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We revisit the DD� interactions in chiral effective field theory up to the third order for the first time. We
deal with the pion-exchanged interactions via local momentum-space regularization, in which we focus on
their long-range behaviors through demanding their contributions vanish at the origin in the coordinate
space. The short-range contact interactions and subleading pion-charmed meson couplings are estimated
with the phenomenological resonance saturation model. The subleading pion-charmed meson couplings
are much weaker than those in the pion-nucleon system, thus theDD� binding mechanism is very different
with that of the NN system. We also obtain the analytic structure of the two-pion exchange interactions in
the coordinate space, and we find that its asymptotic behavior at long distance is similar to but slightly
different than the NN interactions. We get the same asymptotic behavior of the two-pion exchange
interaction with that from the HAL QCD method, but appearing in the longer distance rather than
1 < r < 2 fm. The binding solution only exists in the isoscalar channel. Our calculation supports the
molecular interpretation of Tþ

cc.
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I. INTRODUCTION

The interactions between a pair of heavy-light hadrons
can be fairly regarded as the extension of the pattern of
nuclear forces. The theoretical tools designed for the
nucleon systems shall also be generalized to the heavy-
light systems via including the restriction of extra sym-
metries, such as the heavy quark symmetry. Meanwhile, in
recent years, the observations of many near-threshold
exotic states provide golden platforms to test and redevelop
these tools [1–11], in which the successful generalizations
of the effective field theories (EFTs), e.g., the pionless and
pionful EFTs, is a epitome of the intimate connection
between nuclear and hadron physics [9].
Based on the instructive works of Weinberg [12,13], in

the past decades, the modern framework of nuclear forces
was constructed upon the chiral effective field theory
(χEFT) [14,15]. In χEFT, the short-range part of the nuclear

forces is parametrized as the four-fermion contact inter-
actions through integrating out the heavy particle exchanging
(e.g., the vector meson ρ and ω, etc.), while the long- and
intermediate-range parts are presented by the one-pion
exchange (OPE) and multipion exchange interactions,
respectively [16–18]. The latter can be derived from the
chiral symmetry of QCD in a model-independent way. The
study of nucleon-nucleon (NN) interactions indicates that
the leading order (LO) two-pion exchange (TPE) potential is
very weak and insufficient to provide the appropriate
attractive force at the intermediate range, which is, in fact,
described by the subleading TPE potential with an insertion
of the subleading pion-nucleon vertices [14,15,19]. It was
found that largevalues of the low-energy constants (LECs) in
the subleading pion-nucleon Lagrangians leads to the attrac-
tive source. The values of these LECs can be quantitatively
understood using the phenomenological resonance satura-
tion model (RSM) [20]. It was shown that these large value
LECs in the χEFTwithout explicitΔ resonance actually stem
from the “high” (note that mΔ −mN ≈ 2mπ < mρ, where
mρ ∼ 770 MeV, is usually regarded as the truly high-energy
scale in chiral perturbation theory) energy scale Δ baryon as
well as the pion-pion correlation (or the σ meson) [20].
Epelbaum et al. noticed that the TPE loop dia-

grams calculated within the dimensional regularization
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accompanied by large value LECs in subleading pion-
nucleon vertices lead to unsatisfactory convergence of chiral
expansion and uncertain consequences in few-nucleon sys-
tems, e.g., the unphysical deeply bound states in the low
partial waves of the isoscalar channel [21,22]. The expedi-
ency is to use the small value LECs, but this is not compatible
with the pion-nucleon scattering data [23,24]. In order to cure
this problem, Epelbaum et al. argued that one needs to
suppress the high-momentummodes of the exchanged pions,
since they cannot be suitably handled in an EFT that only
properly works in the soft scales. In order to solve this
problem, the TPE loop diagrams using the cutoff regulari-
zation combining the spectral function representation
scheme [22,25,26], local regularization scheme [27,28],
and semilocal regularization scheme [29] were proposed.
One can see the review in [30] for the state of the art. This is
analogous to the means for improving the convergence of
chiral expansion in the SU(3) case [31,32]. In addition, it was
shown that a covariant χEFT can moderate the TPE con-
tribution [33–35] even using the dimensional regularization.
Obviously, one needs to consider the possible emergence

of the above-mentioned problem when generalizing
the χEFT to the heavy-light systems. The application of
χEFT in heavy-light systems for dealing with the hadronic
molecules has achievedmuch progress in recent years [9]. In
Ref. [36], Liu et al. first calculated the BB interactions
considering the leading TPE contributions. Along this line,
Xu et al. studied theDD� interactions and used the RSM to
determine the contact LECs, in which they predicted a bound
state in the isoscalar channel with JP quantum numbers 1þ
[37]. Four years later, the LHCb Collaboration observed the
Tþ
cc in D0D0πþ invariant mass spectrum [38,39]. The Tþ

cc is
below the D�þD0 threshold about 300 keV, thus it is a very
good candidate of DD� hadronic molecules. Similar to
Ref. [37], Wang et al. studied the Bð�ÞBð�Þ interactions
and predicted the possible bound states in the isoscalar
BB� and B�B� systems with JP ¼ 1þ [40]. The same
framework was also adopted to investigate the LHCb
pentaquarks PN

ψ ð4312Þ, PN
ψ ð4440Þ, and PN

ψ ð4457Þ [41,42]
(throughout this paper, we use the new naming scheme of the
exotic states proposed by the LHCb [43]), as well as to
predict the existence of molecular pentaquarks with strange-

ness in Ξð0;�Þ
c D̄ð�Þ systems [44] (see also the recent exper-

imental measurements for the PΛ
ψs states near the ΞcD̄� [45]

and ΞcD̄ [46] thresholds) and the double-charm pentaquarks
[47]. For a review of this topic, we refer to Ref. [9]. In
Ref. [48], the study of ΣcΣc interactions turns out that this
results in bad convergence and an unnaturally deep bound
state in the lowest isospin channel if one calculates the
leading TPE diagrams with dimensional regularization. This
demands us to properly treat the TPE contributions for
heavy-light systems as those in the NN case.
Recently, the S-wave DD� potential in the isoscalar

channel was extracted from lattice QCD simulations near
the physical pion mass within the HAL QCD method [49].

It was shown that the potential favors the e−2mπr=r2

behavior in the range 1 < r < 2 fm. Thus, it is worthwhile
to investigate TPE interaction for DD� in the coordinate
space to compare with that from HAL QCD.
In this work, we revisit theDD� interactions within χEFT

and calculate theDD� interactions up to the third order [i.e.,
the next-to-next-to-leading order (N2LO)] for the first time.
We construct the subleading πDð�Þ Lagrangians and deter-
mine the corresponding LECs with the RSM. The TPE
diagramswill be calculatedwith the cutoff regularization, but
we use the fully local momentum-space regularization rather
than the semilocal form as those in Ref. [29]. The DD�
interactions shall strongly correlate to theTþ

cc inner structures
and its other properties. In contrast to the well-known
Xð3872Þ, there is no coupling with the charmonia for Tþ

cc.
Thus, it provides us with a clean environment for investigat-
ing the interactions between the charmed mesons. This is
very similar to the NN interactions.
The Tþ

cc state has been intensively studied from various
aspects, such as the decay behaviors [50–55], mass spectra
[10,56–67], productions [68–73], line shapes [74–76], and
magnetic moment [77], etc. In order to pin down the inner
configuration of Tþ

cc, a systematic study of the DD�
interactions is very necessary.
This paper is organized as follows. The DD� effective

potentials within the local momentum-space regularization
are shown in Sec. II. The analyses of effective potential and
the pole trajectories of the DD� bound state and related
discussions are given in Sec. III. A short summary is given
in Sec. IV. The estimations of LECs within the RSM are
listed in the Appendix.

