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We analyze the magnetic field of electroweak dumbbells. While the magnetic field of the untwisted
dumbbell is given by the usual dipole formula and falls off as 1=r3, dumbbells with twist have a novel
twisted magnetic field that only falls off as cos θ=r2 (in spherical coordinates). We comment on the
relevance of twisted electroweak dumbbells for understanding the coherence of the magnetic field
generated at the electroweak phase transition.
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I. INTRODUCTION

The “electroweak dumbbell” consists of a magnetic
monopole and an antimonopole of the standard electroweak
model connected by a string made of Z-magnetic field
[1,2]. The existence of such nonperturbative field configu-
rations in the electroweak model is of great interest as they
would provide the first evidence for (confined) magnetic
monopoles. In a cosmological context, dumbbells can
source large-scale magnetic fields which can seed galactic
magnetic fields and play an important role in the propa-
gation of cosmic rays [3].
Generally electroweak dumbbells are viewed as mag-

netic dipoles with the usual dipolar 1=r3 fall off of the
magnetic field strength with distance r from the dipole, but
the situation in the electroweak case is richer. There is a
one-parameter set of electroweak dumbbell configurations,
all describing a confined monopole-antimonopole pair but
with additional structure called the “twist.” Such twisted
dumbbells are closely related to the electroweak sphaleron
as they also carry a Chern-Simons number [4].
In this paper, we investigate the structure of electroweak

dumbbells using “constrained relaxation.” We start with a
field configuration that contains a monopole and an
antimonopole with a relative twist. The fields are then
relaxed subject to the constraint that the orientation of the
Higgs field is held fixed throughout the spatial volume, and
this automatically fixes the monopole-antimonopole posi-
tions and the twist. In other words, in this paper we wish to
find the minimum energy field configuration in which an
electroweak monopole and antimonopole are held at fixed
locations.

For zero twist, we find the expected dipolar structure of
the magnetic field of the system. The results for nonzero
twist are more unexpected. The magnetic field lines do not
connect the monopole to the antimonopole; instead the
field lines stretch to infinity, tending to pull the monopole
and antimonopole away from each other. At large distances
from the dumbbell, the magnetic field strength has a
cos θ=r2 behavior. The magnetic field of a twisted dumb-
bell also has an azimuthal component, resembling the
twisted field that was pointed out for an electroweak
sphaleron in Refs. [5,6].
We begin our analysis by describing the model and our

initial configuration of fields in Sec. II. The numerical
relaxation scheme is described in Sec. III. We define the
electromagnetic field in Sec. IV and derive the magnetic
field configuration for the initial unrelaxed configuration.
The results of our constrained relaxation are given in
Sec. V. We discuss consequences of our findings in Sec. VI.

II. MODEL

A. Electroweak model

The Lagrangian for the bosonic sector of the electroweak
theory is given by

L ¼ −
1

4
Wa

μνWaμν −
1

4
YμνYμν

þ jDμΦj2 − λðjΦj2 − η2Þ2; ð1Þ

where

Dμ ≡ ∂μ −
i
2
gσaWa

μ −
i
2
g0Yμ: ð2Þ

Here,Φ is theHiggs doublet,Wa
μ are the SU(2)-valued gauge

fields with a ¼ 1; 2; 3 and,Yμ is theU(1) hypercharge gauge
field. In addition, σa are the Pauli spin matrices with
TrðσaσbÞ ¼ 2δab, and the experimentally measured values
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of the parameters that we adopt from [7] are g ¼ 0.65,
sin2 θw ¼ 0.22, g0 ¼ g tan θw, λ ¼ 0.129, and η ¼ 174 GeV.
We adopt the temporal gauge for convenience in

numerical implementation, with Wa
0 ¼ Y0 ¼ 0. The

Euler-Lagrange equations of motion for the model are
given by

DμDμΦþ 2λðjΦj2 − η2ÞΦ ¼ 0 ð3Þ

∂μYμν ¼ g0Im½Φ†ðDνΦÞ� ð4Þ

∂μWaμν þ gϵabcWb
μWcμν ¼ gIm½Φ†σaðDνΦÞ�; ð5Þ

where the gauge field strengths are given by

Wa
μν ¼ ∂μWa

ν − ∂νWa
μ þ gϵabcWb

μWc
ν ð6Þ

Yμν ¼ ∂μYν − ∂νYμ: ð7Þ

Electroweak symmetry breaking results in three massive
gauge fields, the two charged W bosons and Zμ, and one
massless gauge field, Aμ, that is the electromagnetic gauge
field. We define

