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Recent developments of a deep learning feed-forward network for estimating elliptic flow (v2)
coefficients in heavy-ion collisions have shown the prediction power of this technique. The success of
the model is mainly the estimation of v2 from final-state particle kinematic information and learning the
centrality and transverse momentum (pT) dependence of v2. The deep learning model is trained with Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV minimum bias events simulated with a multiphase transport model. We

extend this work to estimate v2 for light-flavor identified particles such as π�, K�, and pþ p̄ in heavy-ion
collisions at RHIC and LHC energies. The number-of-constituent-quark scaling is also shown. The
evolution of the pT-crossing point of v2ðpTÞ, depicting a change in baryon-meson elliptic flow at
intermediate pT, is studied for various collision systems and energies. The model is further evaluated by
training it for different pT regions. These results are compared with the available experimental data
wherever possible.
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I. INTRODUCTION

Relativistic heavy-ion collisions have been studied
extensively for decades in experiments at the Large
Hadron Collider (LHC) and Relativistic Heavy Ion collider
(RHIC). The formation of a deconfined thermalized
medium of quarks and gluons has already been established
in such collisions [1]. This hot and dense medium of
strongly interacting matter is known as the quark-gluon
plasma (QGP). Direct probes for studying the properties of
QGP are not available owing to the behavior of the strongly
interacting matter. However, the signatures of the formation
of QGP could be studied using various indirect effects such
as jet quenching, strangeness enhancement, and quarkonia

suppression, just to name a few. Another crucial observ-
able, which is widely studied to investigate the properties of
QGP in heavy-ion collisions, is the transverse collective
flow [2]. This transverse collective flow is anisotropic and
depends on the equation of state and transport coefficients
of the system. Due to the almond-shaped, elliptical nuclear
overlap region in noncentral heavy-ion collisions, the initial
state has finite spatial anisotropy, further developing the
final-state momentum anisotropy of the emitted particles.
This momentum anisotropy could be expressed as the
coefficients of the Fourier expansion of the azimuthal
momentum distribution of the produced particles. Finite
azimuthal anisotropy has been well observed in heavy-ion
collision experiments so far [3–6]. The second-order flow
coefficient, also known as the elliptic flow (v2), which is
believed to be driven mainly by the geometry of the
distributed nucleons in the nuclear overlap region during
a noncentral heavy-ion collision, provides the dominant
contribution to the overall azimuthal anisotropy.
Different hydrodynamic model calculations suggest that

elliptic flow builds up in the early partonic phases of the
QGP and evolves through hadronic rescatterings in the
hadronic phase. Theoretically, azimuthal anisotropy is thus
understood to have consequences from (ideal) fluid dynam-
ics applied to the QGP phase and kinetic descriptions
applied to the microscopic hadron cascade phase [7–11].
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Therefore, to understand the interplay of partonic and
hadronic phases in the evolution of collective flow, it
becomes necessary to study the elliptic flow for different
identified particles. The competing effects of radial (sym-
metric) flow and hadronic rescatterings could also be
studied by estimating the elliptic flow of identified particles.
Another exciting thing that has been observed in heavy-ion

collisions is that the v2 of baryons is larger than that of
mesons in the intermediate-pT range (2.0≲pT≲5.0GeV=c).
This is usually attributed to particle production by constituent
quark coalescence [12]. According to this theory, the devel-
opment of hydrodynamic flow happens in the early decon-
fined partonic phase and is subsequently transferred to the
hadrons by hadronization through the quark coalescence
mechanism [13–15]. In an ideal case, this behavior should
lead to the number-of-constituent-quark (NCQ) scaling of the
observed flow for baryons and mesons and, thus, strongly
hints at the appearance of collectivity at the early deconfined
partonic level. In Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, the
scaling holds only approximately [16]. However, in Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 and 5.02 TeV, the scaling holds
only up to a level of �20% [4,17,18].
There are several methods to estimate the flow coef-

