
cone gauges of proton and nucleus), one obtains

Aiðτ ¼ 0þ;xÞ≡ Ai
0ðxÞ ¼ αiðxÞ þ βiðxÞ ð16Þ

Aðτ ¼ 0þ;xÞ≡ A0ðxÞ ¼
ig
2
½αiðxÞ; βiðxÞ�: ð17Þ

A notable aspect about this solution is that it gives rise to
purely longitudinal electric and magnetic fields,

Eηðτ ¼ 0þ;xÞ≡ Eη
0ðxÞ ¼ −igδij½αiðxÞ; βjðxÞ� ð18Þ

Bηðτ ¼ 0þ;xÞ≡ Bη
0ðxÞ ¼ −igϵij½αiðxÞ; βjðxÞ�; ð19Þ

which are the only nonzero components of the Glasma
strength tensor at τ ¼ 0þ. The above expressions serve as
boundary conditions for the evolution in the forward light
cone, τ ≥ 0þ. In this region, the Yang-Mills equations
become homogeneous owing to the longitudinal support of
our charge densities ρ, ρA being Lorentz-contracted down
to delta functions. Thus, in the comoving coordinate system
ðτ; η; iÞ, the separate components of Eq. (15) read

igτ½A; ∂τA� −
1

τ
½Di; ∂τAi� ¼ 0 ð20Þ

1

τ
∂τ
1

τ
∂τðτ2AÞ − ½Di; ½Di; A�� ¼ 0 ð21Þ

1

τ
∂τðτ∂τAiÞ − igτ2½A; ½Di; A�� − ½Dj; Fji� ¼ 0: ð22Þ

In order to find an analytical solution to this system, we will
neglect all terms of higher order in the Glasma potentials,
which necessarily introduces a gauge dependence. Let us
illustrate this point by transforming to a gauge where
Eqs. (20), (22), (22) become, respectively,

∂τ∂
iÃi ¼ 0 ð23Þ

1

τ
∂τ
1

τ
∂τðτ2ÃÞ − ∂i∂

iÃ ¼ 0 ð24Þ

1

τ
∂τðτ∂τÃiÞ − ð∂k∂kδij − ∂

i
∂
jÞÃj ¼ 0: ð25Þ

For this approximation to be reasonable, it is crucial to
choose a gauge where the higher orders in Ã, Ãi are
minimized. Such a choice may be informed by several
considerations: for instance, in order to maintain the
explicit boost invariance of the Glasma fields, one could
consider only η-independent gauge transformations. One
may also exclude τ-dependent transformations for the
purpose of preserving the Fock-Schwinger gauge condi-
tion. These restrictions narrow the search down to gauges
that minimize the transverse components of the fields.
Following this line of reasoning, in Ref. [36], it was
proposed that the transverse Coulomb gauge, defined by
the condition ∂iÃ

i ¼ 0, represents the natural option for our
purposes. In this numerical analysis, it was found that
imposing this gauge choice at τ ¼ 0þ (in combination with
the Fock-Schwinger condition Aτ ¼ 0) minimizes the effect
of nonlinear dynamics in the forward light cone, providing
a good approximation of the full CYM evolution except for
very low momentum modes. This approach is thus well
suited for the calculation of the τ-evolution of the Glasma
energy density, as it is a largely UV-dominated quantity.
In what follows, we use the notation Ã to denote the

Glasma fields in the Coulomb gauge, leaving the explicit
transformation to be specified later. We can now rewrite the
Yang-Mills equations as

1

τ
∂τ
1

τ
∂τðτ2ÃÞ − ∂i∂

iÃ ¼ 0 ð26Þ

1

τ
∂τðτ∂τÃiÞ − ð∂k∂kδij − ∂

i
∂
jÞÃj ¼ 0: ð27Þ

This system can be solved in momentum space as

Ãðτ;kÞ ¼ Ã0ðkÞ
2J1ðkτÞ

kτ
ð28Þ

Ãiðτ;kÞ ¼ Ãi
0ðkÞJ0ðkτÞ; ð29Þ
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where we assumed the Glasma fields to propagate as free
plane waves. The initial conditions Ã0, Ã

i
0 can then be

computed by matching these fields to the τ ¼ 0þ fields in
momentum space. As a result, the following τ > 0 solution
is obtained:

Ãðτ;kÞ ¼ τ

k
Ẽη
0ðkÞJ1ðkτÞ ð30Þ

Ãiðτ;kÞ ¼ −i
ϵijkj

k2
B̃η
0ðkÞJ0ðkτÞ; ð31Þ

where Ẽη
0, B̃

η
0 correspond to Eqs. (18), (19) transformed to

Coulomb gauge. From here, one can calculate the full
electric and magnetic fields as functions of τ,

Eηðτ;kÞ ¼ Eη
0ðkÞJ0ðkτÞ ð32Þ

Eiðτ;kÞ ¼ −iϵij
kj

k
Bη
0ðkÞJ1ðkτÞ ð33Þ

Bηðτ;kÞ ¼ Bη
0ðkÞJ0ðkτÞ ð34Þ

Biðτ;kÞ ¼ − iϵij
kj

k
Eη
0ðkÞJ1ðkτÞ: ð35Þ

In order to work in coordinate space, we perform a Fourier
transform of the initial conditions. For example, for Eη