Zμ ≡ cos θwnaWa
μ þ sin θwYμ; ð8Þ

Aμ ≡ − sin θwnaWa
μ þ cos θwYμ; ð9Þ

where

na ≡Φ†σaΦ
jΦj2 ð10Þ

are components of a unit three vector n̂. The weak mixing
angle, θw is given by tan θw ¼ g0=g, the Z coupling is
defined as gZ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g02
p

, and the electric charge is given
by e ¼ gZ sin θw cos θw. The Higgs, Z andW boson masses
are given by mH≡2

ffiffiffi
λ

p
η¼ 125GeV, mZ ≡ gZη=

ffiffiffi
2

p ¼
91 GeV, and mW ≡ gη=

ffiffiffi
2

p ¼ 80 GeV, respectively.

B. Initial field configuration

Here we setup a field configuration that describes the
dumbbell. This configuration will become our starting
point for constrained numerical relaxation, a process which
reduces the total energy while the monopole and antimono-
pole are held fixed at their initial locations.
The angular distribution of the Higgs field for the

monopole and antimonopole can be taken to be [1],

Φ̂m¼
�

cosðθm=2Þ
sinðθm=2Þeiϕ

�
; Φ̂m̄¼

�
sinðθm̄=2Þ

cosðθm̄=2Þeiϕ
�
; ð11Þ

where the hat on Φ denotes that jΦ̂j ¼ 1, ðθm;ϕÞ
are spherical angular coordinates centered on the monop-
ole, and ðθm̄;ϕÞ are corresponding angles centered on
the antimonopole, as shown in Fig. 1. The combined
monopole-antimonopole ansatz for the Higgs field can be
taken to be [4],

Φ̂mm̄ðγÞ ¼
�

sinðθm=2Þ sinðθm̄=2Þeiγ þ cosðθm=2Þ cosðθm̄=2Þ
sinðθm=2Þ cosðθm̄=2Þeiϕ − cosðθm=2Þ sinðθm̄=2Þeiðϕ−γÞ

�
; ð12Þ

where the monopole and antimonopole are located along
the z-axis, as illustrated in Fig. 1, and we have included a
“twist” angle γ. Taking the limit θm̄ → 0 in (12), one
recovers the monopole configuration and, in the limit
θm → π, one recovers the antimonopole configuration in
(11) but with a twist given by γ. The effect of the relative
twist γ is more evident from the vector (10) associated with

the Higgs field. This is visualized in Cartesian space in
Figs. 2 and 3. Here, we see the projection n̂ − ðn̂ · ĵÞĵ of the
vector in the xz-plane for extreme values of twists γ ¼ 0; π.
The gauge field configurations are obtained by setting

the covariant derivative of the Higgs field to vanish in the
symmetry broken regions. This procedure does not fix the
gauge fields completely as it allows for an arbitrary

FIG. 1. A general vector x⃗ in a Cartesian grid with the
monopole and antimonopole centered polar angles, θm and θm̄,
respectively.
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electromagnetic gauge field (since the generator of the
electromagnetic group annihilates Φ). We completely fix
the form of the gauge fields by requiring that Aμ ¼ 0, with
the electromagnetic gauge field defined in (9). The gauge
fields are then given by,

gWa
μ ¼ −ϵabcnb∂μnc − icos2θwnaðΦ̂†

∂μΦ̂ − ∂μΦ̂†Φ̂Þ ð13Þ

g0Yμ ¼ −isin2θwðΦ̂†
∂μΦ̂ − ∂μΦ̂†Φ̂Þ: ð14Þ

To correctly account for the radial dependence of the
Higgs field around the monopole-antimonopole pair, we
attach radial profiles. The general monopole solution is
given by

Φ ¼ hðrÞΦ̂; ð15Þ

where Φ̂ are the normalized doublets in (11). Including
profile functions in the ansatz, the initial monopole-
antimonopole scalar field configuration is given by

