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We study the one-loop corrections to WþW− elastic scattering within the framework of effective
theories. Rescattering via intermediate electroweak would-be-Goldstone bosons dominate at high
energies, as the corresponding loop diagrams with these intermediate bosons scale like Oðs2=v4Þ in the
chiral effective counting. In the present article, we focus our attention on the usually neglected fermion-
loop corrections which scale like OðM2

fers=v
4Þ in the Higgs effective field theory (HEFT). Although this

dependency is formally suppressed for s → ∞ with respect to the ones from boson loops, the large top
mass can lead to a numerical competition between fermion and boson loops at intermediate energies of
the order of a few TeV. The central goal of the present study is to assess the importance of these fermion
loops. For this, since the fermion contribution scales with the mass of the fermions, we have calculated
the imaginary part induced by loops of the heaviest fermions, top and bottom quarks, in WþW− →
WþW− elastic scattering and compared them with the loop contributions from purely bosonic loops, as a
large imaginary part would be a clear indicator of large fermion-loop effects. We have examined the
dependence of both amplitudes on the effective couplings, allowing an Oð10%Þ deviation from the
Standard Model. In some cases, boson loops dominate over top and bottom corrections, as expected.
However, we find that there are regions in the space of effective parameters that yield a significant—and
even dominant—imaginary contribution from fermion loops. In addition to our conclusions for the
general HEFT, we also provide analyses particularized to some benchmark points in the SOð5Þ=SOð4Þ
minimal composite Higgs model.

DOI: 10.1103/PhysRevD.107.093006

I. INTRODUCTION

The discovery of the Higgs boson in 2012 by CMS and
ATLAS [1,2] has provided the last missing piece of the
Standard Model (SM). Over the past decade, in the absence
of new direct signals which may suggest new physics (NP),
much effort has been put into high-precision tests of the SM
through LHC data. The hope is that by observing small
deviations we may be able to elucidate the underlying NP at
higher energies. Within this context, one of the main
processes for this exploration is vector boson scattering
(VBS). Deviations from the SM arising from a strongly
interacting electroweak symmetry breaking sector [3] are
expected to enhance the scattering of the longitudinal

components of W and Z bosons at high energies. In the
absence of new states, the most general description of the
NP is the so-called Higgs effective field theory (HEFT),
which is a sort of Higgs-equipped electroweak chiral
Lagrangian (EChL) [4,5]. For VBS at a center-of-mass
(c.m.) energy well over the WW threshold (

ffiffiffi
s

p
≫ MW), an

important tool is the equivalence theorem (ET) [6]. This
relates, up to OðMW=

ffiffiffi
s

p Þ corrections, processes with
longitudinal electroweak (EW) gauge bosons W� and Z
and amplitudes with EW would-be-Goldstone bosons
(WBGBs) ωa. By neglecting these OðMW=

ffiffiffi
s

p Þ contribu-
tions, the so-called naive equivalence theorem (NET), the
calculation of the amplitudes gets highly simplified. For
instance, in the case of this article, the more involved
Wþ

LW
−
L → Wþ

LW
−
L computation would be traded for the

simplerωþω− → ωþω− calculation. Notice that in the NET
we have replaced the external longitudinal gauge bosons
with WBGBs, but all particles (gauge bosons and WBGBs)
must be considered in the internal lines. However, WBGBs
interact through derivative operators and formally dominate
at high energies in strongly interacting models. For this
reason, it often works in this framework to consider
only WBGB loops as a sensible first approach to the

*cquezada@ucm.es
†dobado@fis.ucm.es
‡jjsanzcillero@ucm.es

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 093006 (2023)

2470-0010=2023=107(9)=093006(34) 093006-1 Published by the American Physical Society

https://orcid.org/0000-0002-0092-3070
https://orcid.org/0000-0001-6077-8103
https://orcid.org/0000-0003-4712-0424
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.093006&domain=pdf&date_stamp=2023-05-18
https://doi.org/10.1103/PhysRevD.107.093006
https://doi.org/10.1103/PhysRevD.107.093006
https://doi.org/10.1103/PhysRevD.107.093006
https://doi.org/10.1103/PhysRevD.107.093006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


problem [7].1 Nevertheless, new studies [8] begin to include
the physical gauge bosons as internal lines, hence using the
ET as originally formulated.
In the HEFT, leading-order (LO) contributions to the

amplitude appear at tree level and scale like Oðp2=v2Þ∼
Oðs=v2Þ. At next-to-leading order (NLO) in the HEFT’s
chiral expansion, the amplitudes get Oðp4=v4Þ corrections,
with p representing soft scales of the low-energy effective
theory (masses, c.m. energy, etc.). More precisely, WBGB
loops are NLO in the chiral expansion and scale like
Oðs2=v4Þ, whereas fermion loops show an OðM2

fers=v
4Þ

dependence. Hence, the latter are usually neglected:
WBGB loops will produce stronger deviations from the
SM as we increase the center-of-mass energy.
In the present article, we provide a systematical quanti-

tative study of the importance of these fermion-loop
contributions to the WþW− scattering at the energies
relevant at the LHC within the context of the HEFT.
During this analysis, we have realized that in some cases
an accurate calculation of the boson loops requires going
beyond the NET. At high energies, HEFT models with
Higgs couplings very close to the SM ones have boson-
loop contributions which are identically zero in the zero
mass limit, MW;Z;h;fer → 0. Hence, in this situation, the
deviations from the SM enter in numerical competition
with the corrections to the NET. For this reason, in this
article, we go beyond the NET and perform the analysis of
WþW− scattering rather than ωþω−. Some preliminary
results in the NET were provided in Ref. [9].
It is well known that fermion loops are proportional to the

masses of the particles in the EW fermion doublet inside the
loop and to their Higgs effective couplings. Experimentally,
Higgs-fermion couplings are still allowed for deviations
within a �Oð10%Þ with respect to the SM values or larger
[10]. Wewill focus on the heaviest xquark doublet, given by
the ðt; bÞ quarks, but results can be extended to the
remainingStandardModelEWdoublets in a straightforward
way. Nevertheless, they will be numerically negligible,
because their masses are much smaller than the Higgs
vacuum expectation value (Mfer ≪ v ≈ 246 GeV).
In this work, we will focus on the imaginary part of

fermionic and boson-loop contributions to WW scattering.
This choice is twofold:
(1) Since the imaginary part first appears in the scatter-

ing amplitude at NLO in the low-energy chiral
counting, it is not masked by the purely real LO
amplitude or the real tree-level corrections at NLO,
determined by additional counterterms. This allows
us to compute the imaginary part of all the absorp-
tive one-loop Feynman diagrams that contribute to

this process without needing renormalization, as
they are finite at this order. The real contributions
that do need renormalization are subject of a future
work [11].

(2) There is an absence of available studies where mass
effects are taken into account for boson-loop cor-
rections. Among the literature in the HEFT, studies
can be found focusing on contributions to electro-
weak Goldstone boson scattering via the use of the
naive (or not) equivalence theorem [3,7,12]. In this
context, it is common to neglect the effects of the
masses of these bosons in order to make calculations
easier. Since in our case it is critical to maintain the
mass of the top (at least) and bottom quark, the
comparison between the fermionic and bosonic
loops (treated as massless) could be misleading
when our intention is precisely to gauge those mass
effects. A detailed study of the real part of fermionic
loops to WW scattering would also need, in prin-
ciple, a complete study of the bosonic loop correc-
tions to WW scattering (not GB) without neglecting
the masses of the bosons and without using a version
of the equivalence theorem. For some recent WZ
scattering studies on these aspects, we refer
to Ref. [13].

The quantity of interest in this article will be the ratio of
fermion- and boson-loop contributions to the imaginary
part of the scattering amplitude. More specifically, we will
study the first two partial-wave amplitudes (PWAs), J ¼ 0

and J ¼ 1. For this, we will make use of perturbative
unitarity which connects the imaginary part of an
intermediate two-particle-loop contribution with the
amplitude of tree-level processes with the same two
particles as a final state. The calculation and study of
the real parts of these one-loop amplitudes will be
provided elsewhere [11]. Nevertheless, it is reasonable
to assume that if the imaginary part of fermion loops is
large, one may also have sizable contributions in their
real part.
The custodial limit (sometimes called isospin limit) also

provides a convenient approximation to our calculation. By
neglecting explicit custodial breaking terms in the HEFT
Lagrangian, expressions are simplified and calculations
become, in general, simpler. However, we have two sources
of custodial symmetry breaking. In the first place, the
components of the EW fermion doublets have very differ-
ent masses (Mt ≠ Mb). In addition, g0 ≠ 0 introduces a
small custodial symmetry violation which leads, e.g., to the
EW gauge boson mass difference (MW ≠ MZ). In this
article, we will always consider the physical top and bottom
masses, while the custodial breaking due to the Uð1ÞY
coupling will be neglected in a first approximation to the
problem [ðM2

Z −M2
WÞ ≪ M2

W]. This g
0 ¼ 0 limit makes the

analysis simpler and clearer, as the number of intermediate
channels is much smaller (photons decouple when g0 → 0).

1It is important to note that the full—generalized—equivalence
theorem also provides the subdominant corrections [6] and an
exact relation can be established at the price, nonetheless, of
making the computation more involved.
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However, we will later complement this computation with
the full calculation for g0 ≠ 0, finding similar results.
In this article, we have concluded previous preliminary

studies [9,14] by including all possible two-particle inter-
mediate physical states for the elastic WþW− scattering,
including all possible intermediate gauge boson polar-
izations, and with Mt ≠ Mb and g0 ≠ 0. Thus, the available
two-particle absorptive cuts are tt̄ and bb̄ in the case of
fermionic cuts and WþW−, ZZ, hh, Zh, γγ, γZ, and γh for
bosonic intermediate states.
The article is organized as follows. In Sec. II, we

introduce the HEFT Lagrangian discussing the problems
that arise when one uses the equivalence theorem and the
decision to go beyond it. In Sec. III, we show how the
imaginary part of the corrections of both boson and fermion
loops to the partial-wave amplitudes of WþW− scattering
are calculated via the optic theorem and design the quantity
of interest RJ (J ¼ 0, 1) that will reveal the importance of
fermion-loop corrections. In Sec. IV, we take the often used
g0 ¼ 0 limit to calculate RJ and observe the significance of
fermions in some regions of the parameter space of the
HEFT couplings. Section V goes beyond the g0 ¼ 0 limit to
capture the effects of intermediate exchanges that were
neglected in the previous section. In Sec. VI, we use the
predictions from the minimal composite Higgs model as
inputs for the HEFT couplings and address the relevance of
the fermion corrections in this model. Finally, in Sec. VII,
we provide some conclusions. Technical details on kin-
ematics, partial waves, and some lengthier expressions for
the scattering amplitudes are relegated to the Appendixes.

II. HEFT LAGRANGIAN

In this section, we present the relevant EW chiral
Lagrangian for the elastic WW scattering analysis dis-
cussed in this article. However, in a first approximation, we
approached the study by making use of the NET, where the
longitudinal gauge bosons in the external legs of the
amplitude are replaced by EW Goldstone bosons, which
is accurate up to MW;Z=

ffiffiffi
s

p
corrections. Though not stated

in the theorem, it is also common in the literature to ignore
gauge boson intermediate exchanges in this ET approxi-
mation, considering only scalar exchanges (Goldstone
boson interactions carry additional derivatives in their

interaction with respect to the gauge boson ones). Thus,
individual scattering diagrams with Goldstone vertices
grow like E2, eventually violating the unitarity bound.
Nevertheless, in the exact SM limit, there is a fine
cancellation between the various contributions to the total
amplitude, which behaves like E0; the unitarity bound is
always preserved, and the theory is renormalizable. In that
SM limit, the contribution of the intermediate gauge boson
exchanges is crucial. Hence, in beyond-SM (BSM) scenar-
ios that are nonetheless close to the SM, these contributions
cannot be ignored. Moreover, for energies below the TeV,
near the WW production threshold, the corrections to the
NET eventually become important. For these two reasons,
we have also performed the present analysis beyond the
NET limit: In addition to the ωþω− scattering in the NET,
we have also computed the actual Wþ

LW
−
L longitudinal

gauge boson scattering. Although we will focus on the
latter, we will briefly discuss the difference in the following
subsection.