0,
we have

Eη
0ðxÞ ¼ −igδij

Z
d2k
ð2πÞ2

Z
d2u½αiðuÞ; βjðuÞ�eik·ðx−uÞ

≡
Z

d2k
ð2πÞ2 E

η
0ðkÞeik·x; ð36Þ

and thus, we get to

Eηðτ;xÞ ¼
Z

d2k
ð2πÞ2

Z
d2uEη

0ðuÞJ0ðkτÞeik·ðx−uÞ: ð37Þ

Similar expressions are obtained for Ei and the magnetic
fields. At this point, it is necessary to explicitly transform
our initial conditions [Eqs. (18), (19)] to Coulomb gauge.
Note that, in their linearized version, the equations of
motion explicitly conserve the Coulomb gauge condition
[Eq. (23)], and therefore, it is irrelevant at which value of τ
we impose it. As previously done in [17], we do this at
τ ¼ 0þ by considering a general gauge transformation
driven by V†U†,

Ẽηðτ ¼ 0þ;xÞ ¼ −igδijV†U†½αi; βj�VU ð38Þ

B̃ηðτ ¼ 0þ;xÞ ¼ −igϵijV†U†½αi; βj�VU: ð39Þ

By considering the proton to be dilute, we can expand V to
the lowest order in the sources, obtaining

Ẽηðτ¼ 0þ;xÞ≈−igδijU†½αi;βj�U¼ δijβj;aðxÞ∂iUabðxÞtb
ð40Þ

B̃ηðτ¼ 0þ;xÞ≈−igϵijU†½αi;βj�U¼ ϵijβj;aðxÞ∂iUabðxÞtb:
ð41Þ

In order to obtain the last equality, we have substituted
Eq. (4) and used the identity U†taU ¼ Uabtb.

III. TIME EVOLUTION OF ENERGY
DENSITY CORRELATORS

Let us now apply the formalism introduced above to the
calculation of τ-dependent correlators of the energy density
of the system, defined as

εðτ;xÞ ¼ TrfEηEη þ BηBη þ EiEi þ BiBig: ð42Þ

A. One-point function

We start with the average value of ε

hεðτ;xÞi ¼ 1

2
ðδijδkl þ ϵijϵklÞ

×
Z
p;k

Z
u;v

h∂iUabðuÞ∂kUcbðvÞihβj;aðuÞβl;cðvÞi

×

�
J0ðpτÞJ0ðkτÞ −

p · k
pk

J1ðpτÞJ1ðkτÞ
�

× eip·ðx−uÞeik·ðx−vÞ: ð43Þ

Here,
R
p corresponds to the integration over momentumR d2p

ð2πÞ2, while
R
u stands for

R
d2u. This expression features

Fourier transforms of products of Bessel functions of zeroth
and first order, which can be calculated analytically.
Integrating over the angular variables θp and θk, the second
line of Eq. (43) becomes

Z
dpp
ð2πÞ

dkk
ð2πÞ ðJ0ðjx − ujpÞJ0ðjx − vjkÞJ0ðpτÞJ0ðkτÞ

þ cos ðθx−u − θx−vÞJ1ðjx − ujpÞJ1ðjx − vjkÞ
× J1ðpτÞJ1ðkτÞÞ: ð44Þ

Then, we can apply the orthogonality condition of the
Bessel functions,

Z
∞

0

JνðkrÞJνðsrÞrdr ¼
δðk − sÞ

s
; ð45Þ

obtaining
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hεðτ;xÞi ¼ 1

2
ðδijδkl þ ϵijϵklÞ

×
Z
u;v

h∂iUabðuÞ∂kUcbðvÞihβj;aðuÞβl;cðvÞi

×
δðjx − uj − τÞ

2πτ

δðjx − vj − τÞ
2πτ

× ð1þ cosðθx−u − θx−vÞÞ: ð46Þ

In order to integrate out the Dirac deltas we perform a
change of variables from (u, v) to (s ¼ x − u, t ¼ x − v).
In a collision between two infinite-sized objects, this
process would explicitly remove the dependence on the
specific transverse point x, as the correlators describing
each side of the interaction would then depend only on the
relative distance u − v. However, that does not necessarily
happen when considering a collision where one of the
objects has a finite size. That is the case of the proton,
represented here by the two-point function hβj;aðuÞβl;cðvÞi.
After the variable change, this object carries the depend-
ence on the point x,

hεðτ;xÞi ¼ 1

2
ðδijδkl þ ϵijϵklÞ

Z
s;t
h∂iUabðsÞ∂kUcbðtÞi

× hβj;aðx − sÞβl;cðx − tÞi

×
δðs − τÞ
2πτ

δðt − τÞ
2πτ

ð1þ cosðθs − θtÞÞ: ð47Þ

From the above expressions, we can see how hεi results
from the interference of two correlators that represent the
gluon content of proton and nucleus. In the case of the
nucleus (and in the dilute-dense limit we have adopted),
this correlator corresponds to the adjoint dipole distribution
affected by the partial derivatives ∂

i
s∂

j
t. By adopting the

GBW model, we can compute this object as

∂
i
s∂

k
thUabðsÞUcbðtÞi

¼ δac

2

�
δikQ2

s;A −
Q4

s;A

2
ðs − tÞiðs − tÞk

�

× exp

�
−
Q2

s;A

4
js − tj2

�
: ð48Þ

Here, we have introduced the GBWdistribution correspond-
ing to adjoint Wilson lines. Note that, with our notation, the
color factor that would set Eq. (8) apart from its adjoint
version is absorbed in a redefinition ofQs. Thus, the adjoint
saturation scale Qs;A is related to the fundamental one by

