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Direct detection of sub-GeV dark matter (DM) is challenging because the recoil energy of the nuclei or
electron from the elastic scattering of a sub-GeV DM off the target can hardly reach the detector threshold.
In this paper, we present a new direct detection strategy for sub-MeV DM via the three-body inelastic
scattering process, DMþ DMþ T → ηþ T, where η is either a DM composite state or any dark radiation,
T is the detector target. This process is common for a large class of DM models without presuming
particular thermal history in the early Universe. The typical signature from this process is almost a
monoenergetic pulse signal where the recoil energy comes from either the binding energy or the consumed
DM particle. We show that detectable DM mass range can be effectively enlarged compared to the elastic
scattering process.
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I. INTRODUCTION

Despite ample evidence of dark matter (DM) in our
Universe, its particle nature (mass, spin, and coupling) is
still a mystery. The unknown mass of possible DM, ranging
from 10−22 eV to 1055 GeV, leaves the experimental
observation of DM a severe challenge. Many ideas have
been proposed to search for DM in laboratory [1,2].
Assuming DM origins from thermal processes in the
primordial plasma, its mass range is limited to ½Oð1Þ keV;
Oð100Þ TeV�, where the upper bound is required by the
unitarity constraint on DM annihilation amplitude [3] and
the lower bound is required by the large scale structure of
the Universe [4]. This kind of DM can be directly detected
in underground laboratory by looking for kinetic energy
deposited by DM scattering on atomic nuclei. The direct
detections for DM have reached great sensitivities and give
the current most stringent limits for DM masses above a
few GeV [5–8]. However, the traditional direct detection of
DM via 2 → 2 elastic scattering process loses sensitivity
rapidly for a sub-GeV DM because the recoil energy turns
out to be smaller than the detector threshold.

Many new approaches have been proposed for the direct
detection of sub-GeV DM, for example, boosted DM via
various cosmic rays [9–13]; inelastic DM scattering off
target nuclei, during which additional excitations are
created [14–26]; the absorption of a fermion DM by target
and emit a nearly massless neutrino [27–29], which
produces a characteristic signal; searching DM using
condensed matter system [30–36], where excitations in
condensed matter systems provide promising signals; large
energy transfer induced by deexcitation of targets [37,38];
considering the Migdal effect [39–44], which results in an
inelastically excited electron; detecting DM in super-
conductors [45], which stand out with the lowest threshold,
etcetera. So far, these approaches may reach to a very low
mass regime, but some of them are only applicable to
specific DMmodels. A new strategy is still needed to detect
the lower mass regime.
In this paper, we propose a new direct detection strategy

for sub-MeV DM via the three-body inelastic scattering
process, DMþ DMþ T → ηþ T, where T is the target
and η is either a DM composite state or any dark radiation.
If η is a bound state of DM, then its binding energy and
kinetic energy can be transferred to the target during the
scattering, which results in enhanced recoil energy.
Alternatively, if η is a dark radiation, then two DM masses
are consumed during the scattering, which significantly
improve the recoil energy. Notice that the Co-SIMP [46]
scenario also adopts 3 → 2 for direct detection, but our
proposal is essentially different from theirs since it is
based on renormalizable DM interactions and does not
depend on the specific thermal history of DM. We find that
there might still exist sizable 3 → 2 process in direct
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detections for DM models where their relic abundance
arises solely from 2 → 2 annihilation. In addition, the
3 → 2 inelastic scattering naturally exists in composite
DM model. Although the 3 → 2 scattering cross section is
small, the high DM density as well as the high SM target
density make this process detectable.
In the following, we first describe the setup and main

features of 3 → 2 process. Then we present two specific
DM models and study constraints of 3-body DM-electron
scatterings. Following that, the effect induced by the
3-body DM-nuclei scattering is also discussed. Finally
we summarize our main conclusion. Details of our calcu-
lation are given in the Appendices.

II. 3 → 2 PROCESSES IN DM DIRECT
DETECTIONS

Previous studies of DM direct detection mainly focus on
2 → 2 process which is either elastic or inelastic. In this
section, we consider the signal of the 3 → 2 DM-target
scattering process. The 3 → 2 process has been widely
applied to address the spectroscopy and relic density of the
strongly interacting massive particles (SIMPs) [46–53], but
a similar process is not studied with dedication in DM
direct detections. Compared with the 2 → 2 process, the
target receives more recoil energy in the 3 → 2 process.
Thus this process is more suitable for the direct detection of
light DM. In general, the maximum recoil energy in 2 → 2

elastic scattering process is Emax
R ¼ 2μ2v2=mN and Emax

R ≈
1
2
mDMv2 for nucleus and electron, where mDM; mN denote

the mass of DM and nucleus, respectively, μ is the reduced
mass of the DM and nucleus, and v ≈ 10−3 is the initial
velocity of DM. In the 3 → 2 process, the transferred
energy to the target particle is ΔE ¼ ð4 − ξ2Þm2

DM=
ð2mT þ 4mDMÞ, where we have neglected the initial kinetic
energy of DM, and ξ≡mf=mDM denoting the mass ratio of
final and initial dark sectors, andmT is the target mass. As a
result, the recoil energy for electron is ER ¼ ΔE − jEBj,
where EB is the binding energy of electron, while ER ¼ ΔE
for nucleus.
For the case of the xenon target, we consider 11

different binding energy of the electron in xenon shell
ðn; lÞ, thus the naive recoil energy without ionization form
factor for electron is determined by ER;i ¼ Emax