A. Effective Lagrangian in the equivalence
theorem limit

In this first approach, we will just consider in our EFT
description the scalar bosons and the fermions we are
interested in. Since the fermion contributions will be
proportional to the masses of the fermions in the weak
doublets, we will include only the top and bottom quarks in
the effective Lagrangian below. The remaining fermions
nonetheless can also be incorporated into the theory in a
straightforward way, if required.
At LO, Oðp2Þ, the relevant part of our effective

Lagrangian is given by [4,5,15–19]

L2 ¼ LS þ Lkin-F þ LYuk; ð1Þ

where

LS ¼
v4

4
F ðhÞTrf∂μU†

∂
μUg þ 1

2
∂μh∂μh − VðhÞ; ð2Þ

Lkin-F ¼ it̄=∂tþ ib̄=∂b; ð3Þ

LYuk ¼ −GðhÞ

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2

v2

s
ðMtt̄tþMbb̄bÞ þ i

ω0

v
ðMtt̄γ5t −Mbb̄γ5bÞ

þ i

ffiffiffi
2

p
ωþ

v
ðMbt̄PRb −Mtt̄PLbÞ þ i

ffiffiffi
2

p
ω−

v
ðMtb̄PRt −Mbb̄PLtÞ

3
75; ð4Þ
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with LYuk providing the Yukawa interactions
between fermions and scalars2 [h is the Higgs and ωa

the WBGB fields with ω2 ¼ P
jðωjÞ2], PR;L ¼ 1

2
ð1� γ5Þ

are the chirality projectors, and v ≃ 246 GeV. For the
Goldstones in Eq. (2), we are using in this article the
coset representation U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2=v2

p
þ iωaσa=v [20]. In

front of these operators, symmetry invariance allows us to
insert a general function of the Higgs field singlet h with an
analytical expansion of the form

GðhÞ¼ 1þc1
h
v
þ��� ; F ðhÞ¼ 1þ2a

h
v
þb

h2

v2
þ�� � ; and

VðhÞ¼M2
h

2
h2þd3

M2
h

2v
h3þd4

M2
h

8v2
h3þ��� : ð5Þ

In the SM case, one has a ¼ b ¼ c1 ¼ d3 ¼ d4 ¼ 1 and
zero for any higher powers of h. These couplings
ða; b; c1; d3Þ are the only relevant parameters in F ðhÞ,
GðhÞ, and VðhÞ for the present WþW− elastic scatter-
ing study.
As was mentioned in the introduction, we first computed

the boson-loop contributions to WW scattering in the
context of the NET in the Landau gauge, neglecting
diagrams with gauge bosons in the intermediate internal
lines. For strongly interacting BSM scenarios with a ≠ 1,
these NET-simplified calculations do reproduce well
the behavior of WLWL scattering. However, in the SM
case, the NET does not recover the right prediction for
WLWL → WLWL scattering if intermediate gauge boson
exchanges are not taken into account and the ωω → ωω
scattering fails to yield the precise prediction in this
important case. Hence, we move beyond the NET and
compute the loop contributions, including physical gauge
bosons in the tree-level calculation of this amplitude. This
full tree-level amplitude WLWL → WLWL has already
been used for the g0 ¼ 0 case in Ref. [9].
Regarding the fermion contribution via the tree-level

scattering AðWþ
LW

−
L → ff̄Þ, we have first reproduced via

the NET and HEFT (in the Landau gauge) the results in
Ref. [21] for ωþω− → ff̄.3 Nonetheless, we find that the
NET shows further complications in this case. The SM
amplitude with same-sign fermion helicities (þþ;−−)
does not match its NET counterpart Aðωþω− → ff̄Þ at
high energies. In the limit when MW=

ffiffiffi
s

p
→ 0, at fixed s

and Mt, we find that this amplitude coincides with the
corresponding WBGB scattering. However, this is different
to the high-energy limit s → ∞, at fixedMW andMt, where
we have found an important discrepancy when the HEFT is
not used in the Feynman gauge between both amplitudes in
the SM case. This difference can be observed directly in the
first partial-wave amplitude aJ¼0. For completion, we
turned to the SMEFT and calculated AðWþ

LW
−
L → ff̄Þ to

find that also in the SMEFT this amplitude fails to
reproduce the scattering with physical bosons. To illustrate,
Fig. 1 shows the SM J ¼ 0 PWAs for Wþ

LW
−
L → tt̄ and

ωþω− → tt̄ for the Feynman gauge in the SMEFT, where
one can see that the difference is significant even at high
energies (of the order of 70%). Fortunately, it is possible to
recover the full Wþ

LW
−
L → ff̄ amplitude if, instead of

applying the NET, one employs the full generalized
ET [6,20]. Similar concerns about the NET were raised in
previous works when dealing with WBGB amplitudes,
effective Lagrangians, and possible heavy scalars [22–24].
The discussion of this topic is beyond the scope of this
article, and it is relegated to a future work [11].
It is important to remark that this high-energy discrep-

ancy occurs in the SM only due to a fine cancellation. For
BSM theories with ac1 ≠ 1, the NET works well and the
WBGB scattering amplitudes reproduce the longitudinal
gauge boson scatterings at high energies. For instance, we
find that in BSM scenarios AðWþ

LW
−
L → tt̄Þ≈ð−1Þ×

Aðωþω−→ tt̄Þ∼ ffiffiffiffiffiffiffi
NC

p ð1−ac1Þ
ffiffiffi
s

p
Mt=v2 for s ≫ M2

W;M
2
t .

However, the latter leading term is canceled in the SM. The
first nonvanishing contributions for both amplitudes differ

at high energies by a term ∝
ffiffiffiffiffiffi
Nc

p MtM2
Wffiffi

s
p

v2 . Although this term

might not look important at high energies, it becomes
crucial in the SM limit a ¼ c1 ¼ 1 when the formally
dominant Oðmt

ffiffiffi
s

p Þ terms vanish both Wþ
LW

þ
L and WBGB

amplitudes. The comparison of these two amplitudes can be
seen in Fig. 1.
In summary, given all these considerations, we will

always be working with the actual Wþ
LW

−
L scattering

amplitudes, for both bosonic and fermionic intermediate
absorptive cuts.

B. Effective Lagrangian beyond the equivalence
theorem limit

Ultimately, for a study beyond the ET, one must also add
the EW gauge boson interactions to the EChL [4]. Thus, the
relevant part of the LO, Oðp2Þ, Lagrangian for the WW
study in this article is given by [4,5,15–19]

L2 ¼ LS þ LYuk þ Lkin-F þ LYM; ð6Þ

with

LS ¼
v4

4
F ðhÞTrfðDμUÞ†DμUg þ 1

2
∂μh∂μh − VðhÞ; ð7Þ

2The Yukawa Lagrangian provided in Eq. (4) is indeed
the general chiral expression of the Yukawa interaction
LYuk ¼ −GðhÞQ̄LUMQQR þ H:c: expressed in the spherical
coordinate coset representation U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2=v2

p
þ iωaσa=v

that we will be using throughout the article, with QT ¼ ðt; bÞ
and MQ ¼ diagðMt;MbÞ.

3Notice that the ωþω− → ff̄ amplitude in Ref. [21] does not
include gauge bosons in the internal lines. We have also removed
these contributions in our calculation for the comparison with
this work.
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Lkin-F ¼ it̄=Dtþ ib̄=Db; ð8Þ

where the covariant derivatives in Lkin-F and LS now
contain the couplings with the EW gauge bosons, LYM
is the standard SUð2ÞL ×Uð1ÞY Yang-Mills Lagrangian,
and LYuk is the previous Yukawa Lagrangian in Eq. (4).

III. LOOP CORRECTIONS TO
ELASTIC W +

L W
−
L SCATTERING

Starting from this Lagrangian, we have computed the
fermion-loop contribution to the elastic Wþ

LW
−
L scattering

amplitude for the (t; b) quark doublet. At LO in the chiral
expansion,Oðp2Þ, the amplitudeA2 is purely real, and it is
given by tree-level diagrams made from L2 vertices. Its
first correction, A4, shows up at Oðp4Þ in the chiral
counting. It acquires a real tree-level contribution A4;tree

from the corresponding effective couplings in the NLO
Lagrangian L4 (namely, a4 and a5). Likewise, one-loop
diagrams made of L2 vertices also yield a A4;1l contribu-
tion to the Oðp4Þ amplitude and provide the first contri-
bution to the imaginary part of the amplitude A.
Up to the order studied in this work,Oðp4Þ, the real part

of the amplitude is provided by the aforementioned three
contributions, ReA ¼ A2 þA4tree þ ReA4;1l. This makes
the study of the NLO one-loop corrections cumbersome.
On the other hand, the imaginary part receives contribu-
tions only from one-loop diagrams up to this order,
ImA ¼ ImA4;1l. This makes the study of the importance
of fermion corrections much simpler and clearer, and it will
be the procedure followed in this article. More specifically,
we will be studying the imaginary part of the helicity
amplitudes introduced in Ref. [25]. For the particular case
of particles with helicity λ ¼ 0, the Wigner rotation
matrices reduce to the well-known Legendre polynomials.
This allows us to write the amplitude as a sum of the
projected PWAs aJðsÞ:

Aðs; tÞ ¼
X
J

16πKð2J þ 1ÞPJðcos θÞaJðsÞ; ð9Þ

with K ¼ 1 (K ¼ 2) for distinguishable (indistinguishable)
final particles. In the physical energy region, ImaJðsÞwill be
provided by the one-loop absorptive cuts in the s channel,
which we will use to label the various contributions.
In scattering amplitudes with only bosons in the external

legs, it is possible to clearly separate fermion and boson
loops. We will measure the relevance of each of these two
contributions. For this, wewill use the following notation to
refer to the corresponding absorptive cuts:

ferJ ¼ ImaJjbb̄;tt̄;
bosJ ¼ ImaJjγγ;γZ;γh;WþW−;ZZ;Zh;hh: ð10Þ

Notice that the channels are arranged by increasing mass, as
they will be presented later in the figures. The absorptive
cuts with intermediate longitudinal vector bosonsWW, ZZ,
and hh can be found in Refs. [22,26,27], respectively. The
rest are provided in the Appendixes. In this work, we have
included the contribution from not only intermediate
longitudinal modes but also the transverse ones. Beyond
the NET approximation, there are also contributions from
the intermediate channels Zh that we did not include in a
previous work [9,14].
However, in the massless limit, all the mentioned one-

loop corrections contain forward (cos θ ¼ 1) and/or back-
ward (cos θ ¼ −1) divergences. In bosJ, these singularities
arise in the limitMW;MZ → 0 due to the exchange ofW, Z,
and γ gauge bosons in crossed channels (as the photon is
massless, one always finds a forward divergence for the
WþW− intermediate cut). On the other hand, the ampli-
tudes with intermediate tt̄ and bb̄ absorptive cuts have a
forward divergence for Mb → 0 and Mt → 0, respectively.
One can also identify a distinctive pattern for this large
forward or backward contribution to the different partial
waves: The singular behavior of the ZZ, hh, γγ, and γh

FIG. 1. Left: imaginary part of the SM top-quark one-loop diagram in the aJ¼0 partial-wave amplitude [coming from tree-level

AðWþ
LW

−
L → tt̄Þ] and its equivalence theorem analog partial wave a½SMEFT�

J¼0 [given by tree-level Aðωþω− → tt̄Þ in the SMEFT for the

Feynman–’t Hooft gauge]. Right: ratio R0 ¼ Im½a0�=Im½a½SMEFT�
0 � of these same partial-wave amplitudes.
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channels is relevant only for even J; the forward and
backward divergences of the Zh and γZ cuts arise just for
odd J; finally, since in the massless limit the tt̄, bb̄, and
WþW− channels have only forward divergences, they are
relevant for both even and odd J PWAs.
In general, the nonzero mass of weak gauge bosons and

fermions regulates the indicated divergences, except for
one present in the WþW− absorptive cut. For the latter, we
encounter a divergent diagram arising from the exchange of
a photon in the t channel, making its PWA projection
integral divergent at cos θ → 1. To confront this issue, we
will consider two strategies.
(1) Assume g0 ¼ 0 and integrate over the whole solid

angle.—In this scenario, MZ ¼ MW and thus, the
photon decouples (e ¼ g0 cos θW ¼ 0), because the
WþW− cut forward photon divergence is absent. In
addition, the γγ, γZ, and γh channels vanish,
simplifying the analysis. In this case, we can
perform the complete angular integration and project
onto PWAs. This would correspond to the custodial
limit but for the fact that we keep Mt ≠ Mb.

(2) Impose angular cuts.—In order to deal with the
divergence from theWþW− channel, we perform the
PWA integration within the angular limits j cos θj ≤
ðcos θÞmax for the intermediate particles (with, e.g.,
cos θmax ¼ 0.9). This approach allows us to go
beyond the g0 ¼ 0 limit, incorporating all the afore-
mentioned cuts in Eq. (10). We will refer to these
amplitudes ãJðsÞ as pseudo-PWAs (p-PWAs).
Although the p-PWAs are now finite and well
defined (even in the massless limit), we note that
they lose many of the interesting PWA properties:
The clear separation of the different angular mo-
menta no longer holds, and analogous PWA unitarity
relations fail. Nevertheless, these p-PWAs allow us
to include other channels and obtain qualitatively
results beyond the g0 ¼ 0 limit. Other approaches,
like, e.g., including by hand an artificial mass for the
photon, were considered, but this irremediably
spoils gauge invariance and the high-energy behav-
ior. Because of this, imposing an angular cut to the
physical gauge-invariant amplitude is a more attrac-
tive idea. In addition, experimental results are often
restricted to a fixed angular range given by the
configuration of the detectors.

Moving on, it is important to note which particular
couplings enter in each PWA:

J ¼ 0∶ fer0 → a; c1;

bos0 → a; b; d3;

J ¼ 1∶ fer1 → no dependence on a; b; c1 ¼ SM;

bos1 → a: ð11Þ

The main goal of the present work is to point out that
there are regions of the parameter phase space where
fermion loops become as important as the bosonic ones
and should not be neglected. To this goal, we introduce the
ratio

RJ ¼
ferJ

bosJ þ ferJ
: ð12Þ

Values of RJ close to zero will indicate that we can safely
drop fermion loops, while deviations from this value will
point out the relevance of fermions in WW scattering.
Although it is commonly assumed that fermion loops are
negligible in most of the parameter space, we will see that
this is not true for some particular channels and in some
regions of the effective couplings.
In the following, we will focus on the contributions from

fermion loops to the first two partial waves J ¼ 0, 1. In
order to do this, we will use perturbative unitarity which
connects the imaginary part of an intermediate two-par-
ticle-loop contribution with the amplitude of tree-level
processes with the same two particles as a final state.
This allows us to write all possible diagrams that contribute
to the imaginary part of the amplitude, and, since the
imaginary contributions are finite, they do not require
renormalization. For more details the reader can consult
Appendix A.
By using perturbative unitarity, we can write down the

fermionic contribution to the one-loop imaginary part of the
partial waves in terms of the tree-level amplitudes
AðWþW− → FF̄Þ≡QΔλ;F (one for the production of
each intermediate fermion state FF̄), with Q0;F ¼
1ffiffi
2

p ðQþþ;F −Q−−;FÞ ¼ ffiffiffi
2

p
Qþþ;F, Qþ−;F, and Q−þ;F. For

J ¼ 0 only the Q0;F combination is necessary for the
partial-wave projection QΔλ;F

J , while for J ¼ 1 three
(Q0;F, Qþ−;F, Q−þ;F) enter in the projection:

fer0 ¼ Ima0ðsÞjtt̄;bb̄ ¼
X
F¼t;b

βFjQ0;F
0 j2θðs − 4M2

FÞ; ð13Þ

fer1¼ Ima1ðsÞjtt̄;bb̄
¼

X
F¼t;b

βF

�
jQ0;F

1 j2þjQþ−;F
1 j2þjQ−þ;F

1 j2
�
θðs−4M2

FÞ;

ð14Þ

where βF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

F=s
p

and the partial-wave projections
are defined as [7]

QΔλ
J ¼ 1

64π2K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2J þ 1

r Z
QΔλðs;ΩÞY�

J;ΔλðΩÞdΩ; ð15Þ
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where YJMðΩÞ are the spherical harmonics and Δλ is the
helicity difference Δλ ¼ λ1 − λ2, with the superindex F
omitted for simplicity.
Additionally, we can also calculate the relative cumu-

lative PWA, which we will denote as

χJi ¼
P

i
n¼1 Imajjn
ImaJ

;

where Nch is the total number of absorptive channels,
ImaJ ¼

PNch
n¼1 ImaJjn is the total imaginary part of the aJ

PWA, and ImaJjn represents the absorptive contribution
from channel n—either bosonic or fermionic—which are
arranged in increasing order of their mass threshold. The
analytical expression of the tree-level amplitudes that
provide the imaginary part of the one-loop diagrams is
rather lengthy and has been relegated to Appendix C. All
calculations have been performed within arbitrary renor-
malizable Rξ gauges with parameters ξW , ξZ, and ξA. We
have checked that the full amplitudes are gauge indepen-
dent, as expected.

