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We perform a thorough analysis of the 7 — 5/ mixing effects on the A, — An() decays based on the
perturbative QCD (PQCD) factorization approach. Branching ratios, up-down asymmetries, and direct CP
asymmetries are computed by considering four popular mixing schemes, such as n —7#', n—n —n,,
n—n"—G,andn — ' — G — n. mixing formalisms, where G represents the physical pseudoscalar glueball.
The PQCD predictions with the four mixing schemes does not change much for the 7 channel but changes
significantly for the #’ one. In particular, the value of B(A, — A#’) in the  — ' — G — 5, mixing scheme
exceeds the present experimental bound by a factor of 2, indicating the related mixing angles may be
overestimated. Because of the distinctive patterns of interference between S-wave and P-wave amplitudes,
the predicted up-down asymmetries for the two modes differ significantly. The obvious discrepancies
among different theoretical analyses should be clarified in the future. The direct CP violations are predicted
to be at the level of a few percent mainly because the tree contributions of the strange and nonstrange
amplitudes suffer from the color suppression and CKM suppression. Finally, as a by-product, we
investigate the A, — Az, process, which has a large branching ratio of order 107*, promising to be
measured by the LHCb experiment. Our findings are useful for constraining the mixing parameters,

comprehending the #() configurations, and instructing experimental measurements.

DOI: 10.1103/PhysRevD.107.093008

I. INTRODUCTION

The phenomenon of mixing in the # —#’ system is an
interesting subject in hadron physics. In the exact SU(3)
flavor-symmetry limit, the pseudoscalar meson 1 would be
a pure flavor octet and ' a flavor singlet. However, it is
known that the SU(3) flavor symmetry breaking will lead
to 7 — ' mixing, which can be either described in the octet-
singlet basis [1,2] or in the quark-flavor basis [3,4].
Occasionally, allowing for the heavier charm component
in the n and #' mesons [5,6], one has to consider the c¢
components in the mixing basis. In the QCD case, apart
from the quark-antiquark combinations, pure gluon con-
figurations, such as the two-gluon states, can also form an
SU(3) singlet, which allows a possible gluonic admixture
in #/ mesons [7-14]. The  — ' mixing phenomenon could
then be generalized to include more states, such as glueballs
and 77, mesons [15,16]. In this respect, a better knowledge
of the quark and gluon components inside the 5 and 7’ states
deepens our understanding of nonperturbative QCD
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dynamics in flavor physics [17], and the beauty hadron
decays to 5, n’ pseudoscalar mesons can be used to shed
light on these phenomena.

In the B meson sector, the observed hierarchy of B(B —
' K) > B(B — 1K) [18] has attracted much attention, and
many solutions have been proposed [10,19-24]. The large
difference suggests a contribution to B(B — 1'K) via the
SU(3) singlet component of the 7 and #'. It has been known
that the gluonic and charm contents of the light pseudoscalar
mesons 77 and 77/ may have a crucial impact on studies of many
hadronic processes [17]. Various mixing mechanisms in B —
n) decays have been explored in the context of perturbative
QCD factorization (PQCD), in which the transverse momenta
of valence quarks are included to regulate the end-point
singularities; see, e.g., Refs. [6,25-29]. The earlier PQCD
predictions at leading order for B — 1) K without the flavor-
singlet amplitudes are higher (lower) than the measured values
[28]. Although the partial next-to-leading order (NLO) con-
tributions are included in [25], the gap between theory and
experiment is still not completely understood. In Ref. [27], the
authors examined the gluonic contribution to the B — 5,7/
transition form factors and found that it is numerically
neglected. A mixing scheme for 7, #/, and the pseudoscalar
glueball was proposed in [30], in which the formalism for the
n —n' — G mixing was set up. Three years later, this trimixing
formalism was further extended to the n—# —G -7,
tetramixing by including the 7. meson in Ref. [6]. They
discovered that the 5,.-mixing effects enhance the PQCD
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predictions for B(B — 1'K) by 18% but not for B(B — nK),
and they claimed that the puzzle of the above distinctive
pattern can be resolved. In Ref. [26], three different mixing
schemes for the 7 — # system were taken into account, and the
PQCD calculations for the B — ;) K decays were improved
tothe NLOlevel. Itis found that the NLO PQCD predictions in
the n —#' — G mixing scheme provide a nearly perfect
interpretation of the measured values.

The 5 — ' — G mixing scheme was also applied to the
B — J/yn") decays [31] in PQCD. A large gluon con-
tribution was advocated from the analysis of relative
probabilities of the B, — J/wn' and B, — J/yn decays.
However, the subsequent measurements from LHCb
[32,33] hint at a small gluonic component in the #’ meson.
It is then worthwhile to examine whether these mixing
schemes can explain the measurements well in the baryon
reactions involving 7 or 7/ mesons, such as A, — An')
decays.

Searches for the A, — Ay and A, — Ay’ decays have
been performed by the LHCb [34] Collaboration. The
branching ratio of the former was measured to be B(A, —
An) = 9.3713 x 107° at the level of 30 significance, while
an upper limit for the latter mode was set as 3.1 x 107 at
the 90% confidence level. Some predictions exist for the
A, — An') decays. Within the framework of the light-front
quark model (LFQM) [35], the branching ratios were
estimated to be at the order of 10~® in the absence of
penguin contributions. In Ref. [36], based on the QCD
factorization (QCDF), the branching ratios were predicted
to be in the ranges B(A, = An) ~ (3 —6) x 107" and
B(A, = Af) ~(3—=7)x 107 with large theoretical
uncertainties, while in Ref. [37] the branching ratios were
calculated to be B(A, — An, Ay') = (1.47 £0.35,1.83+
0.58) x 107, exploiting the generalized factorization
approach (GFA). In an earlier paper [38], a wider range,
(1.8 =19.0) x 1075, was estimated by using different
models for the A, — A form factors.

Our purpose in the present paper is to probe the n — %’
mixing in the A, — Az() decays by employing the PQCD
approach at leading order accuracy. Four available mixing
schemes for the 7 — i’ system—namely, n — 1/, n — ' — G,
n—n-G-n. and n—n —n,. mixing—are taken into
account. The effect of radial mixing is neglected due to the
absence of A, — n") form factors in the relevant processes
[39], and the mixing with the pion under the isospin
symmetry is not considered either. Within these mixing
schemes, we calculate the branching ratios, up-down
asymmetries, and direct CP violations for A, — Ay
and investigate the scheme dependence of the theoretical
predictions.

The paper is organized as follows. In Sec. II, we first
discuss the four mixing schemes as well as the related
mixing angles and review the hadronic light-cone distri-
bution amplitudes (LCDAs). Then, we briefly present the

effective Hamiltonian and kinematics for the PQCD
calculations. We show the PQCD predictions for the
branching ratios, up-down asymmetries, and direct CP
asymmetries of the relevant decays with four different
mixing schemes in Sec. III. A summary will be given in the
last section. The Appendix is devoted to details for the
computation of the decay amplitudes within PQCD.

II. THEORETICAL FRAMEWORK

A. n-7 mixing phenomenon

This section is devoted to the phenomenological aspects
of # —#n mixing. In this work we consistently use the
quark-flavor mixing basis rather than the singlet-octet
mixing basis since fewer two-parton twist-3 meson dis-
tribution amplitudes need to be introduced [27]. Following
the analysis of Refs. [3,6,26,30], we first introduce four
different # —# mixing schemes. In the conventional
Feldmann-Kroll-Stech (FKS) scheme [3.4] for the n —#
mixing, the physical neutral pseudoscalar mesons 5() can
be represented as a superposition of isosinglet states,

)=Ce 6o
" sp e ) \ng )’
with shorthand (c, s) = (cos, sin) and ¢ being the mixing
angle. Here, 1, = (uit + dd)/\/2 and 5, = 55 are the so-
called nonstrange and strange quark-flavor states, respec-
tively. The presence of only one mixing angle in this case is
due to the Okubo-Zweig-lizuka (OZI) suppressed contri-
butions being neglected [15]. For details of the two-angle
mixing scheme for the  — i’ system, see Refs. [40,41].
Alternatively, allowing for another heavy-quark charm
c¢ component in the # and #/, the conventional FKS
formalism can be generalized naturally to the trimixing
of n — 1 — 1, in the gg — s5 — cc basis. The physical states
are related to the flavor states via [3]

n co —s¢ —Hcsey Mg

7| = s¢ c 0.co, ns |,

Me _gcs(¢_9y) _ec'c(¢_9y) 1 Me
(2)

where 6. and 0, are two new mixing angles related to the

charm decay constants of the () mesons.

In QCD, gluons may form a bound state, called gluo-
nium, that can mix with neutral mesons [11]. By including
a possible pseudoscalar glueball state 77, in the ") mesons
[14,30], the FKS mixing scheme can be extended to the
n —n' — G mixing formalism, where G denotes the physical
pseudoscalar glueball. Using the quark-flavor basis, we can
write [30,31]
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n ch+ 50s0,(1 — cpg) —s¢p + s0cO;(1 — cpg) —sOsdg Mg
0| = | sb—cos0,(1=cgg)  ch—coco,(1=cgg)  cOsps || s |, 3)
G —50;5¢6 —cO0;s¢¢ chg My

where 6; = 54.7° is the ideal mixing angle between the octet-singlet and the quark-flavor states in the SU(3) flavor-
symmetry limit [17,42]. Here, 0 is related to ¢ by 8 = ¢ — 6;, and ¢ is the mixing angle for the gluonium contribution.
We assume that the glueball only mixes with the flavor-singlet #; but not with the flavor-octet #g, so the two mixing
angles ¢ and ¢ are sufficient to describe the mixing matrix in Eq. (3). It has been verified that the contribution from the
gluonic distribution amplitudes in the () meson is negligible for B meson transition form factors [27]. Hence, we still
suppose that the 7 and #” mesons are produced via the nonstrange (strange) component in the baryon decays under the
n—#n — G mixing.