II. EFFECTIVE CHIRAL POTENTIALS
UP TO THE THIRD ORDER

The effective potential of DD� can be extracted from
their scattering amplitude. In χEFT, the scattering ampli-
tude of DD� is expanded in powers of the ratio Q=Λb,
where Q represents the soft scale, which could be the pion
mass or the external momenta ofDð�Þ, while Λb denotes the
hard scale at which the χEFT breaks down. The relative
importance of the terms in the expansion is weighed by
the power ν of ðQ=ΛbÞν; this is known as the power
counting scheme. According to the naive dimensional
analysis [12,13], the power ν for a system with two matter
fields (charmed mesons) is measured as

ν ¼ 2Lþ
X
i

ViΔi; Δi ¼ di þ
ni
2
− 2; ð1Þ

with L as the number of loops in a diagram and Vi as the
number of vertices of type i. The di is the number of
derivatives (or the pion-mass insertions), andni is the number
of charmed meson fields that involved in the vertex i.
The DD� interaction starts at ν ¼ 0 (first order, the LO),

and the higher orders come as ν ¼ 2 [second order, the
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next-to-leading order (NLO)], ν ¼ 3 (third order, the
N2LO), etc. At the given order, the number of the
corresponding irreducible diagrams is limited. In Fig. 1,
we show the pertinent Feynman diagrams for the LO, NLO,
and N2LO interactions of the DD� system. Then, the
effective potential of the DD� system can be written as

Veff ¼ Vct þ V1π þ V2π þ…; ð2Þ

with

Vct ¼ Vð0Þ
ct þ Vð2Þ

ct þ…;

V2π ¼ Vð2Þ
2π þ Vð3Þ

2π þ…; ð3Þ

where Vct, V1π , and V2π denote the contact, OPE, and TPE
potentials, respectively. The numbers in the parentheses of
the superscripts represent the order ν [see Eq. (1)]. Each
piece of the right-hand side of Eq. (2) can be further
decomposed into the following form:

Vi ¼ ½Vi;c þ τ1 · τ2Wi;c�O1 þ ½Vi;t þ τ1 · τ2Wi;t�O2; ð4Þ

where i ¼ ct; 1π; 2π, and τ1 · τ2 denotes the isospin-isospin
interaction. The matrix element hτ1 · τ2i ¼ −3 and 1 for the
isoscalar and isovector channels, respectively. The oper-
ators O1 and O2 are given as

O1 ¼ ε0† · ε; O2 ¼ ðq · ε0†Þðq · εÞ; ð5Þ

where q ¼ p0 − p (p and p0 denote the initial and final state
momenta in the center of mass system, respectively) is the
transferred momentum between D and D�, and ε and ε0†
denote the polarization vectors of the initial and final D�
mesons, respectively. In the heavy quark limit, we will not
consider the 1=m (withm the mass of the charmed mesons)
corrections of the charmed meson fields. Then, only two

pertinent operators survive in the effective potentials of
DD� (for the NN case, see Ref. [78]), i.e., the O1 and O2.
In the following subsections, we will derive the Vct, V1π ,

and V2π , respectively.

A. Short-range contact interactions

The contact potentials ofDD� system at the order ν ¼ 0,
2, 4 can be respectively parametrized as

Vð0Þ
ct ¼ ðC1 þ τ1 · τ2C2ÞO1; ð6Þ

Vð2Þ
ct ¼ ðC3 þ τ1 · τ2C4Þq2O1

þ ðC5 þ τ1 · τ2C6ÞO2; ð7Þ

Vð4Þ
ct ¼ ðC7 þ τ1 · τ2C8Þq4O1

þ ðC9 þ τ1 · τ2C10Þq2O2; ð8Þ

whereC1;…;10 are the corresponding LECs. In the following

calculations, we will take the Vð4Þ
ct to test the convergence

of the expansion in different isospin channels. In Eqs. (7)
and (8), we ignore the pion-mass-dependent terms that
are irrelevant in our studies. In calculations, the local
form Gaussian regulator exp ð−q2=Λ2Þ is multiplied to
Eqs. (6)–(8) to ensure the convergence when they are
inserted into the Lippmann-Schwinger equations (LSEs).
In order to determine all the LECs in Eqs. (6)–(8), we

resort to the phenomenological RSM [79,80] (see also the
applications in heavy-light systems [37,81–83]). Within
the RSM, we consider the exchanging of the scalar,
pseudoscalar, vector, and axial-vector mesons [the tensor
exchanges (e.g., a2, f2 mesons) are not considered, since
their contributions start at least at the fourth order [81]].
The derivation details are given in Sec. I of the Appendix.
Their numerical values are listed in Table I.

FIG. 1. The irreducible Feynman diagrams for the DD� interactions at the LO, NLO, and N2LO. We use the single solid line, the
double line (solid plus dashed), and the dashed line to denote theD,D�, and pion, respectively. The small solid square [in (a1)] and large
solid square [in (b1)] denote the LO (Δi ¼ 0) and NLO (Δi ¼ 2) DD� contact vertices, respectively. The small solid dot [in
ða2Þ; ðb2;…;11Þ; ðc1;…;7Þ] and large solid dot [in (c1;…;7)] represent the LO (Δi ¼ 0) and NLO (Δi ¼ 1) πDð�Þ vertices, respectively.
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B. Long-range one-pion exchange interactions

The Tþ
cc was observed in the D0D0πþ final state, and its

signal is absent in the DþD0πþ channel [38,39], which
implies that the Tþ

cc is an isoscalar state rather than an
isovector one. The flavor wave function of DD� in the
isoscalar and isovector channels read, respectively,

jDD�; I ¼ 0; I3 ¼ 0i ¼ 1ffiffiffi
2

p ½D0D�þ −D�0Dþ�; ð9Þ

jDD�; I ¼ 1; I3 ¼ 0i ¼ 1ffiffiffi
2

p ½D0D�þ þD�0Dþ�: ð10Þ

We consider the explicit chiral dynamics from the light
pion and relegate the heavy η (mη ≃ 4mπ) contribution to
the contact terms. In the following, we show the complete
LO (Δi ¼ 0) chiral Lagrangian of the φDð�Þ (φ ¼ π, η)
coupling [84,85] for later convenience:

Lð0Þ
φH ¼ ihHv ·DH̄i − 1

8
δbhHσμνH̄σμνi þ gφhH=uγ5H̄i;

ð11Þ
where v ¼ ð1; 0Þ denotes the four-velocity of heavy mes-
ons, andDμ ¼ ∂μ þ Γμ, where Γμ ¼ ½ξ†; ∂μξ�=2 is the chiral
connection. δb ¼ mD� −mD ≃ 142 MeV, and gφ ¼ −0.59.
The axial-vector current uμ is defined as uμ ¼ ifξ†; ∂μξg=2.
Meanwhile, the ξ2 ¼ U ¼ expðiφ=fφÞ, and the matrix
form of φ reads

φ ¼
"
π0 þ 1ffiffi

3
p η

ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0 þ 1ffiffi
3

p η

#
: ð12Þ

The H denotes the superfield of the (D;D�) doublet in the
heavy quark symmetry, which reads

H ¼ 1þ =v
2

ðP�
μγ

μ þ iPγ5Þ; H̄ ¼ γ0H†γ0; ð13Þ

with P ¼ ðD0; DþÞT and P� ¼ ðD�0; D�þÞT .
With the OPE diagram in Fig. 1(a2) and the LO chiral