IV. IMPORTANCE OF FERMION LOOPS
IN THE g0 = 0 LIMIT

Wewill start our phenomenological study by considering
the g0 ¼ 0 limit. In the absence of fermion masses, this
implies that custodial symmetry is preserved. Actually,
fermion masses are not the problem but rather the mass
splitting of the fermion multiplets: Custodial symmetry is
restored in the limit g0 ¼ 0 andMt ¼ Mb (and similarly for
each quark and lepton doublet). This approximate custodial
or isospin symmetry is very useful to simplify and classify
the contribution from bosonic channels, as the weak bosons
turn into a degenerate multiplet (MZ ¼ MW ¼ gv=2, at
LO), the W3-B mixing vanishes (tan θW ¼ g0=g ¼ 0, at
LO), and amplitudes with photons become zero (since
e ¼ g0 cos θW ¼ 0, at LO). Custodial symmetry breaking
corrections are proportional to sin2 θW ∼ 0.2, which makes
the isospin limit scenario a suitable first approximation to
the problem. In the following section, we will go beyond
this limit and consider the numerical relevance of the g0 ≠ 0
corrections.
Nonetheless, for the purpose of the phenomenological

analyses in this article, we will never consider the true
isospin limit, which also requires Mt ¼ Mb. While it has
been used for some theoretical checks of the analytical
expressions, the large experimental hierarchy Mt ≫ Mb is
crucial for the numerical studies of the cross section and
any comparison with the experiment.
For this work, we will assume a 10% deviation on the

parameters of the effective Lagrangian. The relevant
effective couplings for the present one-loop computation
are a (hWW), b (hhWW), d3 (hhh), and c1 (tt̄h), with their
corresponding vertices within the parentheses. While the

experimental values of a and c1 fall within this range
[28,29], b and d3 present a much wider uncertainty [30].
Since the aim of this study is to call attention to the often
neglected fermion corrections which are proportional to c1,
we will not use its precise experimental range. A 10%
deviation from the SM already shows their relevance and
the need to include them in future calculations.
Concerning the center-of-mass energy, we have consid-

ered the interval 0.5 TeV ≤
ffiffiffi
s

p
≤ 3 TeV, which is the

relevant one to look for NP at the LHC. We will use as
inputs MW ¼ 80.38 GeV, MZ ¼ 91.19 GeV, MH ¼
125.25 GeV, v ¼ 246.22 GeV, Mt ¼ 172.76 GeV, and
Mb ¼ 4.18 GeV [10]. The value of the Weinberg angle
is found in the standard way from MW and MZ, cos2θW ¼
M2

W=M
2
Z at LO.

A. J = 0 PWA: R0

In the following plots, we have scanned the value of R0

in the aforementioned region of the coupling space one
parameter at a time while keeping the others fixed to their
SM values for reference.
Aswe see in Figs. 2(a) and 2(b), whenwe explorea and b,

respectively, we find Oð10%Þ corrections aroundffiffiffi
s

p ¼ 500 GeV. For
ffiffiffi
s

p ≳ 1.5 TeV, bosons completely
dominate, as expected. When it comes to the dependence
on c1, we can see [in Fig. 2(c)] 22% corrections at

ffiffiffi
s

p
∼

3 TeV when c1 deviates from the SM. If we considered a
broader phenomenological range for c1, this correction
would be even larger. For the case of d3, we observe in
Fig. 2(d) fermion corrections of the order of 8% around
500GeV.Although in absolute termsR0 barely changeswith
d3, it decreaseswhen the center-of-mass energy is increased.
This lack of sensitivity is due to the fact that d3 enters only in
the hh cut and via a nonderivative interaction.
From this analysis, we extract that for R0 the most

relevant parameter is c1. The further it is from its SM value,
the larger the fermion contribution is, as expected from the
analytical expression of the fermionic cuts.
It is also illustrative to show how each cut contributes to

the total amplitude. These cumulative relative amplitude
curves χ for the SM are shown in Fig. 3. Each curve
contains the contribution of all intermediate cuts below the
mentioned cut. They are ordered according to the value of
the mass threshold of the intermediate state: The first cut is
bb̄, then WW and ZZ at the same energy (g0 ¼ 0), Zh, hh,
and finally tt̄. Clearly, in the SM case, in Fig. 3, top loop
corrections are relevant only around

ffiffiffi
s

p
∼ 500 GeV, reach-

ing a maximum of R0 ∼ 10%. The bb̄ cut is present (blue
line at the bottom), but its contribution is absolutely
negligible for J ¼ 0.
Now aware that d3 is not relevant, we will explore the

cumulative curves for BSM scenarios where a, b, and c1
have been modified one at a time. As seen in Fig. 4, WW,
ZZ, and hh provide a large section of the total amplitude
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[Figs. 4(d)], while tt̄ is important (corrections of the order
of 22%) only when c1 takes extreme values (c1 ¼ 0.9 or
c1 ¼ 1) and the rest of the parameters are set to their SM
values [Figs. 4(e) and 4(f)]. The Zh cut is relevant only
below

ffiffiffi
s

p
∼ 500 GeV and then rapidly becomes insignifi-

cant, as can be seen in Fig. 4.

These previous plots give us a notion of the behavior of
the amplitude at different energies and values of the HEFT
parameters. Now, we will explore the whole possible range
these parameters can take to find a set which maximizes R0.
We will do this for two benchmark energies: 1.5 and 3 TeV,
a pair of typical energies at which NP is usually expected.
We scanned the space of effective parameters ða; b; c1; d3Þ
within the aforementioned 10% deviation from the SM and
located the point that maximized R0 at a given c.m. energyffiffiffi
s

p
. We find that a ¼ 1.023, b ¼ 1.100, c1 ¼ 0.900, and

d3 ¼ 1.100 give rise to a R0 ¼ 75% at 1.5 TeV and
a ¼ 1.008, b ¼ 1.035, c1 ¼ 1.100, and d3 ¼ 0.900 to a
R0 ¼ 94% at 3 TeV. Some optimal couplings are found to
lie on the boundaries of the considered parameter space due
to the structure of their analytical expression in the
amplitude. We have plotted the relative ratio for both of
these configurations in Fig. 5. As seen in these optimal
cases, fermion-loop corrections provide most of the ampli-
tude for J ¼ 0.
To test the sensitivity of R0 to these optimal points

ða; b; c1; d3Þ, we have plotted R0 by varying one parameter
at a time while keeping the others fixed to the values that
maximize R0. This is shown in Fig. 6 for 3 and 1.5 TeV,

FIG. 3. Cumulative relative contribution of each channel to
J ¼ 0 PWAs in the SM.

FIG. 2. (a) R0 dependence on a for b ¼ c1 ¼ d3 ¼ 1. (b) R0 dependence on b for a ¼ c1 ¼ d3 ¼ 1. (c) R0 dependence on c1 for
a ¼ b ¼ d3 ¼ 1. (d) R0 dependence on d3 for a ¼ b ¼ c1 ¼ 1.
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respectively. The full dots on each curve represent the
optimal value of the parameter which maximizes the ratio.
We can observe that the R0 correction rapidly drops if we
change one of the values of a, b, and c1. Thus, a fine
interplay is needed among the couplings to produce these
large fermion-loop corrections. Again, R0 remains essen-
tially constant with respect to d3 variations.
In summary, it is possible to say that, in general, the

assumption of neglecting the imaginary part of top-quark-
loop corrections for the J ¼ 0 channel is not well sustained,
since we have found many sets of values of the HEFT para-
meters which yield meaningful contributions. Moreover, in
some cases they even dominate the total amplitude.

B. J = 1 PWA: R1

Now we consider the J ¼ 1 PWAs. The only diagrams
from fermion loops which yield a nonzero contribution to
J ¼ 1 do not involve a Higgs; hence, they do not contain any
NP parameter (i.e., deviations from SM). Hence, fer1 does
not depend on the c1 parameter and is fully determined by
the SM gauge-fermion interactions. On the other hand, the
bosonic part bos1 depends only on a through the WW, ZZ,
and Zh intermediate channels (the isoscalar hh channel does
not contribute to J ¼ 1). As can be seen in Fig. 7, we find a
wide range of corrections for low energies (30%–40% at
0.5 TeV for 0.9≲ a≲ 1.1) and for high energies (10%–15%
at 3 TeV in the whole range of a).

FIG. 4. Cumulative relative contributions for each absorptive cut to the J ¼ 0 PWAs for a, b, and c1 at the borders of the considered
parameter space. The bb̄ contribution is numerically negligible for this PWA.
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In addition to WW and ZZ cuts, this J ¼ 1 PWA also
receives contributions from the Zh absorptive channel,
even for g0 ¼ 0. The present work completes previous
preliminary studies [9,14], which neglected the Zh channel
on the basis of NET and custodial symmetry arguments.
This channel yields, indeed, a large contribution to the
amplitude, as can be seen in Figs. 8 and 9. This outcome is
notable, as the Zh channel is usually not included
when studying WW scattering. Since the only available
HEFT parameter is a, we can easily describe the
dependence of R1 on NP. Values of a close to 1 minimize
the boson contribution, thus yielding a high R1. Since the
WþW− → Zh tree-level scattering vanishes in the naive ET
at lowest order in the chiral expansion, one needs to go
beyond it to actually address this important boson-loop
contribution.

FIG. 6. Sensitivity of R0 to each parameter when the rest
are set to the highest correction value at

ffiffiffi
s

p ¼ 1.5 TeV (top)
and

ffiffiffi
s

p ¼ 3 TeV (bottom).

FIG. 5. (a) J ¼ 0 PWAs: largest fermion-loop contribution of 75% found at 1.5 TeV for a ¼ 1.023, b ¼ 1.100, c1 ¼ 0.900,
and d3 ¼ 1.100. (b) J ¼ 0 PWAs: largest fermion-loop contribution of 94% found at 3 TeV for a ¼ 1.008, b ¼ 1.035,
c1 ¼ 1.100, and d3 ¼ 0.900.

FIG. 7. R1 dependence on the a parameter.
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For this partial wave, we can see in Figs. 8 and 9 that the
bb̄ cut provides a significant contribution to the total
amplitude. Especially at large energies, the contribution

from both cuts tt̄ and bb̄ are similar. In order to obtain a
relevant fermion-loop contribution at high energies to the
J ¼ 1 channel from a quark doublet, at least one of the
fermions needs to be heavy.
If we look for the optimal value of a that maximizesR1 at

the same benchmark energies as before, we encounter that
a ¼ 0.991 yields R1 ¼ 17% at 1.5 TeV and a ¼ 1.013
yields R1 ¼ 11% at 3 TeV. In Fig. 10, we show the
cumulative relative amplitudes of each cut for these
benchmark energies. These values of a minimize the total
boson-loop contribution at the mentioned c.m. energies
(WW, ZZ, and Zh cuts), giving more relevance to the
fermion cuts.
In Fig. 11, we can see the optimal points for both curves.

The dependence on one parameter is also very revealing;
even if we restrict ourselves to scenarios very close to the
SM, we observe that both curves do not change dramati-
cally. This is interesting, because, unlike the J ¼ 0 case
where we needed a fine interplay among the HEFT
parameters, Fig. 11 shows significant fermion corrections

FIG. 8. Cumulative relative contribution of each channel to
J ¼ 1 PWAs in the SM.

FIG. 9. Cumulative relative contribution of each channel to the J ¼ 1 PWAs for a ¼ 1.100 (left) and a ¼ 0.900 (right).

FIG. 10. (a) J ¼ 1 PWA: largest fermion-loop contribution of 17% at 1.5 TeV for a ¼ 0.991. (b) J ¼ 1 PWA: largest fermion-loop
contribution of 11% at 3 TeV for a ¼ 1.013.
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above 5% (15%) for
ffiffiffi
s

p ¼ 1.5 TeV (
ffiffiffi
s

p ¼ 3 TeV) in the
whole range of a studied here.
As was the case for the previous partial wave, neglecting

fermion-loop corrections is not appropriate according to
our work. Even if we restrict ourselves for scenarios close

to the SM one where a ≈ 1, we find significant fermion
corrections.