Φmm̄ ¼ ηkðx⃗ÞhðrmÞhðrm̄ÞΦ̂mm̄; ð16Þ

where rm and rm̄ are radial coordinates centered on the
monopole and antimonopole, respectively, given by

rm ¼ jx⃗ − x⃗mj; rm̄ ¼ jx⃗ − x⃗m̄j; ð17Þ

where x⃗m ¼ ð0; 0; dÞ and x⃗m̄ ¼ ð0; 0;−dÞ. While hðrÞ
represents the monopole profile function, kðx⃗Þ in (16) is
the profile of the Z-string that connects the monopole and
the antimonopole in the dumbbell.
Similar to (16), we include radial profiles for the gauge

fields as

gWa
μ ¼ lðr⃗ÞjðrmÞjðrm̄Þ½−ϵabcnb∂μnc

− icos2θwnaðΦ̂†
∂μΦ̂ − ∂μΦ̂†Φ̂Þ� ð18Þ

g0Yμ ¼ lðr⃗ÞjðrmÞjðrm̄Þ½−isin2θwðΦ̂†
∂μΦ̂ − ∂μΦ̂†Φ̂Þ� ð19Þ

Now that we have set up a field configuration that
describes the initial dumbbell in Eqs. (16), (18), and (19),
we will perform a constrained numerical relaxation.

C. Profiles

The monopole profile functions are only known in
closed form within the context of the Bogomoln’yi-
Prasad-Sommerfield (BPS) limit (λ → 0) [8]. Numerical
solutions for the general case have been outlined in [9].
A functional form that reduces to the BPS case is given
by [10],

hðrÞ ¼ 1

tanhðηrÞ − ð1þmrÞ e
−mr

ηr
; ð20Þ

jðrÞ ¼ 1 −
ηr

sinhðηrÞ ; ð21Þ

where m ¼ 2
ffiffiffi
λ

p
η is the scalar mass and r is the radial

coordinate centered around the monopole. In our applica-
tion, we use these radial profiles as initial guess functions
for the monopole and the antimonopole.
The string profile functions have been studied in the

context of the Abelian Higgs model, known as Nielsen-
Olesen strings [11,12]. The Nielsen-Olesen string profiles
are not known analytically, but have been studied numeri-
cally. Our string profile guess functions kðx⃗Þ and lðx⃗Þ
match the ρ → 0 and ρ → ∞ behavior of Nielsen-Olesen
string solutions, where ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

. However, unlike the
Nielsen-Olesen case, we are dealing with a finite Z-string
that joins the monopole-antimonopole pair. Therefore, our

FIG. 2. The projection of the vector n̂ given by (10) for the
ansatz (12) in the xz plane for γ ¼ 0. The blue and red dots
represent the monopole and antimonopole, respectively.

FIG. 3. The projection of the vector n̂ given by (10) for the
ansatz (12) in the xz plane for γ ¼ π. The blue and red dots
represent the monopole and antimonopole, respectively.
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guess functions depend on x⃗ and not just ρ, allowing the
string profile function to terminate smoothly at the monop-
ole and antimonopole. To this end, we define the string
profile function by writing it as

kðx⃗Þ ¼ 1 − kρðρÞkzðzÞ; ð22Þ

where kz is the function that ensures that the Z-string
terminates at the monopole and antimonopole, while kρ is
the radial profile. These functions are taken to be

kzðzÞ ¼
tanhðηð−zþ dÞÞ þ tanhðηðzþ dÞÞ

2 tanhðηdÞ ð23Þ

kρðρÞ ¼
tanhðηð−ρþ δÞÞ þ tanhðηðρþ δÞÞ

2 tanhðηδÞ ; ð24Þ

where δ is the lattice spacing. kz is illustrated in Fig. 4, the
total monopole profile, hðrmÞhðrm̄Þ, is plotted in Fig. 5, and
the total string profile, kðx⃗Þ, is plotted in Fig. 6.

One issue is that the profile kðx⃗Þ does not strictly vanish
at the location of the string. This is not an issue for us
because in our numerical work we place the string between
lattice points and never have to evaluate the profiles exactly
at the center of the string.