ficients, such as the complex reaction plane identification
method [19], the cumulant method [20], the Lee-Yang
zeros method [21], and the principal component analysis
method [22–25]. For the first time, it has been shown
that deep learning models, based on a machine learning
(ML) framework, could also be used to estimate the flow
coefficients; in particular, the results of elliptic flow
calculations have been emphasized [26].
The motivation of the present study is to prepare a

deep learning framework for the estimation of elliptic flow
from final-state particle kinematic information. This is an
attempt to see whether an ML model can learn from
final-state particle correlations to predict any physical
observable of interest. Since the elliptic flow is influenced
by several factors—such as the collision centrality, energy,
system size, particle mass, particle species, and transverse
momentum—it will be interesting to see how well the deep
learning model is able to preserve these dependencies. The
trained model is found to be faster and more efficient in
computing the flow coefficient than some of the traditional
methods such as the multiparticle cumulant method.
The proposed deep learning model successfully learns

and preserves the centrality and transverse momentum (pT)
dependence of v2. It is also shown to perform steadily
and accurately when confronted with a data set with
additional noise. In this work, we estimate the elliptic flow
coefficient for identified stable light hadrons like π�, K�,
and pþ p̄ in Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 and 5.02 TeV, and Xe-Xe
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.44 TeV for (0–10)%, (40–50)%,
and (60–70)% centrality classes by using the deep learning
estimator mentioned in Ref. [26]. The NCQ scaling is also

studied for these collision systems. The evolution of the
pT-crossing point of v2ðpTÞ, depicting a change in baryon-
meson elliptic flow at intermediate pT, is studied for the
above-mentioned collision systems at different energies.
The prediction capability of the model is further evaluated
by training it with particles in different pT regions.
The paper is organized as follows. We briefly introduce

the event generation using a multiphase transport model
(AMPT) and the target observable—the elliptic flow—in
Sec. II. The proposed deep learning estimator is described
in Sec. III along with some performance plots of the model.
In Sec. IV we describe the results, and we conclude with a
summary in Sec. V.

II. EVENT GENERATION AND TARGET
OBSERVABLE

In order to train the deep learning-based ML algorithm
to estimate the elliptic flow, we use an AMPT model to
simulate the data set, a short description of which is
provided in this section, along with the elliptic flow.

A. AMPT model

AMPT is a Monte Carlo–based event simulator that is
used to generate ultrarelativistic p-A and A-A collisions at
RHIC and LHC energies [27]. AMPT has four components:
(1) the initialization of collisions using the heavy-ion jet
interaction generator model (HIJING) [28], (2) parton trans-
port using Zhang’s parton cascade model [29], (3) the
hadronization of the partons using the spatial coalescence
mechanism in the string-melting version of AMPT and the
Lund string fragmentation model in the default version of
AMPT [30,31], and (4) hadron transport using a relativistic
transport model (ART) [32,33]. The AMPT model is
extensively used to study the properties of hot and dense
media formed in relativistic heavy-ion collisions, including
the elliptic flow coefficient. The string-melting mode of
AMPT describes the elliptic flow well in the intermediate
transverse momentum region using the quark coalescence
mechanism for hadronization [34–36]. Hence, in this
study we incorporate the string-melting mode with AMPT
version 2.26t9b. The AMPT settings used in this work are
the same as those reported in Refs. [37–40]. We use the
impact parameter slicing definition of the centrality, and
the corresponding impact parameter values are taken from
Ref. [41].

B. Elliptic flow

Anisotropic flow is one of the key observables in the
evolution of QGP in noncentral relativistic heavy-ion
collisions. The pressure gradient formed in the hot and
dense medium due to the initial-state spatial anisotropy can
transform into final-state momentum azimuthal anisotropy.
The azimuthal anisotropy depends on the equation of state
as well as the transport coefficients of the medium formed.
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It can be quantified by the coefficients of the Fourier
expansion of the azimuthal momentum distribution of
particles, given by [42]

dN
dϕ

¼ 1

2π

�
1þ 2

X∞
n¼1

vn cos½nðϕ − ψnÞ�
�
: ð1Þ

Here, vn ¼ hcos½nðϕ − ψnÞ�i denotes the nth-order aniso-
tropic flow coefficient, ϕ is the azimuthal angle, and ψn is
the nth harmonic symmetry plane angle. The second-order
anisotropic flow coefficient (v2) is called the elliptic flow
and has a major contribution from the initial eccentricity.
In order to calculate the elliptic flow event by event, we use
the event plane method [43]. Here, we set ψR ¼ 0, which
makes v2 ¼ hcosð2ϕÞi. The average is taken over all
charged particles in an event.