V. FERMION LOOPS BEYOND THE g0 = 0 LIMIT:
PSEUDO-PWAs

A. J = 0 pseudo-PWA: R0
0

Moving to the more realistic case g0 ≠ 0, we have
additional cuts: γγ, γh, and γZ. As mentioned before,
the integration has been performed only in the j cos θj ≤ 0.9
region due to a divergence in the t channel of the WW cut.
Thus, strictly speaking, these are not partial waves so we

will refer to them as p-PWAs. Apart from this, the analysis
will be analogous to the g0 ¼ 0 case.
As seen in Fig. 12, the contour plots do not dramatically

change from the g0 ¼ 0 case. Areas around
ffiffiffi
s

p
∼ 500 GeV

are enhanced around 10% for Figs. 12(a) and 12(b) and 5%
for Fig. 12(d) (sensitivity toa,b, andd3, respectively).On the
other side, when it comes to the sensitivity to c1, shown in
Fig. 12(c), we find larger contributions: from 20% aroundffiffiffi
s

p
∼ 500 GeV up to 70% at 3 TeV when c1 ¼ 0.9 and

c1 ¼ 1.1. Finally, the dependence ond3 is negligible just like
in the g0 ¼ 0 case, being relevant only for

ffiffiffi
s

p
∼ 500 GeV.

FIG. 11. Sensitivity of R1 to the a parameter for the highest
contribution at

ffiffiffi
s

p ¼ 1.5 TeV and
ffiffiffi
s

p ¼ 3 TeV.

FIG. 12. (a) R0
0 dependence on a for b ¼ c1 ¼ d3 ¼ 1. (b) R0

0 dependence on b for a ¼ c1 ¼ d3 ¼ 1. (c) R0
0 dependence on c1 for

a ¼ b ¼ d3 ¼ 1. (d) R0
0 dependence on d3 for a ¼ b ¼ c1 ¼ 1.
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Given the numerous absorptive cuts we have now (nine
in total, two fermionic and seven bosonic), the cumulative
ratios are difficult to read from one plot, so we have
subsumed all boson cuts here. In Fig. 13, we can see the
corresponding cumulative relative ratios χ0

0
i for the SM. We

observe that in the SM the fermion contributions are not
relevant and can be neglected, as in the g0 ¼ 0 case. In
Fig. 14, we show the χ0

0
i cumulative ratios for a and c1 on

the borders of the parameter space. Again, the most
important parameter is c1, giving rise to corrections of
the order of 60% and 70% at 3 TeV when it reaches 1.1 and
0.9, respectively.
If we find the set of parameters which maximizes the

fermion corrections, we have R0
0 ¼ 80% for a ¼ 1.011,

b ¼ 1.045, c1 ¼ 0.900, and d3 ¼ 1.094 at 1.5 TeV and
R0
0 ¼ 93% for a ¼ 1.003, b ¼ 1.011, c1 ¼ 1.100, and

d3 ¼ 1.100 at 3 TeV. The contributions for each benchmark

FIG. 13. Cumulative amplitude ratio for the J ¼ 0 p-PWAs in
the SM.

FIG. 14. Cumulative relative contributions for each absorptive cut to the J ¼ 0 p-PWAs for a, b, and c1 at the borders of the considered
parameter space. The bb̄ contribution is numerically negligible for this p-PWA.
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energy are shown in Fig. 15. Again, if we test the sensitivity
of R0

0 to these optimal parameters, we find that, in order to
produce large fermion-loop corrections, one needs a fine
interplay among the couplings. This is shown in Fig. 40 (in
Appendix D 3 for the sake of clarity), and it is essentially
similar to the previous R0 results in Fig. 6.
From the plot it is clear that, for the J ¼ 0 p-PWAs,

fermion-loop corrections should not be neglected at high
energies. They can provide a large contribution to the
amplitude, even if one has several additional bosonic cuts
in the g0 ≠ 0 case (e.g., γγ).

B. J = 1 pseudo-PWA: R0
1

The contour plot for the next p-PWA, J ¼ 1, is shown in
Fig. 16. In this case, the behavior of R0

1 around the SM is
qualitatively similar to R1, but the corrections are dramati-
cally enhanced. We find R0

1 ∼ 60% from 0.5 to 3 TeV in the
neighborhood of the SM.

In Fig. 17, we see again that in the SM both fermions
provide almost 70% of the amplitude from 500 GeV on
when a ¼ 1. In comparison, for a ¼ 1.1 and a ¼ 0.9,
they reach a maximum around 500 GeV, and they
rapidly decrease to around 15% at 3 TeV, as can be seen
in Fig. 18.
As for R1, the p-PWA ratio R0

1 depends only on a. We
then look for the point in parameter space that maximizes
R0
1. The optimal values of a for 1.5 and 3 TeVare a ¼ 1.019

(with R0
1 ¼ 66%) and a ¼ 1.007 (with a R0

1 ¼ 67%),
respectively (see Fig. 19).
If we test the sensitivity of R0

1 to these optimal param-
eters, we find in Fig. 41 (in Appendix D 4 for the sake of
clarity) that fermion contributions remain sizable for the
whole range of a studied here. These are essentially the
same conclusions found for R1 in Fig. 11.
Again, values close to a ¼ 1 yield significant fermion-

loop corrections. These are of the order of 60% for the
optimal value of a, around 3 times larger than the optimal
value for R1. Hence, in the case of angular cuts (e.g.,
j cos θj ≤ 0.9), top and bottom intermediate channels
should not be neglected.

FIG. 15. (a) J ¼ 0 p-PWAs: largest fermion-loop contribution of 80% for J ¼ 0 at 1.5 TeV for a ¼ 1.011, b ¼ 1.045, c1 ¼ 0.900, and
d3 ¼ 1.094. (b) J ¼ 0 p-PWAs: largest fermion-loop contribution of 93% for J ¼ 0 at 3 TeV for a ¼ 1.003, b ¼ 1.011, c1 ¼ 1.100, and
d3 ¼ 1.100.

FIG. 16. R0
1 dependence on the a parameter.

FIG. 17. Cumulative relative contribution of each channel to
J ¼ 1 p-PWAs in the SM.
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VI. SPECIFIC SCENARIO: MINIMAL COMPOSITE
HIGGS MODEL

When it comes to the importance of fermionic cuts, it is
clear that they are relevant for some regions of the coupling
space.Although these couplings could, in principle, take any
value, we would like to be able to link them to specific NP
scenarios where, in general, all effective parameters deviate
from the SM in the particular way established by the model.
For illustration, we will study here the SOð5Þ=SOð4Þ
minimal composite Higgs model (MCHM) [31], where
the Higgs is a pseudo-Goldstone boson of an underlying
strongly coupled theory. In thismodel, the couplings depend
explicitly on the characteristic MCHM scale f.
The expressions for the relevant couplings for our

analysis are [31,32]

a� ¼ c�1¼ d�3¼
ffiffiffiffiffiffiffiffiffiffi
1−ξ

p
; b� ¼ 1−2ξ; with ξ¼ v2=f2:

Because of the structure of the MCHM, only values smaller
than 1 are allowed for these effective couplings. Note that
the four HEFT couplings are determined by the NP scale f.
We have then computed the previous PWAs and p-PWAs
for various values of f within this model. To ease the
analysis, we will provide the corresponding value of the

hWW coupling a together with f in the labels of the
different curves (Figs. 20–23). For 0.90 ≤ a� ≤ 1.00, this
implies f ≥ 0.56 TeV, with a� → 1 for f → ∞.

A. Limit g0 = 0

We have plotted the ratios R0 and R1 as a function of
ffiffiffi
s

p
for different values of f in Figs. 20 and 21, respectively.
As it can be seen in Fig. 20, R0 is drastically changed.

Below the threshold of tt̄ production, only bb̄ is present, but

FIG. 19. (a) J ¼ 1 p-PWA: largest fermion-loop contribution of 66% at 1.5 TeV to J ¼ 1 for a ¼ 1.019. (b) J ¼ 1 p-PWA: largest
fermion-loop contribution of 67% at 3 TeV to J ¼ 1 for a ¼ 1.007.

FIG. 20. Ratio for the R0 PWAs in the MCHM.

FIG. 18. Cumulative relative contribution of each channel to the J ¼ 1 p-PWAs for a ¼ 1.10 (left) and a ¼ 0.90 (right).
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its contribution is negligible. R0 rapidly increases when top
corrections enter at

ffiffiffi
s

p
≃ 350 GeV. In the present study,

we find the maximum value R0 ¼ 11% for a� ¼ 0.9, at the
boundary of our allowed range. It then quickly decreases
for larger values of a� at all energies.
The SM curve provides the lowest limit for the fermion

correction, while the a� ¼ 0.9 curve provides the
upper bound.
For R1 (see Fig. 21), we observe a similar behavior.

When the tt̄ cut appears, R1 reaches a maximum of 41%
around 500 GeV for an a� ¼ 0.9. Again, all curves
decrease rapidly, but the behavior at large energies is
different. In this case, the SM curve provides the largest
fermion correction, while the a� ¼ 0.9 curve the small-
est ones.
In summary, in both R0 and R1 cases, when we restrict

ourselves to the MCHM, the largest corrections appear
always at

ffiffiffi
s

p
∼ 500 GeV, with a� ¼ 0.9 the value that

maximizes fermion corrections at that energy point. At
large energies,

ffiffiffi
s

p
∼ 3 TeV, R0 becomes negligible (maxi-

mum R0 ∼ 1%) for a� ¼ 0.9, while R1 presents a signifi-
cant contribution (maximum R1 ∼ 10%) for a ¼ 1.

B. Beyond the g0 = 0 limit

As can be seen in Fig. 22, the result for R0
0 is very similar

to R0 in the g0 ¼ 0 case; the largest fermion contribution is
found around

ffiffiffi
s

p
∼ 500 GeV, being around 17%. At high

energies, the R0
0 decreases rapidly, becoming negligible.

For R0
1 we note an interesting behavior. As in the R1

analysis, we find a maximum for R0
1 around 500 GeV but

somewhat larger (R0
1 ∼ 65%). However, as we increase the

energy, there are curves with coupling values close to the
SM which decrease very slowly with the c.m. energy. This
shows that the amplitudes depend highly on the angular cut,
as was mentioned for the WþW− → WþW− corrections in
Ref. [33]. Again, the maximum contribution is found for
the SM curve at high energies and is about 65%.

VII. CONCLUSIONS

In this work, we have pondered in detail the widespread
assumption that fermion-loop corrections can be neglected
at high energies within the HEFT framework. For this, we
have compared the imaginary part arising from top- and
bottom-quark loops and that from boson loops in the elastic
WþW− → WþW− scattering. We have included all inter-
mediate channels and all possible polarization states not
included in previous preliminary works [9,14].
In order to analyze the importance of fermion loops, we

have computed the ratios R0 and R1 for the first partial-
wave amplitudes, J ¼ 0 and J ¼ 1, respectively. RJ close
to 0 indicates a dominance of boson loops, whereas a value
close to 1 points out that fermion cuts dominate.
Because of the presence of infrared divergences in

boson-loop diagrams (WW cut) where the momentum of
a t-channel photon goes to zero, a full angular projection
onto PWAs is not possible. In order to deal with the PWAs
and to project onto the full angle domain, we have
considered two approaches: (1) Set g0 ¼ 0, which removes
photon interactions and, hence, the infrared divergent
diagrams; (2) keep g0 ≠ 0 but impose an angular cut
(j cos θj < 0.9), which restricts the angular integrationFIG. 22. Ratio for the R0

0 PWAs in the MCHM.

FIG. 23. Ratio for the R0
1 PWAs in the MCHM.FIG. 21. Ratio for the R1 PWAs in the MCHM.
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avoiding the angular divergence. These two approaches
give rise to the ratios RJ for the imaginary part of the PWAs
with g0 ¼ 0 (approach 1) and the R0

J ratios for the imaginary
part of the so-called pseudo-PWAs (approach 2). We have
explored these two types of ratios, scanning the possible
values of the relevant HEFT couplings. This has allowed us
to assess the validity of the assumption of neglecting top-
and bottom-quark loops.
In the first scenario, g0 ¼ 0, there are wide regions where

the bosonic loop contributions are dominant as can be seen
for the J ¼ 0 PWA in Fig. 2. However, this is not the case in
some ranges of the parameter space; large deviations of c1
(ht̄t coupling) from the SM yield significant top-quark
contributions. The bb̄ contributions to J ¼ 0 are not
relevant as can be seen in Figs. 3 and 4, given the fact
that they are proportional to Mb. For the J ¼ 1 PWA, the
same occurs when a (hWW coupling) is close to 1, as can
be seen in Fig. 7. This minimizes the bosonic contribution
and leads to a higher R1. In this case, the bb̄ cut yields a
relevant contribution, as can be seen in Figs. 17 and 18. In
particular, the amplitudes of both fermion cuts present a
similar correction at high energies, showing that just one
heavy quark in the EW doublet is enough to obtain
significant corrections to the J ¼ 1 PWA.
In the second scenario, g0 ¼ 0 with angular cuts, we find

that the results for the J ¼ 0 p-PWA R0
0 are similar to those

for R0, as one can see in Fig. 12. Large deviations of c1
from the SM yield important top-quark contributions, again
with negligible effects from the bb̄ cut. For the J ¼ 1
p-PWA. we observe a significant raise in the ratio R0

1 with
respect to R1. This can be seen in Fig. 16, indicating that the
J ¼ 1 partial-wave amplitude is highly dependent on
angular cuts. Figure 17 shows a significant contribution
to R0

1 from the bb̄ cut, due to the same reasons discussed in
the g0 ¼ 0 case for R1 in Fig. 9.
There are also configurations for the four HEFT cou-

plings (a, b, c1, and d3) which make these fermion
contributions even more important. We summarize the
largest corrections we have found for the PWAs and
pseudo-PWAs in Tables I and II, respectively, J ¼ 0 and
J ¼ 1. We have looked for the point in parameter space that
maximizes fermion contributions at two benchmark ener-
gies:

ffiffiffi
s

p ¼ 1.5 TeV and
ffiffiffi
s

p ¼ 3 TeV. We have computed
the sensitivity of these optimal HEFT coupling values by

fixing three of them and varying one at a time. We can
observe that there is a fine interplay of the couplings a, b,
and c1 which maximize R0 and R0

0 for these benchmark
energies (Figs. 6 and 40, respectively). One can also see
that the value of d3 is not relevant for the analysis. For
J ¼ 1, we find that values close to a ¼ 1 minimize the
bosonic contribution, yielding higher R1 and R0

1 ratios
(Figs. 11 and 41, respectively).
Based on what has been described above, we conclude

that the assumption of neglecting the imaginary part of top-
and bottom-quark-loop contributions to WþW− → WþW−

in favor of the imaginary part of bosonic loops does not
entirely hold. For the case J ¼ 0, it is true there are wide
ranges where fermion-loop contributions are negligible.
However, this is false in some regions, where a �0.1
deviation of c1 from 1 (SM) would give a 22% and 18%
top-quark-loop contribution to R0 and R0

0, respectively.
Likewise, some configurations of a, b, c1, and d3 can make
fermion loops even dominant, as shown in Table I. For
J ¼ 1, something similar occurs since we do not need to
deviate so much from a ¼ 1 (SM). Values of a close to 1
yield significant top- and bottom-quark-loop contributions
to both PWAs and p-PWAs for J ¼ 1, as shown in Table II.
For the MCHM case, we do not find meaningful

contributions to the J ¼ 0 ratios, as can be seen in
Figs. 20 and 22. Both plots show maximums around
500 GeV, but the ratios decay rapidly with the c.m. energy.
For J ¼ 1, a value of a ¼ 1 (f → ∞ TeV) produces a
maximum R1 ¼ 10% at 3 TeV, as can be seen in Fig. 21.
When it comes to the g0 ≠ 0 case, given the strong
dependence on the angular cut, R0

1 (Fig. 23) is enhanced
and takes an almost constant value R0

1 ≈ 65% for an hWW
coupling close to the SM one (a ≈ 1). Therefore, in the
MCHM scenario, the imaginary top- and bottom-quark-
loop corrections would enhance the J ¼ 1 partial wave
considerably more than the J ¼ 0. Note that, in the
MCHM, the HEFT relevant parameters need to be smaller
than 1 due to their particular dependence on the NP scale f.
Currently, we are working on the full one-loop contri-

bution [11]. We plan to complete the present computation
with the real part of the one-loop amplitudes, where
fermion contributions might also be important or even
dominant, as we have found in some cases for the
imaginary part.