III. NUMERICAL RELAXATION

A. System of equations

The static equation of motion for Φ can be expanded as

0 ¼ ∂
2
0Φ ¼ DiDiΦ − 2λðjΦj2 − η2Þ2Φ

¼ ∇2Φ − i
g
2
σaWa

i ∂iΦ − i
g0

2
Yi∂iΦ

− i
g
2
σaΓa

iΦ − i
g0

2
ΞiΦα − i

g
2
σaWa

i ðDiΦÞ

− i
g0

2
YiDiΦ − 2λðjΦj2 − η2Þ2Φ: ð25Þ

Here we have introduced the notation Γa
i ¼ ∂iWa

i and
Ξi ¼ ∂iYi. Since we are interested in the static configura-
tion for the monopole-antimonopole pair, we set all time
derivatives to vanish. Similarly, the static gauge field
equations of motion lead to

0 ¼ ∇2Wa
i − ∂iΓa

k − gϵabcð∂kWb
i ÞWc

k − gϵabcWb
i Γc

k

− gϵabcWb
kW

c
ik þ gIm½Φ†σaðDiΦÞ� ð26Þ

0 ¼ ∇2Yi − ∂iΞk þ g0Im½Φ†σaðDiΦÞ�: ð27Þ

The relaxation scheme entails that we fix the monopole-
antimonopole positions when solving the system of equa-
tions (25)–(27). We implement this constraint by utilizing
the gauge freedom in the model. We work in the gauge
where the Higgs directions are chosen to be Φ̂mm̄ as given
in (12). Since the positions of the monopole and anti-
monopole are determined by the orientation of the Higgs

FIG. 4. The component kzðzÞ of the string profile kðx⃗Þ, given by
(23), as a function of z. The monopole and antimonopole are
located at z ¼ �4η−1, respectively.

FIG. 5. The contour plots for the profile function hðrmÞhðrm̄Þ in
the y ¼ 0 plane. Here, the monopole and antimonopole are
located at z ¼ �4, respectively.

FIG. 6. The contour plots for the profile function kðx⃗Þ in the
y ¼ 0 plane. Here, the monopole and antimonopole are located at
z ¼ �4, respectively.
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as discussed in Ref. [13], this fixes their positions for
the entire relaxation process. Only the magnitude of the
Higgs field jΦj and the gauge fields,Wa

i and Yi need to be
relaxed to satisfy the Eqs. (25)–(27). Thus instead of
solving for the two components of the Higgs doublet, we
solve for jΦj, where

jΦj ¼ 1

2
ðΦ̂†ΦþΦ†Φ̂Þ:

The Laplacian of jΦj can be expressed as

∇2jΦj ¼ 1

2
½ð∇2Φ̂†ÞΦþ Φ̂†ð∇2ΦÞþð∇2Φ†ÞΦ̂þΦ†ð∇2Φ̂Þ

þ4jΦj∂iΦ̂†
∂iΦ̂�; ð28Þ

where we have used

∂iΦ ¼ ∂ijΦjΦ̂þ jΦj∂iΦ̂: ð29Þ

and ∂iðΦ̂†Φ̂Þ ¼ 0. An equation of motion for jΦj can thus
be derived by using ∇2Φ and ∇2Φ† from (25) and, using
(12) to obtain Φ̂ and its derivatives since, as explained
above, Φ̂ is held fixed throughout the relaxation. Since,
we are working in the temporal gauge, the equations for
Γa
i and Ξi are trivial.
The initial Higgs and gauge fields are given by the

configurations in Sec. II B and the guess profiles in
Sec. II C.

B. Relaxation algorithm

We relax the initial field configuration in a cubic lattice.
At any given lattice point, the discretized system of
equations is given by Eα½f� ¼ 0, where Eα½f� denote the
discretized static equations for f ∈ fjΦj;Wa

i ; Yig. The
system of equations (25)–(27) can be expressed as

Eα½f� ¼ −∇2fα þ Sα½f� ¼ 0; ð30Þ

where Sα denotes various other terms.
To illustrate the principle of numerical relaxation, con-

sider the discretized second order spatial derivative,

∇2fα → −6
fα
δ2

þ 1

δ2
½fαðiþ 1; j; kÞ þ fαði − 1; j; kÞ

þ fαði; jþ 1; kÞ þ fαði; j − 1; kÞ
þ fαði; j; kþ 1Þ þ fαði; j; k − 1Þ�

≡ −6
fα
δ2

þ Δα

δ2
ð31Þ

and so the equation of motion may be written as

fαði; j; kÞ ¼
Δα

6
−
δ2

6
Sα ð32Þ

which can also be written as,

fαði; j; kÞ ¼
δ2

6
Eα½fβ� þ fαði; j; kÞ: ð33Þ

The relaxation scheme is to take the left-hand side of (33) at
the nth iteration step and the right-hand side at the previous
iteration step,