R − jEBji
(i ¼ 1s2;…5p6), where corresponding binding energies
are given in Ref. [54]. We show in Fig. 1 the typical recoil
energy ER as a function of mDM in 2 → 2 and 3 → 2
scattering processes, respectively. It shows that the
required DM mass in the 3 → 2 inelastic scattering is
much smaller than that in the 2 → 2 elastic process at same
recoil energy.
For the 3 → 2 process, the event rate per unit time per

unit energy per unit detector mass for a target to recoil with
energy ER can be written as

dR3→2

dER
¼ NT

Z
d3v1d3v2n2DMv1v2

dσ3→2

dER
; ð1Þ

where NT is the number of target per unit detector mass,
nDM is the DM density, v1 and v2 are DM velocities
in the lab frame. dσ3→2=dER is the differential cross
section. The DM number density can be written as
nDM ¼ fðvÞρDM=mDM, where fðvÞ is the DM velocity
distribution function with

R
d3vfðvÞ ¼ 1 and ρDM ¼

0.4 GeV=cm3 being the local DM energy density [61].
Considering the fact that the recoil energy as well as the
scattering amplitude are almost independent of the DM
velocity, and assuming both DM particles and targets
are unpolarized, one can absorb the factor v1v2 in
Eq. (1) into a cross section and integrate over velocities,
resulting in a characteristic quantity, σ3→2v2. Typically for
the DM-electron scattering, the differential ionization rate
is obtained by summing over electron from all possible
ðn; lÞ shells,

dR3→2

dER
¼

X
n;l

NTρ
2
DMhσðqÞv2i
4m2

DMER
jfn;lionðk0;qÞj2; ð2Þ

where we define a reference cross section hσðqÞv2i≡
qjMðqÞj2=ð32πm2

DMmeE0
eÞ and q, E0

e denote the transfer
momentum and the total energy of electron in final
state. fn;lionðk0;qÞ is the ionization form factor which plays
crucial role in calculating bound electrons at low energy

FIG. 1. The recoil energy ER versus mDM in the 2 → 2 elastic
and the 3 → 2 inelastic scattering processes. The orange solid line
denotes recoil energy of nucleus from the 2 → 2 process, and the
blue, green lines describe recoil energy of nucleus from the 3 → 2
process with ξ ¼ 0, 1.9, respectively. Same color labels but
instead dotted lines describe the electron recoil energy from the
2 → 2 and 3 → 2 processes. There are 11 different binding
energy of electrons in xenon shell and a fraction of xenon
electron shells are shown in the inset. As a comparison, the
horizontal gray dashed and dotted lines represent the nuclear
recoil (NR) and electron recoil (ER) threshold of current xenon-
based experiments [55–60], respectively. For binding energy for
xenon electron shells, see Table I for detail.
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scale [29,34,36,37]. The ionization form factor is calculated
by using theRoothaan-Hartree-Fock radialwave function for
the initial electron state and applying plane wave approxi-
mation for the final state (see Refs. [62,63] for detail).
In Fig. 2, we show the projected sensitivities to the

ionization rate given in Eq. (2) for XENONnT [64]
(purple), PandaX-4T [8] (orange), and DarkSide-50 (green)
[65], respectively. We calculate the constraints on hσv2i ·
nDMðcm2Þ for various mDM over reported exposures
(1.16 ton · year for XENONnT, 0.63 ton · year for
PandaX-4T and 6786.0 kg · day for DarkSide-50) with a
null signal event. The kinks in the plot correspond to the
increase of ionized electrons as the transferred energy ΔE
increases with the increase of mDM. We note that detection
efficiency may weaken the constraint and flatten some
kinks at low energy transfer. We find that the limits induced
by the 3 → 2 process is significant, which can be further
applied to constrain parameter space of a specific DM
model.

III. A TYPICAL MODEL

As an illustration, we study the direct detection signal of
a complex scalar DM, Φ ¼ 1ffiffi

2
p ðχ þ iζÞ, with additional

gauge interaction Uð1ÞD, whose gauge field couples to the
SM via the kinetic mixing with photon. Generally speak-
ing, there is a mass splitting between χ and ζ arising from
radiation corrections [66], leaving the lighter component
as the DM candidate. Here we consider two scenarios:
the real scalar χ being the DM, and the complex scalar Φ

being the DM assuming negligible mass splitting between
the CP-even and the CP-odd components. Relevant
Lagrangians can be written as