TABLE I. Corrections to J ¼ 0 PWAs for the g0 ¼ 0 case (first two rows) and the J ¼ 0 p-PWAs (last two rows). In the second, third,
fourth, and fifth columns, we provide, respectively, the values of a, b, c1, and d3 that maximize the fermion-loop contributions.ffiffiffi
s

p
(TeV) a − 1 b − 1 c1 − 1 d3 − 1 J ¼ 0

1.5 (PWA) 0.023 0.100 −0.100 0.100 R0 ¼ 76%
3 (PWA) 0.008 0.035 0.100 −0.100 R0 ¼ 94%
1.5 (p-PWA) 0.011 0.045 −0.100 0.094 R0

0 ¼ 81%

3 (p-PWA) 0.003 0.011 0.100 0.100 R0
0 ¼ 93%
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Along with this, we plan to deal with the possibility of a
strongly interacting electroweak symmetry breaking sector
and the problem of unitarization of the whole amplitude for
all VBS channels [11,34].

ACKNOWLEDGMENTS

We thank our collaborators A. Castillo, R. L. Delgado,
and F. Llanes-Estrada, who participated in the earlier parts
of the research presented in this article [12]. We also want
to thank I. Asiáin, M. J. Herrero, and P. D. Ruiz-Femenía
for useful discussions. This research is partly supported by
the Ministerio de Ciencia e Inovación under research
Grants No. FPA2016-75654-C2-1-P and No. PID2019–
108655GB-I00/AEI/10.13039/501100011033; by the EU
STRONG-2020 project under Program No. H2020-
INFRAIA-2018-1 [Grant Agreement No. 824093]; and
by the STSM grant from COSTAction CA16108. C. Q.-C.
has been funded by the MINECO (Spain) predoctoral Grant
No. BES-2017-082408.

APPENDIX A: FEYNMAN DIAGRAMS

We show here the diagrams considered for the calcu-
lation of the imaginary one-loop contribution to WþW− →
WþW− arising from a given particle in the loop. In order to
do this, we will consider the tree-level contribution of
WþW− → XY where X and Y can be X; Y ¼ W;Z; h; γ; t; b
(see Figs. 24–32) and by perturbative unitarity calculate the
imaginary part of the contribution due to loops of X, Y
to WþW− → WþW−.
This can be easily seen diagrammatically. Let us consi-

der, for example, the tree-level process WþW− → γγ. The
three diagrams contributing to this process are shown
in Fig. 24.
Via perturbative unitarity, we can calculate the imaginary

part of the loop contributions to WþW− → WþW− arising
from photon loops. This can be achieved by taking each
diagram in Fig. 24 and connecting it with the rest of them to
yield the nine diagrams in Fig. 33. Although all nine

diagrams contribute at one loop, only diagrams 1, 4, 5, 6, 7,
and 8 in Fig. 33 contribute to the imaginary part through the
absorptive cut in the s channel.

TABLE II. Corrections to J ¼ 1 PWAs for the g0 ¼ 0 case (first
two rows) and the J ¼ 1 p-PWAs (last two rows). In the second
column, we provide the value of a that maximizes the fermion-
loop contributions.ffiffiffi
s

p
(TeV) a − 1 J ¼ 1

1.5 (PWA) −0.009 R1 ¼ 18%
3 (PWA) 0.013 R1 ¼ 12%
1.5 (p-PWA) 0.019 R0

1 ¼ 66%

3 (p-PWA) 0.007 R0
1 ¼ 67%

FIG. 24. Tree-level diagrams for WW → γγ.

FIG. 25. Tree-level diagrams for WW → WW.

FIG. 26. Tree-level diagrams for WW → ZZ, where GP refers
to the positive would-be-Goldstone boson here and in the
following diagrams.
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APPENDIX B: KINEMATICS

We present the following kinematics in the center-of-
mass frame used to calculate the required processes. With
this and the Mandelstam variables defined as usual,
one should be able to obtain the amplitudes in
Appendix C. In order to not repeat a large quantity of
same polarization and momenta vectors, we will detail the
polarization and momentum of only the new final states.
For example, if one wants to calculate the ampli-
tudeAðWþðp1; ϵL1 ÞW−ðp2; ϵL2 Þ → γðp3; ϵa3ÞZðp4; ϵb4ÞÞ, one

needs to use the polarization and momentum defined in
Appendix B 4 for the photon and the polarization and
momentum defined in Appendix B 3 for the Z boson. The
only exception to this is the amplitude with fermions in the
final state, where we use the momenta and polarizations for
the W bosons detailed in Appendix B 5.

1. W + ð p01;ϵL
0

1 ÞW − ðp02;ϵL
0

2 Þ → tð p3;λ3Þt̄ð p4;λ4Þ
For the special case of fermions in the final state,wewill set

their momenta in the z axis, facilitating the calculation of the

FIG. 27. Tree-level diagrams for WW → hh.

FIG. 31. Tree-level diagrams for WW → tt̄.FIG. 28. Tree-level diagrams for WW → Zh.

FIG. 29. Tree-level diagrams for WW → γh.

FIG. 30. Tree-level diagrams for WW → γZ.

FIG. 32. Tree-level diagrams for WW → bb̄.
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product of spinor chains. The angular dependence hence
comes from the initial states of the W bosons.
As usual, θ is the angle between particles 1 and 3, ϕ is the

azimuth angle, and ϵL
0

1 and ϵL
0

2 refer to the longitudinal
polarization of the W bosons:

p1
0 ¼ ðE; jp⃗jsinðθÞcosðϕÞ; jp⃗jsinðθÞsinðϕÞ; jp⃗jcosðθÞÞ;

p0
2¼ðE;−jp⃗jsinðθÞcosðϕÞ;−jp⃗jsinðθÞsinðϕÞ;−jp⃗jcosðθÞÞ;

p0
3¼ðEt;0;0; jp⃗tjÞ; p0

4¼ðEt;0;0;−jp⃗tjÞ; ðB1Þ

ϵL
0

1 ¼ E
MW

ðjp⃗j; E sinðθÞ cosðϕÞ; E sinðθÞ sinðϕÞ; E cosðθÞÞ;

ϵL
0

2 ¼ E
MW

ðjp⃗j;−E sinðθÞ cosðϕÞ;

− E sinðθÞ sinðϕÞ;−E cosðθÞÞ; ðB2Þ

uþ3 ðp3;MtÞ ¼

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et − pt

p

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt þ Et

p

0

1
CCCCCA; u−3 ðp3;MtÞ ¼

0
BBBBB@

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt þ Et

p

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et − pt

p

1
CCCCCA;

vþ4 ðp4;MtÞ ¼

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt þ Et

p

0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et − pt

p

0

1
CCCCCA; v−4 ðp4;MtÞ ¼

0
BBBBB@

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et − pt

p

0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt þ Et

p

1
CCCCCA; ðB3Þ

where uλ33 and vλ44 are the spinors for the particle and
antiparticle in the Weyl basis and λ3 and λ4 their polar-
izations, respectively.

2. W + ð p1;ϵL1 ÞW − ð p2;ϵL2 Þ → W + ðp3;ϵa3ÞW − ðp4;ϵb4Þ
For the full bosonic case, since there is no angular

dependence on the azimuth ϕ, we can set the momentum in
the x-z plane to make the calculations easier:

p1 ¼ ðE; 0; 0; jp⃗jÞ; p2 ¼ ðE; 0; 0;−jp⃗jÞ;
p3 ¼ ðE; jp⃗3j sinðθÞ; 0; jp⃗3j cosðθÞ;
p4 ¼ ðE;−jp⃗3j sinðθÞ; 0;−jp⃗3j cosðθÞÞ; ðB4Þ

ϵL1 ¼ 1

MW
ðjp⃗j; 0; 0; EÞ; ϵL2 ¼ 1

MW
ðjp⃗j; 0; 0;−EÞ;

ðB5Þ

ϵL3 ¼ 1

MW
ðjp⃗j; E sinðθÞ; 0; E cosðθÞÞ;

ϵL4 ¼ 1

MW
ðjp⃗j;−E sinðθÞ; 0;−E cosðθÞÞ; ðB6Þ

ϵþ3 ¼ 1ffiffiffi
2

p ð0; cosðθÞ; i;− sinðθÞÞ; ϵ−3 ¼ ϵþ3
�;

ϵþ4 ¼ 1ffiffiffi
2

p ð0; cosðθÞ;−i;− sinðθÞÞ; ϵ−4 ¼ ϵþ4
�; ðB7Þ

where ϵL1;2 refer to the longitudinal polarization of the initial

particles and ϵþ=−=L
3;4 refer to the polarization of particle

3 or 4 with positive, negative, or longitudinal polarization,
respectively.

FIG. 33. Diagrams for WW → WW arising from loops of
photons.
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3. W + ðp1;ϵL1 ÞW − ðp2;ϵL2 Þ → Zðp3;ϵa3ÞZðp4;ϵb4Þ
For ZZ scattering, the positive and negative polarizations

are given by the same vectors as for the WW case, except
for the longitudinal modes which depend on the mass:

ϵL3 ¼ 1

MZ
ðjp⃗3j; E3 sinðθÞ; 0; E cosðθÞÞ;

ϵL4 ¼ 1

MZ
ðjp⃗3j;−E3 sinðθÞ; 0;−E cosðθÞÞ; ðB8Þ

p3 ¼ ðE3; jp⃗3j sinðθÞ; 0; jp⃗3j cosðθÞÞ;
p4 ¼ ðE3;−jp⃗3j sinðθÞ; 0;−jp⃗3j cosðθÞÞ; ðB9Þ

where E3 is the energy of particle 3.

4. W + ðp1;ϵL1 ÞW − ðp2;ϵL2 Þ → γðp3;ϵa3Þγðp4;ϵb4Þ
The polarizations ϵþ−

3;4 refer to the positive and negative
polarization of particle 3 and 4, respectively:

ϵþ3 ¼ 1ffiffiffi
2

p ð0; cosðθÞ;−i;− sinðθÞÞ; ϵ−3 ¼ ϵþ3
�;

ϵþ4 ¼ 1ffiffiffi
2

p ð0; cosðθÞ; i;− sinðθÞÞ; ϵ−4 ¼ ϵþ4
�; ðB10Þ

p3 ¼ ðE3; jp⃗3j sinðθÞ; 0; jp⃗3j cosðθÞÞ;
p4 ¼ ðE3;−jp⃗3j sinðθÞ; 0;−jp⃗3j cosðθÞÞ: ðB11Þ

5. W + ðp1;ϵL1 ÞW − ðp2;ϵL2Þ → hðp3;Þhðp4Þ

p3 ¼ ðE3; jp⃗3j sinðθÞ; 0; jp⃗3j cosðθÞÞ;
p4 ¼ ðE3;−jp⃗3j sinðθÞ; 0;−jp⃗3j cosðθÞÞ: ðB12Þ

APPENDIX C: SCATTERING AMPLITUDES

For the calculation of theOðp4Þ one-loopWLWL elastic
scattering beyond NET, we will need the Oðp2Þ (tree-
level) WLWL amplitudes to all possible intermediate
states, which are provided below. Since we are always
dealing with longitudinal polarized electroweak gauge
bosons in the initial state, we will label only the ampli-
tudes with the polarization state of the final particles.
Given the length of the analytic expression of some
amplitudes, we will write the amplitude (without con-
tracting) for each diagram in terms of the particle
exchanged and the channels s, t, and u. For example,
Aπ;t means this diagram is exchanging a Goldstone-π in
the channel t. Since we have performed the calculation in
an arbitrary gauge, the various contributions to amplitudes
contain the gauge parameters ξW , ξZ, and ξA. We have
checked that the full amplitudes are gauge independent,
but, for the sake of achieving compact expression when it
comes to the polarized amplitudes, the expressions are
shown in the unitary gauge.
All calculations have been performed by hand and

checked via FeynArts [35], which generates all diagrams
considered, and evaluated using FeynCalc [36]. For com-
pactness, the amplitudes are written in terms of x ¼ cos θ
and βX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

X=s
p

.