III. DEEP LEARNING ESTIMATOR

ML is a branch of artificial intelligence that learns
correlations from the data to map the input and output
observables. Boosted decision trees, deep neural networks,
convolutional neural networks, etc., can learn suitable
correlations from the data through model training and help
us map complex nonlinear observables whose mapping
functions cannot be trivially written in a sequential algo-
rithm. Heavy-ion collisions at LHC energies produce
thousands of final-state hadrons, each carrying specific
kinematic information and evolving through different
physical processes, which makes the system complex
and nonlinear and probing the underlying dynamics
challenging. ML has been used by the collider physics
community for more than a decade to extract the desired
physics information from such complex systems [44–50].
In this study, we apply a deep neural network (DNN)-based
ML algorithm to determine the elliptic flow coefficient,
which takes pT, mass, and log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðsNN=s0Þ
p

-weighted
ðη − ϕÞ binned values as different features of the input
to the model, as described in detail in Ref. [26]. The
charged particle tracks in jηj < 0.8, with pT ≥ 0.15 GeV=c
and ϕ ∈ ½0; 2π�, are considered for the training. Also,
this is an inverse supervised regression problem, and
thus the output labels of the DNN model—the elliptic
flow coefficients—are estimated using the event plane
method from the AMPT simulation on an event-by-event
basis. The model is trained with minimum bias Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. The input data set is
divided by the number of events in 8∶1∶1 for making
the training, validation, and testing data set, respectively.
The DNN architecture used in this paper for the

regression problem consists of one input layer, four dense
hidden layers, and one output layer, as shown in Fig. 1. The
input layer with 3072 features is mapped to the output layer
via four hidden layers, one after another, each having 128,
256, 256, and 256 nodes, respectively. All four hidden

dense layers use the rectified linear unit as the activation
function [51], and the output layer has a single node with a
linear activation function. The DNN model uses the adam
algorithm as the optimizer [52] with the mean-squared error
as the loss function, the details of which can be found in
Ref. [26]. We have not implemented any L2 regularization
or dropout as these seem to hamper the performance of the
DNN, as shown in Fig. 2. The mean absolute error (MAE)
of elliptic flow (Δv2), defined in Eq. (2), decreases for an
increase in λ and a decrease in P; however, Δv2 is found to
be the smallest for the case with no L2 regularization and

FIG. 1. Schematics of the deep neural network architecture used
in this work containing one input layer, followed by four hidden
dense layers, and one output layer. The number of nodes and the
type of activation function used in each layer is mentioned.
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FIG. 2. Evolution of the MAE (Δv2) as a function of centrality
in Pb-Pb collisions at
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p ¼ 5.02 TeV, with the model trained
with L2 regularization and dropout with their respective hyper-
parameters.
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dropout. λ and P are the hyperparameters in L2 regulari-
zation and dropout, respectively:

Δv2 ¼
1

Nevents

XNevents

n¼1

jvtrue2n
− vpred2n

j: ð2Þ

Figure 3 shows the choice of different bin sizes in
ðη − ϕÞ space for the input with the corresponding MAE
and the estimation for the training time as time/epoch in
seconds. One can infer from the figure that as the bin size
increases, the MAE decreases and the corresponding
training time increases. However, the bin size 32 × 32
gives the optimum MAE and training time, which is used
as the input binning for pT, mass, and log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðsNN=s0Þ
p

weighted in ðη − ϕÞ space. Thus, this results in a total of
3072 (¼ 32 × 32 × 3) features per event as the input
features. It is to be noted that the training time may differ
from Fig. 3, depending on the type of CPU used. The time
per epoch shown in Fig. 3 employs an Intel(R) Core(TM)
i5-8279U CPU (released Q2 of 2019) with four cores (eight
threads) clocked at a base frequency of 2.40 GHz and a max
turbo boost frequency of 4.10 GHz [53]. The system has
8 GB of LPDDR3 RAM clocked at 2133MHz. The data set
with 3072 features per event is normalized with the L2
norm before the DNN is ready to take it as input.