L ⊃ ðDμΦÞ†ðDμΦÞ þm2
A0 ðA0μÞ2
2

þ ϵeA0
μJ

μ
em; ð3Þ

where Dμ ¼ ∂μ − igDA0
μ is the covariant derivative with the

new gauge coupling gD,mA0 is the mass of new gauge field,
ϵ is the mixing parameter, Jμem is the electromagnetic
current. Due to radiative corrections, the mass of ζ is
usually different from that of χ, similar to the case of the
inert DM [67], which means that the 2 → 2 inelastic
scattering process χ þ SM → ζ þ SM can only occur in
specific situations. The 2 → 2 elastic scattering process,
χ þ SM → χ þ SM, only exists at one-loop level due to the
absence of a χχA0 interaction in the Lagrangian at the tree
level. One-loop contributions to this process are suppressed
by box diagrams. In addition, as shown in Fig. 1, for the
DM with OðGeVÞ scale mass, the recoil energy of
the elastic scattering process Φþ SM → Φþ SM is of
the order ofOðkeVÞ. Due to the limit of detector threshold,
it is very difficult to detect such a signal in current xenon
detectors if DM mass lies below GeV. All the facts above
leave the 3 → 2 scattering process one possible way out for
direct detection of MeV-scale DM. Two initial DMs scatter
on target via a 3 → 2 process, DMþ DMþ T → ηþ T,
where η indicates one of the following final states: A0 or
½ΦΦ†�B, and T denotes the target: electron or nuclei.
Relevant Feynman diagrams are shown in Fig. 3. In the
following, we will study the signal of these processes
separately.
(1) Scattering into DM bound state via the 3 → 2

process: If the dark photon mass is massless or
much lighter than the DM, there is long-range
interaction that typically implies the existence of
DM bound states. We study the DM bound states in
the nonrelativistic regime with nonconfining inter-
actions. References [68,69] show that at lowest order
in the coupling and in the nonrelativistic regime, the
bound state formation cross sections do not depend
on the spin configuration of the DM, therefore we
consider the complex scalar DM case in bound state.
As shown in the right panel of Fig. 3, DM may form
bound state through the inelastic scattering process.
The scattering amplitude can be written as

iMðΦΦ†T → ½ΦΦ†�BTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZA0 ðPA0 Þ

p Z
d4p
ð2πÞ4

d4k
ð2πÞ4 Ψ̃

�
Pn
ðpÞΦ̃Kk

ðkÞAð5ÞS̃A0 ðPA0 ÞiMSM; ð4Þ

FIG. 2. Projected limits hσv2i · nDM for XENONnT, PandaX-
4T, and DarkSide-50 as a function of mDM with xenon (argon)-
based experiments.
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where ZA0 ðPA0 Þ is the field-strength renormalization param-
eter for the mediator A0, ΦK;kðkÞ, and ΨP;nðpÞ are the
Bethe-Salpeter wave functions of DM in initial scattering
states and final bound states, respectively.Að5ÞðPA0 ; p; kÞ is
the five-point correlation function and S̃A0 ðPA0 Þ is the
propagator of A0 [68]. iMSM is the SM part amplitude.
Note that the matrix element squared may depend on the
scattering angle θ. Combining the general expression in
Eq. (4) and the concrete interaction given by Eq. (3), the
amplitude of ΦΦ†e → ½ΦΦ†�Be process at the leading
order is derived in the Appendix A.
Assuming the initial two DM has the same mass,

the energy transferred to the target particle can be
expressed as

ΔE ¼ 2mΦ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

Bfn;l;mg
q

; ð5Þ

where MBfn;l;mg is the mass of final bound state at the
fn; l; mg level. For the capture in the final states fn; l; mg,
the binding energy is [68]

εn ¼ −
μα2D
2n2

; ð6Þ

where αD ¼ g2D
4π, μ ¼ 1

2
mΦ is the reduced mass of the DM

pair. In order to ensure the sufficient efficiency of bound-
state formation, we only consider the maximal value for jεnj
with n ¼ 1. For the ground state f100g, the total energy of

the bound state is EBf100g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

Bf100g
q

with its mass

MBf100g ¼ 2mΦ þ ε1 [68]. So the transferred energy is
roughly jε1j, which means that a larger binding energy
results in a larger recoil energy.
(2) Scattering into dark photon via the 3 → 2 process: If

mA0 < 2mχ where mA0 is the mass of dark photon,
the inelastic 3 → 2 process, shown in the Fig. 3(a), is
kinematically allowed and can be applied to search
for DM in direct detection experiments, which has
never been studied in any references. Assuming that
the mass of dark photon is ultralight(mA0 ≪ mχ),
then the recoil energy for the target electron can be
given by [29]

ER ≃ 2mχ − q − jEe
Bj; ð7Þ

where Ee
B is the binding energy of electron in atom

and q is the energy of dark photon. Substituting
Eq. (7) and the squared matrix element given in
Appendix B into Eq. (2), one obtains the whole
expression for the rate of DM scattering off the
electron. This process will be denoted as “scalar
DM” in Fig. 4.

A. Constraints

Given the model, we present combined constraints on
dark photon mass (mA0) and the mixing parameter (ϵ) in
Fig. 4. The slashed and horizontal lines denote the scalar
and bound state DM, respectively. The solid, dashed and
dotted lines correspond to 1, 10, 1000 ton · year (t · yr)
exposures for the xenon and argon targets, respectively. The
shaded region indicate a combination of cosmological,
laboratorial, and astrophysical bounds, in which the light
purple region describes the constraint of stellar cooling, the
light blue region is the constraint from the cosmic micro-
wave background spectrum [70] distorted by the γ → A0
transition in the early Universe; the light orange region
corresponds to the upper limits of viable dark photon
DM from cosmological evolution [71–75], the middle and
right green regions are the bounds from direct detection
(XENON1T/XENON100 [76–78], WISPDMX [79] et al.),
the gray band indicates the mass window from black holes

(a) (b)

FIG. 3. Feynman diagrams of the 3 → 2 scattering process.