Lagrangian in Eq. (11), one can easily get the OPE
potential, which reads

V1πðuπ; qÞ ¼ sgnðτ1 · τ2Þ
g2φ
4f2π

O2

q2 − u2π − iϵ
; ð14Þ

wherefπ ¼92.4MeV,uπ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2b−m2

π

q
(wheremπ≃137MeV

is the pion mass), and sgn ¼ ð−1ÞI . Equation (14) contains

two parts—the principle-value and imaginary parts. Its
principle value corresponds to an oscillatory potential in
the coordinate space, e.g., see Eq. (18), while the imaginary
part comes from the three-body (DDπ) cut, which contrib-
utes a finite width to the bound state of DD�. We then
separate the operator O2 into the “spin-spin” part and the
tensor part via the equation

O2 ¼ ðq · ε0†Þðq · εÞ ¼ 1

3
ðε0† · εÞq2 þ q2S12; ð15Þ

where S12 ¼ ðε0† · q̂Þðε · q̂Þ − 1
3
ε0† · ε, with q̂ ¼ q=jqj. Then

the principle-value part of Eq. (14) can be transformed into

V1πðuπ; qÞ ¼ sgnðτ1 · τ2Þ
g2φ
4f2π

�
1

3
O1 þ

1

3

u2π
q2 − u2π

O1

þ q2

q2 − u2π
S12

�
; ð16Þ

in which the first term corresponds to a δ function in the
coordinate space (r space) after the Fourier transform. It is an
artifact arising from the idealized pointlike πDð�Þ coupling. In
reality, the OPE dominates at the long-distance region, i.e.,
r≳ 2 fm ≃ 1.5m−1

π [86]. Therefore, it is better to subtract
the unphysical δ-function part from the OPE potential. In
Ref. [29], Reinert et al. introduced a subtraction scheme for
the NN interaction with the following form:

V1π;Λðuπ; qÞ ¼ sgnðτ1 · τ2Þ
g2φ
4f2π

�
u2π
3

1

q2 − u2π
O1

þ
�
1

3
þ Cðuπ;ΛÞ

�
O1 þ

q2

q2 − u2π
S12

�

× exp

�
−
q2 − u2π
Λ2

�
; ð17Þ

where a uπ-dependent term in the Gaussian regulator is
introduced to ensure the strength of theOPEpotential remains
unchanged at the pion pole [87]. The subtraction term
Cðuπ;ΛÞ is determined by the requirement that the OPE
potential vanishes at the origin, i.e., when r → 0. With the
following relations of the Fourier transform:Z

d3q
ð2πÞ3 e

iq·r 1

q2 − u2π
¼ 1

4πr
cosðuπrÞ; ð18Þ

TABLE I. The numerical values of the LECs [see Eqs. (6)–(8)] determined from the RSM. The C1;2, C3;…;6, and C7;…;10 are in units of
GeV−2, GeV−4, and GeV−6, respectively. The values for the isoscalar (I ¼ 0) and isovector (I ¼ 1) channels can be easily obtained via
replacing the sgn with ð−1ÞI . The errors come from the parameters in the Lagrangians that are quoted in the Appendix.

C1 C2 C3 C4 C5

7.5� 1.3 10.9� 0.2þ 0.3sgn −26.0� 9.1 −18.8þ ð23.1� 7.4Þsgn 14.7� 7.2
C6 C7 C8 C9 C10

ð−23.1� 7.4Þsgn −5.2� 30.5 32.1 − ð40.6� 12.9Þsgn −10.6� 12.1 ð40.6� 12.9Þsgn
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UΛðuπ; rÞ ¼
Z

d3q
ð2πÞ3 e

iq·r 1

q2 −u2π
exp

�
−
q2−u2π
Λ2

�

¼ cosðuπrÞ
8πr

�
erfc

�
uπ
Λ
−
Λr
2

�
− erfc

�
uπ
Λ
þΛr

2

��
;

ð19ÞZ
d3q
ð2πÞ3 e

iq·r exp

�
−
q2 − u2π
Λ2

�

¼
�
Λ2

4π

�
3=2

exp

�
u2π
Λ2

−
Λ2r2

4

�
; ð20Þ

one easily obtains

V1π;Λðuπ; rÞ ¼
Z

d3q
ð2πÞ3 e

iq·rV1π;Λðuπ;qÞ

¼−sgnðτ1 · τ2Þ
g2φ
4f2π

�
S12r

∂

∂r

�
1

r
∂

∂r

�
UΛðuπ; rÞ

−O1

�
u2π
3
UΛðuπ; rÞþ

�
1

3
þCðuπ;ΛÞ

�

×

�
Λ2

4π

�
3=2

exp

�
u2π
Λ2

−
Λ2r2

4

���
: ð21Þ

With the constraint V1π;Λðuπ; r → 0Þ ¼ 0, we get

Cðuπ;ΛÞ ¼ −
�
1

3
þ 2u2π
3Λ2

e−
2u2π
Λ2

�
: ð22Þ

Note that, in Eq. (18), the erfcðxÞ represents the comple-
mentary error function, i.e.,

erfcðxÞ ¼ 2ffiffiffi
π

p
Z

∞

x
dte−t

2

: ð23Þ

It should be stressed that the so-calledOPE interactions in this
work are, in fact, parts of their effects that cannot be
compensated by the contact terms.

In Fig. 2, we show the behaviors of the central part [O1

related term in Eq. (21)] and tensor part [S12 related term in
Eq. (21)] of the δ function subtracted from the OPE potential
for the I ¼ 0 case (the behaviors of the I ¼ 1 case are
similar). One can see that both the central and tensor
potentials vanish for r → 0, and the strength of the central
potential is much weaker than that of the tensor potential.
Therefore, though the central potential is attractive, it is too
weak to form a bound state.However, if one does not subtract
the δ function, then it would result in a very attractive central
potential when using a large cutoff when making the Fourier
transform. This may also lead to the bound state, but it is
unreasonable. One also sees that the central potential can
extend to large distances, since the effective mass uπ in the
pion propagator is much smaller than the mπ; this is a very
typical feature of the DD� system.

C. Intermediate-range two-pion exchange interactions

We first show the LO (ν ¼ 2) TPE contributions, which
come from the diagrams in Figs. 1(b2)–1(b11). They can be
obtained by using the Lagrangian (11) and calculating the
loop integrals. We adopt the spectral function representa-
tion for the TPE interactions. The long-range part of the
TPE interactions is determined by the nonanalytic terms in
momentum space. They have the following forms within
the dimensional regularization:

Vð2Þ
2π;c ¼

g4φ
512πδbf4π

�
6q2sgnð4m2

π − 4δ2b þ q2ÞA0ðqÞ − 3ð8m4
π þ 10m2

πq2 þ 3q4ÞAðqÞ − 8δb
π

ð5δ2b þ 3q2sgnÞLðqÞ
�
; ð24Þ

Wð2Þ
2π;c ¼

g4φ
256πδbf4π

�
1

g2φ
ð4m2

π − 4δ2b þ 3q2Þ½2δ2b þ g2φð−2δ2b þ 2m2
π þ q2Þ�A0ðqÞ − 2sgnð4m2

π þ q2Þq2AðqÞ

þ 2δb
3πg4φ

½16δ2bg2φð5g2φ − 3Þ þ 4ð−5g4φ þ 4g2φ þ 1Þm2
π þ ð−23g4φ þ 10g2φ þ 1Þq2�LðqÞ

�
; ð25Þ

Vð2Þ
2π;t ¼

g4φ
512πδbf4π

�
3

q2
ð−8m4

π − 2m2
πq2 þ q4ÞAðqÞ − 6sgnð−4δ2b þ 4m2

π þ q2ÞA0ðqÞ þ 24δb
π

sgnLðqÞ
�
; ð26Þ

Wð2Þ
2π;t ¼

g4φ
256πδbf4π

�
2sgnð4m2

π þ q2ÞAðqÞ − 1

g2φq2
ð4δ2b − 4m2

π þ q2Þ½2δ2b þ g2φð−2δ2b þ 2m2
π þ q2Þ�A0ðqÞ

�
; ð27Þ

where the three nonanalytic functions AðqÞ, A0ðqÞ, and LðqÞ, respectively, read

FIG. 2. The central part (left) and tensor part (right) of the
subtracted OPE potential [see Eq. (21)] in the isoscalar channel
with the cutoff Λ ¼ 0.5 GeV.
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AðqÞ ¼ 1