In [6], the authors combined the above two trimixings by considering the tetramixing of # — ' — G — 5., which is
described by a 4 x 4 mixing matrix. It was assumed that the heavy-flavor state only mixes with the pseudoscalar glueball;
then the transformation reads

n cOcO; — s0sO;cpg  —cOs0; — s0cO;cpg —sOspgche —sOspgsdhc Mg
74 _ s0cO; + cOsO;cpg  —s0s0; + cOcO;cpg  cOspgepe  cOspgsdpc N ()
G s0;5¢g —cl;spg chgedc chgshe un 7
Ne 0 0 —s¢c chc Ne
where the new angle ¢ is the mixing angle between the B. Light-cone distribution amplitudes
glueball and 7. components. It can be easily seen that The hadronic LCDAs are important in PQCD calcula-

the n= n=G-. tetramixing formalism reduces to the o0 which describe the momentum fraction distribution
n = 1" — G and FKS schemes in the ¢c —> 0 and pcg =0 of valence quarks inside hadrons. There are various models
limits, respectively. o of the A;, and A baryon LCDAs available in the literature

As the mixing of 7 and #’ is still not completely clear at [47-58]. In this work, we adopt the exponential model
the moment, they may be mixed with the radial excitations, LCDAs for the A, baryon [49] and Chernyak-Ogloblin-
leadmg to more compl¥cated mixing for?’nahsm. .In the Zhitnitsky (COZ) model for the A [53], whose explicit
following analysis, we ignore other possible admixtures expressions can be found in the previous work [59-61] and
from radial excitations. In addition, we assume that isospin  ¢hall not be repeated here. It has been confirmed that the

symmetry is exact (m, = m, < my); the mixing with 7—  models employed lead to reasonable numerical results for
such as the 7 —» mixing [43], the trimixing of 7 —#n —#' the A, — A form factor with fewer free parameters [59].
[44,45], and the tetramixing of 7 —n —#' — . [46]—are Two-parton quark components for the 7, . mesons are
not considered here. defined via the nonlocal matrix elements [27,62,63]

532152 (0)10) = =i [ e ecrsigt () + i 5) + i = DT )

i

V2N,
where N is the number of colors. Here, 5, can be obtained by substituting s for d in Eq. (5) and multiplying by a factor of
1/\/5. The two light-cone vectors n = (1,0,07) and v = (0,1,07) satisfy n-v = 1. Note that mg’s are the chiral

enhancement scales associated with the twist-3 LCDAs, which can be expressed in terms of the decay constants f, ; and the

mixing angles. Their values can be fixed by solving for the mass matrix in different mixing schemes [3], which will be given
in the next section.

(ne(q)[ep(2)c,(0)[0) = — A | dyeT3ys(dy (v) + my by, (v)]. (5)
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The models for the various twist distribution amplitudes have been determined in [64,65],

fq,s
22N,
fq s

as(y) =

os()

fq N
2V/2N,
_Ja
- 22N,

Z]is (.y) =

7 (V. b)

mC
N'y(1 —y)exr){—wy(l

6y(1 = y)[1 + a,C3 (u) + as €3 (u)),

S 1/2 9 1/2

1
(1-2y) [1 + 6(5'73 — 51303 =

7 3
5P~ 5/)3&2) (1 =10y + loyz)} ,

() )

#.0:0) = v ep{ 2oy )| (5725 ) e )

where we resort to SU(3) symmetry and use the same
Gegenbauer moments for the n, and 7. This approximation
is reasonable since the main SU(3) breaking in Gegenbauer
moments is due to the nonzero odd terms and that in a, is
subleading [66]. Here, we include the SU(3)-breaking
effect via the decay constants, the chiral scales, and the
parameters p,, in the LCDAs. These nonperturbative
parameters are not all independent. The two mass ratios
pgs are related to the respective chiral scales by
Pgs =2m,/md”*, with m, being the current quark
masses. The two parameters 7; = 0.015 and w; = -3
are the same as for the pion distribution amplitudes [64].
The Gegenbauer polynomials C(u) are given as

3 1
G ) =56 =1). G () =50 ~1).
1
Ci*(u) = g (33012 +35u"),
15
C3(u) =5 (1= 14u% +21u*), (7)

with u =2y — 1. The shape parameter @ = 0.6 GeV is
taken from [65]. Note that f, and m, are the decay
constant and mass of the . meson, respectively. The two
normalization constants N** are determined by [65]

I
22N,

A Ly (5.b = 0) = (8)

C. PQCD calculation

The PQCD approach has been developed and success-
fully applied to deal with the A, hadronic decays
[59-61,67-73]. In the PQCD picture, the decay amplitudes
can be calculated by the convolution of the nonperturbative,

universal LCDAs and the perturbative hard scattering
amplitude. After defining the nonperturbative LCDAs in
the last subsection, we are ready to calculate the decay
amplitudes of the strong coupling constant at leading order.
Various topological diagrams responsible for the consid-
ered decays are presented in Fig. 1. The labels 7', C, E, and
B refer to external W emission, internal W emission, W
exchange, and bow-tie topologies, respectively. The sub-
script ¢(s) of E corresponds to the contribution from
the nonstrange (strange) component in the 5() mesons.
Exchanging two identical quarks in the final-state baryon
and meson for the E- or B-type diagram, we obtain a new
topology denoted by B’ as exhibited in the last diagram of
Fig. 1. We draw one representative Feynman diagram for
each topology here; for a more complete set of Feynman
diagrams, refer to our previous work [59,60,73].

In the A, rest frame, we choose the A,(A) baryon
momentum p(p’) and the meson momentum g in the light-
cone coordinates:

(1.1,07), (f 7 07),

SR

(I=f"1=f7.0p), ©)

SIS S

with M being the A, baryon mass. The factors f* can
be derived from the on-shell conditions p”> = m3 and

g*> = m? for the final-state hadrons, which yield

%( —r —|—rA:I:\/

with the mass ratios r) = m(y) /M. The spectator

momenta inside the initial and final states are parametrized
as

ft= -4r%). (10)

r—|—rA
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FIG. 1. Sample topological diagrams responsible for the decay A, — An). Here, T denotes the external W emission diagram, C
represents the internal W emission diagram, E () labels the W exchange diagram with nonstrange (strange) components contributing to
the #() mesons, B denotes the bow-tie-type W exchange diagram, and B’ represents the diagram that can be obtained from the W
exchange diagram by exchanging the two identical quarks in the final states.

ky = (%,%thlT>’ ky = (O’%x25k2T>’ ks = <0’%x3’k3T)’
b= (T5rmon ). b= (Shrmoky ) k= (T ),
M M
q, = (ﬁy(l —f+),ﬁy(l _f_)’ qT)v
= (T30 -0 = 7)== 1) -ar ). (1

where xi >2‘3 and y are the parton longitudinal momentum fractions, and k(l},ZT,ST and q are the corresponding transverse

momenta. The momentum conservation implies the relations

3
Soxl=1, > kj=o0. (12)
=1

=1

Here, all the kinematical variables are labeled in the first diagram of Fig. 1.
Based on the operator product expansion, the effective weak-interaction Hamiltonian for the b — s transition reads [74]

Herr = % {VQbV* JCH () O (1) + Cy (1) OF ()] — Zk:VmV;Ck(ﬂ)Ok(ﬂ)} +He., (13)

where Vo, 055 are the Cabibbo-Kobayashi-Maskawa O3 ¢ and the electroweak penguin operators O7_j¢. The C;’s
(CKM) matrix elements with Q = u for 7, ; and Q = ¢ for  are the Wilson coefficients which encode the short-distance
1. Here, G is the Fermi constant, and y is the factorization ~ physics. The four-quark operators O; describing the hard
scale. The sum over k comprises the QCD penguin operators ~ electroweak process in b quark decays read
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0¢ = Ou7,u(1 =75)bs ® 557" (1 = 75) Qe

02Q = Qayu(l yS)ba ® sﬁyﬂ( )Qﬁ’

03 = S‘ﬁ}/ﬂ(l =75 bﬂ ® an},ﬂ 1 - J/S>Qa’
q/

04 = 551,(1 = 15)ba ® > 7" (1 =754,
q,

Os = 551,(1 = 15)bs ® >_qer(1 + 15) gt
q/

06 = 551,(1 = 15)ba ® >_ 7" (1 +15)4),
q/

3.
0 ES 7;{(1 - 75)b[1 ® ;eq Qay 1 + 75)610:’
3_ /
0 Es yu(l —7s ba®zeq qay 1 +y5)CIﬂ7
q
3_ _
05 =2 551,(1 = 1)y ® %:eqfqﬁlr"(l —75) 4l
3 !
Oy = 258 s7u(1 =75)by ® Zeq oy (1= 75)qp. (14)

where the sum over ¢’ runs over the quark fields that are active
at the scale u = O(my,).