1. AðW + ð p1;ϵL1 ÞW − ðp2;ϵL2 Þ → tðp3;λ3Þtðp4;λ4ÞÞ
We will provide tt̄ amplitude in terms of the

diagrams involved, where PR and PL are the right and
left chirality projectors, respectively, and NC is the number
of colors.

a. Amplitudes in terms of the polarization

AH;s ¼ −ac1
ði ffiffiffiffiffiffi

Nc
p

gMWϵ1
μϵ2

νημνÞ
ðp3 þ p4Þ2 −M2

H
× ðū3λ3ðp3;MtÞÞ:

�
−
igPRMt

2MW
−
igPLMt

2MW

�
:ðvλ44 ðp4;MtÞÞ; ðC1Þ

Aγ;s¼−i
ffiffiffiffiffiffiffi
NC

p
gSWϵ1μϵ2ν½ð−p2−p3−p4Þμηνρþðp2−p1Þρημνþðp1þp3þp4Þνημρ�

×

�ð1−ξAÞð−p3−p4Þρðp3þp4Þσ
s2

þηρσ

s

��
ðū3λ3ðp3;MtÞÞ:

�
−
2

3
igSW γ̄σ:PR−

2

3
igSW γ̄σ:PL

�
:

�
vλ44 ðp4;MtÞ

��
; ðC2Þ

AZ;s ¼ i
ffiffiffiffiffiffiffi
NC

p
gCWϵ1

μϵ2
ν½ð−p2 − p3 − p4Þμηνρ þ ðp2 − p1Þρημν þ ðp1 þ p3 þ p4Þνημρ�

×

�
ηρσ

ðp3 þ p4Þ2 −M2
Z
þ ð−p3 − p4Þρðp3 þ p4Þσð1 − ξZÞ
ððp3 þ p4Þ2 −M2

ZÞððp3 þ p4Þ2 −M2
ZξZÞ

�

×

2
64ðū3λ3ðp3;MtÞÞ:

0
B@ig

�
1
2
− 2S2W

3

�
γ̄σ:PL

CW
−
2igS2W γ̄

σ:PR

3CW

1
CA:ðvλ44 ðp4;MtÞÞ

3
75; ðC3Þ
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AZ;s ¼ i
ffiffiffiffiffiffiffi
NC

p
gCWϵ1

μϵ2
ν½ð−p2 − p3 − p4Þμηνρ þ ðp2 − p1Þρημν þ ðp1 þ p3 þ p4Þνημρ�

×

�
ηρσ

ðp3 þ p4Þ2 −M2
Z
þ ð−p3 − p4Þρðp3 þ p4Þσð1 − ξZÞ
ððp3 þ p4Þ2 −M2

ZÞððp3 þ p4Þ2 −M2
ZξZÞ

�

×

2
64ðū3λ3ðp3;MtÞÞ:

0
B@ig

�
1
2
− 2S2W

3

�
γ̄σ:PL

CW
−
2igS2W γ̄

σ:PR

3CW

1
CA:ðvλ44 ðp4;MtÞÞ

3
75; ðC4Þ

Ab;t ¼ −
ffiffiffiffiffiffi
Nc

p
ϵ1

μϵ2
ν

ðp4 − p2Þ2 −M2
b

ðū3λ3ðp3;MtÞÞ:
igγ̄μ:PLffiffiffi

2
p :ðγ̄ · ðp̄2 − p̄4Þ þMbÞ:

igγ̄ν:PLffiffiffi
2

p :ðvλ44 ðp4;MtÞÞ: ðC5Þ

b. Polarized amplitudes

We have checked these amplitudes via the unitarity relation, finding an agreement with the imaginary part of top-quark
loops AðWþW− → WþW−Þ given in Ref. [21] when we do not consider the exchange of Z or γ bosons. We provide the
polarized amplitudes AðWþ

LW
−
L → tðλ3Þt̄ðλ4ÞÞ ¼ Qλ3λ4 , with definite helicities λ3 and λ4 for NC ¼ 3:

Qþþ ¼ g2Mt

16
ffiffiffi
3

p
M2

W

�
12ac1

ffiffiffi
s

p
βtðs − 2M2

WÞ
M2

H − s
þ 3ð4 ffiffiffi

s
p

xM2
WβW þ ffiffiffi

s
p

βtðsβ2W − sð2x2 − 1ÞÞÞ
M2

b − t

−
32S2WxβWð2M2

W þ sÞffiffiffi
s

p þ 4
ffiffiffi
s

p ð8S2W − 3ÞxβWð2M2
W þ sÞ

s −M2
Z

�
; ðC6Þ

Q−− ¼ −Qþþ; ðC7Þ

Qþ− ¼ g2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
e−iϕ

16
ffiffiffi
3

p
M2

W

�
−
3sðβt − 1ÞðsβtðβW þ xÞ − 2M2

WβWÞ
t −M2

b

þ 2sβWð2M2
W þ sÞð8S2W þ 3βt − 3Þ

s −M2
Z

− 16S2WβWð2M2
W þ sÞ

�
; ðC8Þ

Q−þ ¼ g2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
eiϕ

16
ffiffiffi
3

p
M2

W

�
3sðβt þ 1Þðsβtðx − βWÞ − 2M2

WβWÞ
t −M2

b

þ 2sβWð2M2
W þ sÞð8S2W − 3βt − 3Þ

s −M2
Z

− 16S2WβWð2M2
W þ sÞ

�
: ðC9Þ

2. AðW + ðp1;ϵL1 ÞW − ðp2;ϵL2 Þ → bðp3;λ3Þb̄ðp4;λ4ÞÞ
a. Polarized amplitudes

Since the top and bottom quark form a doublet with the same weak hypercharge, we can relate the amplitudes of the last
subsection with the amplitudes AðWþ

LW
−
L → bðλ3Þb̄ðλ4ÞÞ ¼ Q0λ3λ4 for bb̄ scattering, where λ and λ0 are the polarization of

particle 3 and 4. Then, the amplitude Q0λ3λ4 is obtained by applying the following substitutions: SW → SW=
ffiffiffi
2

p
, βt ↔ βb,

Mt ↔ Mb, u ↔ t, and cos θ → − cos θ on the amplitudes Qλ3λ4 .

Q0þþ ¼ Qþþ ðSW → SW=
ffiffiffi
2

p
; βt ↔ βb;Mt ↔ Mb; u ↔ t; and cos θ → − cos θÞ; ðC10Þ

Q0þ− ¼ −Qþ− ðSW → SW=
ffiffiffi
2

p
; βt ↔ βb;Mt ↔ Mb; u ↔ t; and cos θ → − cos θÞ; ðC11Þ

Q0−þ ¼ −Q−þ ðSW → SW=
ffiffiffi
2

p
; βt ↔ βb;Mt ↔ Mb; u ↔ t; and cos θ → − cos θÞ; ðC12Þ

Q0−− ¼ Q−− ðSW → SW=
ffiffiffi
2

p
; βt ↔ βb;Mt ↔ Mb; u ↔ t; and cos θ → − cos θÞ: ðC13Þ
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3. AððW + ðp1;ϵL1 ÞW − ðp2;ϵL2 Þ → W + ðp3;ϵa3ÞW − ðp4;ϵb4ÞÞ
a. Amplitudes in terms of the polarization

Acontact ¼ −iϵ1μϵ2νϵ3�ρϵ4�σð2ig2ημσηνρ − ig2ημρηνσ − ig2ημνηρσÞ; ðC14Þ

AH;s ¼ −a2
g2M2

Wϵ1
μϵ2

νϵ3
�ρϵ4�σημνηρσ

ðp3 þ p4Þ2 −M2
H

; ðC15Þ

Aγ;s ¼ −g2S2Wϵ1μϵ2νϵ3�ρϵ4�σ½ðp3 − p4Þγηρσ þ ð−2p3 − p4Þσηγρ þ ðp3 þ 2p4Þρηγσ�
× ½ðp2 − p1Þδημν þ ðp1 þ p3 þ p4Þνηδμ þ ð−p2 − p3 − p4Þμηδν�

×

�ð1 − ξAÞðp3 þ p4Þγð−p3 − p4Þδ
s2

þ 1

ðp3 þ p4Þ2
ηγδ

�
; ðC16Þ

AZ;s ¼ −C2
Wg

2ϵ1
μϵ2

νϵ3
�ρϵ4�σ½ðp3 − p4Þγηρσ þ ð−2p3 − p4Þσηγρ þ ðp3 þ 2p4Þρηγσ�½ðp2 − p1Þδημν

þ ðp1 þ p3 þ p4Þνηδμ þ ð−p2 − p3 − p4Þμηδν�

×
�

ηγδ

ðp3 þ p4Þ2 −M2
Z
þ ðp3 þ p4Þγð−p3 − p4Þδð1 − ξZÞ
ððp3 þ p4Þ2 −M2

ZÞððp3 þ p4Þ2 −M2
ZξZÞ

�
; ðC17Þ

AH;t ¼ −a2
g2M2

Wϵ1
μϵ2

νϵ3
�ρϵ4�σημρηνσ

ðp4 − p2Þ2 −M2
H

; ðC18Þ

Aγ;t ¼ −g2S2Wϵ1μϵ2νϵ3�ρϵ4�σ½ð−p2 − p4Þγηνσ þ ð2p2 − p4Þσηγν þ ð2p4 − p2Þνηγσ�
× ½ð−p1 − p3Þδημρ þ ðp1 − p2 þ p4Þρηδμ þ ðp2 þ p3 − p4Þμηδρ�

×

��
1

ðp4 − p2Þ2
�

2

ð1 − ξAÞðp4 − p2Þγðp2 − p4Þδ þ
1

ðp4 − p2Þ2
ηγδ

�
; ðC19Þ

AZ;t ¼ −C2
Wg

2ϵ1
μϵ2

νϵ3
�ρϵ4�σ½ð−p2 − p4Þγηνσ þ ð2p2 − p4Þσηγν þ ð2p4 − p2Þνηγσ�

× ½ð−p1 − p3Þδημρ þ ðp1 − p2 þ p4Þρηδμ þ ðp2 þ p3 − p4Þμηδρ�

×

�
ηγδ

ðp4 − p2Þ2 −M2
Z
þ ðp4 − p2Þγðp2 − p4Þδð1 − ξZÞ
ððp4 − p2Þ2 −M2

ZÞððp4 − p2Þ2 −M2
ZξZÞ

�
: ðC20Þ

b. Polarized amplitudes

We will label the nine polarized amplitudes with Aϵ3ϵ4 , where ϵ3 and ϵ4 refer to the polarization of particle 3 and 4,
respectively. We have checked the ALL → ALL amplitude with Ref. [22]. We have only four independent amplitudes; the
other four can be found through the relations ANN ¼ APP, ANP ¼ APN , and APL ¼ ANL ¼ −ALP ¼ −ANP:

ALL ¼ a2g2ð4M2
W þ sðx − 1ÞÞ2

8M2
Wð2M2

H − sðx − 1Þβ2WÞ
þ a2g2ðs − 2M2

WÞ2
4M2

WðM2
H − sÞ

þ g2C2
Wð−4s2ðx − 1Þðxðxþ 10Þ − 3ÞM2

W þ 16sðxð10x − 7Þ þ 1ÞM4
W − 64ðxþ 1ÞM6

W þ s3ðx − 1Þ2ðxþ 3ÞÞ
16M4

Wð4ðx − 1ÞM2
W þ 2M2

Z − sxþ sÞ

−
g2sxC2

Wβ
2
Wð2M2

W þ sÞ2
4M4

Wðs −M2
ZÞ

−
g2S2Wð−4s2ðx − 1Þðxðxþ 10Þ − 3ÞM2

W þ 16sðxð10x − 7Þ þ 1ÞM4
W − 64ðxþ 1ÞM6

W þ s3ðx − 1Þ2ðxþ 3ÞÞ
16sðx − 1ÞM4

Wβ
2
W

−
g2xS2Wβ

2
Wð2M2

W þ sÞ2
4M4

W
þ g2sðð8 − 24xÞM2

W þ sðxðxþ 6Þ − 3ÞÞ
16M4

W
; ðC21Þ
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APP ¼ a2g2sðx2 − 1Þ
4ð2M2