2q
arctan

q
2mπ

; ð28Þ

A0ðqÞ ¼ 1

2q
arctan

q
2m0 ; ð29Þ

LðqÞ ¼ ϖ

q
ln
qþϖ

2mπ
; ð30Þ

with q ¼ jqj, m0 ¼ ½m2
π − δ2b − iϵ�1=2, and ϖ ¼ ½q2 þ

4m2
π − iϵ�1=2. The terms containing the nonanalytic

functions F ðq; n; iÞ ¼ R 1=2
−1=2 ðynζi arctan δb

ζ Þdy [with ζ ¼
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − y2

p
, a ¼ ϖ0

2q, and ϖ0 ¼ ½q2 þ 4ðm2
π − δ2bÞ − iϵ�1=2]

and their derivatives with respect to δb are ignored for
simplicity, since we noticed that their contributions are
much smaller than those in Eqs. (24)–(27).
In order to obtain the subleading (ν ¼ 3) TPE potential

(see the diagrams in the third column of Fig. 1), one needs
an insertion of the subleading (Δi ¼ 1) πDð�Þ Lagrangians.
The Lagrangians read [9]

Lð1Þ
φH ¼ c̃1hHH̄iTrðχþÞ þ c̃2hHv · uv · uH̄i þ c̃3hHu · uH̄i

þ ic̃4hH½uμ; uν�σμνH̄i þ c̃5hHχ̂þH̄i; ð31Þ

where χþ ¼ ξ†χξ† þ ξχ†ξ, with χ ¼ 2B0diagðmu;mdÞ, and
χ̂þ ¼ χþ − 1

2
TrðχþÞ. One can see that the structure of Lð1Þ

φH

is very similar to the ones of πN Lagrangians [88].
In literature, only the LECs in partial terms in Eq. (31)

were determined for certain problems (see Ref. [9]). Here,
we again use the RSM to estimate the c̃i. One can consult
Sec. II of the Appendix for details. The numerical values of
the LECs c̃iði ¼ 1;…; 5Þ in Eq. (31) are summarized in
Table II. From Table II, one can see that the couplings of the
subleading πDð�Þ vertices are of natural size and are much
smaller than those of the πN system [23,24]. In contrast to
the NN system, this makes the main contribution for the
binding forces of DD� come from the short-range contact
interactions.
The nonanalytic terms of the subleading TPE poten-

tials read

Vð3Þ
2π;c ¼

g2φ
512πf4π

�
ð4m2

π þ 3q2Þ½48c̃1m2
π − 3c̃3ð2m2

π þ q2Þ − 8c̃5δ2i �AðqÞ þ f3ð−12δ2b þ 12m2
π þ 5q2Þ

× ½16c̃1m2
π − 2c̃2δ2b − c̃3ð2m2

π þ q2Þ� − 8c̃5δ2i ð4m2
π − 4δ2b þ q2ÞgA0ðqÞ

−
8δb
π

½48c̃1m2
π þ c̃2ðm2

π − 6δ2b þ q2Þ þ 4c̃3δ2b − 3c̃3q2 þ 4c̃5δ2i �LðqÞ
�
; ð32Þ

Wð3Þ
2π;c ¼

g2φ
32πf4π

�
c̃4sgnð4m2

π þ q2Þq2AðqÞ − 2c̃5δ2i ð2m2
π − 2δ2b þ q2ÞA0ðqÞ þ 6

π
c̃5δbδ2i LðqÞ

�
; ð33Þ

Vð3Þ
2π;t ¼

g2φ
512πf4πq2

�
ðq2 − 4m2

πÞ½−48c̃1m2
π þ 3c̃3ð2m2

π þ q2Þ þ 8c̃5δ2i �AðqÞ − ð4δ2b − 4m2
π þ q2Þ

× ½−48c̃1m2
π þ 6c̃2δ2b þ 3c̃3ð2m2

π þ q2Þ þ 8c̃5δ2i �A0ðqÞ þ 4δb
π

½c̃2q2 − 2m2
πðc̃2 − 6c̃3Þ�LðqÞ

�
; ð34Þ

Wð3Þ
2π;t ¼

g2φ
32πf4π

½−c̃4sgnð4m2
π þ q2ÞAðqÞ�; ð35Þ

where δ2i ¼ m2
Kþ −m2

K0 denotes the u, d quark mass difference that stems from the χ̂þ term in Eq. (31).
The LO and subleading TPE potentials can be obtained from the spectral function representation associated with the local

momentum-space regularization [29],

VðνÞ
2π;i ¼

2

π
exp

�
−

q2

2Λ2

�Z
∞

0

dμ½μρðνÞ2π;iðμÞ�
�

1

μ2 þ q2
þ C1ðμ;ΛÞ þ C2ðμ;ΛÞq2

�
exp

�
−

μ2

2Λ2

�
; ð36Þ

WðνÞ
2π;i ¼

2

π
exp

�
−

q2

2Λ2

�Z
∞

0

dμ½μηðνÞ2π;iðμÞ�
�

1

μ2 þ q2
þ C1ðμ;ΛÞ þ C2ðμ;ΛÞq2

�
exp

�
−

μ2

2Λ2

�
; ð37Þ

TABLE II. The numerical values of the LECs in Eq. (31)
determined from the RSM (in units of GeV−1). The errors come
from the parameters in the Lagrangians that are quoted in the
Appendix.

c̃1 c̃2 c̃3 c̃4 c̃5

−0.21� 0.07 −0.83� 0.16 −0.55� 0.18 0.61� 0.10 0.26
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where i ¼ c, t denotes the central and tensor parts, respectively, while ν is the chiral order defined in Eq. (1). The spectral

functions ρðνÞ2π;iðμÞ and ηðνÞ2π;iðμÞ, respectively, read

ρðνÞ2π;iðμÞ ¼ ℑ½VðνÞ
2π;ið0þ − iμÞ�; ηðνÞ2π;iðμÞ ¼ ℑ½WðνÞ

2π;ið0þ − iμÞ�: ð38Þ

In order to get ρðνÞ2π;iðμÞ and ηðνÞ2π;iðμÞ, one also needs the following quantities [21]:

ℑAð0þ − iμÞ ¼ π

4μ
Θðμ − 2mπÞ; ð39Þ

ℑA0ð0þ − iμÞ ¼
( π

4μΘðμ − 2m0Þ mπ > δb
1
2μ arctan

μ

2
ffiffiffiffiffiffiffiffiffiffi
δ2b−m

2
π

p mπ < δb
; ð40Þ

ℑLð0þ − iμÞ ¼ −π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4m2

π

p
2μ

Θðμ − 2mπÞ; ð41Þ

with Θ the Heaviside step function.
The subtraction terms C1 and C2 are introduced to minimize the mixture of the long- and short-range forces in TPE

interactions. They are determined by the following requirements [29]:

VðνÞ
2π;iðrÞjr→0 ¼

d2

dr2
VðνÞ
2π;iðrÞjr→0 ¼ WðνÞ

2π;iðrÞjr→0 ¼
d2

dr2
WðνÞ

2π;iðrÞjr→0 ¼ 0; ð42Þ

where VðνÞ
2π;iðrÞ andWðνÞ

2π;iðrÞ represent the corresponding potentials in r space. They are obtained with the following Fourier
transform:

VðνÞ
2π;iðrÞ ¼

1

2π2

Z
dqq2j0ðqrÞVðνÞ

2π;iðqÞ; ð43Þ

where the similar form holds for the WðνÞ
2π;i, and j0ðqrÞ represents the spherical Bessel function of the first kind. The

expressions of C1 and C2 are given as

C1ðμ;ΛÞ ¼
ffiffiffiffiffiffi
2π

p
μ expð μ2

2Λ2Þð5Λ2 þ μ2Þerfcð μffiffi
2

p
Λ
Þ − 2Λð4Λ2 þ μ2Þ

4Λ5
; ð44Þ

C2ðμ;ΛÞ ¼
2Λð2Λ2 þ μ2Þ − ffiffiffiffiffiffi

2π
p

μ expð μ2

2Λ2Þð3Λ2 þ μ2Þerfcð μffiffi
2

p
Λ
Þ

12Λ7
: ð45Þ

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will first work out the TPE potentials
in the coordinate space. We will compare their asymptotic
behaviors at long distance r with that from lattice QCD,
specifically, the HAL QCD method (see Sec. III A). We
will also analyze the contributions from the contact, OPE,
and TPE interactions at each order (see Sec. III B). In
Sec. III C, we will study the pole trajectories of the DD�
bound state in two cases.

A. TPE potentials in the coordinate space

In the following, we first analyze the analytic structures
of the TPE potentials in r space. We will take the elements

Wð2Þ
2π;c andW

ð3Þ
2π;c as examples. Here, we resort to the inverse

Fourier transform, in which the r-space potential is

represented with a continuous superposition of Yukawa
functions [86]. It can be formulated as

ṼðrÞ ¼ 2

π

Z
∞

2mπ

μρðμÞdμ
Z

d3q
ð2πÞ3

eiq·r

μ2 þ q2
; ð46Þ

where ρðμÞ ¼ ℑ½Vð0þ − iμÞ� denotes the spectral function
of the corresponding potential, e.g., see Eq. (38).
Since we are more interested in the long-range behav-

ior of the potentials, we neglect the regulators and short-
range subtractions in Eq. (37) at first, which have no
effect on the asymptotic behaviors. We call it the
unregularized spectral method. In order to distinguish
the potentials with those in the local regularization, we
use the overhead tilde to denote the r-space potentials
from unregularized spectral method. With the residue
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theorem, one can get the following form for the central
potential:

ṼcðrÞ ¼
1

2π2r

Z
∞

2mπ

μe−μrρðμÞdμ: ð47Þ

Inserting the ηðνÞ2π;c [in Eq. (38)] into Eq. (47) and
integrating over μ with some assistance from the integral
representation of the modified Bessel function,1 one then
obtains

W̃ð2Þ
2π;cðrÞ ¼

1

384π2f4π

�
e−2x

r6
3g4φ
2δb

ð2x4 þ 4x3 þ 6x2 þ 6xþ 3Þ þ e−2x

r2
3g2φ
2δb

ðm2
π − δ2bÞ½δ2b þ g2φðm2

π − δ2bÞ�

þ e−2x

r4
1

2

�
x2 þ xþ 1

2

�
½g4φð15δb − 3m2

π=δbÞ − 9δbg2φ� −
1

r

�
3K2ð2xÞ

4x2
þ K1ð2xÞ

2x

�
4m4

π

π
ð23g4φ − 10g2φ − 1Þ

−
1

r2
K1ð2xÞ

2mπ

π
½4δ2bg2φð5g2φ − 3Þ þ ð−5g4φ þ 4g2φ þ 1Þm2

π�
�
; ð48Þ

W̃ð3Þ
2π;cðrÞ ¼

1

32π2f4π

�
e−2x

r6
c̃4g2φð2x4 þ 4x3 þ 6x2 þ 6xþ 3Þ − e−2x

r2
c̃5δ2i g

2
φðm2

π − δ2bÞ=2

−
e−2x

r4
g2φ

�
x2 þ xþ 1

2

�
ð2c̃4m2

π − c̃5δ2i Þ −
K1ð2xÞ

r2
3c̃5δbδ2i g

2
φmπ=π

�
; ð49Þ

where x ¼ mπr, and KnðyÞ is the modified Bessel function
of the second kind. Note that, in order to detour the
complicated integrals involving the arctangent function
in Eq. (40) when δb > mπ, we have used the expres-
sion for δb < mπ in deriving Eqs. (48) and (49), which
become true at unphysical pion mass used by HAL QCD
simulation [49,89]. The nonphysical hadron masses used in
the lattice QCD simulations read

mπ ¼ 146.4; mD ¼ 1878.2;

mD� ¼ 2018.1 MeV: ð50Þ

We focus on the range of 1 < r < 2 fm, which were
stressed in Ref. [49]. In this range, for the typical
dimensionless variable 2x ¼ 2mπr in Eqs. (48) and (49),
there is 2mπr ∈ ð1.5; 3Þ. Equations (48) and (49) can be
generally written as

W̃ðνÞ
2π;cðrÞ ¼

e−2x

ð2xÞ2
�X4
i¼0

aðνÞi
1

ð2xÞi þ
X∞
j¼1=2

bðνÞj
1

ð2xÞj
�
; ð51Þ

where aðνÞi , bðνÞj are the corresponding constants that can be
deduced from Eqs. (48) and (49). We have used the
following expansions for K1;2ðyÞ for y > 1:

K1ðyÞ ¼
ffiffiffi
π

2

r
e−y

�
1

y1=2
þ 3

8

1

y3=2
þ…

�
; ð52Þ

K2ðyÞ ¼
ffiffiffi
π

2

r
e−y

�
1

y1=2
þ 15

8

1

y3=2
þ…

�
: ð53Þ

If, ideally, r is so large that 2x ≫ 1, then one obtains the
following asymptotic behavior:

W̃ðνÞ
2π;cðrÞ ∝

e−2mπr

r2
: ð54Þ

It is the same with that of the lattice QCD result in the range
1 < r < 2 fm. It should be noticed that the asymptotic
behavior at large distance is slightly different than that of
NN, which was found to be e−2mπr=r

3
2 long ago [17]. This

difference arises from the box diagrams. For the NN
system, the box diagrams with NN as intermediate states
are subtracted. For the DD� scattering, although the
contribution of DD� in the box diagram is subtracted,
the box diagram with DD, DD�, and DDπ as intermediate
states is kept, which has no counterpart in the NN case.
However, the range 1.5 < 2x < 3.0 is not large enough

to neglect the subleading effect in Eq. (51). In Fig. 3,
we present the TPE potential from the unregularized
spectral method. As a comparison, we also present a
ae−2mπr=r2 function with a making the function cross with
the potential from the unregularized spectral method at
r ¼ 1 fm. We also try to vary a, but fail to use the
ae−2mπr=r2 function to depict the TPE potential from the
unregularized spectral method. The terms with higher
power of r in the denominator, i.e., e−2mπr=rn with
n > 2, could be also important. Therefore, the χEFT
calculations support the significance of ae−2mπr=r2 behav-
ior of the long-range TPE interaction, but this behavior is
not dominated in the range 1 < r < 2 fm.

1KnðyÞ ¼
ffiffi
π

p ðy=2Þn
Γðnþ1=2Þ

R∞
0 ðsinh tÞ2n expð−y cosh tÞdt, y > 0.
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In Fig. 3, we also present TPE potentials from local
momentum-space regularization. One can see that the line

shape of Wð2Þ
2π;cðrÞ (r > 0) in local momentum-space regu-

larization will gradually approach that in dimensional
regularization with the increasing of the cutoff. This is
because the potentials in these two regularization schemes
differ from each other by an infinite series of higher-order
contact interactions, e.g., seemore discussions inRef. [19]. It
should be noticed that, in local momentum-space regulari-
zation, the TPE behaviors in the range 1 < r < 2 fm will be
distorted by the regulators and depend on the cutoff Λ.