The decay amplitudes of A, — An,, A, — An,, and
A, — Ay, (namely, nonstrange M,, strange M, and
charm M) are given by sandwiching H,.g with the initial
and final states,

Mq,s.c = <Anq,s,c|Heff|Ab>’ (15)

which can be further expanded with the Dirac spinors as
M = A(p")[Ms + Mpys|A,(p), (16)

where Mg and Mp correspond to the parity-violating
S-wave and parity-conserving P-wave amplitudes, respec-
tively. Their generic factorization formula can be written as

M i ﬂ:GF
S/P* ]8\/_

x Qg (b, b by)e "

Z/ [dx][dx'|dy[Dblg, @3 (i,)
Z a,”e”_Hﬁi/_(x,x,y),

o=LL,LRSP
(17)

where the summation extends over all possible diagrams
R;;. Here, a%w denotes the product of the CKM matrix
elements and the Wilson coefficients, where the super-
scripts 0 = LL, LR, and SP refer to the contributions from
(V=A)(V-A), (V-A)(V+A), and (S—P)(S+ P)
operators, respectively. Notice that an overall factor 8 from

a"RH_ has been absorbed into the coefficient in Eq. (17) for
convenience. The explicit forms of the Sudakov factors § R,
can be found in [60]. Note that H 117?,,-

hard amplitude depending on the spin structure of the final
state, and Q R, is the Fourier transformation of the denom-

is the numerator of the

inator of the hard amplitude from the k; space to its
conjugate b space. The impact parameters b, b’, and b, are
conjugate to the parton transverse momenta kz, k., and g7,
respectively. The integration measure of the momentum
fractions is defined as

(3x0] = ax\Vaxl dx(s(1 = 2 =20 = x0),  (18)
where the ¢ functions enforce momentum conservation.
The quantities associated with a specific diagram—such
as Hg , ag, [DD] k,» and tx —are collected in the
Appendix. The decay branching ratios, up-down asymme-

tries, and direct CP asymmetries of the relevant decays are
given as [73,75]

|P|TA
B=—>2[(1

)M+ (1 = r)?[Mp|],
2(1 = r)Re[M5M )
(1+r)?|Ms|* + (1 = r)*|Mp|>
N =T(A, = Ayl
ACP — (;) <—b = (/)) s (19)
(A, = Ant)) +T(A, — An'))

where |P| is the magnitude of the three-momentum of the A
baryon in the rest frame of the A, baryon.

III. NUMERICAL ANALYSIS

In this section, we perform a numerical analysis for the
branching ratios, up-down asymmetries, and direct CP
asymmetries within various mixing schemes. As we have
discussed before, there are four available mixing schemes
for the n —#' system, denoted as S1, S2, S3, and S4,
respectively. We first collect the scheme dependent input
parameters as follows:

() n—#' mixing (S1) [3],

fo=107fr fo=134f, ¢=39.3"+1.0°,
mi =107 GeV,  m} =192 GeV. (20)
(ii) #— 5 — G mixing (S2) [30],
fo=Tn fs=13fr, ¢=437°
$o=12°413°, ml=2.08GeV, m)=176GeV.
(21)
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(iii) n—# — G —n, mixing (S3) [6], A =0.22650,

p=0.141,

A =0.790,

fo=Ffe fi=13f, =437 i =0.357. (25)

¢=12°+13°, m§=2.08GeV, mj=176GeV,
pc=11° f, =042GeV, m, =2.98GeV. (22)

The lifetime of the A, baryon is taken as 1.464 ps. For the
pion decay constant, we use f, = 0.131 GeV [64], and for
the Gegenbauer moments, we choose a, = 0.44 £ 0.22
and a4 = 0.25 [28]. We neglect the scale dependence of the
chiral scales and the Gegenbauer moments in the default
calculation.

As stressed before, the PQCD calculations are performed
in the quark-flavor basis. The contribution of various

(iv) n—n' —n. mixing (S4) [3],

fo=107fr f,=134f, ¢=39.3°+10°

q __ s
moy = 1.79 GeV, my = 1.91 GeV, topological diagrams to a specific process is determined
m, =295 GeV, 0. =—1°, by the quark-flavor composition of the particles involved in
0, = —21.2°, £, = 0.405 GeV. (23) the decay. For example, the nonstrange amplitude M,

receives contributions from all five topological diagrams,
while the strange one M, has no contributions from the
C- and B-type diagrams. Note that the W exchange
bu — su transition contributes to M, and M, through
the E, and E diagrams, respectively. As for the A, — An,
decay, besides the dominant 7-type diagrams contributing
to M., it can proceed via B’ diagrams if one replaces the s5
pair with ¢¢ in the last diagram of Fig. 1.

According to Eq. (17), we first give the numerical results
of various topology contributions to the S-wave and
P-wave amplitudes for the A, — An, . processes within

To obtain the chiral enhancement scales mg’s, we also need
the light quark mass as input. Because meson distribution
amplitudes are defined at 1 GeV, we take m,(1GeV)=
5.6MeV [76] and m,(1GeV)=0.13GeV [26]. The rel-
evant masses (GeV) and the CKM parameters in
Wolfenstein parametrization are taken from the Particle
Data Group [18]. Their current values are

M = 5.6196, my = 1.116, my, = 4.8,
four mixing schemes in Table I. The differences among
me = 1.275, my = 0.548, my = 0.958, (24)  these solutions can be ascribed to the chiral enhancement
scales related to the decay constants and the mixing angles.
and The drastic sensitivity of the chiral enhancement scales to

TABLE 1. Numerical results of various topological amplitudes of A;, — An, . in units of 107'°, The last column is their sum. Only
central values are presented here.

Scheme T C E B B Total

N, — Anq

Mg(S1) -3.8+1il1.2 32—-1i153 —1.4+1i2.3 —2.4+i3.1 0.7 —-1i0.3 -3.7-19.0
Mp(S1) —4.0-1i16.0 —3.3+1il12.5 —-0.3+i2.6 —1.8 -16.8 —-0.6 +i0.3 —-10.0-1i7.4
M(S2,S3) -34+i04 3.1 -1i209 —-1.4+i3.3 —34+i55 0.6 —i0.3 —4.5-112.0
Mp(S2,S3) -4.8—1i14.7 -2.6+i17.1 —-1.7+1i2.2 -5.1-1i7.6 —-0.6 +1i0.3 —14.8 —i2.7
M (S4) -3.8+il.2 4.4 —1i209 —1.14+i3.0 -3.6 +i4.3 0.7 —i0.3 -34—-1i12.7
Mp(S4) —4.1 -1i16.0 —2.441i16.7 -0.2+i2.6 —4.7—17.1 —-0.6 +1i0.3 —-12.0-1i3.5
Ab - AI’]‘

Mg(ST) —6.1 +i15.5 4.0 -1i8.5 0.6 —i0.2 -1.5+1i6.8
Mp(S1) 8.9 —i64.1 —6.6 + i4.1 —0.6 +i0.3 1.7 —i59.7
M¢(S2,S3) —4.1+1i9.5 2.7-1i5.6 0.4 —i0.2 —-1.0+i3.7
Mp(S2,S3) 6.6 —i43.2 —4.54+i2.1 —-0.4+i0.2 1.7 —i40.9
M(S4) —58+i14.8 40-i8.5 0.6 — 0.2 ~12+i6.1
Mp(S4) 10.5 —i63.8 —6.0 +i4.9 —-0.6 + 0.3 3.9-i58.6
Ab g Ar/c

M(S3) 42.8 —i369.9 0.05 4 i0.02 42.9 — i369.9
Mp(S3) 80.9 — i583.9 —0.05 4 i0.01 80.8 —i583.9
M(S4) 35.4 —i356.0 0.04 +i0.01 35.4 —i356.0
Mp(S4) 74.3 — i576.9 —0.05 4+ i0.01 74.3 — i576.9
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the choice of mixing schemes will be reflected in the spread
of our predictions for the decay amplitudes. Referring to
Egs. (20) and (21), we can see that the chiral scale mg in S2
is almost twice as large as that in S1, causing distinct
nonstrange amplitudes for the two schemes. Analogously,
the m{ in S1 and S4 are almost equal, resulting in a tiny
variation in the strange amplitudes. Likewise, the same
mixing parameters are used in S2 and S3 as shown in
Egs. (21) and (22); the calculated amplitudes are exactly the
same. Numerical differences between S3 and S4 for the
charm amplitude arise from a different choice of mass and
decay constants of the 7. meson as shown in Egs. (22)
and (23). One may wonder why the 7-type nonstrange
amplitudes yield the same results under S1 and S4 despite
the fact that the parameter m{ differs between the two
schemes. The interpretation is not trivial. We know that the
chiral scales are proportional to the twist-3 meson LCDAs,
which do not contribute to the nonstrange amplitude via the
external W emission diagram at the current theoretical
accuracy (see the expression of Hf —in Table VII, for

example) because only the external W emission from
(V=A)(V—A) and (S—P)(S+ P) operators survives
for the b — suit and b — sdd transitions. Nevertheless,
the strange amplitude receives additional twist-3 contribu-
tions arising from the W emission diagrams through the
b — ss5 transition with the (V —A)(V +A) operators
inserted. As a result, the my, term appears in the strange
amplitude, resulting in the different 7-type strange ampli-
tudes between S1 and S4.

We now proceed to discuss the relative sizes of various
topological amplitudes. From Table I, we observe that
the A, — An, process is dominated by 7 and C. As the
interference between T and C is destructive, the contribu-
tions from the exchange diagrams, such as B and E, are in
fact important and non-negligible. Similar to the case of
Ay, — A [60], the A, — An, decay is governed by T and

TABLE II.