fðnÞα ði; j; kÞ ¼ δ2

6
Eα½fðn−1Þ� þ fðn−1Þα ði; j; kÞ: ð34Þ

In our setup, the updated field values are made
immediately available for computing the field values at
the next lattice site in the computation. This is the Gauss-
Seidel method and thus does not require an additional
array to hold field values from the previous iteration. We
continue iterating while the total energy of the configu-
ration keeps decreasing. In the example stated above, we
used first order central finite differences which results in
the 1=6 coefficient. In our numerical runs, we use sixth
order finite central differences and then the coefficient
is 6=49.

C. Numerical setup

For most of our numerical runs, we use a 7403 lattice
with lattice spacing δ ¼ 0.05η−1. We work in units of η.
Thus a unit of energy in our simulation corresponds
to η ¼ 174 GeV. The monopole and string radii are
comparable to the inverse of the gauge boson masses,
m−1

W ¼ ffiffiffi
2

p
η−1=g ≈ 44δ. Therefore there are about 44 lattice

points that resolve the radius of the monopole and a similar
number for the string.
The monopole and antimonopole are zeros of the

Higgs field at their respective centers. In addition, the
coordinates along which the Z-string is centered are also
zeros of the Higgs field. These could lead to artificial
numerical singularities and so, we offset the center of the
monopole and antimonopole away from the z-axis in the
xy plane; that is to say that the monopole and antimono-
pole are at the coordinates x ¼ y ¼ δ=2; z ¼ �ðdþ δ=2Þ.
This also implies that the Z-string lies parallel to the z-
axis, along x ¼ y ¼ δ=2. As the algorithm iterates over
the lattice, the system undergoes relaxation and slowly
approaches the desired asymptotic solution, with the
changes in the total energy becoming smaller as the
number of iterations increases. We stopped the relaxation
once the consecutive fractional difference of the total
energy dropped below 10−6. Note that the number of total
iterations required to reach a satisfactory asymptotic
scaling depends on both simulation parameters, like
the lattice size and spacing, as well as model parameters,
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such as separation and twist. We run our algorithm for a
range of separations and twists. For the set of tested
parameters, the number of iterations performed ranges
between ∼20000 –70000.

IV. MAGNETIC FIELD

We adopt the definition for the electromagnetic field
strength tensor in the symmetry broken phase (jΦj ¼ η)
[14,15],

Aμν ≡ − sin θwnaWa
μν þ cos θwYμν

− i
2 sin θw
gη2

ðDμΦ†DνΦ −DνΦ†DμΦÞ

¼ ∂μAν − ∂νAμ − i
2 sin θw
gη2

ð∂μΦ†
∂νΦ − ∂νΦ†

∂μΦÞ:

ð35Þ

This definition implies the presence of nonzero electro-
magnetic fields for Aμ ¼ 0 due to the Higgs gradient term.
In the unitary gauge, the Higgs gradient term vanishes and
one recovers the standard expression for the Maxwellian
electromagnetic fields.
We now obtain analytic expressions for the magnetic

field of the unrelaxed electroweak dumbbell for arbitrary
twist. The relaxation procedure will change the detailed
features of the magnetic field but still preserves the
qualitative features of the unrelaxed configuration as we
will see in Sec. V.
Equations (18) and (19) ensure that Aμ ¼ 0 and it is

only necessary to evaluate the last term in (35). The
definition of Aμν assumes that electroweak symmetry is
broken and the expression in (35) applies in regions where
jΦj ≈ η. To obtain an analytic expression for the magnetic
field, we substitute Φ̂mm̄ from (12) in the last term of (35).
We also set η ¼ 1 for convenience. The derivative of Φ is
now given by,

∂iΦ≡ A∂iθm þ B∂iθm̄ þ C∂iϕ; ð36Þ

where A, B, and C are derivatives of Φ with respect to θm,
θm̄ and ϕ respectively. Then