B. Analyses of the contact, OPE,
and TPE contributions

We quantitatively analyze the behaviors of the contact,
OPE, and TPE interactions. We take the behavior of the

quantity WðνÞ
i;c in coordinate space as an example. The

element WðνÞ
i;c in Eq. (4) is multiplied by the isospin factor

τ1 · τ2, and hτ1 · τ2i ¼ −3 for I ¼ 0. It should be stressed
that the analysis will depend on the scheme to separate the
contact interaction and pion-exchange interactions. The

requirement WðνÞ
i;c ðrÞjr→0 ¼ 0 in local momentum-space

regularization minimizes the mixing of the (intermediate)
long- and short-range forces. Thus, the so-called OPE and
TPE interactions in local momentum-space regularization
are, in fact, parts of their effects that cannot be compensated
by the contact terms.

In Fig. 4, we show the behaviors of the WðνÞ
i;c ðrÞ with the

cutoff ranging in [400, 700] MeV:
(1) In Figs. 4(a) and 4(b), we show the LO contact

and OPE parts, respectively. One can see that, as

expected, the short-range (r≲ 1 fm) and long-range
(r≳ 2 fm) behaviors of the DD� potential are
dominated by the contact and OPE interactions,

respectively, but the Wð0Þ
1π;cðrÞ is much weaker than

theWð0Þ
ct;cðrÞ. One important reason is that, at least for

the S wave, the long-range part central interaction in
Eq. (21) is suppressed by the minor value of the
effective mass uπ . This suppression directly leads to
a new expansion of the DD̄�=DD� interactions [90]
with perturbative OPE interaction.

(2) In Figs. 4(c) and 4(d), we display the Wð2Þ
ct;cðrÞ and

Wð2Þ
2π;cðrÞ contributions at NLO. One can notice

that the contact and TPE interactions dominate
the short-range (r≲ 1 fm) and intermediate-range
(1≲ r≲ 2 fm) forces, respectively. Similarly, the

strength of Wð2Þ
2π;cðrÞ is weaker than that of the

Wð2Þ
ct;cðrÞ.

(3) In Fig. 4(e), we illustrate the subleading Wð3Þ
2π;cðrÞ

contribution. One sees that its size and behavior are

very similar to the Wð2Þ
2π;cðrÞ. This is because the
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FIG. 3. The potentials Wð2Þ
2π;cðrÞ and W̃ð2Þ

2π;cðrÞ in the coordi-
nate space. The blue and red solid lines denote the results

of W̃ð2Þ
2π;cðrÞ and the asymptotic function ae−2mπr=r2 (a ≃

5.4 MeV · fm2), respectively. The band represents the result from
the local momentum-space regularization with the cutoff
Λ ∈ ½400; 900� MeV. The dashed lines in the up direction denote
the results with Λ ¼ 400, 550, 700, 800, 900 MeV, in order.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

20

40

60

80

0 2 4 6 8 10

0.00

0.02

0.04

0.06

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

20

25

30

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4
0

5

10

15

20

25

FIG. 4. The behaviors of the WðνÞ
i;c ði ¼ ct; 1π; 2πÞ in

coordinate space. The first, second, and third rows denote the
LO, NLO, and N2LO contributions, respectively. The shaded
areas represent the regions where the cutoff is taken in the range
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LECs in Eq. (31), determined from the RSM, are
of natural size (see Table II) and we only focus on
the medium-long character of the TPE interactions
within the local momentum-space regularization.
The values of c̃i are about 1 order of magnitude
smaller than those of the πN system, which makes
the subleading TPE contributions in theDD� system
much moderate.

(4) In Fig. 4(f), we also illustrate the Wð3Þ
2π;cðrÞ with the

artificially magnified (by a factor of 10) LECs c̃i.

One sees that, in this case, the contrived Wð3Þ
2π;cðrÞ is

also amplified about 10 times, and its magnitude is

comparable to the Wð2Þ
ct;cðrÞ. This corresponds to the

unnatural case in the NN system.
An overview of the contents in Fig. 4 can be summarized

as follows:
(i) Long-range force (r≳ 2 fm) is dominated by

the OPE.
(ii) Intermediate-range force (1≲ r≲ 2 fm) is domi-

nated by the TPE.
(iii) Short-range force (r≲ 1 fm) is dominated by the

contact interaction.
(iv) The short-range force is much stronger than the

long- and intermediate-range ones.
(v) The OPE interaction is the weakest one; this may

answer the question raised in Ref. [49] of why the
theoretically possible one-pion exchange contribu-
tion cannot been seen in the lattice data.

(vi) The requirement WðνÞ
i;c ðrÞjr→0 ¼ 0 in local momen-

tum-space regularization minimizes the mixing of
the (intermediate) long- and short-range forces.

In Fig. 5, we show the effective potentials of the isoscalar
channel at each chiral order. The cutoff is taken in the
range [400, 700] MeV. One sees that the potential becomes
weaker with the increasing of chiral order. This implies
that the chiral expansion works well in our study. The
potentials at LO, NLO, and N2LO are all attractive, and
the attraction mainly comes from the short-range forces

(contact interactions). The attractive force in the isoscalar
channel may lead to a bound state. Thus, the next
subsection is devoted to studying the pole trajectory of
the DD� bound state.

C. Pole trajectory of the DD� bound state

We use the isospin average mass for the DD� system in
our calculations. The threshold of DD� and the experi-
mentally measured mass and width of Tþ

cc [39] are given as

mth ¼ 3875.8 MeV;

mexp ≃ ðmD�þ þmD0Þ − 0.36 ¼ 3874.7 MeV;

Γexp ¼ 48� 2þ0
−14 keV: ð55Þ

With the effective potentials in local momentum-space
regularization, we solve the LSEs to analyze the pole
distributions in the physical Riemann sheet. The LSE in the
partial wave basis jlsji reads

Tl0lsjðp0; pÞ ¼ Vl0lsjðp0; pÞ þ
X
l00

Z
k2dk
ð2πÞ3 Vl0l00sjðp0; kÞ

×
2μDD�

p2 − k2 þ iϵ
Tl00lsjðk; pÞ; ð56Þ

where μDD� denotes the reduced mass of DD�, and
p2 ¼ 2μDD� ðE −mthÞ, with E as the total energy of the
DD� system. Vl0lsjðp0; pÞ ¼ hl0sjjVðqÞjlsji can be
easily obtained with the approach in Ref. [91]. The S-D
wave coupling is considered in our calculations. Thus, the
Vl0lsjðp0; pÞ is given with the 2 × 2 matrix in the coupled-
channel jlsji basis.
The finite width of the D� meson will be considered in

mth via using a complex mass, i.e., mD� − iΓeff
D�=2. The

width of D� is about several tens of keV, such as ΓD�þ ≃
83.4 [92] and ΓD�0 ≃ 55.6 keV [9]. The width of Tþ

cc is
narrow ∼50 keV, thus its width should strongly depend on
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FIG. 5. The panels from left to right show the LO (Vð0Þ
ct þ Vð0Þ

1π ), NLO (Vð2Þ
ct þ Vð2Þ

2π ), and N2LO (Vð3Þ
2π ) potentials for the isoscalar

channel, in order. The bands represent the regions where the cutoff is taken in the range [400, 700] MeV, while the solid lines stand for
the results with Λ ¼ 550 MeV. The potentials become deeper with the increasing of cutoff.
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the ΓD� if it is indeed the molecule ofDD�. In principle, the
ΓD� is a distribution with respect to the energy E, e.g., see
Ref. [76]. Here, we use an effective width of D�: the Γeff