H − sðx − 1Þβ2WÞ
−
a2g2ðs − 2M2

WÞ
2ðM2

H − sÞ

þ g2ðx − 1ÞC2
Wð−4sðx − 3Þðx − 1ÞM2

W þ 32ðxþ 1ÞM4
W þ s2ðx − 3Þðx − 1ÞÞ

8M2
Wð4ðx − 1ÞM2

W þ 2M2
Z − sxþ sÞ −

g2sxC2
Wβ

2
Wð2M2

W þ sÞ
2M2

Wðs −M2
ZÞ

þ g2S2Wð−4sðx − 3Þðx − 1ÞM2
W þ 32ðxþ 1ÞM4

W þ s2ðx − 3Þðx − 1ÞÞ
32M4

W − 8sM2
W

−
g2xS2Wðs − 4M2

WÞð2M2
W þ sÞ

2sM2
W

þ g2ðsðx2 þ 3Þ − 8M2
WÞ

8M2
W

; ðC22Þ

APN ¼ a2g2sðx2 − 1Þ
4ð2M2

H − sðx − 1Þβ2WÞ
þ g2ðx2 − 1ÞC2

Wð−4sðx − 1ÞM2
W þ 32M4

W þ s2ðx − 1ÞÞ
8M2

Wð4ðx − 1ÞM2
W þ 2M2

Z − sxþ sÞ

þ g2ðxþ 1ÞS2Wð−4sðx − 1ÞM2
W þ 32M4

W þ s2ðx − 1ÞÞ
32M4

W − 8sM2
W

þ g2sðx2 − 1Þ
8M2

W
; ðC23Þ

ALP ¼ a2g2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sx2

p
ð4M2

W þ sðx − 1ÞÞ
4

ffiffiffi
2

p
MWð2M2

H − sðx − 1Þβ2WÞ
þ g2C2

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sx2

p
ð−4sðx2 þ x − 2ÞM2

W þ 16ð5x − 3ÞM4
W þ s2ðx − 1Þ2Þ

8
ffiffiffi
2

p
M3

Wð4ðx − 1ÞM2
W þ 2M2

Z − sxþ sÞ

−
g2C2

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sx2

p
ðs − 4M2

WÞð2M2
W þ sÞ

2
ffiffiffi
2

p
M3

Wðs −M2
ZÞ

−
g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sx2

p
S2Wð−4sðx2 þ x − 2ÞM2

W þ 16ð5x − 3ÞM4
W þ s2ðx − 1Þ2Þ

8
ffiffiffi
2

p
sðx − 1ÞM3

Wβ
2
W

−
g2s

ffiffiffiffiffiffiffiffiffi
2−2x2

s

q
S2Wβ

2
Wð2M2

W þ sÞ
4M3

W
þ g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sx2

p
ðsðxþ 3Þ − 12M2

WÞ
8

ffiffiffi
2

p
M3

W

: ðC24Þ

4. AðW + ðp1;ϵL1 ÞW − ðp2;ϵL2 Þ → Zðp3;ϵa3ÞZðp4;ϵb4ÞÞ
a. Amplitudes in terms of the polarization

Acontact ¼ −iϵ1μϵ2νϵ3�ρϵ4�σðiC2
Wg

2ημσηνρ þ iC2
Wg

2ημρηνσ − 2iC2
Wg

2ημνηρσÞ; ðC25Þ

AH;s ¼ −a2
g2M2

Wϵ1
μϵ2

νϵ3
�ρϵ4�σημνηρσ

C2
Wððp3 þ p4Þ2 −M2

HÞ
; ðC26Þ

Aπ;t ¼ −
g2S4WM

2
Wϵ1

μϵ2
νϵ3

�ρϵ4�σημρηνσ

C2
Wððp4 − p2Þ2 −M2

WξWÞ
; ðC27Þ

AW;t ¼ −C2
Wg

2ϵ1
μϵ2

νϵ3
�ρϵ4�σ½ð−p2 − p4Þγηνσ þ ð2p2 − p4Þσηγν þ ð2p4 − p2Þνηγσ�

× ½ð−p1 − p3Þδημρ þ ðp1 − p2 þ p4Þρηδμ þ ðp2 þ p3 − p4Þμηδρ�

×

�
ηγδ

ðp4 − p2Þ2 −M2
W
þ ðp4 − p2Þγðp2 − p4Þδð1 − ξWÞ
ððp4 − p2Þ2 −M2

WÞððp4 − p2Þ2 −M2
WξWÞ

�
; ðC28Þ

Aπ;u ¼ −
g2S4WM

2
Wϵ1

μϵ2
νϵ3

�ρϵ4�σημσηνρ

C2
Wððp3 − p2Þ2 −M2

WξWÞ
; ðC29Þ

AW;u ¼ −C2
Wg

2ϵ1
μϵ2

νϵ3
�ρϵ4�σ½ð−p2 − p3Þγηνρ þ ð2p2 − p3Þρηγν þ ð2p3 − p2Þνηγρ�

× ½ð−p1 − p4Þδημσ þ ðp1 − p2 þ p3Þσηδμ þ ðp2 − p3 þ p4Þμηδσ�

×

�
ηγδ

ðp3 − p2Þ2 −M2
W
þ ðp3 − p2Þγðp2 − p3Þδð1 − ξWÞ
ððp3 − p2Þ2 −M2

WÞððp3 − p2Þ2 −M2
WξWÞ

�
: ðC30Þ
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b. Polarized amplitudes

We will label the nine polarized amplitudes with Aϵ3ϵ4 , where ϵ3 and ϵ4 refer to the polarization of particle 3 and 4,
respectively. We have checked ALL → ALL with Ref. [37]. Just like in the previous case, we have only four independent
amplitudes: ANN ¼ APP, ANP ¼ APN , and ALP ¼ ANL ¼ −APL ¼ −ANL:

ALL ¼ a2g2ð2M2
W − sÞðs − 2M2

ZÞ
4C2

WM
2
Zðs −M2

HÞ
þ g2sC2

Wð4M2
W þ 4M2

Z þ sðx2 − 3ÞÞ
8M2

WM
2
Z

þ 1

16M4
WM

2
Zð2M2

Z þ sxβWβZ − sÞ ½−g
2C2

Wð−4M4
Wð4sx2ðs − 6M2

ZÞ − 2sM2
Z þ 24M4

Z þ s2Þ

þ 2s2x2M4
Z þM2

Wð−2s2ð11x2 þ 5ÞM2
Z þ 16M4

Zð2sx2 þ sÞ þ 32M6
Z þ s3ðx2 þ 3ÞÞ

þ sβZðxβWðsM2
Wð24M2

Z þ sðx2 − 5ÞÞ þ 4M4
Wð4M2

Z þ 3sÞ − 4sM4
ZÞ þ 2sM4

ZβZÞ þ 32sx2M6
WÞ�

−
1

16M4
WM

2
Zð2M2

Z − sxβWβZ − sÞ ½−g
2C2

Wð−4M4
Wð4sx2ðs − 6M2

ZÞ − 2sM2
Z þ 24M4

Z þ s2Þ

þ 2s2x2M4
Z þM2

Wð−2s2ð11x2 þ 5ÞM2
Z þ 16M4

Zð2sx2 þ sÞ þ 32M6
Z þ s3ðx2 þ 3ÞÞ

þ sβZð−xβWðsM2
Wð24M2

Z þ sðx2 − 5ÞÞ þ 4M4
Wð4M2

Z þ 3sÞ − 4sM4
ZÞ þ 2sM4

ZβZÞ þ 32sx2M6
WÞ�; ðC31Þ

APP ¼ g2C2
Wðsðx2 þ 3Þ − 8M2

WÞ
4M2

W
−
a2g2ðs − 2M2

WÞ
2C2

WðM2
H − sÞ

þ 1

8M4
Wð2M2

Z − sþ sxβWβZÞ
½−g2C2

Wð32ðx2 − 1ÞM6
W þ 8sðx2 þ 1ÞM4

W þ sð2ð5x2 þ 3ÞM2
Z

− sð5x2 þ 3Þ þ sxðx2 þ 7ÞβWβZÞM2
W þ 2sðx2 − 1ÞM4

ZÞ�; ðC32Þ

APN ¼ g2sðx2 − 1ÞC2
W

4M2
W

−
g2ðx2 − 1ÞC2

W

8M4
Wð2M2

Z þ sxβWβZ − sÞ ð−sM
2
Wð6M2

Z − sxβWβZ þ sÞ þ 8sM4
W þ 2sM4

Z þ 32M6
WÞ

þ g2ðx2 − 1ÞC2
W

8M4
Wð−2M2

Z þ sxβWβZ þ sÞ ð−sM
2
Wð6M2

Z þ sxβWβZ þ sÞ þ 8sM4
W þ 2sM4

Z þ 32M6
WÞ; ðC33Þ

ALP ¼ g2s3=2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
C2
W

4
ffiffiffi
2

p
M2

WMZ

þ 1

8
ffiffiffi
2

p
M4

WMZð2M2
Z þ sðxβWβZ − 1ÞÞ

h
−g2C2

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sx2

p
ðsM2

WðβWβZð6M2
Z þ sx2 þ sÞ

− 2xðM2
Z þ sÞÞ þM4

Wð48xM2
Z þ 8sβWβZ − 4sxÞ þ 2sM4

Zðx − βWβZÞ þ 32xM6
WÞ

i
þ 1

8
ffiffiffi
2

p
M4

WMZð−2M2
Z þ sxβWβZ þ sÞ

h
−g2C2

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sx2

p
ðsM2

WðβWβZð6M2
Z þ sx2 þ sÞ

þ 2xðM2
Z þ sÞÞ þ 4M4

Wðsð2βWβZ þ xÞ − 12xM2
ZÞ − 2sM4

ZðβWβZ þ xÞ − 32xM6
WÞ

i
: ðC34Þ

5. AðW + ðp1;ϵL1 ÞW − ðp2;ϵL2 Þ → γðp3;ϵa3Þγðp4;ϵb4ÞÞ
a. Amplitudes in terms of the polarization

Acontact ¼ −iϵ1μϵ2νϵ3�ρϵ4�σS2Wðig2ημσηνρ þ ig2ημρηνσ − 2ig2ημνηρσÞ; ðC35Þ

Aπ;t ¼ −
g2S2WM

2
Wϵ1

μϵ2
νϵ3

�ρϵ4�σημρηνσ

ðp4 − p2Þ2 −M2
WξW

; ðC36Þ
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AW;t ¼ −g2S2Wϵ1μϵ2νϵ3�ρϵ4�σ½ð−p2 − p4Þγηνσ þ ð2p2 − p4Þσηγν þ ð2p4 − p2Þνηγσ�
× ½ð−p1 − p3Þδημρ þ ðp1 − p2 þ p4Þρηδμ þ ðp2 þ p3 − p4Þμηδρ�

×

�
ηγδ

ðp4 − p2Þ2 −M2
W
þ ðp4 − p2Þγðp2 − p4Þδð1 − ξWÞ
ððp4 − p2Þ2 −M2

WÞððp4 − p2Þ2 −M2
WξWÞ

�
; ðC37Þ

Aπ;u ¼ −
g2S2WM

2
Wϵ1

μϵ2
νϵ3

�ρϵ4�σημσηνρ

ðp3 − p2Þ2 −M2
WξW

; ðC38Þ

AW;u ¼ −g2S2Wϵ1μϵ2νϵ3�ρϵ4�σ½ð−p2 − p3Þγηνρ þ ð2p2 − p3Þρηγν þ ð2p3 − p2Þνηγρ�
× ½ð−p1 − p4Þδημσ þ ðp1 − p2 þ p3Þσηδμ þ ðp2 − p3 þ p4Þμηδσ�

×

�
ηγδ

ðp3 − p2Þ2 −M2
W
þ ðp3 − p2Þγðp2 − p3Þδð1 − ξWÞ
ððp3 − p2Þ2 −M2

WÞððp3 − p2Þ2 −M2
WξWÞ

�
: ðC39Þ

b. Polarized amplitudes

We have checked the polarized amplitudes with Ref. [38], finding an agreement. We have only two independent
amplitudes sinceAþþ ¼ A−− andAþ− ¼ A−þ, whereþ and − refer to the positive and negative polarization, respectively,
of the photons:

Aþþ ¼ −
8g2M2

WS
2
W

x2ð4M2
W − sÞ þ s

; ðC40Þ

Aþ− ¼ 2g2ðx2 − 1ÞS2Wð4M2
W þ sÞ

x2ð4M2
W − sÞ þ s

: ðC41Þ

6. AðW + ðp1;ϵL1 ÞW − ðp2;ϵL2 Þ → hðp3Þhðp4ÞÞ
a. Amplitudes

Acontact ¼
1

2
bg2ϵ1μϵ2νημν; ðC42Þ

AH;s ¼
3g2M2

Hϵ1
μϵ2

νημν

2ððp3 þ p4Þ2 −M2
HÞ

ad3; ðC43Þ

Aπ;t ¼ a2
g2ð−p2 − p3 þ p4Þμðp2 − 2p4Þνϵ1μϵ2ν

4ððp4 − p2Þ2 −M2
WξWÞ

; ðC44Þ

AW;t ¼ a2g2M2
Wϵ1

μϵ2
νημρηνσ

�
ηρσ

ðp4 − p2Þ2 −M2
W
þ ðp2 − p4Þρðp4 − p2Þσð1 − ξWÞ
ððp4 − p2Þ2 −M2

WÞððp4 − p2Þ2 −M2
WξWÞ

�
; ðC45Þ

Aπ;u ¼ a2
g2ð−p2 þ p3 − p4Þμðp2 − 2p3Þνϵ1μϵ2ν

4ððp3 − p2Þ2 −M2
WξWÞ

; ðC46Þ

AW;u ¼ a2g2M2
Wϵ1

μϵ2
νημρηνσ

�
ηρσ

ðp3 − p2Þ2 −M2
W
þ ðp2 − p3Þρðp3 − p2Þσð1 − ξWÞ
ððp3 − p2Þ2 −M2

WÞððp3 − p2Þ2 −M2
WξWÞ

�
: ðC47Þ
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We have checked the amplitude with Refs. [27,39]. Since the Higgs boson h is a scalar particle, the only amplitude is

AWþW−→hh ¼
a2ðs2ðβW − xβHÞ2 þ 8M2

Wðs − 2M2
WÞÞ

2v2ð2M2
H þ sxβHβW − sÞ −

a2ðs2ðxβH þ βWÞ2 þ 8M2
Wðs − 2M2

WÞÞ
2v2ð−2M2

H þ sxβHβW þ sÞ

−
3ad3M2

Hðs − 2M2
WÞ

v2ðM2
H − sÞ þ bðs − 2M2

WÞ
v2

: ðC48Þ

7. AðW + ðp1;ϵL1 ÞW − ðp2;ϵL2 Þ → Zðp3;ϵa3Þhðp4ÞÞ
a. Amplitudes in terms of the polarization

AZ;s ¼ a
g2MW

CW
ϵ1

μϵ2
νϵ3

�ρηδρ½ð−p2 − p3 − p4Þμηνσ þ ðp2 − p1Þσημν þ ðp1 þ p3 þ p4Þνημσ�

×

�
ηδσ

ðp3 þ p4Þ2 −M2
Z
þ ðp3 þ p4Þδð−p3 − p4Þσð1 − ξZÞ
ððp3 þ p4Þ2 −M2

ZÞððp3 þ p4Þ2 −M2
ZξZÞ

�
; ðC49Þ

Aπ;t ¼ −a
g2S2WMWðp2 − 2p4Þνϵ1μϵ2νϵ3�ρημρ

2CWððp4 − p2Þ2 −M2
WξWÞ

; ðC50Þ

AW;t ¼ −aCWg2MWϵ1
μϵ2

νϵ3
�ρηδν½ðp2 þ p3 − p4Þμηρσ þ ð−p1 − p3Þσημρ þ ðp1 − p2 þ p4Þρημσ�

×

�
ηδσ

ðp4 − p2Þ2 −M2
W
þ ðp4 − p2Þδðp2 − p4Þσð1 − ξWÞ
ððp4 − p2Þ2 −M2

WÞððp4 − p2Þ2 −M2
WξWÞ

�
; ðC51Þ

Aπ;u ¼ a
g2S2WMWð−p2 þ p3 − p4Þμϵ1μϵ2νϵ3�ρηνρ

2CWððp3 − p2Þ2 −M2
WξWÞ

; ðC52Þ

AW;u ¼ aCWg2MWϵ1
μϵ2

νϵ3
�ρημσ½ð−p2 − p3Þδηνρ þ ð2p2 − p3Þρηδν þ ð2p3 − p2Þνηδρ�

×

�
ηδσ

ðp3 − p2Þ2 −M2
W
þ ðp3 − p2Þδðp2 − p3Þσð1 − ξWÞ
ððp3 − p2Þ2 −M2

WÞððp3 − p2Þ2 −M2
WξWÞ

�
: ðC53Þ

b. Polarized amplitudes

We will label the polarized amplitude with Aϵ3 , where ϵ3 refers to the polarization of the Z boson. We have only two
independent amplitudes, since AP ¼ AN :