FIG. 4. Combined constraints on dark photon mass (mA0 ) and
the mixing parameter (ϵ). The slashed and horizontal lines denote
the scalar DM and the bound state DM cases, where solid,
dashed, and dotted lines indicate 1, 10, 1000 t · yr scale exposure,
respectively. The green and blue lines indicate the bounds from
xenon and argon target detectors, respectively. As benchmark
values, the DM mass is 50 keVand gauge coupling is αD ¼ 0.72.
Two gray dashed lines indicate the conditions for formation of
bound state DM (mA0 < αDμ) and ξ → 0 ðmA0 ≤ 10−2mχÞ in
scalar DM. The shaded region including various limits can be
divided into three categories based on cosmological (orange),
experimental (blue, green), and astrophysical (pink) bounds. The
gray band indicates the constraint from black holes super-
radiance.
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superradiance [80]. A more detailed description of each
bound can be found in a recent review [81] and references
therein.
In evaluating constraints of 3 → 2 DM-electron scatter-

ing, we set the DM mass and the gauge coupling as
mDM ¼ 50 keV and αD ¼ 0.72, and further apply the
detection efficiencies and thresholds of XENONnT [64]
and DarkSide-50 [65] to generate limits for the xenon and
argon detectors for illustration. For this benchmark, the
spectrum of the bound state DM is very different from that
of the scalar DM. For the bound state DM, the squared
matrix and the limits are almost independent ofmA0 , as can
be seen from Eq. (B2) in Appendix B, and the condition
for bound state (mA0 < αDμ) should be satisfied [68],
which results in a truncation at the right end of the limits.
Considering the fact that the recoil energy is about 1 keV
and the threshold of the argon detector is much lower
than that of xenon detector, the constraint of argon
detector is more stringent, which may cover regimes
not involved in indirect detections for future projected
argon experiment. For scalar DM, where we use a hard
cutoff (mA0 ≤ 10−2mχ) to match the ξ → 0 condition, the
shape of the spectrum comes from the fact that the squared
matrix is proportional to m−2

A0 . Given the recoil energy
induced by 3 → 2 DM-electron scattering, which is about
8 keV for the benchmark, the limits are much more
stringent than those from traditional direct and indirect
detections even for the existed exposure of XENONnT at
around 1 t · yr.
Before proceeding to further studies, we comment on the

relic density of dark matter models presented in this paper
as follows: For the real scalar dark matter, it may be
generated either from the freeze-out mechanism or from
the freeze-in mechanism in the early Universe. The relic
density can be determined by the general 2 → 2 annihila-
tion processes in the freeze-out mechanism, while it can
also be generated from the decay of the mother particle,
which is in the thermal bath, via kinetic mixing in the
freeze-in mechanism. For the dark matter model that may
form a composite state, it can be generated from the decay
of the mother particle in the hidden sector, which is not in
the thermal bath. For example, given the following Yukawa
interaction in the hidden sector: yχ̄Φηþ H:c:, and further
assuming η mixes with active neutrinos, then the decay
process χ → Φν may lead to the single production of Φ in
the early Universe. In this way, there exists free scalar dark
matter that does not form a composite state nowadays. It
should be mentioned that the 3 → 2 annihilation processes
may also contribute to the relic abundance, similar to
conventional SIMP cases, but their effects can be sub-
dominated in our studies. In short, the relic density of dark
matter models presented in this paper may be determined
by extra interactions in the dark sector, and the interactions
given in Eq. (3) are mainly relevant to the direct detection
signal.

IV. 3 → 2 DM-NUCLEI SCATTERING

DM-nuclei scattering has been a promising channel for
DM direct detections and it already put strong constraint on
weakly interacting massive particle (WIMP)-nuclei inter-
actions. However this constraint dramatically weakens for
DM mass smaller than about 1 GeV. This is due to the
rapidly decreasing sensitivity at low recoil energies. The
traditional DM-nuclei scattering leaves light DM candi-
dates poorly explored by direct searches. Several
approaches have been proposed to directly detect DM at
this mass range, such as inelastic DM-nuclei scattering [82]
and boosted DM, where a fraction of DM gets a high
velocity due to a number of mechanisms [83]. The model
independent constraint on the DM-nucleon cross section is
about 10−31 cm2 for cosmic ray boosted DM. In this section
we consider the possibility of detecting sub-MeV DM via
the 3 → 2 process. Taking scalar DM as an example, the
Feynman diagram is given in the left panel of Fig. 3 and the
σDMN
3→2 v2 can be written as σDMN

3→2 v
2 ≈ q0

32πm2
DMm

2
N
jMj2 � C2

N ,

where jMj2 is the squared matrix element whose expres-
sion is exactly given in Appendix B up to replacement
me ↔ mN , CN ¼ 2cpu þ cpd being the matching factor from

the quark level to nucleon level, q0 ≃
ffiffiffiffiffiffiffiffiffiffiffiffi
4 − ξ2

p
mDM being

the momentum transfer.
References [27,28] have studied the absorption of a

Fermionic DM in direct detection, where the energy transfer
equals a dark matter mass. Here we are the first of studying
the signal of the 3 → 2 inelastic scattering process in nuclei.
The total rate for multiple nuclei can be written as