Further quality assurance checks on the DNN model can
be found in Ref. [26], which suggested that the model can
successfully be used not only for different centralities but also
in different energy data and gives reasonable results for a pT-
dependent v2 while having trained with minimum bias events
in Pb–Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, event by event.
In this study, for the implementation of the DNN

model, we use the KERAS v2.7.0 deep learning Application
Programming Interface (API) [54] with TensorFlow v2.7.0 [55]
in PYTHON along with the scikit-learn ML framework [56].

IV. RESULTS AND DISCUSSIONS

In this section, we begin with a comparison of the elliptic
flow coefficients of π�, K�, and pþ p̄ predicted from the
DNN estimator with the true values from AMPT simulation
and ALICE results. We proceed to show the centrality,
energy, and transverse momentum dependence of v2, and
also study whether the scaling properties of v2 are encoded
in the neural network. The evolution of the crossing point in
pT for baryon-meson v2 separation in intermediate pT and
the effect of transverse-momentum-dependent training are
also described in this section.

A. Comparing DNN predictions to AMPT
and experimental data

Figure 4 shows the elliptic flow, v2ðpTÞ, for identified
π�, K�, and pþ p̄ in (40–50)% central Pb-Pb collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. To compare the AMPT and DNN
outcomes with ALICE results [18], tracks with pT >
0.5 GeV=c for midrapidity jyj < 0.5 are considered for
this case. The magnitude of v2ðpTÞ increases with increas-
ing pT for all three particle species until it attains a
maximum value around pT ≈ 2.0 GeV=c, and then it starts
to decrease beyond this point. The values of v2ðpTÞ from
AMPT obtained in this region (i.e., pT ≲ 2.0–3.0 GeV=c)
is comparable in magnitude with ALICE results for the
individual particle cases. However, beyond this transverse
momentum value, AMPT fails to describe the data as
v2ðpTÞ falls faster with increasing pT since fragmentation
becomes the preferred mode of hadronization at high-pT.
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during the training of the DNN as a function of input pixel size.
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It is interesting to note that DNN predictions agree with
AMPT values quite nicely up to pT ≲ 4.0–6.0 GeV=c.
Beyond this pT, the values from DNN start to differ from
the AMPT values. The DNN model is trained with Pb-Pb
collisions in

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV minimum bias events with
the selection of all charged particles having pT>0.15GeV=c
in pseudorapidity, jηj < 0.8 simulated with AMPT. It is seen
that the statistics in each pT bin for all three particle types
decreases to about a few hundred counts for pT≳6.0GeV=c,
which presents a few instances to the DNNmodel during the
training process. For this reason, the mismatch between
DNN andAMPT comes into the picture for pT ≳6.0GeV=c.
For the above-mentioned reasons, this analysis is kept in the
range pT<3.0GeV=c for the rest of the plots where the
Monte Carlo results and data are comparable.

B. Centrality and energy dependence of elliptic flow

Figure 5 represents the centrality dependence of v2ðpTÞ
for π�, K�, and pþ p̄, and all charged hadrons (h�) in
Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 and 5.02 TeV, and Xe-Xe collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.44 TeV for (0–10)%, (40–50)%, and (60–70)%
centrality classes. The true values from AMPT and the
predicted values from the DNN estimator are presented.
As one moves from central to peripheral collisions, the
magnitude of v2ðpTÞ keeps increasing for all particle types
up to mid-central collisions, i.e., (40–50)%, and then it
starts to decrease. This is well understood from the fact that
the initial geometrical anisotropy in the nuclear overlap
region keeps increasing for peripheral collisions. However,
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FIG. 5. Centrality dependence of v2ðpTÞ for π�, K�, and pþ p̄, and all charged hadrons (h�). The values from AMPT and the
predictions from DNN are shown.
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for more peripheral collisions, i.e., (60–70)%, v2ðpTÞ gets
reduced as the smaller size and shorter lifetime of the
system do not allow the generation of large v2. For
pT ≲ 1.5 GeV=c, there is a mass ordering of v2ðpTÞ for
different particles, meaning lighter particles have more v2
than the heavier ones, where