Q2
s;A ¼ CA

CF
Q2

s;F ¼ 2N2
c

N2
c−1

Q2
s;F. As in our calculations, we will

only needQ2
s;A; in the following, wewill denote it simply by

Qs in order to alleviate our notation.
Let us now focus on the dilute side contribution, which

we compute by considering a hot spot model. As explained
in Sec. II, this implies that we promote the simple color
charge average to a double average of color charges and hot
spot positions,

hβj;aðx − sÞβl;cðx − tÞi ¼ 〈〈
Z
z;w

∂
j
sGðx − s − zÞ∂ltGðx − t − wÞρaðzÞρcðwÞ〉〉

¼ δacNq

Z
z
∂
j
sGðx − s − zÞ∂ltGðx − t − zÞF1ðz;BÞ: ð49Þ

Here, using the same notation as Ref. [16], we introduce the function F1ðz;BÞ, defined as

F1ðz;BÞ≡ hμ2ðz − biÞiHotspot ¼
�
μ20
2π

��
1

r2 þ Nq−1
Nq

R2

�
exp

�
−
1

2

jz − Bj2
r2 þ Nq−1

Nq
R2

�
; ð50Þ

with i ∈ f1;…; Nqg. This function can be interpreted as the average density of the proton color charges given by a single
hot spot. As mentioned before, the proton radius R, the charge density parameter μ0, the hot spot size r and the number of
hot spots Nq are parameters of the model. The point B is the center of mass of the hot spot system. After shifting the
integration variable z by x, we obtain

hβj;aðsÞβl;cðtÞi ¼ δacNq

Z
z
∂
j
sGðs − zÞ∂ltGðt − zÞF1ðz;B − xÞ

¼ δacNq

�
μ20
2π

��
1

r2 þ Nq−1
Nq

R2

�Z
z
∂
j
sGðs − zÞ∂ltGðt − zÞ exp

�
−
1

2

jz − ðB − xÞj2
r2 þ Nq−1

Nq
R2

�
: ð51Þ

Substituting Eqs. (51), (48) into Eq. (47) and solving the trivial integrals over jsj, jtj, one is left with a couple of integrals
over θs, θt, as well as a double integral over z,

EVOLUTION OF ECCENTRICITIES INDUCED BY … PHYS. REV. D 107, 094004 (2023)

094004-7



hεðτ;BxÞi ¼ ðN2
c − 1Þ

Z
dθs
2π

dθt
2π

ð1þ cos ðθs − θtÞÞ
�
Q2

s

2
−
Q4

sτ
2

4
ð1 − cos ðθs − θtÞÞ

�
μ̃20
2π

�
1

r2 þ Nq−1
Nq

R2

�

×
Z
z
ð∂jsGðs − zÞ∂jtGðt − zÞÞjs;t¼τ exp

�
−
1

2

jz −Bxj2
r2 þ Nq−1

Nq
R2

�
exp

�
−
Q2

sτ
2

2
ð1 − cos ðθs − θtÞÞ

�
; ð52Þ

where we have defined μ̃20 ≡ Nqμ
2
0 and Bx ≡B − x. Now, assuming that x ≠ y, we can write

∂
i
xGðx − yÞ ¼ −

1

2π
mjx − yjK1ðmjx − yjÞ ðx − yÞi

jx − yj2 ð53Þ

∂
i
xGðx − zÞ∂iyGðy − zÞ ¼

�
m
2π

�
2

K1ðmjx − zjÞK1ðmjy − zjÞ cos ðθx−z − θy−zÞ; ð54Þ

where K1 is the modified Bessel function of the second kind and order 1. Note that Eq. (53) diverges in the UV limit. We
regularized this behavior through a short-distance cutoff C0, introduced by (implicitly) multiplying by the Heaviside step
function Θðjx − yj − C0Þ. Substituting Eq. (54) in Eq. (52), we get to the final result of this section,

hεðτ;BxÞi ¼ ðN2
c − 1Þ

Z
dθs
2π

dθt
2π

ð1þ cos ðθs − θtÞÞ
�
Q2

s

2
−
Q4

sτ
2

4
ð1 − cos ðθs − θtÞÞ

�
μ̃20
2π

�
1

r2 þ Nq−1
Nq

R2

�

×
Z
z

�
m
2π

�
2

K1ðmjτŝ − zjÞK1ðmjτt̂ − zjÞ cos ðθs−z − θt−zÞ

× exp
�
−
1

2

jz −Bxj2
r2 þ Nq−1

Nq
R2

�
exp

�
−
Q2

sτ
2

2
ð1 − cos ðθs − θtÞÞ

�
: ð55Þ

Note that the previous correlator depends only on the proper time τ and the relative distance between x and the center of
mass of the proton, Bx. If we take τ ¼ 0, one can explicitly perform the integrals over θs;t;z, obtaining

hεðτ ¼ 0; BxÞi ¼
Q2

s

2
μ̃20

ðN2
c − 1Þ

r2 þ Nq−1
Nq

R2

Z
dzz

�
m
2π

�
2

ðK1ðmzÞÞ2I0
�

zBx

r2 þ Nq−1
Nq

R2

�
exp

�
−
1

2

z2 þ B2
x

r2 þ Nq−1
Nq

R2

�
; ð56Þ

where I0 is the modified Bessel function of the first kind and order 0.
In Fig. 1, we display the ratio hεi2=ðQ2

s μ̃
2
0Þ2 for three values of τ. For this and the remaining plots, we will be

using the following parameters unless stated otherwise. We have three colors Nc ¼ 3 and three hot spots Nq ¼ 3.
The dense nucleus saturation scale is set to be Qs ¼ 3 GeV, the IR regulator is m ¼ 0.5 GeV, and the UV regulator is
C0 ¼ 0.05 GeV−1. The proton radius parameter isR ¼ ffiffiffiffiffiffiffi

3.3
p

GeV−1, and the hot spot radius is r ¼ ffiffiffiffiffiffiffi
0.7

p
GeV−1. The proton

and hot spot size parameters were originally taken from [37].