E, which are of similar sizes. The A, — An. process is
dominated by the T-type diagrams, and its amplitudes are
larger than the (non)strange ones by 1 order of magnitude.
The contributions from B’-type exchange diagrams are
predicted to be negligibly small in all three processes.

It is worth noting that the penguin operators could be
inserted into the diagrams in Fig. 1 via the Fierz trans-
formation. We do not distinguish between the tree and
penguin contributions in Table I. The tree contributions of
the strange and nonstrange amplitudes are expected to be
small due to the CKM suppressed compared to the penguin
ones. If we turn off the penguin contributions, their total
amplitudes will decrease by 1 or 2 orders of magnitude.
This feature is different for the charm one, which is
triggered by the quark decay b — scc. The large CKM
matrix element V., V!, enhances the tree contributions,
which dominate over the penguin ones.

Utilizing the values of Table I in conjunction with
various mixing formalisms, one can calculate the S- and
P-wave amplitudes of A, — An(), whose numerical results
are displayed in Table II. Branching ratios, up-down
asymmetries, and the direct CP asymmetries are shown
in the last three columns. There are four uncertainties. The
first quoted uncertainty is due to the shape parameters @, in
the A, LCDAs with 10% variation. The second uncertainty
is caused by the variation of the Gegenbauer moment
a, = 0.44 £ 0.22 in the leading-twist LCDAs of 77,, ;. Since
the Gegenbauer moment a, is not yet well determined, the
possible 50% variation leads to large changes of our
predictions. The third one refers to the uncertainty of the
mixing angles ¢(¢¢) as shown in Egs. (20)—(23). Note that
the chiral enhancement scale m{ changes rapidly with the
mixing angles, so this uncertainty can be classified as
the hadronic parameter uncertainty. The last one is
from the hard scale 7 varying from 0.8¢ to 1.2¢. The
scale-dependent uncertainty can be reduced only if the

Magnitudes of the S- and P-wave amplitudes (in units of 10~'?), branching ratios (in units of 107°), up-down asymmetries,

and direct CP violations of A, — An() decays with different mixing schemes. The errors for these entries correspond to the shape
parameter w,, Gegenbauer moment a,, mixing angles ¢(¢), and the hard scale 7, respectively.

Scheme Mg Mp B(1079) a Acp(%)

Ay, = Ay

S Cl9-iNa S9N DBMEGNUEN  0BeRUMn 1o
I Rk v RN Sy T
1 22-ia0 20 m0 USROS 0sOUERMDIEGN s ranoe
S 0-mS 220 dselBUR 0sOUMMTIENGE  s7ORn
A, = A

) S5-i05 S0-09 SNCUEUONE  OMCHETMMNSAN 55y
e CRNCT! vxir s R e N I,
I CBE TR i ) QERYIE BT e
S4 —3.6+i23 —5.7 - i38.1 29§ +046+0.84-0.52+0.93 0.1347+0-193+0.490+0.278+-0.154 _(.4+56+8.7+9.2+4112

—0.25-0.18—0.00—0.36

—0.193-0.249-0.260—0.006

—0.0-0.0-0.0-0.0
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next-to-leading order contributions in the PQCD approach
are included. One can see that these large hadronic
parameter uncertainties have a crucial influence on the
PQCD calculations. The up-down asymmetries from large
theoretical errors, especially for the values in S4, due to
complex interference effects, which will be detailed later. It
is interesting that B(A, — A#x’) in S3 is more sensitive to
¢;- The phenomena could be ascribed to the sizable 7,
mixing effect in S3. According to Eq. (4), the charm
amplitude for the ' mode suffers from the suppression
from the mixing factor cos@sin ¢ sin ¢ = 0.03979:9,
where the large uncertainty is due to the angle ¢;, which
varies in a conservative range ¢; = 12° + 13°. Moreover,
the large A, — An,. amplitude, as indicated in Table I, can
compensate for this suppression and give a sizable impact
on the A, — Ay’ decay. For the 7 mode, the corresponding
mixing factor is —sin@sin¢gsin e = _0'00763’8&3 ,
which is smaller by a factor of 5. It follows that it does
not have much impact on the decay rates involving #.

We now discuss the sensitivity of the branching ratios of
the A, — Ay to different mixing schemes. From Table II,
one can see clearly that the results of the # mode are less
sensitive to the mixing schemes, which suggests small
gluonic and 7, components in the # meson. The marginal
differences among various schemes can be more or less
traced to the different chiral enhancement scales as already
emphasized. However, various schemes lead to very differ-
ent branching ratios for the 7' channel. For example, the
central values vary from 1.68 x 1076 for S2 to 5.67 x 107°
for S3. The biggest branching ratio from S3 is ascribed
to the fact that in the  —#' — G — . mixing scheme, the
tree dominated A, — An, amplitude, induced from the
b — scc transition, can contribute to the A, — Ap()
decays through the mixing matrix as indicated in
Eq. (4). As stated above, the large charm amplitude can
compensate for the tiny mixing factor, which implies
that the component of 7, in the ' meson is important.
Our results indicate that the obtained branching ratios for
A, = Ay and A, — Ay are comparable in magnitude.
This observation is different from the pattern of B(B —
Kn) and B(B — K1), where the former is about an order of
magnitude smaller than the latter.

In Ref. [77], the authors point out that few-percent OZI
violating effects, neglected in the FKS scheme, could
enhance the chiral scale m{ sufficiently, which accommo-
dates the dramatically different data of the B — Kn()
branching ratios in the PQCD approach. It is therefore
interesting to see whether this effect can modify the pattern
of A, = An") branching ratios and improve the agreement
with the current data. It should be noted that the inclusion
of the OZI violating effects implies two additional twist-2
meson distribution amplitudes associated with the OZI
violating decay constants that need to be considered, but
their contributions turn out to be insignificant [77]. Hence,

we can simply concentrate on the effect of the modified
parameter set. Using the central values of f, = 1.10f,
fs=1.46f,, ¢ =36.84°, m}{ =4.32GeV, m = 1.94 GeV
from [77] as inputs, we derive

B(A, — Ay) = 5.45 x 1075,
B(A, = Ay) = 3.91 x 1075, (26)

We will see later that by including the OZI violating effects
in S1, B(A, — An) tend to be large, while B(A, — Ar’)
tend to be small, as favored by the experiments.

For the up-down asymmetries of the # mode, all four
solutions basically exhibit a similar pattern in size and sign.
However, the observation is different for the #' channel:
From Table II we see that S2 and S3 give large and negative
asymmetries, while the central values in S1 and S4 are
small in magnitude but with opposite signs. These features
can be understood by the following observation. We learn
that a describes the interference between the S-wave and P-
wave amplitudes from Eq. (19). According to the mixing
matrices described in the previous section, both the S-wave
and P-wave amplitudes in A, — Ay() decays can be
written as the linear superposition of strange and non-
strange amplitudes through the mixing angle. It should be
noted that the nonstrange contents of the 7 and #' mesons
have the same sign in S1, while the strange ones are
opposite in sign. This means the interference between the
strange and nonstrange amplitudes is always destructive
in A, — Ay but constructive in A, — Ax/. In addition,
compared to the strange amplitude, the nonstrange ampli-
tude acquires additional sizable contributions from the
internal W emission diagrams as shown in Fig. 1, which
leads to different patterns of the S-wave and P-wave
contributions in the strange and nonstrange amplitudes.
Numerically, one can see from Table II that the P-wave
component dominates over the S-wave one in the 7/ mode,
whereas they are comparable in the n one. The above
combined effects cause the imaginary parts of the S-wave
amplitudes of A, — Ay and A, - Ay’ to have the same
sign, while the P-wave ones have the opposite sign as
exhibited in Table II. Consequently, the up-down asymme-
tries of A, = Ay and A, — An’ are of opposite sign. The
feature in the S2 scheme can be explained in a similar way.
The interference pattern is more complicated with the
inclusion of the charm content in the () mesons within
S3 and S4. We have learned from Eqgs. (4) and (2) that the
charm contents of the 5) meson for the two mixing
schemes are opposite (same) in sign. This difference has
very little effect on the 1 mode because of the strong
suppression from the mixing factors; however, it has an
important influence on the #’ one as discussed before. We
predict a large and negative a(A, — A#x’) in S3 but a small
and positive one in S4.
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TABLE III.  Various predictions in the literature of the A, — An() decays. Experimental measurements are taken from Ref. [34].

LFQM [35] QCDF [36] GFA [37] GFA [78] QCDSR [38] PM [38]  LHCb [34]
B(Ay = An) 546 %1078 439x 1077 (1.47£0.35) x 107 (1.59045) x 107° 11.47 x 10 2.95 x 1076 9.3773 x 107
B(Ay = Ar)  229% 1078 4.03x107° (1.83£0.58) x 107 (1.9007¢) x 107 11.33x 10 324 x 107 <3.1x107°
a(Ab _)A;/I) _] 0241‘8113 e e e e e
a(A, = A1) -1 0.997005

Acp(Ay = An)
Acp(Ay = A1)

(=3.4709)%
(1.0%9))%

(0.4 +0.2)%
(1.6 +£0.1)%

Since the decays under consideration are dominated by
the penguin contribution and the tree amplitudes are color
and CKM factor suppressed, their direct CP asymmetries
are not large, less than 10%. Although the additional tree
amplitudes stemming from the b — scc¢ transition are
included in S3 and S4, the weak phase of V.,V is zero
at the order of 12, which is the same as the penguin one,
V., V7. The enhancement arising from the charm content in
fact leads to a smaller tree-over-penguin ratio, and thus the
direct CP asymmetries of the #' process in S3 and S4 are
further reduced to less than one percent.