D� in
our calculations. We then tune the Γeff

D� to reproduce the
width of Tþ

cc. The value of Γeff
D� should be close to the ΓD�þ;0

as naively expected.
We first study the pole trajectory of theDD� scattering T

matrix in the isoscalar channel with the contact interactions
being kept up to NLO [including Eqs. (6) and (7) in
effective potentials], and the cutoff is in the range
520–600 MeV. We notice that the binding solution begins
to appear when Λ ≈ 600 MeV in this case. The pole
trajectory is very similar to the case in which the contact
interaction is kept up to N2LO [including Eqs. (6)–(8) in
effective potentials], and the result in this case is shown in
Fig. 6. In this case, the pole appears when Λ ≈ 520 MeV,
and the pole mass approaches the experimental value when
Λ ≃ 560 MeV. From Fig. 6, one also sees that the binding
becomes deeper with the increasing of cutoff, while the
half-width is not very sensitive to the cutoff.
The DD� lies above the threshold of the three-body

DDπ; thus there are two types of three-body cuts (see
discussions in Ref. [9]): one comes from the OPE and
another one comes from the self-energy correction of D�
(this will contribute a finite width to the D� meson). The
first one is accounted for in Eq. (14) using the static OPE
potential. Our calculation contains two cases:
(1) We do not consider the width ofD� in the propagator

of Eq. (56), i.e., setting Γeff
D� ¼ 0 keV. The result in

this case is shown as the blue dots in Fig. 6. One
can see that the half-width of the DD� bound state
is about 2 times larger than Γexp=2 [see Eq. (55)].
This is somewhat inconsistent with the experimental

data [39], as well as the theoretical calculations
[50,52,53].

(2) We take the effective contribution of D� width into
account. We noticed that we can reproduce the Tþ

cc

width when taking Γeff
D� ∼ 30 keV, and the result is

shown as the red dots in Fig. 6. The value of Γeff
D� is

close to the ΓD�þ;0 as priorly expected.
The calculations indicate that one has to consider the
complete three-body effect for the DD� scattering. One
can consult Ref. [76] for a more formal formulation of the
three-body dynamics in Tþ

cc.
In addition, we also investigated the situation in the

isovector channel, but we did not find binding solutions
in this channel. This is consistent with the experimental
facts—there are no structures in the DþD0πþ invariant
mass spectrum.

IV. SUMMARY

We revisit the DD� interactions within the χEFT up to
the third order. The pion-exchanged interactions are care-
fully treated with the local momentum-space regulariza-
tion, in which their short-range components are subtracted
via demanding the pion-exchanged contributions vanish at
the origin in the coordinate space. This is consistent with
the new developments of nuclear forces in Ref. [29].
The contact interactions and the subleading πDð�Þ

vertices are ascribed to the heavier meson exchanging,
and consequently, the LECs are estimated with the reso-
nance saturation model. We notice that the subleading
πDð�Þ couplings are much smaller that those in the πN
system, which makes the binding force of DD� mainly
come from the short-range part. This is very different than
that of the NN system.
We study the analytic expression of the TPE interactions

in coordinate space, and we find that its asymptotic
behavior at long distance is similar to but slightly different
than that of the NN forces. Along this line, we get the
asymptotic behavior ae−2mπr=r2 of the TPE interaction in
the long-range limit. However, for the range 1 < r < 2 fm,
where HAL QCD obtained the above behavior, our
calculations imply that ae−2mπr=rn with n > 2 behavior
is also very important. We also analyze the contributions of
the contact, OPE, and TPE interactions at each order by
defining pion interactions vanishing at origin. We notice
that the contact interaction is much stronger than the OPE
and TPE, which means the medium- and long-range parts
of the pion-exchange interaction are weak.
We investigate the pole trajectory of the DD� scattering

T matrix without and with considering the complete three-
body effects, respectively. The width of the DD� bound
state would be 2 times larger than that of Tþ

cc if not
considering the effective contribution of D� width, while
the width of Tþ

cc can be reproduced once the complete
three-body effects are considered. The binding solution

3872 3873 3874 3875 3876
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FIG. 6. Pole trajectory of the DD� bound state in the physical
Riemann sheet with the change of cutoff Λ ∈ ½520; 600� MeV.
The arrow denotes the direction in which the cutoff becomes
larger. The two dashed vertical lines from left to right represent the
experimentally measured mass of Tþ

cc and the threshold ofDD� in
order. The band denotes the measured width of Tþ

cc [39].
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only exists in the isoscalar channel, and this is consistent
with the experimental data. Our calculation favors the
molecular explanation of Tþ

cc.
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APPENDIX: ESTIMATIONS OF THE LECs

1. The LECs in contact interactions

In what follows, we list the coupling Lagrangians of the
resonances with the (D, D�) doublet under the heavy quark
symmetry and estimate the LECs in Eqs. (6)–(8).

a. Scalar exchange: σ, a0, f 0 mesons

The corresponding Lagrangians read

LσH ¼ gσhHH̄iσ; ðA1Þ

LSH ¼ gshHSH̄i; ðA2Þ

where gσ and gs are the corresponding coupling constants.
In the SU(2) case, gs ¼

ffiffiffi
2

p
gσ in the large-Nc limit [79].

The matrix form of S is given as

S ¼

2
64

a0
0ffiffi
2

p þ f0ffiffi
2

p aþ0

a−0 − a0
0ffiffi
2

p þ f0ffiffi
2

p

3
75: ðA3Þ

Within the parity-doubling model [93], the gσ reads

gσ ¼ −
gπ
2

ffiffiffi
6

p ; gπ ¼
Δ
fπ

; ðA4Þ

where fπ ¼ 92.4 MeV is the pion decay constant, and Δ ¼
m0þ −m0− denotes the mass difference of the JP ¼ 0þ and
0− charmed mesons. In most previous studies, such as
the one-boson exchange model, Δ ¼ mD�

s0ð2317Þ −mDs
≈

350 MeV was usually used as the original work [93]. In the
SU(2) case in this study, we chose Δ ¼ mD�

0
ð2300Þ −mD.

The nature of the D�
0ð2300Þ is still controversial (one can

consult the recent review [9] for more details). The analyses
in [94–96] showed that the pole mass of D�

0ð2300Þ is lower
than the value in Review of Particle Physics [92]. Here,
we adopt the value mD�

0
ð2300Þ ¼ 2196� 64 MeV from the

lattice calculation at pion mass mπ ¼ 239 MeV [96]. Then

we have Δ ≃ 330� 64 MeV. Feeding this Δ into Eq. (A4),
one obtains

gσ ¼ −0.73� 0.14: ðA5Þ

For the mass of σ meson, we adopt the value that
was determined in Refs. [97,98] with the model-
independent way (one can also consult similar results in
Refs. [99–101]), which reads

mσ ¼ 441 MeV: ðA6Þ

Meanwhile, for the masses of the a0 and f0 mesons, we
ignore their mass differences and use [92]

ma0 ¼ mf0 ≃ 980 MeV: ðA7Þ

b. Pseudoscalar exchange: η meson

For the η meson, its decay constant is fη ¼ 116 MeV
and the mass mη ¼ 548 MeV. The eta-exchange contribu-
tion to the contact interaction is associated with the last
term in Eq. (11).

c. Vector exchange: ρ, ω mesons

For the vector exchange form, we use the Lagrangians
from the local hidden-gauge formalism [102], which read