∂½iΦ†
∂j�Φ ¼ ðA†B − B†AÞ∂½iθm∂j�θm̄

þ ðA†C − C†AÞ∂½iθm∂j�ϕ
þ ðB†C − C†BÞ∂½iθm̄∂j�ϕ ð37Þ

and the square brackets in the indices denote
antisymmetrization.
From Fig. 1 we see,

tan θm ¼ ρ

z − d
; tan θm̄ ¼ ρ

zþ d
; ð38Þ

where ρ is the cylindrical radial coordinate. Therefore, after
some algebra,

∂½iθm∂j�θm̄ ¼ 2dρ
r2mr2m̄

∂½iρ∂j�z ð39Þ

∂½iθm∂j�ϕ ¼ 1

r2m
½ðz − dÞ∂½iρ∂j�ϕ − ρ∂½iz∂j�ϕ� ð40Þ

∂½iθm̄∂j�ϕ ¼ 1

r2m̄
½ðzþ dÞ∂½iρ∂j�ϕ − ρ∂½iz∂j�ϕ� ð41Þ

Then from (35) we get the (cylindrical) components of
the magnetic field,

Bρ ¼ −iκ
�
A†C − C†A

r2m
þ B†C − C†B

r2m̄

�
ð42Þ

Bϕ ¼ iκ
2dρ
r2mr2m̄

ðA†B − B†AÞ ð43Þ

Bz ¼ −i
κ

ρ

�
ðz − dÞA

†C − C†A
r2m

þ ðzþ dÞB
†C − C†B

r2m̄

�

ð44Þ

with κ ≡ 2 sin θw=g.
The factors with the doublets A, B, and C can be

evaluated using derivatives of (12) with respect to θm,
θm̄, and ϕ. The calculation simplifies if we write

Φ ¼ sinðθm=2ÞeiγΦ1 þ cosðθm=2ÞΦ2; ð45Þ

where

Φ1 ¼
�

sinðθm̄=2Þ
cosðθm̄=2Þeiðϕ−γÞ

�
; ð46Þ

Φ2 ¼
�

cosðθm̄=2Þ
− sinðθm̄=2Þeiðϕ−γÞ

�
ð47Þ

with the properties jΦ1j ¼ 1 ¼ jΦ2j, Φ†
1Φ2 ¼ 0, Φ1 ¼

−2∂θm̄Φ2, and Φ2 ¼ 2∂θm̄Φ1. This gives

A†B − B†A ¼ i
2
sin γ cos θm:

Similar calculations give

A†C − C†A ¼ i
2
½sin θm cos θm̄ − cos γ cos θm sin θm̄�;

B†C − C†B ¼ i
2
½cos θm sin θm̄ − cos γ sin θm cos θm̄�:
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These expressions can now be inserted in (42)–(44). The
resulting expressions are not transparent and we shall focus
on a few interesting features.
First of all consider the magnetic field twist given by Bϕ,

Bϕ ¼ −κd sin γ
ρ

r2mr2m̄
cos θm ð48Þ

Note that the twisting is not symmetric in θm and θm̄.
For example, Bϕ vanishes for θm ¼ π=2 but not when
θm̄ ¼ π=2. This is a feature stemming from our choice of
the unrelaxed field. Upon relaxation the twist gets redis-
tributed as in apparent in Sec. V where we plot the magnetic
field in the θm ¼ π=2 plane. Also note that the twisting
reverses direction under γ → −γ.
Far from the dumbbell rm ≈ rm̄ ≈ r, θm ≈ θm̄ ≈ θ, and

ρ ¼ r sin θ. Then

Bϕ ¼ −κd sin γ
sin θ cos θ

r3
ð49Þ

Hence the azimuthal field is nonvanishing only for γ ≠ 0,
falls off as 1=r3, and the twisting is of opposite signs for
cos θ > 0 and cos θ < 0.
Next we consider the magnetic field in the z ¼ 0 plane.