R ¼
�
ρDM
mDM

�
2

σDMN
3→2 v

2
X
i

NT;iZ2
i F

2
iΘðE0

R;i − EthÞ; ð8Þ

where σDMN
3→2 v

2 is the reduced 3 → 2 inelastic cross section
per nucleon, Zi is the atomic number for ith target nuclei,

FIG. 5. Limits of several current experiments to σ3→2v2 · nDM
versus mDM. The solid and dashed lines denote ξ ¼ 0, 1.9, which
correspond to scattering into dark photon and bound state final
states, respectively. The exposures of several direct detection
experiments are listed in the Table II.
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F is the Helm form factor [84]. The recoil energy of
nuclei is monoenergetic and the signature is peaked at
ER ¼ E0

R ≃ ð4 − ξ2Þm2
DM=ð2mAÞ. Eth is the threshold of

direct detection, which is based on the following
experiments’ thresholds. Figure 5 shows the projected
sensitivities on σDMN

3→2 v
2 · nDM as a function of mDM in

various direct detection experiments including LUX [55],
PandaX-II [56], XENON1T [57], PICO-60ðC3F8Þ [85],
SuperCDMS [7], and DarkSide-50 [5], where the solid
and dashed lines correspond to scalar DM and bound state
DM cases with ξ ¼ 0 and 1.9, respectively. We use the
exposure for various experiments listed in Table II of
Appendix E and further assume null direct detection signal
(R ≤ 2.7) to derive the limits.

V. CONCLUSION

Direct detection of DM in underground laboratories has
been a promising way of exploring the particle nature of
DM. Given the situation that all searches of WIMPs have
turned up null even for exponentially increased exposure,
direct detection of sub-MeV DM becomes more and more
relevant, even though the detection ability is weak due to
the limitation of the detector threshold. In this paper, we
have proposed a new direct detection strategy via a 3-body
inelastic scattering process. The energy transfer to the
detector target in this process is enhanced compared with
the 2 → 2 scattering process, so it can be applied to the

direct detection of lighter DM. We have extracted the
generic physical observable for this process and presented
its effects in the direct detection of complex scalar DM. It
should be mentioned that this method is also applicable to
the direct detection of fermion DM.
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APPENDIX A: DERIVATION OF THE
SCATTERING AMPLITUDE IN A BOUND STATE

Following the quantum-field-theoretical procedure in
Ref. [68], the leading-order contribution of the entire
ΦΦ†e → ½ΦΦ†�Be scattering is shown in Fig. 6, where
q1, q2, and p1, p2 are the momenta of the dark matter in the
scattering states and the bound states, q3, p3, and PA0 are
the momenta of the initial electron, the final electron and
the dark photon, respectively. “− • −” denotes the full
propagators of dark matter. Without loss of generality, we
denote the coupling coefficients of the initial DMs with the
dark photon as g1, g2, respectively. Then the contribution of
Fig. 6 is evaluated to be

ð2πÞ4δ4ðq1 þ q2 þ q3 −p1 −p2 −p3ÞiCð5ÞμA0−ampS̃A0 ðp3 − q3Þ½ūðp3Þð−iϵeγνÞuðq3Þ�
≃ f−ig1ðpμ

1 þ qμ1ÞS̃1ðp1ÞS̃1ðq1Þð2πÞ4δ4ðp3 − q3 þp1 − q1ÞS̃2ðq2Þð2πÞ4δ4ðp2 − q2ÞS̃A0 ðp3 − q3Þ½ūðp3Þð−iϵeγνÞuðq3Þ�
− ig2ðpμ

2 þ qμ2ÞS̃2ðp2ÞS̃2ðq2Þð2πÞ4δ4ðp3 − q3 þp2 − q2ÞS̃1ðq1Þð2πÞ4δ4ðp1 − q1ÞS̃A0 ðp3 − q3Þ½ūðp3Þð−iϵeγνÞuðq3Þ�g;
ðA1Þ

where Cð5ÞμA0−amp ¼ Cð5ÞμA0−ampðPA0 ; p1; p2; q1; q2Þ. We define

η1;2 ¼
m1;2

m1 þm2

ðA2Þ

and

p1 ¼ η1Pþ p; q1 ¼ η1K þ k;

p2 ¼ η2P − p; q2 ¼ η2K − k; ðA3Þ

where P, p and K, k are the conjugate momenta of the
relevant coordinates, see Chapter 3.1 in Ref. [68] for
details. The conservation of 4-momentum gives

K þ q3 ¼ Pþ p3; K ¼ Pþ PA0 : ðA4Þ

Integrating q3 on both sides of Eq. (A1) and then
substituting Eqs. (A3), (A4) into it, which leads to

Cð5ÞμA0−ampS̃A0 ðPA0 Þ½ūðp3Þð−iϵeγνÞuðp3 − PA0 Þ�
≃ −g1Sðk;KÞ½2η1Kμ − ðη1 − η2ÞPμ

A0 þ 2pμ�S̃1ðη1Pþ pÞð2πÞ4δ4ðk − p − η2PA0 ÞS̃A0 ðPA0 Þ½ūðp3Þð−iϵeγνÞuðp3 − PA0 Þ�
− g2Sðk;KÞ½2η2Kμ þ ðη1 − η2ÞPμ