LVH ¼ iβhHvμðΓμ − ρμÞH̄i þ iλhHσμνFμνH̄i; ðA8Þ

where ρμ ¼ i gvffiffi
2

p Vμ and Fμν ¼ ∂μρν − ∂νρμ þ ½ρμ; ρν�. The
matrix form of Vμ is given as

Vμ ¼

2
64

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p

3
75
μ

: ðA9Þ

The coupling constants β, λ, gv [102,103] and the masses of
ρ, ω [92] read

β ¼ 0.9; λ ¼ −0.63� 0.1 GeV−1; gv ¼ 5.8:

mρ ¼ 770 MeV; mω ¼ 782 MeV: ðA10Þ

d. Axial-vector exchange: a1, f 1 mesons

For involving the possible contribution of the heavier
axial-vector mesons, we construct the following effective
Lagrangians:

LAH ¼ gahHγμγ
5AμH̄i; ðA11Þ

in which we use the ideal mixing for the axial-vector
quartet in the SU(2) case,
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Aμ ¼

2
64

a0
1ffiffi
2

p þ f1ffiffi
2

p aþ1

a−1 − a0
1ffiffi
2

p þ f1ffiffi
2

p

3
75
μ

: ðA12Þ

It is hard to determine the value of ga in a reliable way
presently. In Ref. [104], Yan et al. roughly estimated the ga
via introducing the field of a1 in the axial-vector current uμ,
and they obtained that ga is about 1 order of magnitude
larger than the g in Eq. (11). Here, we assume the coupling
satisfies the naturalness, which amounts to setting the order
of ga to be unity. We naively use ga ¼ 1 in this study. For
the masses of a1 and f1, we use [92]

ma1 ¼ 1230; mf1 ¼ 1282 MeV: ðA13Þ

In order to obtain the LECs Ci in Eqs. (6)–(8), one needs
to sum up the contributions from the scalar-, pseudoscalar-,
vector-, and axial-vector-exchange interactions and use the
expansion

g2iOj

q2 þm2
i
¼ g2iOj

m2
i

�
1 −

q2

m2
i
þ q4

m4
i
þ…

�
; ðA14Þ

where i ¼ σ; s;φ; v; a, and j ¼ 1, 2. The mi denotes either
the mass of the exchanged particle or the effective massffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i − δ2b

q
. Matching with the terms in Eqs. (6)–(8), one

gets

C1 ¼ −
g2a
2u2f1

−
g2s

2m2
f0

−
g2σ
m2

σ
þ β2g2v
4m2

ω
; ðA15Þ

C2 ¼ sgn
g2a
2u2a1

−
g2s

2m2
a0

þ β2g2v
4m2

ρ
; ðA16Þ

C3 ¼
g2a
2u4f1

þ g2s
2m4

f0

þ g2σ
m4

σ
−
β2g2v
4m4

ω
−
g2vλ2

u2ω
; ðA17Þ

C4 ¼ −sgn
g2a
2u4a1

þ g2s
2m4

a0

−
β2g2v
4m4

ρ
þ sgn

g2vλ2

u2ρ
; ðA18Þ

C5 ¼ −
g2φ

12f2ηu2η
−

g2a
2m2

f1
u2f1

þ g2vλ2

u2ω
; ðA19Þ

C6 ¼ sgn
g2a

2m2
a1u

2
a1

− sgn
g2vλ2

u2ρ
; ðA20Þ

C7 ¼ −
g2a
2u6f1

−
g2s

2m6
f0

−
g2σ
m6

σ
þ β2g2v
4m6

ω
þ g2vλ2

u4ω
; ðA21Þ

C8 ¼ sgn
g2a
2u6a1

−
g2s

2m6
a0

þ β2g2v
4m6

ρ
− sgn

g2vλ2

u4ρ
; ðA22Þ

C9 ¼
g2φ

12f2ηu4η
þ g2a
2m2

f1
u4f1

−
g2vλ2

u4ω
; ðA23Þ

C10 ¼ sgn
g2vλ2

u4ρ
− sgn

g2a
2m2

a1u
4
a1

; ðA24Þ

where sgn ¼ ð−1ÞI (with I as the total isospin of DD�),

and ux ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x − δ2b

q
.

2. The LECs in subleading πDð�Þ Lagrangians

In the following, we estimate the LECs in the Lagrangian
(31) with the RSM.

a. c̃1 and c̃3: With the σ exchange

One easily sees that the c̃1 and c̃3 related terms are
connected to the σ exchange if we write out the
Lagrangians of σππ coupling,

Lπσ ¼ 4c̄dTrðu · uÞσ þ c̄mTrðχþÞσ: ðA25Þ
Combining the vertices in Eqs. (A1) and (A25) and
integrating out the σ field, one obtains that

c̃1 ¼
c̄mgσ
m2

σ
; c̃3 ¼

8c̄dgσ
m2

σ
¼ 8

c̄d
c̄m

c̃1; c̄mc̄d > 0; ðA26Þ

in which c̄d;m ¼ 1ffiffi
2

p cd;m [20], and jcdj ¼ 26� 7 and jcmj ¼
80� 21 MeV [105].

b. c̃2: With the D�
0ð2300Þ=D1ð2430Þ0 exchange

LπHS ¼ hhHγμγ5uμS̄i þ H:c:; ðA27Þ

where S ¼ 1þv
2
½R�μγμγ5 − R� and S̄ ¼ γ0S†γ0. The R�μ and

R denote the P wave 1þ ½D1ð2430Þ0� and 0þ ½D�
0ð2300Þ�

charmed meson fields, respectively. The coupling con-
stant h can be extracted from the partial decay widthes of
D�

0ð2300Þ → Dπ or D1ð2430Þ → D�π. We use jhj ¼ 0.52
[102] in our calculations. Considering both the t- and
u-channel contributions, one gets

c̃2 ¼ −
h2

Δ
; ðA28Þ

where Δ ¼ mD�
0
ð2300Þ −mD ≃ 330 MeV denotes the mass

difference of D�
0ð2300Þ and D mesons.

c. c̃4: With the ρ exchange

In addition to the ρH coupling in the second term
of Eq. (A8), we also need the ρππ Lagrangian, which
reads [102]

Lπρ ¼ −af2πTr½ðΓμ − ρμÞ2�; a ¼ 2: ðA29Þ
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Combining the vertices in Eqs. (A8) and (A29) and
integrating out the ρ field, one gets

c̃4 ¼ −
2λg2Vf

2
π

m2
ρ

: ðA30Þ

d. c̃5: With the mass splittings of the neutral
and charged Dð�Þ mesons

The c̃5 term is related to the isospin breaking considering
the χ̂þ ¼ 2B0diagðmu −md;md −muÞ, with mu;d as the
masses of u, d quarks. We first write out the relativistic
Lagrangians of D and D�, which read

Lrel
H ¼ DμPDμP† −m2

0PP
† −DμP�νDμP�†

ν þm2
0�P

�νP�†
ν ;

ðA31Þ
where m0 and m0� are the bare masses of D and
D�, respectively. Here, we ignore the electromagnetic

interactions and assume the mass splittings of the neutral
and charged Dð�Þ mesons come from the mass difference of
u, d quarks. Then we have

−m2
D0 ¼ −m2

0 − 4B0c̃5ðmu −mdÞmD;

−m2
Dþ ¼ −m2

0 − 4B0c̃5ðmd −muÞmD;

−m2
D�0 ¼ −m2

0� − 4B0c̃5ðmu −mdÞmD� ;

−m2
D�þ ¼ −m2

0� − 4B0c̃5ðmd −muÞmD� : ðA32Þ

With these equations, we finally get

c̃5 ¼
m2

D0 −m2
Dþ þm2

D�0 −m2
D�þ

16m̂Dðm2
Kþ −m2

K0Þ ; ðA33Þ

where m̂D ¼ mDþmD�
2

, and we have used m2
Kþ ¼

B0ðmu þmsÞ and m2
K0 ¼ B0ðmd þmsÞ.
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