Then we have rm ¼ rm̄ ¼ ρ and θm þ θm̄ ¼ π. This gives,

Bρðz ¼ 0Þ ¼ κ

2ρ2
ð1 − cos γÞ sinðθm þ θm̄Þ ¼ 0 ð50Þ

Bzðz ¼ 0Þ ¼ κd
2ρ3

sinð2θmÞð1þ cos γÞ: ð51Þ

Hence for maximal twist angle, γ ¼ π, the magnetic field
on the z ¼ 0 plane vanishes.
Finally we consider the asymptotic magnetic field. We

have already calculated the azimuthal component in (49).
For the other components, note that once again rm≈rm̄≈ r,
θm ≈ θm̄ ≈ θ and so

Bρjr≫d ¼ κð1 − cos γÞ sin θ cos θ
r2

ð52Þ

and

Bzjr≫d ¼ κð1 − cos γÞ cos
2θ

r2
: ð53Þ

Note that the magnetic field of the twisted dumbbells
(γ ≠ 0) falls off as 1=r2, instead of the dipolar 1=r3.
Some more insight is gained by calculating the spherical

radial component of the magnetic field in the asymptotic
region. The radial component is given by

Br ¼ Bρ sin θ þ Bz cos θ: ð54Þ

Using (52) and (53) we get

Brjr≫d ¼ κð1 − cos γÞ cos θ
r2

: ð55Þ

Therefore the radial field has the structure of a monopole’s
magnetic field that has been squeezed into the angular
range 0 ≤ θ ≤ π=2, and an antimonopole’s magnetic field
squeezed in the angular range π=2 < θ < π. The magnetic
field vanishes at θ ¼ π=2. The long range magnetic field of
a twisted dumbbell has a 1=r2 fall off, like that of a
monopole. Only in the untwisted (γ ¼ 0) case does this
monopole contribution vanish, and then the dipole 1=r3

term becomes the leading contribution.
Many of the qualitative features of the initial magnetic

field persist even after relaxation as we now discuss.

V. RESULTS

As a check of our numerical relaxation scheme we have
calculated energies of the electroweak Z-string [16] and the
electroweak sphaleron. Our relaxation procedure on a three
dimensional lattice gives the energy per unit length of the
Z-string to be 1.023πη2. This is within 2% of the values
previously calculated from numerical solutions of the radial
differential equations [11,12]. For the second check, we
obtained the energy of the electroweak sphaleron by using
the configuration in (12) with twist γ ¼ π and zero
separation, i.e., θm ¼ θm̄. Then Φmm̄ has the configuration
of the SUð2Þ (θw ¼ 0) sphaleron. On relaxing the con-
figuration, we find the sphaleron energy to be 2.00 × 4π for
λ ¼ 1=2 and θw ¼ 0, which is within 1% of the result in [9].

FIG. 7. The energy of the configuration as a function of the
number of iterations for twist angle nπ=6, for n ¼ 0; 3; 6. The
different colors and line styles correspond to different values of n
and monopole-antimonopole separation ΔzMM̄, as indicated in
the legends. The solid lines are asymptotic fits to the converged
energies.
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In Fig. 7, we show the energies of electroweak dumbbell
configurations for two different monopole-antimonopole
separations, and a few different twists as a function of the
number of iterations in our relaxation procedure. The solid
lines are asymptotic fits that show convergence of the
energies of the configurations.
In Fig. 8 we show the energies of the relaxed electroweak

dumbbells for twist angle γ ∈ ½0; π�, and for a range of
separations. At large separations, most of the energy is in the
string and hence we see linear growth. At small separations

the string is less important and monopole-antimonopole
interactions become important. The flattening of the γ ¼ π
curve at very small separations indicates the existence of an
unstable solution, which is precisely the sphaleron. In Fig. 9,
we show the energy contours of the relaxed dumbbells in the
parameter space of separation and twist.
In Fig. 10, we show contours of the magnitude of the

relaxed Higgs field jΦj in the xz-plane for twist π. There are
no significant differences in features for different values of
the twist γ.

FIG. 8. The energy of electroweak dumbbells as a function of
monopole-antimonopole separation for twist angle γ ¼ nπ=6 for
various values of n as shown in the legend. The energies increase
as we increase the twist. The star at minimal separation and γ ¼ π
denotes the sphaleron.

FIG. 9. The electroweak dumbbell energy contours as a
function of monopole-antimonopole separation and twist. The
sphaleron solution (star) is in the upper left corner of the plot for
ΔzMM̄ → 0 and γ ¼ π.

FIG. 10. Contours of the Higgs field magnitude jΦj in units of η
in the xz-plane after relaxation for γ ¼ π and monopole-
antimonopole separation of 2d ¼ 120δ ¼ 12η−1. The same con-
tour for the γ ¼ 0 case has very similar features.