AL ¼ ag2xβWð2M2
W þ sÞð−M2

H þM2
Z þ sÞ

4CWMWMZðM2
Z − sÞ

þ −ag2CW

8sM3
WMZðM2

H þM2
Z − sÞðxβW − 1Þ × ½ðM2

H þM2
Z − sÞð−8sM4

W þ 4ð−M4
Z þ sM2

Z þ s2ÞM2
W

þM2
Hð4M2

W þ sðx2 − 1ÞÞM2
Z − sM2

ZððM2
Z þ sÞx2 −M2

Z þ sÞÞ þ 2sxð−4ðM2
Z þ sÞM4

W

þ 2sðs − 3M2
ZÞM2

W þ sM2
ZðM2

Z − sÞ þM2
Hð4M4

W − 2sM2
W þ sM2

ZÞÞβWÞ�

−
−ag2CW

8sM3
WMZðM2

H þM2
Z − sÞð−xβW − 1Þ × ½ðM2

H þM2
Z − sÞð−8sM4

W þ 4ð−M4
Z þ sM2

Z þ s2ÞM2
W

þM2
Hð4M2

W þ sðx2 − 1ÞÞM2
Z − sM2

ZððM2
Z þ sÞx2 −M2

Z þ sÞÞ − 2sxð−4ðM2
Z þ sÞM4

W

þ 2sðs − 3M2
ZÞM2

W þ sM2
ZðM2

Z − sÞ þM2
Hð4M4

W − 2sM2
W þ sM2

ZÞÞβWÞ�; ðC54Þ
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AP ¼ ag2ð2M2
W þ sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−sðx2 − 1Þβ2W

p
2

ffiffiffi
2

p
CWMWðs −M2

ZÞ
þ a

4
ffiffiffi
2

p
M3

Wð−M2
H −M2

Z þ sÞðxβW − 1Þ
h
g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1 − x2Þ

q
CWðxðM2

H þM2
Z − sÞM2

Z

þ ð8M4
W − 4M2

HM
2
W −M4

Z þ ðM2
H þ 4M2

W þ sÞM2
ZÞβWÞ

i
þ a

4
ffiffiffi
2

p
M3

Wð−M2
H −M2

Z þ sÞðxβW þ 1Þ
×
h
g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1 − x2Þ

q
CWððxþ βWÞM4

Z − ððβW − xÞM2
H þ sxþ ð4M2

W þ sÞβWÞM2
Z þ 4M2

WðM2
H − 2M2

WÞβWÞ
i
: ðC55Þ

8. AðW + ðp1;ϵL1 ÞW − ðp2;ϵL2 Þ → γðp3;ϵa3Þhðp4ÞÞ
a. Amplitudes in terms of the polarization

Aπ;t ¼ −a
g2SWMWðp2 − 2p4Þνϵ1μϵ2νϵ3�ρημρ

2ððp4 − p2Þ2 −M2
WξWÞ

; ðC56Þ

AW;t ¼ ag2SWMWϵ1
μϵ2

νϵ3
�ρηδν½ðp2 þ p3 − p4Þμηρσ þ ð−p1 − p3Þσημρ þ ðp1 − p2 þ p4Þρημσ�

×

�
ηδσ

ðp4 − p2Þ2 −M2
W
þ ðp4 − p2Þδðp2 − p4Þσð1 − ξWÞ
ððp4 − p2Þ2 −M2

WÞððp4 − p2Þ2 −M2
WξWÞ

�
; ðC57Þ

Aπ;u ¼ a
g2SWMWð−p2 þ p3 − p4Þμϵ1μϵ2νϵ3�ρηνρ

2ððp3 − p2Þ2 −M2
WξWÞ

; ðC58Þ

AW;u ¼ −ag2SWMWϵ1
μϵ2

νϵ3
�ρημσ½ð−p2 − p3Þδηνρ þ ð2p2 − p3Þρηδν þ ð2p3 − p2Þνηδρ�

×

�
ηδσ

ðp3 − p2Þ2 −M2
W
þ ðp3 − p2Þδðp2 − p3Þσð1 − ξWÞ
ððp3 − p2Þ2 −M2

WÞððp3 − p2Þ2 −M2
WξWÞ

�
: ðC59Þ

b. Polarized amplitudes

We will label the polarized amplitudes with Aϵ3 , where ϵ3 refers to the polarization of the photon. The only independent
amplitude is (Aþ ¼ A−), where þ or − refers to the polarization of the photon:

Aþ ¼ ag2
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2x2

p
SWβWðM2

H − 2M2
WÞ

MWðs −M2
HÞðx2β2W − 1Þ :

9. AðW + ðp1;ϵL1 ÞW − ðp2;ϵL2 Þ → γðp3;ϵa3ÞZðp4;ϵ4ÞÞ
a. Amplitude

Acontact ¼ −iϵ1μϵ2νϵ3�ρϵ4�σCWg2SWð−iημσηνρ − iημρηνσ þ 2iημνηρσÞ; ðC60Þ

Aπ;t ¼ −
g2S3WM

2
Wϵ1

μϵ2
νϵ3

�ρϵ4�σημρηνσ

CWððp4 − p2Þ2 −M2
WξWÞ

; ðC61Þ

AW;t ¼ CWg2SWϵ1μϵ2νϵ3�ρϵ4�σ½ð−p2 − p4Þγηνσ þ ð2p2 − p4Þσηγν þ ð2p4 − p2Þνηγσ�
× ½ð−p1 − p3Þδημρ þ ðp1 − p2 þ p4Þρηδμ þ ðp2 þ p3 − p4Þμηδρ�

×
�

ηγδ

ðp4 − p2Þ2 −M2
W
þ ðp4 − p2Þγðp2 − p4Þδð1 − ξWÞ
ððp4 − p2Þ2 −M2

WÞððp4 − p2Þ2 −M2
WξWÞ

�
; ðC62Þ
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Aπ;u ¼ −
g2S3WM

2
Wϵ1

μϵ2
νϵ3

�ρϵ4�σημσηνρ

CWððp3 − p2Þ2 −M2
WξWÞ

; ðC63Þ

AW;u ¼ CWg2SWϵ1μϵ2νϵ3�ρϵ4�σ½ð−p2 − p3Þγηνρ þ ð2p2 − p3Þρηγν þ ð2p3 − p2Þνηγρ�
× ½ð−p1 − p4Þδημσ þ ðp1 − p2 þ p3Þσηδμ þ ðp2 − p3 þ p4Þμηδσ�

×

�
ηγδ

ðp3 − p2Þ2 −M2
W
þ ðp3 − p2Þγðp2 − p3Þδð1 − ξWÞ
ððp3 − p2Þ2 −M2

WÞððp3 − p2Þ2 −M2
WξWÞ

�
: ðC64Þ

b. Polarized amplitudes

We will label the polarized amplitudes with Aϵ3ϵ4 , where ϵ3 and ϵ4 refer to the polarizations of the photon and the Z
boson. We have only three independent amplitudes since AþL ¼ A−L, AþP ¼ A−N , and AþN ¼ A−P:

AþL ¼ 2g2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
CWMZSWð−2sM2

W þ sM2
Z − 8M4

WÞffiffiffi
s

p
M2

Wðs −M2
ZÞðx2β2W − 1Þ ; ðC65Þ

AþP ¼ g2CWSWð−8M4
Wðs − x2M2

ZÞ þ 2M2
WM

2
Zð−2M2

Z þ sx2 þ sÞ − sðx2 − 1ÞM4
ZÞ

M2
WðM2

Z − sÞðx2ð4M2
W − sÞ þ sÞ ; ðC66Þ

AþN ¼ −
g2ðx2 − 1ÞCWSWð2sM2

W − sM2
Z þ 8M4

WÞ
M2

WðM2
Z − sÞðx2β2W − 1Þ : ðC67Þ

APPENDIX D: COMPLETE CONTRIBUTION OF
EACH CHANNEL TO THE P-PWAs

In this appendix, we will provide the plots for the
cumulative ratios χJ

0
i for the p-PWAs for g0 ≠ 0. For the

sake of clarity, in the main text we separated the plots in
bosonic cuts, bb̄ cuts, and tt̄ cuts. Therefore, we did not
specify the contributions from each individual channel, as
they were very numerous for g0 ≠ 0. The plots must be read
in the same way as the PWA cumulative ratios χJi in Sec. IV
(g0 ¼ 0 case): Each line contains the relative cumulative
contribution of the past cuts. Hence, the shaded area

accounts for the contribution of the same-color curve
directly above it.
Some contributions are difficult to see, because the

curves are close to each other and some of them directly
overlap. For the J ¼ 0 p-PWA, we observe this for the bb̄
cut and γγ in Figs. 34–36. While the γγ contribution
(bottom in pale blue) can still be appreciated (barely)
between the x axis and the orange curve, the bb̄ channel is
very suppressed and sits on top of the γγ, impossible to see
because of its negligible contribution. The same occurs for
the γh and γZ curves in the mentioned plots, where the γh
channel is essentially negligible and its curve sits on top of
the γZ one. For the J ¼ 1 p-PWA in Figs. 37–39, this time
it is the γZ curve which sits on top of the bb̄ and cannot be
seen as is shown in the figures. The same occurs for the ZZ
cut which sits on top of the WW curve in the same plots
mentioned.
In general, if the shaded area is not of the same color of

the curve immediately above it, a second curve with a
negligible contribution sits on top of the first one.

1. J = 0 pseudo-PWA: χ 00
We provide Figs. 34–36 corresponding to the ratios χ00

for a j cos θj ≤ 0.9 angular integration for all absorptive
cuts explained in explained in Sec. VA.FIG. 34. Ratio for the R0

0 p-PWAs at the SM.
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2. J = 1 pseudo-PWA: χ 01
We provide Figs. 37–39 corresponding to the ratios χ01

for a j cos θj ¼ 0.9 angular integration for all absorptive
cuts explained in Sec. V B.

3. J = 0 pseudo-PWA: Sensitivity of R0
0

to the optimal points

For the case of the J ¼ 0 p-PWA R0
0, we have plotted the

sensitivity to the optimal parameters ða; b; c1; d3Þ in

Fig. 40. All notations are analogous to those for R0

in Fig. 6.

4. J = 1 pseudo-PWA: Sensitivity of R0
1

to the optimal points

For the case of the J ¼ 1 p-PWA R0
1, we have

plotted the sensitivity to the a parameter in
Fig. 41. All notations are analogous to those for R1

in Fig. 11.

FIG. 35. (a) J ¼ 0 p-PWA: contribution of each channel for a ¼ 1.10 and b ¼ c1 ¼ d3 ¼ 1. (b) J ¼ 0 p-PWA: contribution of each
channel for a ¼ 0.90 and b ¼ c1 ¼ d3 ¼ 1. (c) J ¼ 0 p-PWA: contribution of each channel for b ¼ 1.1 and a ¼ d3 ¼ 1. (d) J ¼ 0
p-PWA: contribution of each channel for b ¼ 0.90 and b ¼ d3 ¼ 1. (e) J ¼ 0 p-PWA: contribution of each channel for c1 ¼ 1.10
and a ¼ b ¼ d3 ¼ 1. (f) J ¼ 0 p-PWA: contribution of each channel for c1 ¼ 0.90 and a ¼ b ¼ d3 ¼ 1.

QUEZADA-CALONGE, DOBADO, and SANZ-CILLERO PHYS. REV. D 107, 093006 (2023)

093006-30



FIG. 36. (a) J ¼ 0 p-PWA: largest fermion-loop contribution of 80% at 1.5 TeV for a ¼ 1.011, b ¼ 1.045, c1 ¼ 0.900, and
d3 ¼ 1.094. (b) J ¼ 0 p-PWA: largest fermion-loop contribution of 93% at 3 TeV happens for a ¼ 1.003, b ¼ 1.011, c1 ¼ 1.100,
and d3 ¼ 1.100.

FIG. 37. Ratio for the R0
1 p-PWA at the SM.

FIG. 38. (a) J ¼ 1 p-PWA: contribution of each channel for a ¼ 1.10. (b) J ¼ 1 p-PWA: contribution of each channel for a ¼ 0.90.
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FIG. 39. (a) J ¼ 1 p-PWA: largest fermion-loop contribution of 75% at 1.5 TeV for a ¼ 1.019. (b) J ¼ 1 p-PWA: largest fermion-loop
contribution of 76% at 3 TeV for a ¼ 1.007.

FIG. 40. Sensitivity of R0
0 to each parameter when the rest are set to the highest correction value at

ffiffiffi
s

p ¼ 1.5 (top) and
ffiffiffi
3

p
(bottom)

TeV.
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