B. Two-point function

Let us now compute the energy density two-point function,

hεðτ;xÞεðτ; yÞi ¼ 1

4
ðδijδkl þ ϵijϵklÞðδi0j0δk0l0 þ ϵi

0j0ϵk
0l0 Þ

Z
p;k

Z
p̄;k̄

Z
u;v

Z
ū;v̄

h∂iUab
u ∂

kUcb
ū ∂

i0Ua0b0
v ∂

k0Uc0b0
v̄ ihβj;au βl;cū βj

0;a0
v βl

0;c0
v̄ i

×

�
J0ðpτÞJ0ðp̄τÞ −

p · p̄
pp̄

J1ðpτÞJ1ðp̄τÞ
��

J0ðkτÞJ0ðk̄τÞ −
k · k̄

kk̄
J1ðkτÞJ1ðk̄τÞ

�

× eip·ðx−uÞeik·ðy−vÞeip̄·ðx−ūÞeik̄·ðy−v̄Þ

¼ 1

4
ðδijδkl þ ϵijϵklÞðδi0j0δk0l0 þ ϵi

0j0ϵk
0l0 Þ

Z
u;v

Z
ū;v̄

h∂iUab
u ∂

kUcb
ū ∂

i0Ua0b0
v ∂

k0Uc0b0
v̄ ihβj;au βl;cū βj

0;a0
v βl

0;c0
v̄ i

×
δðjx − uj − τÞ

2πτ

δðjx − ūj − τÞ
2πτ

δðjy − vj − τÞ
2πτ

δðjy − v̄j − τÞ
2πτ

× ð1þ cosðθx−u − θx−ūÞÞð1þ cosðθy−v − θy−v̄ÞÞ; ð57Þ
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where we have adopted the shorthand notation βi;ax ≡ βi;aðxÞ (and ditto for the Wilson lines). As we did in the case of the
one-point function, we perform a variable change from (u, ū, v, v̄) to (s ¼ x − u, s̄ ¼ x − ū, t ¼ y − v, t̄ ¼ y − v̄), which
will allow us to straightforwardly integrate over the Dirac deltas,

hεðτ;xÞεðτ; yÞi ¼ 1

4
ðδijδkl þ ϵijϵklÞðδi0j0δk0l0 þ ϵi

0j0ϵk
0l0 Þ

Z
s;t

Z
s̄;t̄
h∂iUab

x−s∂
kUcb

x−s̄∂
i0Ua0b0

y−t∂
k0Uc0b0

y−t̄ihβj;ax−sβl;cx−s̄βj
0;a0
y−t β

l0;c0
y−t̄i

×
δðs − τÞ
2πτ

δðs̄ − τÞ
2πτ

δðt − τÞ
2πτ

δðt̄ − τÞ
2πτ

ð1þ cosðθs − θs̄ÞÞð1þ cosðθt − θt̄ÞÞ: ð58Þ

Wewill separate the proton and the nucleus-side correlators into their connected and disconnected parts in the same fashion
as was done in Ref. [16] for τ ¼ 0þ. For this, we define the following decomposition of the proton-side correlator:

hβi;ax−sβj;bx−s̄βk;cy−tβ
l;d
y−t̄i ¼ hβi;ax−sβj;bx−s̄ihβk;cy−tβ

l;d
y−t̄i þ hβi;ax−sβj;bx−s̄βk;cy−tβ

l;d
y−t̄iC; ð59Þ

where the contribution hβi;ax−sβj;bx−s̄ihβk;cy−tβ
l;d
y−t̄i contains the same correlators appearing on the average energy density formula

Eq. (47). Doing the same for the nucleus-side correlator, we get

h∂iUab
x−s∂

kUcb
x−s̄∂

i0Ua0b0
y−t∂

k0Uc0b0
y−t̄i ¼ h∂iUab

x−s∂
kUcb

x−s̄ih∂i0Ua0b0
y−t∂

k0Uc0b0
y−t̄i þ h∂iUab

x−s∂
kUcb

x−s̄∂
i0Ua0b0

y−t∂
k0Uc0b0

y−t̄iC; ð60Þ

where we have the correlators h∂iUab
x−s∂

kUcb
x−s̄i×

h∂i0Ua0b0
y−t∂

k0Uc0b0
y−t̄i, also featured in Eq. (47). These parts,

composed of products of correlators that appeared previ-
ously in the energy density average, are referred to as
disconnected contributions. Additionally, the connected
parts (denoted by a subscript C) are defined as the full
correlator minus the disconnected part.