A0 − 2pμ�S̃2ðη2P − pÞð2πÞ4δ4ðk − pþ η1PA0 ÞS̃A0 ðPA0 Þ½ūðp3Þð−iϵeγνÞuðp3 − PA0 Þ�;
ðA5Þ
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where Cð5ÞμA0−amp ¼ Cð5ÞμA0−ampðPA0 ; η1K þ k; η2K − k; η1Pþ p;

η2P − pÞ, S̃A0 ðPA0 Þ ¼ −igμν
P2

A0−m
2

A0
is the propagator, and we

have used the definition [68]

Sðk;KÞ ¼ S̃1ðq1ÞS̃2ðq2Þ: ðA6Þ

For convenience, we define

Cð5ÞμA0−ampS̃A0 ðPA0 Þ½ūðp3Þð−iϵeγνÞuðp3 − PA0 Þ�
¼ Mμ

trans½ūðp3Þγμuðp3 − PA0 Þ�; ðA7Þ

from Eq. (A5), we find

Mμ
trans ¼

ϵeSðk;KÞ
P2
A0 −m2

A0

n
g1½2η1Kμ − ðη1 − η2ÞPμ

A0 þ 2pμ�S̃1ðη1Pþ pÞð2πÞ4δ4ðk − p − η2PA0 Þ

þ g2½2η2Kμ þ ðη1 − η2ÞPμ
A0 − 2pμ�S̃2ðη2P − pÞð2πÞ4δ4ðk − pþ η1PA0 Þ

o
: ðA8Þ

Using the approximate result of Mμ
transðp⃗; k⃗Þ calculated in Ref. [68]

Mμ
transðp⃗; k⃗Þ ¼

1

S0ðk⃗;KÞS0ðp⃗;PÞ

Z
dp0

2π

Z
dk0

2π
Mμ

trans; ðA9Þ

and substituting Eq. (A8) into Eq. (A9), we obtain

Mμ
transðp⃗; k⃗Þ ¼

ϵe
P2
A0 −m2

A0

1

S0ðk⃗;KÞS0ðp⃗;PÞ
n
g1
h
2η1Kμ − ðη1 − η2ÞPμ

A0 þ 2pμ
i
Ξ1ðk⃗; p⃗;K;PÞð2πÞ3δ3ðk⃗ − p⃗ − η2P⃗A0 Þ

þ g2
h
2η2Kμ þ ðη1 − η2ÞPμ

A0 − 2pμ
i
Ξ2ðk⃗; p⃗;K;PÞð2πÞ3δ3ðk⃗ − p⃗þ η1P⃗A0 Þ

o
; ðA10Þ

where the forms of Ξ1, Ξ2 and their nonrelativistic approximations can be found in Chapter 5 of Ref. [68]. Then the
transition amplitude can be expressed in terms of the Schrödinger wave functions

Mi
k⃗→n

≃
ffiffiffiffiffi
2μ

p Z
d3p
ð2πÞ3

d3k
ð2πÞ3

ψ̃⋆
nðp⃗Þ ϕ̃k⃗ðq⃗Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N P⃗ðp⃗Þ2N K⃗ðk⃗Þ
q Mi

transðk⃗; p⃗Þ; ðA11Þ

where

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N P⃗ðp⃗Þ2N K⃗ðk⃗Þ

q ≃
1

2μ

�
1 −

p⃗2 þ k⃗2

4μ2

�
1 −

3μ

M

��
; ðA12Þ

and

μ ¼ m1m2

m1 þm2

; M ¼ m1 þm2; ðA13Þ

FIG. 6. The leading-order contribution of the entire ΦΦ†e → ½ΦΦ†�Be process.
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are the reduced and the total masses of the initial DMs, respectively.
Substituting Eqs. (A10)–(A13) into Eq. (A11), the transition amplitude is changed to be

Mi
k⃗→n

≃
ffiffiffiffiffi
2μ

p Z
d3p
ð2πÞ3

d3k
ð2πÞ3 ψ̃

⋆
nðp⃗Þϕ̃k⃗ðk⃗Þ

1

2μ

�
1 −

p⃗2 þ k⃗2

4μ2

�
1 −

3μ

M

��
ϵe

P2
A0 −m2

A0

×

�
g1½2η1Ki − ðη1 − η2ÞPi

A0 þ 2pi�2m2

�
1þ p⃗2

2μ2

�
1 −

2μ

M

��
ð2πÞ3δ3ðk⃗ − p⃗ − η2P⃗A0 Þ

þ g2½2η2Ki þ ðη1 − η2ÞPi
A0 − 2pi�2m1

�
1þ p⃗2

2μ2

�
1 −

2μ

M

��
ð2πÞ3δ3ðk⃗ − p⃗þ η1P⃗A0 Þ

�
; ðA14Þ

we only keep the leading-order contribution in p and integrate k out, then Eq. (A14) is reduced to