vπ
�

2 > vK
�

2 > vpþp̄
2 : ð3Þ

This is understood as an effect of strong radial flow, which
imposes an azimuthally symmetric velocity boost to all
particles along with the anisotropic flow in the medium.
In the intermediate pT range, the baryon-meson v2 gets
separated as

vðBaryonsÞ2 > vðMesonsÞ
2 : ð4Þ

The baryon-meson v2 separation could arise from the
constituent quark coalescence mechanism embedded in
the AMPT string-melting mode [57]. The DNN estimator,
trained at the LHC energy, in Pb-Pb collisions for theffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV minimum bias data set, can predict
the identified particle v2 for different collision systems
at different collision energies. The mass ordering at low pT
and the grouping of particles based on their constituent
quarks in the intermediate pT range are learned and
preserved by the DNN estimator.
Figure 6 shows the ratio of v2ðpTÞ estimated with the

DNN model over the AMPT values for π�, K�, and pþ p̄,
and all charged hadrons (h�). For the (40–50)% centrality
class, the DNN predictions for all particle types are in
better agreement with the AMPT values as compared to the
(0–10)% and (60–70)% centrality classes. In Ref. [26],
while dealing with the centrality dependence of v2 for all
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FIG. 6. DNN-to-AMPT ratio of v2ðpTÞ for π�, K�, and pþ p̄, and all charged hadrons (h�).
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charged hadrons, one can observe that the predictions for
the most central and peripheral cases have larger statistical
uncertainty than the mid-central cases. Here, Fig. 6 also
suggests similar behavior. We argue that this is entirely
statistics driven as the number of events in the extreme
centrality bins is less in a minimum bias data set; hence,
with the minimum bias training, the DNN model does not
get enough examples to learn from these extreme domains.
A similar argument could also be given for the slight
mismatch of the proton v2 at low pT and the pion v2 at
intermediate pT, where the respective statistics is compa-
rably less. The solution to this problem could come from
various collaborative learning models [58]. The same DNN
model could be trained separately with centrality-wise data
sets, unlike the minimum bias training to obtain a common
set of model parameters. This could possibly take out the
training sample bias due to the different number of events
in different centrality bins, leading to an unequal level of
information passing to the DNN training in different
centrality bins.

C. Constituent quark number scaling

The study of the centrality and pT dependence of v2 for
various identified particles seems incomplete without
exploring its NCQ scaling behavior. By recalling our
understanding of the specific mass ordering of v2ðpTÞ in
the lower pT regime, if the mass ordering is driven by a
hydrodynamic pressure gradient, then v2ðKETÞ at lower pT
should scale to a common set of values for all of the
particles, which is indeed observed in experiments [59].
Here, KETð¼ mT −m0Þ is the transverse kinetic energy,
and mTð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

0

p
Þ and m0 are the transverse mass and

rest mass of the particle, respectively. In the intermediate
pT regime, v2ðKETÞ splits into two branches separately
grouped by baryons and mesons. In this domain, the
constituent quarks of the particles play a more substantial
role in generating v2 in hadrons than its mass. When the
NCQ scaling is applied to v2ðKETÞ, it shows a better
scaling behavior than v2ðpTÞ at lower pT [16,59]. Figure 7
shows the centrality dependence of v2=nq as a function of
KET=nq. Here, the number of constituent quarks nq ¼ 2 for
mesons and nq ¼ 3 for baryons. One can see that, at lower
KET=nq, the scaling is valid for all of the particle types.
However, the proton seems to break the scaling at higher
KET=nq. The violation of KET scaling is observed in
experiments, so the results from AMPT are in line [16,60].
Here, it is interesting to note that the DNN can learn
particle-species-dependent scaling behavior as it closely
agrees with the AMPT values for all energy and centrality
classes.