FIG. 11. Contours of the magnetic field magnitude jBj (colors)
in units of η2, and the projection of magnetic field lines in the
xz-plane after relaxation for γ ¼ 0, and monopole-antimonopole
separation 2d ¼ 120δ ¼ 12η−1.

TEERTHAL PATEL and TANMAY VACHASPATI PHYS. REV. D 107, 093010 (2023)

093010-8



To find the magnetic structure of the electroweak dumb-
bell we use the definition of the field strength in (35). This
expression assumes jΦj ¼ η and hence is strictly valid only
far from the dumbbell. However, we will apply it to the
entire volume; points where Φ ¼ 0 are avoided since the
dumbbell zeros are situated between lattice points.
The field lines in Figs. 11 and 12 show the structure of

the magnetic field projected on to the xz-plane: the field
lines shown are given by the direction of B⃗ − ðB⃗ · ŷÞŷ
and suppresses the component out of the page (in the
y-direction). In Fig. 11 we show the magnetic field strength
(colors) and the magnetic field lines of an untwisted
dumbbell. The magnetic structure of the twisted (γ ¼ π)
dumbbell is shown in Fig. 12 and, in marked contrast to the

untwisted case, the magnetic field lines flow away from the
dumbbell. The structure agrees with the cos θ=r2 expres-
sion given in (55). The magnetic field lines in this case tend
to pull the monopole and antimonopole apart, i.e., they
provide a repulsive force between the monopole and
antimonopole. In Fig. 13 we show the projected field lines
in the z ¼ d plane. Here we clearly see the twist in the
magnetic field lines first discussed in the context of the
sphaleron in Refs. [5,6].

VI. CONCLUSIONS AND DISCUSSION

We have developed a numerical technique to study the
magnetic structure of electroweak dumbbells in which
the positions of the monopole and antimonopole are held
fixed. We have studied the constrained solution as a
function of the monopole-antimonopole separation and
the twist angle. As expected, the energy grows linearly
with separation at large separations, while monopole-
antimonopole interactions become important at small
separations. For maximum twist, the dumbbell energy
approaches the electroweak sphaleron energy as the sep-
aration goes to zero. The sphaleron is a static solution and is
unstable, since it can dynamically evolve to lower energy
configurations by untwisting.
The magnetic field of the electroweak dumbbell at zero

twist resembles that of an ordinary bar magnet. Then the
magnetic field strength has the usual dipolar 1=r3 fall off at
large distances. However the magnetic field in the case of
nonzero twist has an unexpected distribution—the mag-
netic field lines emanating from the monopole, instead of
terminating at the antimonopole, are directed toward spatial
infinity and pull the monopole away from the antimono-
pole. The magnetic field strength at large distances has a
cos θ=r2 fall off. In addition, the magnetic field lines are
twisted in the azimuthal direction.
For a general electroweak dumbbell formed during

electroweak symmetry breaking, the twist angle will be
nonzero and the magnetic field lines emanating from
a monopole will terminate on an antimonopole of
some other dumbbell. After the dumbbells have annihi-
lated, the remaining field lines will perform a random
walk in three dimensions and will not close on them-
selves. This is likely to have consequences for the
correlation length of magnetic fields leftover from the
electroweak epoch [3]. The situation may be similar to
that of cosmic strings in which most of the energy of the
cosmic string network is in infinite strings and not in
closed loops. We plan to examine this scenario in more
detail in future work.
Another outcome of our work is in the context of

Nambu’s calculation of the lifetime of rotating electroweak
dumbbells [1]. Our relaxation methods have provided the
structure of the dumbbells which we can feed into an
evolution code and study their lifetime as a function of
energy and angular momentum.

FIG. 12. Contours of the magnetic field magnitude jBj (colors)
in units of η2, and the projection of magnetic field lines in the
xz-plane after relaxation for γ ¼ π, and monopole-antimonopole
separation 2d ¼ 120δ ¼ 12η−1.

FIG. 13. Contour plots of the magnetic field magnitude jBj
(colors) in units of η2 in the xy-plane containing the monopole
(z ¼ d), and the projection of magnetic field lines (black curves):
B⃗ − ðB⃗ · k̂Þk̂, for γ ¼ π, 2d ¼ 12η−1.
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