Mi
k⃗→n

≃
ffiffiffiffiffi
2μ

p ϵe
P2
A0 −m2

A0

Z
d3p
ð2πÞ3 ψ̃

⋆
nðp⃗Þ

�
g1
h
2η1Ki − ðη1 − η2ÞPi

A0 þ 2pi
im2

μ
ϕ̃k⃗ðp⃗þ η2P⃗A0 Þ

þ g2
h
2η2Ki þ ðη1 − η2ÞPi

A0 − 2pi
im1

μ
ϕ̃k⃗ðp⃗ − η1P⃗A0 Þ

�
: ðA15Þ

Some useful integrals are introduced in Ref. [68]

I k⃗;nðb⃗Þ≡
Z

d3p
ð2πÞ3 ψ̃

⋆
nðp⃗Þϕ̃k⃗ðp⃗þ b⃗Þ; ðA16Þ

J⃗ k⃗;nðb⃗Þ≡
Z

d3p
ð2πÞ3 p⃗ψ̃

⋆
nðp⃗Þϕ̃k⃗ðp⃗þ b⃗Þ; ðA17Þ

we can reexpress Eq. (A14) in terms of these integrals as follows:

Mj

k⃗→n
¼ 2

ffiffiffiffiffi
2μ

p ϵe
P2
A0 −m2

A0

�
g1
η1

J j

k⃗;n
ðη2P⃗A0 Þ − g2

η2
J j

k⃗;n
ð−η1P⃗A0 Þ

þ
�
g1

�
Kj −

η1 − η2
2η1

Pj
A0

�
I k⃗;nðη2P⃗A0 Þ þ g2

�
Kj þ η1 − η2

2η2
Pj
A0

�
I k⃗;nð−η1P⃗A0 Þ

��
: ðA18Þ

Finally, according to the dark matter bound-state formation amplitude in Eq. (A18), the total scattering amplitude squared
of the ΦΦ†e → ½ΦΦ†�Be process can be obtained

jMk⃗→nj2 ¼
1

2

X
spin

			Mμ

k⃗→n
ūðp3Þγμuðp3 − PA0 Þ

			2;
¼ Mμ

k⃗→n
ðMν

k⃗→n
Þ�
h
2gμνðPA0 · p3Þ − 2PA0νp3μ − 2PA0μp3ν þ 4p3μp3ν

i
: ðA19Þ

The Ward-Takahashi identity tells us that

ðPA0 ÞμMμ

k⃗→n
ðPA0 ; q1; q2;p1; p2Þ ¼ g1

X2
i¼1

½M0ðPA0 ;q1; q2;pi − PA0 Þ −M0ðPA0 ; qi þ PA0 ;p1; p2Þ�

þ g2
X2
i¼1

½M0ðPA0 ; q1; q2;pi − PA0 Þ −M0ðPA0 ; qi þ PA0 ;p1; p2Þ�;

¼ ðg1 þ g2Þ
X2
i¼1

½M0ðPA0 ; q1; q2;pi − PA0 Þ −M0ðPA0 ; qi þ PA0 ;p1; p2Þ�: ðA20Þ
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For the attractive DM interaction,

g1g2 < 0: ðA21Þ

In the case of a identical dark matter pair, we have

m1 ¼ m2 ¼ mΦ; ðA22Þ

then μ, η1, η2, and g1, g2 can be obtained:

η1 ¼ η2 ¼
1

2
; ðA23Þ

μ ¼ mΦ

2
; ðA24Þ

g1 ¼ −g2 ¼ gD: ðA25Þ

The Ward-Takahashi identity in Eq. (A20) is reduced to

ðPA0 ÞμMμ

k⃗→n
ðPA0 ; q1; q2;p1; p2Þ ¼ 0; ðA26Þ

which is known as the Ward identity. According to the
Ward identity, the 0 component of dark matter bound-state
formation amplitude can be written as

M0

k⃗→n
¼

Pi
A0Mi

k⃗→n

P0
A0

: ðA27Þ

Therefore, we can express the total scattering amplitude
squared in the form that only contains i; jð1; 2; 3Þ
components,

jMk⃗→nj2 ¼ 2ðPA0 · p3Þ
�jPi

A0Mi
k⃗→n

j2
ðP0

A0 Þ2 −Mj

k⃗→n
ðMj

k⃗→n
Þ�
�
þ 4

�
ðp0

3Þ2
jPi

A0Mi
k⃗→n

j2
ðP0

A0 Þ2

−
p0
3

P0
A0
ðPj

A0M
j

k⃗→n
Þ�ðpi

3M
i
k⃗→n

Þ − p0
3

P0
A0
ðpj

3M
j�

k⃗→n
ÞðPi

A0Mi
k⃗→n

Þ þ ðpj
3M

j�

k⃗→n
Þðpi

3M
i
k⃗→n

Þ
�
: ðA28Þ

Following the calculations in Ref. [68], for the capture in
the ground state f100g, we keep only the leading-order
terms for I k⃗;f100g and J k⃗;f100g,