D. Evolution of the crossing point

The separation of baryon-meson elliptic flow at the
intermediate pT is usually attributed to the quark

coalescence/recombination mechanism of hadronization.
It suggests an apparent dependence of hadron flow on the
number of constituent quarks of the hadron. This leads to a
higher flow of baryons than mesons and a relative enhance-
ment of baryon yield over meson yield in the intermediate-
pT regime. Now, by looking into the crossing point in pT to
know precisely where the separation of baryon-meson flow
occurs, one can confirm the coalescence picture if the
crossing occurs at somewhat higher transverse momenta for
higher centralities. Figure 8 shows the centrality depend-
ence of the pT crossing point of the pion and proton elliptic
flow for various collision systems at various energies. The
vertical error bars represent the difference between the
pion-proton and kaon-proton pT crossing points. One can
observe that the crossing point gradually shifts to higher pT
as one move from peripheral to central collisions for all
collision energies. The shift of the curve to higher pT with
increasing energy could hint towards producing a denser
partonic medium and the effect of increased radial flow
with increasing collision energy. Here, the AMPT model
qualitatively reproduces the trend of the pT crossing curve
as seen in the ALICE results. A similar observation is made
from the DNN predictions, which also closely match the
AMPT curves for the respective collision systems and
energies. The DNN model not only learns the splitting of
the elliptic flow into two branches grouped separately by
baryons and mesons, but also preserves the same pT
crossing point of the separation, thus adding a more
quantitative hold on the estimation of elliptic flow for
identified charged hadrons.

E. Effect of transverse-momentum-dependent
training on DNN

In Fig. 9, we present the predictions for elliptic flow as a
function of transverse momentum from three different
DNN models, each trained with a different set of inputs
based on specific pT cuts. These models are trained on the
minimum bias Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. For
this investigation, the same model architecture with similar
hyperparameter settings is used for training. The only
difference would be the obtained weights and biases of
the network for different pT cuts.
The first row of Fig. 9 refers to the predictions from the

DNN model trained with particle kinematic information
for tracks in jηj < 0.8 with pT > 0.15 GeV=c. We name
it the unbiased case. It shows the evolution of v2ðpTÞ in
(40–50)% central Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV,
where the value of v2 has a maximum around 2.0≲
pTjvmax

2
≲ 3.0 GeV=c depending on the particle species.

As the training is done for an unbiased range of pT which
also includes this pTjvmax

2
, the DNN model seems to capture

the overall trend of the v2ðpTÞ including the transition
behavior around pTjvmax

2
. Thus, the ratio of DNN to AMPT

remains fairly close to unity for the entire pT range (shown
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up to 7 GeV=c) for all of the particle species. So far, all of
the above-discussed results are obtained from the DNN
model with this unbiased training.
Now we study the effect of training the DNN model in

different transverse momentum regions. The aim is to
obtain two different DNN models trained with and without
the transition point of pTjvmax

2
and then test their applicabil-

ity to the estimation of the v2ðpTÞ curve for the full range of
pT. We can obtain two groups of particles in an event based
on the transverse momentum cuts applied to the tracks and
we name them the low pT cut group (pTrain

T ≤ 3.0 GeV=c)
and high pT cut group (pTrain

T > 3.0 GeV=c). The estima-
tion of elliptic flow is also performed using only these
selected particles for the respective groups. The low pT cut
group includes the pTjvmax