Now we can decompose the energy density two-point
function into a sum of four parts by using Eqs. (59) and
(60). We end up with a term where both contributions
coming from nucleus and proton sides are disconnected
(DC,DC), one where both are connected (C,C), one where
the proton side is connected and the nucleus side is
disconnected (DC,C), and one where the roles are reversed
(C,DC). We call the (DC,C) part the proton fluctuation part
and the (C,DC) part the nucleus fluctuation part. Note that,
with this notation, we have

hεðτ;xÞεðτ; yÞiDC;DC ¼ hεðτ;xÞihεðτ; yÞi: ð61Þ
We argue that the proton fluctuation part is the dominant

source of fluctuations in this model. The (C,C) term is
sensitive to both the proton- and the nucleus-side fluctua-
tions and can thus be assumed to give only a small
contribution. This is supported by the results obtained in
Ref. [16], where the same model was used to compute
eccentricities in pA collisions at τ ¼ 0þ. It was found that
the proton fluctuation contribution is the largest source of
eccentricity, with nucleus fluctuations giving only a small
correction when the number of hot spots is set to Nq ¼ 3.
We have no reason to believe that this would not be true at
higher values of τ. Thus, we assume that the nucleus-side
contribution can be dropped, and that it also keeps the fully
connected contribution small. On these grounds, we will
only study the eccentricity generated by the hot spot-
dominated proton fluctuations.
Let us now examine the proton contribution. The full

correlator reads, to lowest order in the dilute proton color
sources,

FIG. 1. Proper time evolution of average energy density
squared as a function of the position relative to the center of
mass of the proton. The bands correspond to a variation of C0 by
�50%. Qs;A stands for the dense nucleus saturation scale.
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hβj;ax−sβl;cx−s̄βj
0;a0
y−t β

l0;c0
y−t̄i ¼

Z
d2zd2w½NqF2ðz;w;BÞ þ NqðNq − 1ÞF3ðz;w;BÞ�

× fGj
sðx − s − zÞGl

s̄ðx − s̄ − zÞGj0
t ðy − t − wÞGl0

t̄ ðy − t̄ − wÞδacδa0c0

þ Gj
sðx − s − zÞGl

s̄ðx − s̄ − wÞGj0
t ðy − t − zÞGl0

t̄ ðy − t̄ − wÞδaa0δcc0

þ Gj
sðx − s − zÞGl

s̄ðx − s̄ − wÞGj0
t ðy − t − wÞGl0

t̄ ðy − t̄ − zÞδac0δca0 g; ð62Þ

where Gi
sðx − sÞ≡ ∂

i
sGðx − sÞ. We perform a variable change from (z, w) to (z̄ ¼ x − z, w̄ ¼ y − w), obtaining

hβj;ax−sβl;cx−s̄βj
0;a0
y−t β

l0;c0
y−t̄i ¼

Z
d2z̄d2w̄½NqF2ðx − z̄; y − w̄;BÞ þ NqðNq − 1ÞF3ðx − z̄; y − w̄;BÞ�

× fGj
sðz̄ − sÞGl

s̄ðz̄ − s̄ÞGj0
t ðw̄ − tÞGl0

t̄ ðw̄ − t̄Þδacδa0c0

þ Gj
sðz̄ − sÞGl

s̄ððw̄ − s̄Þ þ rÞGj0
t ððz̄ − tÞ − rÞGl0

t̄ ðw̄ − t̄Þδaa0δcc0

þ Gj
sðz̄ − sÞGl

s̄ððw̄ − s̄Þ þ rÞGj0
t ðw̄ − tÞGl0

t̄ ððz̄ − t̄Þ − rÞδac0δca0g; ð63Þ

with r ¼ x − y. Here, we distinguish two kinds of contributions, represented by the functions F2, F3,

F2ðx − z̄; y − w̄;BÞ ¼
�

μ20
2πr2

�
2
�

1

1þ 2
Nq−1
Nq

R2

r2

�
exp

�
−
ð2b − z̄ − w̄ − 2BÞ2
4r2ð1þ 2

Nq−1
Nq

R2

r2 Þ
−
ðr − ðz̄ − w̄ÞÞ2

4r2

�
ð64Þ

F3ðx − z̄; y − w̄;BÞ ¼
�

μ40
ð2πÞ2ðR2 þ r2Þ

��
1

r2 þ Nq−2
Nq

R2

�
exp

�
−
ð2b − z̄ − w̄ − 2BÞ2
4ðr2 þ Nq−2

Nq
R2Þ

−
ðr − ðz̄ − w̄ÞÞ2
4ðR2 þ r2Þ

�
; ð65Þ

with b ¼ ðxþ yÞ=2. Analogously to Eq. (50), these functions are defined as the averages of color charges within the same
hot spot (F2 ≡ hμ2ða − biÞμ2ðb − biÞiHotspot) and from two different hot spots (F3 ≡ hμ2ða − biÞμ2ðb − bjÞiHotspot). Here,
if we take x, y to be opposite to each other on a straight line through the center of the proton, we have b ¼ B and thus, F2,
F3 depend only on z̄, w̄, and r.
Having obtained Eq. (63), we can now compute the proton fluctuation contribution to the energy density two-point

function. For this, we take the definition of the energy density two-point function Eq. (58) and replace the full dense nucleus
correlator with its disconnected contribution and the proton correlator with its connected contribution. Doing this and
plugging in the results shown in Eqs. (48) and (63), we get