I⃗ k⃗;f100gðb⃗Þ ≃
2RðζÞ
1þ ζ2

b

k5=2
cos θ̃; ðA29Þ

J⃗ k⃗;f100gðb⃗Þ ≃
RðζÞ
k3=2

k⃗; ðA30Þ

and the parameters θ and b⃗ are defined as

cos θ ¼ k⃗ · P⃗A0

jk⃗jjP⃗A0 j
; ðA31Þ

with

θ̃ ¼
�
θ; for b⃗ ¼ η2P⃗A0

π þ θ; for b⃗ ¼ −η1P⃗A0
; ðA32Þ

and other parameters can be found in Ref. [68].
Under the above conditions, the dark matter bound-state

formation amplitude in Eq. (A18) is approximated to be

Mj

k⃗→f100g ¼ 2
ffiffiffiffiffi
2μ

p ϵe
P2
A0 −m2

A0

�
ðg1 − g2Þ

2RðζÞ
jk⃗j3=2

kj sin θ

þ ðg1 − g2Þ
RðζÞ

ð1þ ζ2Þ
jP⃗A0 j
jk⃗j5=2

Kj cos θ

�
: ðA33Þ

We calculate the total scattering amplitude in the rest
frame of dark matter and electron. The relevant 4-momenta
are given by

K ¼ ð2mΦ; 0Þ; k ¼ ð0; μv⃗relÞ; q3 ¼ ðme; 0⃗Þ;
P ¼ ðEB;−q⃗Þ; p3 ¼ ðE0

e; q⃗Þ; ðA34Þ

the relative velocity v⃗rel in k is not negligible due to the
nonsingularity of the dimensionless parameter ζ ¼ αD

jv⃗relj.
Then the amplitude in Eq. (A33) is reduced to

Mj

k⃗→f100g ¼ 2
ffiffiffiffiffi
2μ

p ϵe
P2
A0 −m2

A0

�
ð2gDÞ

2RðζÞ
jk⃗j3=2

kj sin θ

�
:

ðA35Þ
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APPENDIX B: THE MATRIX ELEMENT SQUARED FOR DM-ELECTRON SCATTERING

In this section we calculate the analytical expressions of matrix elements squared of DM-electron scattering for dark
photon and bound final states. According to Feynman diagrams in Fig. 3, the matrix element squared for scalar DM is

jMj2S ¼
64παg4Dmeϵ

2½2mχEA0 ðmχ þmeÞ −m2
A0 ðEA0 −mχ þmeÞ�

m2
A0 ð−2meEA0 þm2

A0 þ 4mχmeÞ2
; ðB1Þ

where the total energy of dark photon EA0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A0 þ q2
q

≃ q. For the bound state DM, combining Eqs. (A28), (A34), and
(A35), we obtain

jMk⃗→f100gj2 ¼
ϵ2e2ð2gDÞ2�

−4memΦ þ 2me

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þM2

Bf100g
q

−m2
A0

�
2

64

jv⃗relj
jRðζÞj2

×

�

ð2mΦ − EBf100gÞE0

e − q⃗2
�� q⃗2cos2θsin2θ

ð2mΦ − EBf100gÞ2
− sin2θ

�

þ 2ðE0
eÞ2

�
q⃗2cos2θsin2θ

ð2mΦ − EBf100gÞ2
�
−

4E0
e

2mΦ − EBf100g
q⃗2cos2θsin2θ þ 2q⃗2cos2θsin2θ

�
: ðB2Þ

APPENDIX C: DIFFERENTIAL IONIZATION RATE FOR DM-ELECTRON SCATTERING

The cross section for the 3 → 2 process is written as follows:

hσv2i ¼ 1

4EA0E0
e

Z
d3q
ð2πÞ3

d3k0

ð2πÞ3
1

8E2
DMEe

ð2πÞ4δðEi − EfÞδ3ðk⃗þ q⃗ − k⃗0ÞjMðqÞj2 × jfðq⃗Þj2; ðC1Þ

¼ 1

32EA0E0
eE2

DMEe

Z
d3q
ð2πÞ3 2πδðΔE − 2mDM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

A0

q
ÞjMðqÞj2jfðq⃗Þj2: ðC2Þ

Following the procedure in Ref. [29], the event rate is derived by

R ¼ NT

�
ρDM
mDM

�
2
Z

d3vgDMðvÞhσv2i; ðC3Þ

¼ NTρ
2
DM

32m2
DMEA0E0

eEeE2
DM

Z
d3q
ð2πÞ2 d

3vgDMðvÞδ


ΔE − 2mDM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

A0

q �
jMðqÞj2jfðq⃗Þj2; ðC4Þ

¼ NTρ
2
DM

32m2
DMEA0E0

eEeE2
DM

Z
d3q
ð2πÞ2 δ



ΔE − 2mDM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

A0

q �
jMðqÞj2jfðq⃗Þj2; ðC5Þ

where gDMðv⃗Þ is the distribution function of dark matter velocity. After replacing the form factor fðqÞ → fionðk0; qÞ in
Eq. (C5) by applying the Eq. (A.21) from Ref. [29], we integrate q and then the differential ionization rate is written as

dR3→2

dER
¼

X
n;l

NTρ
2
DM

128πm4
DMmeE0

eER
qjMðqÞj2jfn;lionðk0; qÞj2; ðC6Þ

where we take the approximation EDM ≈mDM, Ee ≈me.
1 E0

e ¼ me þ 2mDM −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

A0

q
, EA0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

A0

q
≃ q,

k0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meER

p
, where ER is the recoil energy of electron.

1The initial electron should be described by Ee ¼ me − EB where EB is the binding energy of atomic electron. Since the EB ≪ me,
thus we take the approximation Ee ≈me for convenience.
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