The comparisons with different theoretical models and
the experimental data are presented in Table III. There is a
wide spread in the branching ratios predicted by the various
model calculations, ranging from 1078 to 10~>. The LFQM
calculations [35] give the lowest predictions for the
branching ratios because only the contributions from the
tree operators were considered in their calculations, which
implies the penguin contributions play leading roles in the
relevant processes. In the absence of the penguin contri-
butions, our central values of the branching ratios for the
and 1/ modes in S1 will be reduced to 8.92 x 10~® and
4.14 x 1078, respectively, which seem to be comparable to
the results of LFQM [35]. The two solutions of Ref. [38]
are evaluated by using two different A, — A form factors.
The branching ratios for the form factors calculated in
the pole model (PM) agree with our PQCD predictions
within the S1 and S4 mixing schemes. The two results from
GFA [37,78] are basically consistent with each other and
close to our values in S2. It is also observed in Table III that
most of the approaches give predictions of the same order
of magnitude for the decay rates of the two modes, except
for the predictions of Ref. [36], in which the branching ratio
for the #/ mode is much larger than that of # by 1 order of
magnitude due to the additional enhanced factor for the
7’ mode.

It should be noted that the previous theoretical calcu-
lations are based on the S1 scheme and do not take into
account the contributions from the exchange amplitudes.
As seen in Table I, the emission amplitudes generally
dominate over the exchange ones in PQCD calculations,
so we can drop all the exchange amplitudes and focus
on the S1 mixing scenario to obtain a simple picture

for the relevant decays. The resulting central values of
the branching ratios are B(A, — An) = 3.89 x 10~° and
B(A, = An’) = 4.13 x 107°, indicating that our predic-
tions in Table I can be roughly reproduced under this
simple picture. This implies other processes governed by
the T and C topologies have the branching ratios of 107 as
well. For the charmless decays A, — AM, there are six
more processes with M =z, p, K, K*, ¢, w, which are
dominated by the emission diagrams. The p and 7 modes
belong to the isospin-violating decays; thus, they have no
QCD penguin contributions. The K and K* modes are
induced by the b — d transitions, which are CKM sup-
pressed. As such, the four processes should have substan-
tially lower rates than 107°. The ¢ mode is studied in
PQCD [60], and its branching ratio is predicted to be of the
order 107, which is comparable to the data. There is
currently no PQCD prediction or experimental data for the
@ mode. Because the @ meson has the same quark content
as the 7, meson, we estimate its branching ratio in PQCD to

be 107°. This estimation is likely to be beneficial in
experimental searches for these modes.

Unlike the branching ratios, up-down asymmetries,
and CP asymmetries in the relevant decays have received
little attention in theoretical and experimental studies. The
estimates based on QCDF give a(A, — An) = 0.2410:13
and a(A, — A') = 099709 [36], while the LFQM cal-
culations yield a(A, = An) = a(A, - Ay') = =1 [35]. It
can be observed that the available theoretical predictions on
the up-down asymmetries vary and differ even in sign.
Hence, an accurate measurement of the up-down asym-
metry will enable us to discern different models. For the
direct CP violation, nearly all of the current theoretical
predictions are small, less than 10% in magnitude.

From the experimental data shown in Table III, it is clear
that LHCb’s measurement of B(A, — An) [34] is generally
larger than the theoretical expectations. Although the
prediction of Ref. [38] is in accordance with the central
value of the data, its value of B(A, — Ay’) exceeds the
present experimental bound by a factor of 3. The PQCD
results of B(A, — An’) based on the S1 and S3 mixing
schemes are also large compared to the experimental upper
limit. In particular, the latter is larger by a factor of 2,
which indicates the mixing angles ¢ and/or ¢ may be
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overestimated. Of course, the measurement was performed
in 2015, and the experimental error was also quite large.
Moreover, there are still no available data on the up-down
and direct CP asymmetries at the moment. We look
forward to more experimental efforts to improve the
accuracy of the relevant measurements.

As a by-product, we have predicted the decay branching
ratio and up-down asymmetry of the A, — Ax, mode by
using the values of the charm amplitudes in Table I.
Explicitly, we obtain

(6.831 249057 x 107+ for S3

B(A, = An,.) = 27
(s ) {(6.55j;;;§jg§;)x10-4 for S4 )

and
[ —0oos g for 3
a(Ay = An,) = +0.000-+0.001 (28)
—0.996 (5000001 for S4,

where the first and second sets of error bars are due to the
shape parameter @y = 0.40 £ 0.04 GeV in the A, baryon
LCDAs and the hard scale ¢ varying from 0.8¢ to 1.2¢,
respectively. Our branching ratio is much larger than the
values of (2.47753519:51057) x 107 in QCDF [36] and
(1.5+£0.9) x 10™* in GFA [79]. This is not surprising
because the PQCD prediction on the branching ratio of the
J/w mode presented in [59] is also generally larger than the
corresponding values from [36,79] due to the significant
nonfactorizable contributions. All of these theoretical
predictions are at the order of 10~#, which can be accessible
to the experiments at the LHCb. The predicted up-down
asymmetry is nearly 100% and negative, which is con-
sistent with the value of —0.99 4 0.00 obtained in [36].
Since both the tree and penguin amplitudes have no weak
phase to order A%, the direct CP violation for the A, — A,
process is predicted to be zero.

IV. CONCLUSION

Decays of b hadrons to two-body final states containing
an 57 or 7/ meson are of great phenomenological importance.
These processes could provide useful information about the
n —#n mixing and the structure of the n and 7’ mesons,
which is still a long-standing question in the literature. In
this work, we have carried out a systematic study of the
penguin-dominant A, — Ay() decays in the PQCD
approach. The calculations are performed in the quark-
flavor mixing basis, in which we first give the PQCD
predictions on the nonstrange, strange, and charm ampli-
tudes including various topological contributions. It is
observed that the nonstrange amplitude is dominated by
the 7- and C-type diagrams. As the interference between T
and C is destructive, the contributions from the exchange
diagrams, such as B and E, are in fact important and

non-negligible. The strange amplitude is governed by 7 and
E, which are of similar sizes. The charm one is dominated by
the T-type diagrams, and its amplitudes are larger than the
(non)strange ones by 1 order of magnitude. Furthermore,
the contributions from B’-type exchange diagrams are
predicted to be negligibly small for all three amplitudes.

Utilizing the four available mixing schemes for the 7 — 7/
system—namely, n —#, n—#' —= G, n—1n — G —n,, and
n —n' —n, mixing, denoted, respectively, as S1, S2, S3,
and S4—we evaluate the branching ratios, up-down asym-
metries, and direct CP asymmetries for A, — Anl) decays
and investigate the scheme dependence of our theoretical
predictions. We find that the results of the # mode are
less sensitive to the mixing schemes, which implies small
gluonic and 7, components in the # meson. However,
various schemes lead to quite different predictions on both
the branching ratio and up-down asymmetry for the channel
involving #'. For instance, B(A, — A#') increases by a
factor of 3 from S2 to S3, while a(A, — A#y) varies from
—0.046 for S1 to —0.847 for S3 and even flips signs in S4.
The large discrepancy among these solutions suggests the
7’ mode is very useful in discriminating various mixing
schemes.

We consider theoretical uncertainties arising from the
shape parameter ®,, Gegenbauer moment a,, mixing
angles ¢ (), and the hard scale t. We show the nontrivial
dependence of the PQCD calculations on the nonperturba-
tive hadronic parameters, which are poorly determined at
present. In particular, B(A, — A#x) is extremely sensitive
to the variation of ¢; and thus a good candidate for
constraining the mixing parameters, once it is measured
with sufficient accuracy. The scale-dependent uncertainty
also gives large uncertainties to the branching ratios, which
can be reduced only if the next-to-leading order contribu-
tions in the PQCD approach are known.

We also compare our results with predictions of the other
theoretical approaches as well as existing experimental
data. Various model estimations on the branching ratios
span fairly wide ranges from 1078 to 107>. Our branching
ratios for the S2 scheme are consistent with the GFA
calculations, while the S4 ones are close to the results of the
PM. The predicted central values of B(A;, — An) in various
schemes are generally lower than the measurement from
LHCb. The inclusion of OZI violating effects can enhance
B(A, — An) by a factor of 2.5 and improve the agreement
with the current data. The PQCD results of B(A, — Ay)
based on S1 and S3 mixing schemes exceed the present
experimental bound. Note that the measured branching
ratios also have large uncertainties. In general, the values in
S4 appear to be more preferred by the current data among
these solutions. For the up-down asymmetries, there are
considerable deviations among PQCD, QCDF, and LFQM
estimates, which should be clarified in the future. On the
other hand, since the tree contributions suffer from the color
suppression and CKM suppression, the obtained direct CP
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asymmetries are less than 10%, in comparison with the
numbers from QCDF and GFA. At the moment, there is
neither experimental information on the up-down asym-
metries nor on direct CP asymmetries. It will be interesting
to see the updated measurements on the two decay modes.