hεðτ;xÞεðτ; yÞiDC;C ¼ ðN2
c − 1ÞQ

4
s

4

Z
s;t

Z
s̄;t̄

Z
z̄;w̄

�
1 −

Q2
s

4
js − s̄j2

��
1 −

Q2
s

4
jt − t̄j2

�

× exp

�
−
Q2

s

4
ðjs − s̄j2 þ jt − t̄j2Þ

�
ð1þ cosðθs − θs̄ÞÞð1þ cosðθt − θt̄ÞÞ

× ½NqF2ðx − z̄; y − w̄Þ þ NqðNq − 1ÞF3ðx − z̄; y − w̄Þ�
× fðN2

c − 1ÞGi
sðz̄ − sÞGi

s̄ðz̄ − s̄ÞGj
tðw̄ − tÞGj

t̄ðw̄ − t̄Þ
þGk

s̄ðw̄ − s̄þ rÞGk
sðz̄ − sÞ½Gl

tðw̄ − tÞGl
t̄ðz̄ − t̄ − rÞ þ Gl

t̄ðw̄ − t̄ÞGl
tðz̄ − t − rÞ�g

×
δðs − τÞ
2πτ

δðt − τÞ
2πτ

δðs̄ − τÞ
2πτ

δðt̄ − τÞ
2πτ

− hεðτ;xÞεðτ; yÞiDC;DC: ð66Þ

This is, by far, the dominant source of fluctuations (and, by
extension, of eccentricity) in this model. Here, we distin-
guish two contributions to the proton-side fluctuations: the
term proportional to ðN2

c − 1Þ2, which gives us the hot spot
fluctuation, and the other two terms in the curly brackets,

which give us the color fluctuation. We note that the
structure of the Green’s functions product in the hot spot
contribution is similar to that of the energy density one-
point function Eq. (52), and thus, we argue that the color
charge fluctuations are averaged over in this term.
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Let us now evaluate these expressions numerically. In
Figs. 2 and 3, we present plots of the two-point function of
energy density hεðτ;xÞεðτ; yÞi at proper times τ ¼ 0þ (left-
hand side) and τ ¼ 1=Qs (right-hand side). In the top
panels, we show the fully disconnected contribution, the
total proton fluctuations contribution, and the proton hot
spot and color fluctuations separately. The bottom panels
show the relative contribution of the separate parts with
respect to the total. In Fig. 2, we set x ¼ y and show the

two-point function as a function of the distance from the
center of the proton B, whereas in Fig. 3, we set x ¼ −y,
start from x ¼ y ¼ B and let the coordinates move away
from the center in such a way that jx − Bj ¼ jy − Bj.
In Figs. 2 and 3, we can see that the color fluctuations of

the proton are short-range; their relative contribution
approaches zero very fast as the separation distance grows.
Also, the relative contribution of the color fluctuations
seem to get slightly smaller as we evolve the system in τ.

FIG. 3. Same as Fig. 2 for the nonlocal two-point function.

FIG. 2. Local energy density two-point function with proton fluctuation contribution separated into hot spot and color fluctuation
parts. The total proton fluctuation and the fully disconnected contribution is also shown for reference. The bands correspond to a
variation of C0 by �20%.
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As the eccentricity is mostly sensitive to the large distance
behavior of the two-point function, this implies that the
color fluctuations should not have a large effect on them
(and even less so at larger values of τ). The other part of the
proton fluctuations is the hot spot fluctuation contribution.
This is the dominant part of the full proton fluctuations
except at small distances, where the color fluctuations give
a sizable contribution. The proton fluctuations seem to go
down as the separation increases and then up again slightly.
This is because the proton hot spot fluctuations consist of
two different terms: a short-range one hot spot contribution
(containing the function F2) and a larger distance two hot
spot contribution (containing the function F3). The dip is
due to the region where the dominant contribution changes.
The relative contribution of the fully disconnected con-
tribution dominates the two-point function up until the
boundary of the proton. At long distances, the proton
fluctuations decrease at a slower rate, and thus, they
become the dominant source of fluctuations.
In the top panel of Fig. 4, we show the full two-

point function, the proton fluctuations and the fully
disconnected contribution on a logarithmic scale. The quan-
tities are plotted at τQs ¼ 0 and τQs ¼ 1, illustrating the
τ-dependence of the different terms. Again, the bottom
panel shows the relative contribution of the different parts
at both proper times. Note that the right-hand side plots
clearly show the aforementioned dip in the proton fluctua-
tions. Also, one can see that these fluctuations become the
dominant contribution of the two-point energy density, with
the exact distance where this happens depending on τ
(as we evolve the system further, the proton fluctuations
start dominating at larger distances). This will have an

effect on the eccentricities, which we will compute from
these two-point functions in the following section.

IV. ECCENTRICITIES

Now we compute the eccentricities measuring the
azimuthal correlations of the energy density field, as well
as their response to τ-evolution. Let us first summarize how
we get the formulas for the two-particle eccentricities.
The eccentricity of an event quantifies how much the

energy density field ðεðτ;xÞÞ deviates from an azimuthally
symmetric configuration. It is defined as [38]

εn ¼
R
d2xjx −Bjn expinθx−B εðτ;xÞR

d2xjx −Bjnεðτ;xÞ : ð67Þ

Note that the subindex n allows us to tell apart the symbols
for eccentricities and energy density fields. Note also that
for the moment, we are dealing with a singular event and
thus, have not done any averaging yet. The B appearing in
Eq. (67) is the center of the event, defined as

B ¼
R
d2xxεðτ;xÞR
d2xεðτ;xÞ : ð68Þ

We argue that B can be taken as the center of mass of the
hot spot system, up to minor corrections stemming from the
color charge fluctuations. This assumption lets us deal with
the centering of the events analytically. In fact, as we are
considering an infinitely large and homogenous nucleus,
we can set B ¼ 0 with no loss of generality.