2
and thus the transition behavior

of v2ðpTÞ around pTjvmax
2
. However, the high pT cut group

does not include this transition behavior directly from
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particle kinematics. After the training of these two separate
DNN models with low-pT and high-pT particles from
Pb-Pb collisions in

ffiffiffiffiffiffiffiffi
sNN

p ¼5.02TeVminimum bias events,
we apply each model to predict the entire v2ðpTÞ curve
for the full range of pT (shown up to 7 GeV=c) for the
(40–50)% central Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV.
From the second and third rows of Fig. 9, it is quite

interesting to see that both models, although being trained
with two disjoint sets of particle groups, can successfully
reproduce the entire v2ðpTÞ curve up to a reasonable extent
in their respective cases. Somehow the models learn and
complement the missing information of the v2ðpTÞ curve.
For the low pT cut group, the missing factor in training is

the high-pT particles, and for the high pT cut group, it is the
low-pT particles, and also the absence of the pTjvmax

2
. As the

information encoded in the network behaves like a gener-
alized global curve of v2 applicable to the entire pT domain,
the DNN models can extrapolate any regions of interest
regardless of their training. This global curve learned by the
DNNmodels represents the dependence of v2 on transverse
momentum and also its transition behavior around the
pTjvmax

2
. Although the mathematical function for such a

curve is not available in the literature, the DNN can map
this function from the existing input-output correlations
irrespective of its training domain.
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Another observation is the behavior of elliptic flow for
different particle species. When the DNN model trained
with low-pT particles is applied to predict v2 for the pion
and kaon, a slight deviation is observed between DNN and
AMPT starting from intermediate to high pT. This is visible
in the bottom ratio plots in the second row of Fig. 9. It hints
that the elliptic flow for the pion and kaon primarily
originates from low to intermediate pT. However, in the
same figure, the prediction for the proton deviates even at
very low pT, although the model includes this low-pT
region in training. It suggests that the contribution to
elliptic flow for the proton mainly originates from high
pT. Thus, by removing this region in the low pT cut DNN
model, the accuracy is reduced for the entire curve for the
proton v2.
This hypothesis can be verified with the DNN model

trained with high-pT particles. One can see from the third
row of Fig. 9 that the prediction of elliptic flow for proton is
now more accurate for the entire pT range as this DNN
model includes high-pT particles. This observation sup-
ports our earlier statement that the DNN captures a global
curve of v2ðpTÞ and the proton v2 has a dominant
contribution from high pT. However, in the same figure,
pion and kaon elliptic flow deviates more for low pT as the
necessary contribution to elliptic flow is absent in this
region for the high pT cut model, and the same is visible in
the ratio plots.

V. SUMMARY

To sum everything up that has been stated so far, this
work demonstrates the applicability and accuracy of a
DNN-based machine learning model to evaluate the sec-
ond-order anisotropic flow coefficient (v2) for identified
particles from final-state particle kinematic information in
heavy-ion collisions. The DNN model can eminently
estimate v2 for light-flavor identified particles such as
π�, K�, and pþ p̄ in heavy-ion collisions at RHIC and
LHC energies. The prediction accuracy of the DNN model
is not only limited to Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV
at which the model is trained, but is also applicable to other
systems such as Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV,
Xe-Xe collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.44 TeV, and Au-Au colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. From the minimum bias train-
ing, the model could successfully learn and preserve the

centrality, energy, and transverse momentum dependence
of elliptic flow for other collision systems at various
energies. This becomes a striking feature of DNN-based
machine learning where, while dealing with multihadron
production dynamics, the machine is trained with the
control parameters like the collision energy, impact param-
eter (here, the number of participants or the final-state
charged particle multiplicity), particle mass, and transverse
momentum. In addition, the DNN model retains the
constituent quark number scaling behavior for elliptic flow
as a function of transverse kinetic energy for the respective
collision systems and energies. The DNN model also
quantitatively preserves the pT crossing point of baryon-
meson v2 curves at intermediate pT, which scales with the
centrality and center-of-mass energy of collisions for
various systems. Finally, by training the DNN models with
different kinematic regions based on specific pT cuts and
then applying it to the full pT range, we arrived at the
conclusion that there exists a global functional dependence
of elliptic flow on transverse momentum, as the DNN
model trained in a certain kinematic region could describe
the overall curve for the full kinematic domain. We also
learned that the elliptic flow of the pion and kaon originates
mainly from the low-pT region, whereas the elliptic flow of
the proton is dominated due to the high-pT region.
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