Finally, we explore the decay of A, — A#n,.. The esti-
mated branching ratio is at the 10~ level with an up-down
asymmetry close to —1, which may shed light on future
measurements.
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APPENDIX: FACTORIZATION FORMULAS

Following the conventions in Ref. [73], we provide some
details about the factorization formulas in Eq. (17) for the
nonstrange amplitude, which were not given before. As the

strange and charm processes have the same decay topol-
ogies as A, — A¢ and A, — AJ/w modes, respectively,
one can find the relevant formulas in our previous work
[59,60]. The combinations of the Wilson coefficients a%ij
and the b dependent quantities [Db], and Qg are given in
Tables IV and V, respectively, and the auxiliary functions
hy 5 and the Bessel function K, can be found in [73].

The hard scale ¢ for each diagram is chosen as the
maximal virtuality of internal particles including the
factorization scales in a hard amplitude:

tr, = max (V/Jeal. VVItal Vel VItolwow/w, ). (A1)

where the expressions of 74 p ¢ p are listed in Table VI. The
factorization scales w, w', and w, are defined by

with the variables

TABLE IV. Expressions of a’* and a5 in the A, — An, decay. For convenience, we have extracted an overall coefficient 8, which is

absorbed into the prefactor in Eq. (17).

Ry 4L uSP
T 41,203,561 62,04 Vi Vis[C + 1G)) =1V, Vi[2C +3Cy +5Co + L Cyg] -1V, Vi[2Cs +3Cs +3C7 + £ G
T 46,a7,b6,b7,c1,c2.d1.d2 Vi VisCo =1V Vi [2Cy + 5 Cyo) ~3 Vi Vis[2C6 + 5 Cs]

Tese1.d6 VubVZs[—!icl +1C]+ VpVi3Cs —3Cy +5Co —£Cro] Vi Vi3Cs —3C6 +3C7 — £ Cs]

Cal—a4.bl b3,cl,c3,d1-d3,el,f1

Eqa—q7.e1-e4.2 IV Vis[Cr = C) =V, Vi[ACs
Bai_adb1.b3.c1.cadl d2.d4.d5
Cuspacaers Eqip3pan

TV Vis[Cr = 2C,)

l Vubvm[ 2Cl + 2C2]

Cus.b6.05.630 Eqet,c.3.67
Curp7.c1.d7.045 EQar—as.ar
Bu7b7.c7.d47.01-e4

Cpas ECIfu By s Vi Vi [—
ubV [l C]

—AC,+Cy—
=1V Vis[2C) + G + 5V Vi[4Cs 4 2C4 + Co + 5 Cy)
— 1V Vis[2C3 +4C4 +5Co + Cy)

+ 1V Vi[4Cs

2C, -G+ VyViEC3 +3Cy + 5, Co + £ Cy)

Cyo) — 1V Vi[4Cs — 4Cs + C7 — C]

Vi Vis[4Cs 4+ 2Cs + C7 +5 Cg]
—3 Ly, Vi [2Cs +4C¢ + 2 5 Lc, + Cs]
Vi Vi[4Cs —4Cs + C; — Cs]

—4Cy + Cy — Cyg)

Vi VisECs +3Cs + 2 C7 + £ ]

Cos.as.p2- Eqpo ps,p6 Bar C,] - thV?s[% C3 —%C4 +iC9 —%Clo] —Vzbvfs[é Cs —%Cs +§C7 —écs]
Ce2: Eqy3, Bps.c3 Vi VisCi +3C] =V Vi [5C3 +2C4 + £ Co + 5 Cy) Vi Vi[5Cs +2C6 + £ C7 + 55 Cs)
Ceo.f3 EGeacs.co ubV [CL = 1G] =V ViECs = Ca+ £ Co — 55 Cyg) Vi Vi5Cs — £ Co + £ C7 — 5; Cs]
Cs.a6.74> Eqas.ass Bas.c6.d6.f1-f4 Vi Vis[Cr = C) = Vi Vi [ C3 = £ Cy + 55 C9 o CIO} Vi Vit Cs —+Cs 45 C7 — ﬁcs]
Eqy4, Bus pa.c2.a3 Vi Vis[Ci = Gl + Vi ViEC3 = 2C4 + 5, Co —3,Cro] - Vi VisECs —2Cs + 3, C7 — 35 Cs)
Cy.Eqp 0 0

Cp =3V Vi Ci +3V, Vi[2C5 + 1 Cy) TV Vi[2Cs +5C4]

Cg _%VubVZs[CI -G+ % VipVis[4C3 —4Cy + Cy — Cyp) %Vrbvfs [4Cs —4Cs + C7 — Cy]

Cp VipVisCo =3V Vi[ACy + Cyo) =3V, Vi[4Cs + G

Eqg ViupVisCr =3V Vis[4Cs + Gy —3 Vi Vis[4Cs + ¢4

Eqg =3V VisCo + 3V Vi [4Cy + Cy) 3V, Vi[4Cs + Cy]

Eq g, Bgi—ga 2V Vis[Cr = Co] =3V Vi [4C5 — 4Cy + Cy — Cyg] -3V Vi[4Cs — 4Cs + C7 — C]
B’ y1—a4.p1-pa Vb Vis[=C1 4 Co] + 1V Vi [4C3 — 4C4 + Cy — Cy] Vi Vi[4Cs —4Cs + C; — Cs]
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TABLE V. Expressions of [Db] and Qp_ for the C, B, and E,, diagrams.

R, [Db] Q,

Car d*byd*b3d*byd’b, a7 Ko(V/7alb2 = b3 ) Ko (y/Tg[by — b3 — by + b, [ Ko (v/Tc[by — b5 + b, [)Ko(v/Ip b + b, )
Caz by d*b3d*bydb, a7 Ko(Vialb, = 3[)Ko (/b3 = by + b5 — b, [) Ko (y/7c|bs ) Ko(v/Ip b + by )

Cay3 d*b,d*b;3d*b, Ko(\/Tab2])ha(b3 = by = by, by + by, tp, tc, tp)

Cus d*b,d’b3d’b,, Ko(\/g|b3|)h2(bq’b2 + b, tate,tp)

Cas d*byd*b3d*bsd%b, ar Ko(VTalb, = b)) Ko (v/T51bs|) Ko (Ve D3| Ko (v/Tn by + b)

Cus d*byd*b3d*b4d*D,, (2,1,>4 o(v/Talby 4 b5 ) Ko (1/T5|b3]) Ko (/7D |) Ko (v/7p]b, + b )

Car d’b,d’b;d’bid’D, ar Ko(VTalby ) Ko(v/75]b3 ) Ko (Viclbs — by + by = b, [)Ko(/7p]bs + b))

Chi d’byd*b3d*b,d* D), a7 Ko(V/7alba = b3[) Ko (y/5[b5 = b5]) Ko(/7c[bs + b5 ) Ko (/7p[b5])

Cho d’b,d*b3d*byd* D), a7 Ko(V/7alby + b5 |) Ko (v/75]bs + by|) Ko (Vic|bs + b5 Ko (v/Tp b))

Ci3 d*byd*b3d*b)d>b); a7 Ko(V/alb2 ) Ko (y/T5[b5 = b5 |) Ko (/Tc[bs + bS|) Ko (v/7p|b5))

Chy d’byd*b3d’b) Ko(\/75]b3 + 5| ) o (by. b). 14, 1c. 1p)

Chs d*b,d*b;d°b), Ko(\/mbz + by[)hy(bs + by, b5, 15, 1c. 1p)

Cos d’byd’b3d*byd’b); a7 Ko(V/7albs = by + B3] Ko (y/75]b5 — b5 ) Ko (/7c|bs + bi|)Ko(y/7p[by — b5 — bs))
Ci7 d’byd*b3d*byd’b, a7 Ko(Vialby[)Ko(/g[b3 + b3 ) Ko (v/7c|by + by |) Ko (/7p[b5))

Cer d*byd’b3d*byd’b); (21>4 Ko(V/ialba = bs|) Ko (1/15|b5]) Ko (1/Icbs = b + b|) Ko (1/Ip|b)])

Co d’b,d*b3d*byd*b), a7 Ko(V/7albh = by = ba|) Ko (v/g[bs — b5 ]) Ko (v/Te by — b5 — B3] Ko(/Tp b))

Ce d*byd*b3d*b,yd? D), a7 Ko(Valb2 ) Ko (v/T5[b5]) Ko (v/7c by = b5 = b3|) Ko(/1p b))

Ce d*byd*b3d*bdb; a7 Ko(V/7alby = by + b — b3 [) Ko (v/5[b5 ) Ko (/7c|by — by — b3 |) Ko (/7p]bs + bj))
C.s b,dbyd?b), Ko(y/T31bs — B[ (b, b 1. 1 1)

Cot &byd?b,d?), Ko(\/Txlby — b)) ia(bs — bl b 1. 16 1)

Ca d’byd*b3d*byd*b, a7 Ko(Vialby[) Ko (/5[ b3 = b3 ) Ko (v/7c|bz + by ) Ko(/1p b))

Cai d*b,d*b3d*bld*D,, (271,)4 Ko(v/Ta|by — b3]) Ko (\/75|by + b 4 b, |) Ko (1/Tc[bs + b5|) Ko (/7p|bs + b))

Ca d’byd*b3d*bid’b, ar Ko(V/Talba + D5 ) Ko (\/75]b2 = by + by [) Ko (v/Tc|bs + b3|)Ko(v/p[bz + by )

Cas d*byd’b3d*bid’b, a7 Ko(Valb2))Ko(v/Tg[bs = b3 + by ) Ko (/7clbs + b[)Ko(V/ip[bs — by + b5 = b, )
Cus Poydbabhdd, o Ko(y/Elb + B[ Ko(/75[ba = bs + by ) Ko(y/7eb ) Ko(y/7olbs + b, )