FIG. 4. The top panel shows the different contributions of the energy density two-point function at τQs ¼ 0 and τQs ¼ 1 plotted on a
logarithmic scale. The bottom panels show the relative contribution of the different parts on a linear scale. The bands correspond to a
variation of C0 by �20%. The legend in the plot on the left is also valid for the plot on the right.
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Let us now write the energy density of a singular event as
the sum of the average ðhεðτ;xÞiÞ and the fluctuation
ðδεðτ;xÞÞ,

εðτ;xÞ ¼ hεðτ;xÞi þ δεðτ;xÞ: ð69Þ

Note that in this form, it is evident that the average of the
fluctuation of the energy density vanishes. For this reason,
we argue that the simplest way to access the correlations
caused by the fluctuations is to study the mean square of the
eccentricity Eq. (67), defined as

ε0nf2g2 ¼
�R

d2xd2yjx −Bjnjy −Bjnexpinðθx−B−θy−BÞεðτ;xÞεðτ; yÞR
d2xd2yjx − Bjnjy −Bjnεðτ;xÞεðτ; yÞ

�
: ð70Þ

Computing the average of this ratio analytically is not easy. Instead of doing that, we compute the approximation
of this equation in the limit of small fluctuations. This approximation has been used previously in literature [38,39], and
it reads

ε0nf2g2Approx ¼
R
d2xd2yjx −Bjnjy −Bjn expinðθx−B−θy−BÞ hεðτ;xÞεðτ; yÞiR

d2xd2yjx −Bjnjy − Bjnhεðτ;xÞihεðτ; yÞi : ð71Þ

This approximation assumes small fluctuations, and it is possible that our model does not fulfill this assumption with some
parameter values. However, in Ref. [16], the approximation Eq. (71) was compared to the following expression:

εnf2g2 ¼
R
d2xd2yjx −Bjnjy −Bjn expinðθx−B−θy−BÞ hεðτ;xÞεðτ; yÞiR

d2xd2yjx −Bjnjy − Bjnhεðτ;xÞεðτ; yÞi ; ð72Þ

where the denominator has been replaced by a two-point
function. Note that this expression looks more like a
standard quantum mechanical expectation value, and the
denominator is now sensitive to the fluctuations in the
system. Through this comparison, it was found that
Eqs. (70) and (72) differ very little from each other using
the same parameters as we do, with the exception of the IR
regulator (which in Ref. [16] was taken asm ¼ 0.22 GeV).
Also, this comparison was performed at τ ¼ 0þ. As the
value of τ increases, we found that the numerical analysis
becomes very cumbersome and thus, made some choices to
make it more reliable. Specifically, we used the approxi-
mation Eq. (71) to compute the eccentricities and chose a
larger value of the IR regulator ðm ¼ 0.5 GeVÞ.
Our results for the τ-dependent eccentricities with n ¼ 2,

3, 4 are shown in Fig. 5. These eccentricities only take into
account the hot spot fluctuations of the proton. We expect
that the color fluctuations only have a small effect in
comparison (see the Appendix for more details). The
confidence bands are found by varying m by �20%.
Increasing the IR regulator makes the gluon field tails
shorter and thus, makes the hot spots more defined,
increasing the eccentricity (whereas decreasing it does
the opposite).
Looking at the confidence bands in Fig. 5, we notice that

the IR regulator dependence on the eccentricities remains
nearly unchanged throughout the proper time evolution.
This implies that whereas the UV regulator dependence
was found to be small, the IR regulator plays an important
role in the shape of the energy density field even when it is

evolved in proper time. This further implies that one needs
to properly fix the value of the IR regulator when using this
kind of hot spot model to be able to constrain the values of
the computed eccentricities (as well as any observables
computed from them).
Another thing we notice is that whereas the initial

ðτ ¼ 0þÞ eccentricities are generally quite high, there is
a clear decreasing trend as a function of τ. We do note
however that the numerical instabilities begin to dominate
as we go to higher n and τ, as can be seen from the n ¼ 4
plot. As the eccentricities are dominated by the long-range
properties of the energy density field, we can try to
understand the reason for the decreasing eccentricity by
looking at the two-point function plots in Figs. 2–4. There
we see that when τ becomes larger, the proton fluctuations
start dominating the long distance behavior of the two-point
function further away from the center. Here, one should
note that when computing the eccentricity, the two-point
function is weighted by jx −Bjnjy −Bjn. From this, it
follows that the numerator of the eccentricity Eq. (71)
(given by the proton fluctuations) would decrease faster
than the denominator (given by the fully disconnected
contribution) as we evolve in τ. This also means that the
contribution of the center of the proton is suppressed
whereas the edges are given more emphasis. This results
in the observed decrease in eccentricity. However, having to
work with four spatial coordinate parameters, it is difficult
to plot the energy density in such a way that we could get
the full picture of how the energy density behaves as a
function of angles and relative distances.
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V. CONCLUSIONS

In this work, we study the effect of initial stage
fluctuations on the early geometry of the system generated
in high energy pA collisions. With this aim, we constructed
a proper time-dependent model for the computation of
energy density correlators in the dilute-dense limit. In this
model, we consider the proton at a moderately small-x, i.e.,
sufficiently small to permit the application of classical
methods, but not so much that the proton becomes a
homogeneous cloud of saturated gluons. This allows us to
combine CGC initial conditions complemented with a hot
spot model for the geometrical structure of the proton [16]
with a free field description of the subsequent evolution of
the Glasma [17]. It has been argued that the hot spot system
is a natural way to include subnucleonic fluctuations, which
are thought to be crucial in modeling the initial geometry
of HICs [14]. Moreover, free field propagation has been
widely applied in the literature as an approximation of
CYM evolution in the dilute-dense limit [17,40–43], and,
more recently, in the dense-dense case [18]. This ensemble
of elements allows for the analytical calculation of corre-
lators at nonzero values of proper time.