Cas d*byd*b3d*byd*b, (2,1,)4 Ko(v/Talby = b3[) Ko (/Tp[ba — b3 + b, [)Ko (/|05 |) Ko (v/Tp[b2 + b, [)

Cus d*b,d*b3d’b,, Ko(\/1g|by = b3 + by [)hy(by, by + by, 14, ¢, 1p)

Ca d*byd*b3d’b,, Ko(y/Talbgl)ha(bs —by = by, by + by 15,1, tp)

Cer d*byd*b3d*bsd’b, @%Ko(\/mbz—bﬂ)[{o(\/mbq—ba = b3[)Ko(V/ic[by — b3 — by + b, [)Ko(y/Ip|bs + b5])
Ce d®byd*byd*bhd*b,, (2,,)4 Ko(v/Talb2 = b3|) Ko (v/T5|by — b3|) Ko (y/7c|by + by |) Ko (1/Tp]b5))

Ces d*byd*b3d*bydb, e Ko(V/7alby = b3 ) Ko (/7] + b, [) Ko (/7c[b5|) Ko (v/7p b3 — b} + bS])

Cey d*b,d*byd’b,, Ko(\/mbz + b5|) Ko (/75|bg )1 (by + by, te, 1p)

Cn d’byd*b3d*bsd’b, a7 Ko(V1alb, = bi[)Ko(V/igb2]) Ko (v/Tcb2 — bs = by + b, [) Ko (v/Tp[bs + b3)

Cp d’byd*b3d*byd*b, a7 Ko(V/7albs + by [) Ko (y/5[by + b5 ) Ko (\/ic|b + by [) Ko (/7p|b5))

Crs d*b,d*byd*bydb, (2,1,>4 Ko(v/7a]bs + by [) Ko (/75[bs = b3 |) Ko (v/7c|ba + by[) Ko (y/Ip[b5])

Cpy d*b,d’b3d%b,, h3(by —by + b3, by, by, 14, tp, tc, tp)

c, &b,dbsd%b, KO(\/E|b2 +b,[)hy(by — by by — by — b} + b, 4. 1. 1¢)

Cp d*byd*b3d’b); Ko(V/p|bs + b5 |)ha(ba, b3, 14, 1. 1c)

Cp &b, by, KO(\/mb2 +b, ) hy(by. by + b + by 14 15, 1)

Cu d*b,d*byd’b, Ko(\/Tp|b5|)ha(by + by, bl 14, 15, 1¢)

Eqa d*byd*b3d*byd’b, ar Ko(v/Ta|b2 = b3 Ko(/75[bs + b5 = by ) Ko (\/7c|ba ) Ko(+/7p[bs + b))

Eq . d*byd*bd*b, Ko(y/T5|bs + b5 — by [)hy (b5, by + b, 14, 1, 1p)

Eq.; d*byd*bid*d, Ko(\/a|b5])ha (b3 + b5, by, 15, 1. tp)

Equ d’byd’b3d’bid’b, a7 Ko(Valb3)Ko(v/Tg[by = by — b5 + b, ) Ko(/Te[b2|) Ko (v/7p] b2 — bs — b)
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TABLE V. (Continued)

R;; [Db] QRU

Eqqs d’byd*b3d*bd’b, ar Ko(V/Talby = b5 + b, ) Ko (/75(b) \)Ko(\/mbs - b} +b/ = b, [)Ko(/7p|bs + b5])
Eqas d*b3d’byd’bid’b, a7 Ko(V/7albs = by ) Ko (V/75[b3]) Ko (v/7clbs — b, [)Ko(/Ip|bs + bj|)

Eqy d’b3d*byd*bsd’b, ﬁKO(\/mb/z—bH)Ko(\/mm + b5 —b,[) 0(\/@“’3 — by + b5 —b,[)Ko(/Ip|bs + bj)
Eqy d*b,d*byd*b, Ko(\/Talby = b3[)hy(by, by — b, 15, tc, 1p)

Eqy, d*b,d*b;d’b,, KO(\/mbz— q|)h2(b3»b2,fmfc,fz))

Eq;3 d*byd*byd*bld*b,, (2,,) 7 Ko(/4Ibs = by — by [)Ko(1/15|by — by |) Ko (\/Tc b5 + b, ) Ko (y/Tp|ba])

Eqpy d*byd*b3d*bid’b, T KO(\/mb%DKO(\/mbz — b3 — b5 — b, |)Ko(/7c|bs + b3[)Ko(/Ip|by — b3 — bj)
Eqys d*byd*b3d*byd*b, a7 Ko(V7albs + b5 + by [ Ko(y/75]by + by|) Ko (Vic|bh + by|)Ko(y/Tp|bs )

Eqye d’byd*b3d*byd*b, a7 Ko(V7albs = by[)Ko(y/T5b2 + b3 |) Ko (/ic[b) + by |) Ko (/7p[b2])

Eqpy, d*b,d*b3d*byd*b, (2,1,>4 Ko(v/albs + b5 [) Ko (/75[by = by [) Ko (/7c|b5 + by [) Ko (/Tp b2 ])

Eq. d’byd*b3d*bsd’b, a7 Ko(V/alb2 = b3 ) Ko (v/g[bs + b = by [ Ko(/7e by = by = b5 ) Ko(/7p]bs + bj))
Eq., d2b2d2b3d2bgd2bq (271[)4 Ko(v/1ab5]) Ko (y/Tg|by — by |) Ko (\/Tc|by — by — bs|) Ko (1/Tp|ba])

Eq d*b3d*byd*b), Ko(\/T4|b3|) s (b, by + b, 1, 1c, 1)

Eq.y b, by, Kolyplbs = by L) (B, by + bl 14 16 1)

Eq.s d’b3d*byd*byd’b, a7 Ko(V/7albh = b + by [) Ko (y/T5[b5 = b3 — b5|) Ko(/7c[b) + by ) Ko(y/7p]bs + bj))
Eqc6 d’b3d*byd*bd’D, a7 Ko(V7alb + by [)Ko(v/g[bs = b + b5 ) Ko (/7c|b) + by [) Ko (/7p[bs + b5 )
Eq. b3 d*byd*byd*b, a7 Ko(V/7albh = B3 [) Ko (y/Tg[bs = b + b, [ Ko (y/7c|bs + by |) Ko(+/7p b3 + bS)
Eqa d*byd’b3d’byd’b, a7 Ko(V1alb2 = b3 ) Ko (v/5[by ) Ko (v/Tclb2) Ko(v/Tp [b) + by )

Eqn d*b;d’byd*bid’D, a7 Ko(VIalb3 ) Ko (v/75]by [ Ko (v/7c|bs + b5 [) Ko (y/7p[bs — b) + b5 — b, )

Eqq3 d’b3d*byd*byd’b, a7 Ko(V7alb3 ) Ko(v/TgIby ) Ko (y/Tc[bs + b5 [) Ko (y/7p[b5 + by )

Equ d*b,d*bd*b,, Ko(/Tgb,[)ha(by = b5 + b, by —b, 14,10, 1p)

Eqys &b b}, db, Ko(y/7aby = b + b, )iy (b, by + by 15, ¢ 1)

Eqqe d*b,d*byd’b, hy(bs —b,. by, b, —b,. t4. 15, tc.1p)

Eqq d*bhd*bydb,, Ko(\/mbz = b3[)Ko(V/ig[by[) i (b5 + by, 1c.1p)

Eq. d*byd*b3d*byd*b, (2,,) 1Ko (V/a[bs + by ) Ko(v/Tg[by — b3|) Ko(/Tc b3 + b5[)Ko(/7p[b2])

Eq., d®b3d*byd*bd*b,, (2,1,>4 Ko(y/Talbs = by |) Ko (y/T5|b5|) Ko (y/Zc|bs — b5 + bs — b, [)Ko(1/7p|b5 + b,|)
Eq. d’b,d’b3d*bsd’b, a7 Ko(VIalbs + by ) Ko (v/T5]b3 ) Ko (/7c|by — by — b5 ) Ko (/7p[b2])

Eq.4 d’b3d*byd*bsd*D, a7 Ko(V/7albh = B3 [)Ko(y/5[bs + b + by ) Ko (/7c|bs + b3[)Ko(y/7p[b) + by )
Eqy, d*b,d*b3d*bd*b, (2,1,>4 Ko(v/Talbs = by |)Ko(+/T5|by + b5[) Ko (y/Zc|bs + b5 |) Ko (/7p b))

Eqp, d’b3d*byd*bid’D, e Ko(v/Talbs = by[) Ko (v/Tg]b5]) Ko (v/Tc[bs = by + b% = b, [)Ko(/7p[b5 + by )
Eqys d®byd*byd*bld*b,, (2,1,>4 Ko(\/alby = b3 + by ) Ko (/T5by — b5 |) Ko (\/c|by — by — b5 [) Ko (y/7p|bs|)

Eqy, d’b3d*byd*bd’b, B 1)4 Ko(v/Tabs + b5 [) Ko (v/15|b5 = b5 + b, ) Ko(/7c|bs + b5[)Ko(/Ip|b5 + by |)

Eq g d*b,d*bd*b, Ko(\/Tp|ba|)ha(by = by by + by, 4, 15, 1c)

Eqg d2b3d2b/2d2bq Ko(\/Tp|b) +bq|)h2(b’2,b3 - b} —bq,tA,l‘B,tC)