We used our model to compute the energy density one-
and two-point functions analytically. In this calculation, we
emphasized the contribution of the hot spot fluctuations, as
those have been found to be the dominant source of
eccentricity at τ ¼ 0þ in this particular hot spot model
[16]. More specifically, in the cited work, it was established
that at τ ¼ 0þ the proton-side fluctuations completely
dominate over the nucleus color fluctuations with
Nq ¼ 3. On these grounds, and because its computation
becomes increasingly cumbersome as we evolve in τ, we
dropped this contribution completely. The fully connected
contribution was also neglected, as it is expected to be
doubly suppressed due to its sensitivity to the fluctuations
of both proton and nucleus. Lastly, in Ref. [16], it was
found that the color fluctuation part of the full proton
fluctuations yield a very small eccentricity when Nq ¼ 1.
This result supports the argument that, as color fluctuations
have a short range, one can expect them to have little effect
on IR-dominated properties like the eccentricities. Overall,
these considerations leave the hot spot fluctuations as the
only relevant contribution in the computation of eccen-
tricities. Said computation was the last part of this work,

FIG. 5. The εnf2g; n ¼ 2, 3, 4 eccentricities as functions of τQs withQs ¼ 3 GeV. The confidence bands are found by varying the IR
regulator m by �20%. The eccentricities are obtained taking into account only the hot spot fluctuations of the proton. This
approximation is compared to the full result in the Appendix.
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which we did considering values for the model parameters
that we deemed reasonable (and that have in fact been used
in previous studies). As a check of the validity of our
approximation we also computed the eccentricities using
the full proton fluctuations (see the Appendix). Although
the observed effect is not large at lower values of τ, at larger
values (τQs ≳ 0.4), the difference starts to be sizable.
However, due to significant numerical instabilities kicking
in around this point (and onwards), it is difficult to attribute
said difference to a breakdown of our approximation. We
thus find that the best way to reach reasonable conclusions
is by removing the numerically problematic short-range
contribution of the color charge fluctuations.
From our results we can see that, even though the

eccentricities at early times are quite substantial, proper
time evolution does decrease them. One can interpret this
qualitatively as a consequence of the evolution of the
different terms of the energy density correlators. When
examining distances close to the center of the proton, the
fully disconnected contribution to the energy density two-
point function dominates over the proton fluctuation con-
tribution. However, as we move further away from the

center, the proton fluctuations start dominating instead. This
effect is observable already at τ ¼ 0þ, but, as we evolve the
system in τ, the region where the dominant contribution
changes is pushed further away from the center. This is
particularly relevant for the calculation of eccentricities,
which emphasize the edges of the energy density field while
suppressing the center. Even though we limited ourselves to
study only two coordinate combinations of the two-point
function, this effect quite intuitively explains the reduction
in eccentricity with increasing proper time. We also found
that the large IR regulator dependence of the initial eccen-
tricity seems to persist through the proper time evolution.
The results of this work give analytical insight on

the workings of free field evolution with a hot spot-based
initial condition applied to the description of the earliest
stages of pA collisions. We want to emphasize that the
assumptions at the base of our model are not expected
to be valid throughout the whole prethermalization phase,
as the expansion of the medium will eventually lead to
the breakdown of the classical field description. A more
complete analysis would thus require an intermediate
theory that matches CGC with hydrodynamics, with kinetic

FIG. 6. The εnf2g; n ¼ 2, 3, 4 eccentricities as functions of τQs withQs ¼ 3 GeV. The confidence bands are found by varying the IR
regulator m by �20%. Both the result from the approximation with only proton hot spot fluctuations and the result with all proton
fluctuations are shown.
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theory being a strong contender for this role [44–47].
Another way of refining this calculation would be to
abandon the dilute-dense limit in order to include proton
charge density fluctuations to all orders (as we do with the
nucleus). We also did not implement some physical ingre-
dients that have been used in previous works using hot
spots. These include:Qs fluctuations [12,24–27], repulsion
between hot spots [9,28], and hot spotswithin hot spots [29].
Another interesting addition to our model could be the
inclusion of x-dependence through x-dependent hot spot
size and number as in Ref. [27].
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APPENDIX: SOME ADDITIONAL RESULTS

In this appendix, we present some additional plots that
further explain why in the main text we focused on
eccentricities computedbyusingonly thehot spot fluctuation
part of the proton fluctuations. Figure 6 shows the results for
both the full proton fluctuation and the approximation.
In Fig. 6, the full and the approximate result do coincide

quite well at lower values of τ. This makes us confident that
our approximation works well and could give us a good
estimate on what happens later in the evolution. As seen in
Fig. 2, the neglected proton color fluctuations are short-
range, whereas the strong IR regulator dependence and the
weak UV regulator dependence of the eccentricities suggest
that they are most sensitive to the long distance behavior
of the energy density. These observations reinforce our
decision of dropping the color fluctuation part of the full
proton fluctuations. The difference between the full result
and the approximation observed at later stages of evolution
is probably due to the color fluctuation contribution
increasing the difficulty of the numerical integration, as
at short range its relative contribution to the two-point
function is still of the order of ∼10%.
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