Eq dzbzdzbgdzbq KO(\/G|b2Dh2(b2+bq,b2—bg,tA,tB,tC)

Eqy, d*b,d*bid*b, Ko(/Tp[bs + b ) ha(b,, by — bl + b, 4. 15, 1c)

B, d’byd*b3d*bsd*b, (2,,4K0(\/a|b3|)K0(\/G|b Ko (v/Tc|ba|)Ko(y/Tp[by — b3 — by — b, [)

B d’b;d’byd’bid’b, a7 Ko(V/7albh = by = by [) Ko (V/gb3]) Ko (v/cbs — by + b5 + by [ Ko(/7p[bs + b5 + b, )
By d*b3d*byd*byd*b, (2,,)4 Ko(v/7a|by = b3[) Ko (/15|05 ) Ko (v/7c b2 ) Ko (/Tp b5 )

B d*b3d*b)d’b); KO(\/?§|b,3|)h2(b,2 — b3, b5, ta, 1, tp)

Bys bbb, Ko(y/Talbs — b |V (b — b, b, 15, s )

B d’b3d*byd*bsd’b, a7 Ko(V/7albs = b + b5 |) Ko(y/75]bs = b + b, ) Ko (/7c|bs = b + bj + b, [) Ko (y/7p|b5 )
B d’b3d*byd*byd’b, (2”4K0(\/§|bq|)K0(\/E\b Ko(v/fc|bs = b5 + b5 — b, |)Ko(/7p[b5|)

By, d*byd*b3d*byd*b, ar Ko(VTalbs)Ko(v/75|by = by = by [)Ko(y/7elbs + b5 + by ) Ko(y/7p[by = by — b3 — b, |)

(Table continued)

093008-14



MIXING EFFECTS OF n —#' IN ...

PHYS. REV. D 107, 093008 (2023)

TABLE V. (Continued)

R;; [Db] QR
By, d*b;d’byd’bid’D, ar Ko(V/Ta[bs + b5 |) Ko (/7] b2 + bS|) Ko (v/Te b3 |) Ko (Vip|ba)
By dzbzdzbgdzbq K()(\/a“l)z +bl +bq|)h2(b3,b2,13,lc.tl))
By &b, b, b, Ko(+/T5by + B4y (b + b, by, 1. 1. 1)
Bys d’byd*b3d*bsd’b, @%Ko(\/ﬂlbé + by )Ko(Vig[by — b3 — bq|)K0(\/%‘b3 = b5+ b, )Ko(/ip|bo])
By d*byd*b3d*bsd*D,, (W Ko(y/Tabs + b5[)Ko(y/75by — by — by |) Ko (y/7c|bs 4 bs + b, [)Ko(1/7p|b])
By d’byd*b3d*bid’D, a7 Ko(VTalby[)Ko(v/Tg[b2 + b5 ) Ko (v/7c|bs + by — by ) Ko(y/7p[b2])
B d*b,d*b3d*b) Ko(\/Talb3[) 2 (by = by, by, 15, 1, 1)
B, d?b,d’b3d*b), Ko(\/mbz b3|)hy(by = b3, by, 24, tc, 1p)
B d*byd*b3d*byd’b, e Ko(v/Talba = by = b3 |) Ko (/75]bs + quKO(\/%“) |)Ko(\/5|b2|)
By d*byd’b3d*byd’b, a7 Ko(V/7alb2 = b3 Ko (y/T5[bs + by ) Ko(/7c by — b, |)Ko(y/7p|bs + b3 + by |)
B.s Poydbabidh, b Koyl + by Ko(y/75[bs + by Ko(y/clb: — b3 - b’3 by )Ko(yTIba))
B d*b,d*b3d*bd*b, a7 Ko(V/alb2 = by = b3[) Ko (y/T5[bs + by ) Ko(y/Tcby = by + bl + by [) Ko (/7p|b2])
By d’b,d’byd’bid’b, a7 Ko(Valb2 + by ) Ko (v/Tg[by + b5 ) Ko (y/7c|by — by — by — by ) Ko(y/7p b))
By d*b;d’byd’bid’D, a7 Ko(V/7albs) Ko (v/T5[b5 = b5 ]) Ko(v/7c|b2|) Ko(/7p b))
By d*b3d*b,d’b); Ko(y/1p[b5 = b5[)hy(bs + b5, b), 14, te. 1p)
By d*b3d*bhd’b) Ko(\/mb% + b5 |)hy (b5, b, 15, ¢, 1)
By d’b,d*b3d*byd*b), (2,,) 1 Ko(v/7aby = b3|) Ko (/15|b5 — b|) Ko (y/7c[b2|) Ko (+/7p|b5))
Bys d’b3d*b,d*byd’b, a7 Ko(Vialbs + by [ Ko(y/5[by = b5 ) Ko(y/7clbs + bl + by[)Ko(y/7p[bs — by + b + by |)
Bs d’b;d’byd’bid’b, a7 Ko(V7albs + b5 Ko(y/75|bs + b) + by [)Ko(y/7c[bs + b5 + by ) Ko(v/7p b))
B d*b;d’byd’bid’D, a7 Ko(V7alby[) Ko (/5[5 = b5]) Ko (y/7c|bs + b + b, |) Ko (/7p[b5])
B d*byd*b3d*byd’b, a7 Ko(VIalby[)Ko(v/5[b3]) Ko (y/Tc[by = by = b5 — b, [) Ko (y/Tp by )
B d*b;d’byd’bid’D, ar Ko(VTalby[) Ko (/75 [bs + b3 ) Ko(y/7c|bs + b5 + by ) Ko (v/p b))
Bes d*byd’b3d*byd’b, a7 Ko(V7alby[)Ko(v/Tg[b2 = b3]) Ko (y/Tc|bs + b + b, ) Ko (/7p[b2])
B,y d*b;d’byd’bid’D, a7 Ko(Valby[) Ko (/5[ bs = B3 [) Ko (v/Tc|bs — b5 + b + by |) Ko (/7p]b5])
By d*byd*b3d°bd*b, (2,1,)4 Ko(v/Ta|by = by = b4[) Ko (y/Tp[by — b5 — b, [) Ko (v/Tc[by — bs — b5 — b, [)Ko(1/7p|ba|)
Bp d’b;d’byd’bid’b, a7 Ko(V/7albs + 5| Ko(/75]by — by — b, [ Ko(y/Te|bs + b + by ) Ko (/7p]b5])
By d’byd*b3d*bsd’b, a7 Ko(V/7albs + b5 ) Ko(/75]by + by + by [)Ko(y/cbs + b + by ) Ko(y/7p b))
By d’b3d*byd*byd’b, a7 Ko(V7albh = by = b3 [) Ko (y/5[b5 + by Ko(y/Telbs = by + b + b, ) Ko (/7p[b5])
B, &b, by d?b, Ko(y/Tp|bal) iy (by + b} + b by — b 4. 15, 1)
By dzbdebédzbq Ko(\/Tp[by|)ha (b + by, b, 14, 15, 1c)
B d*b,d*b;d’b, Ko(v/1p|ba|)ha (b3, by + b, 14, 15. 1)
By, &b, b, Ko(+/Tp[by|) (b — b — b by — bl 14, 15. 1¢)
bg’) :‘ bg) _ g’) ’ (A3) and E, diagrams. The remaining results are the same as

and the other bp defined by permutation. Here, we only
present the results of [Db] k> Qr,;» and 1y p ¢ p for the C, B,

those for A, — A¢ and can be found in [60].
In Table VII, we give the expressions of H;Q,_j for a

representative set of diagrams for each type, as shown in
Fig. 1, while those for others can be derived in an
analogous way.
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(panunuod ajqvJ)

(X = 1)1 — =) (x=D-9  (1-4+29(x—1) (- "bg - (r—1)% ((—lx—pix ")
~+§L§a (r=D-9  (1-4+m(x=-1) (G- by ({—x—1)(x—1) (‘r—p)fx ((-w-px e ¥p
1=t (r-D-9  (1-4+=m(x=-1) (G- @by ({—'x—1)(ix—1) (‘-1 ((-lx—pfr . TH
(-1 (-0i-0  (-cr(-n) (-9 by (- i L L e
€x — X — X —1)&%x — L+ &) (lx — xex 7 — &) (lx — X xex X
1)(x=¢ —1)E _alw I Sxt b [=2)(x =1 ¢ St «t o
— &) (lx = + £ + &x)tx — &+ &) (T — xEx — £+ x)&x X — W)L ExEx {x
1= ) (=1 I ) § I ¢ I e by I ) ; ; e
(1—)('x—1) (£ — x)ty (1 - vm\x Extx SPhyg (1 — €+ &x)&x Extx {x )
Cx— ("x = 1)(1 — &) (1-O% Exty hiy (1 — 4+ tx)%x (o — )« Exty (x P
Cx— (o — 1) + o (1 - % Extyx by (T — €+ tx)%x £+ & Exty {x 209)
Cx— (S — 1) (1 - )% Extx Phyy by —Ix— 7 (fx — )4 (x—x— )& {x W
ox— (Tx — 1) (1 — €)% Extx 1Phsg by —Ix— 7 (lx— 1) (x—Tx— )& (x L35}
[+ (-2l (tx— 1) (1 -4+ &) (v —71) Extx Lhyg (S —1)x (%% Extx (x L2y
[+ (-2l (1 + 4+ &x)&x (1 -4+ ) (v —71) Extx by (1 — % + o) (fx — «) (tr — ) Extx {x 99
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