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We calculate the weak transition form factors of the A, — A(1520) transition, and further calculate the
angular distributions of the rare decays A, — A(1520)(=NK)Z+¢~ (NK = {pK~,nK°}) with unpolar-
ized A, and massive leptons. The form factors are calculated by the three-body light-front quark model
with the support of numerical wave functions of A, and A(1520) from solving the semirelativistic potential
model associated with the Gaussian expansion method. By fitting the mass spectrum of the observed single
bottom and charmed baryons, the parameters of the potential model are fixed, so this strategy can avoid the
uncertainties arising from the choice of a simple harmonic oscillator wave function of the baryons. With
more data accumulated in the LHCb experiment, our result can help for exploring the A, — A(1520)£ ¢~

decay and deepen our understanding on the b — s£T£~ processes.
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I. INTRODUCTION

The flavor-changing neutral-current (FCNC) processes,
including the high-profile b — s£#*£~ process, can play a
crucial role in indirect searches for physics beyond the
Standard Model (SM). These transitions are forbidden at
the tree level and can only operate through loop diagrams in
the SM, and are therefore highly sensitive to potential new
physics (NP) effects, such as the much-discussed R =
B(B — DWztv,)/B(B - DWe(u)v,,)) [1-4]. These proc-
esses thus provided a unique platform to deepen our
understanding of both quantum chromodynamics (QCD)
and the dynamics of weak processes, and to help hunt for NP
signs. Therefore, the rare decays of » — s have attracted the
attention of both theorists and experimentalists [5—11].

“liysh20@1lzu.edu.cn
Yjinsuping @nankai.edu.cn
:]f98202 10055 @nankai.edu.cn
§xiangliu@lzu.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2023/107(9)/093003(27)

093003-1

For example, the rare decay A, — AZ"¢~ has been
theoretically studied by various approaches, including lattice
QCD (LQCD) [12,13], QCD sum rules [14], light-cone sum
rule [15-19], covariant quark model [20], nonrelativistic
quark model (NRQM) [21,22], and the Bethe-Salpeter
approach [23], etc., and was first measured by the CDF
Collaboration [7] and later by the LHCb Collaboration [8,9].
In addition to the differential branching ratio, such abundant
phenomenologies of various angular distributions have also
been studied. Compared with the measured data, the angular
distribution of A, - AZT¢~ was studied in Refs. [24,25]
with unpolarized A, baryon, and with polarized A, baryon
in Ref. [26]. Furthermore, the authors studied the b —
sutp~ Wilson coefficients in Ref. [27] using the measured
full angular distribution of the rare decay A, —
A(—pr)uTp~ by the LHCb Collaboration [9].

With the previous experiences on the decay to the ground
state A, it is therefore worth further testing the b — s£ £~
transition in the baryon sector decaying to the excited
hyperon with quantum number being J* = 3/2~. The form
factors of the weak transition were calculated by the quark
model [21,22], LQCD [28,29]. and the heavy quark
expansion [30]. The angular analysis was performed in
Ref. [31] and Ref. [32] for massless and massive leptons,
respectively. The authors of Ref. [33] studied the kinematic
endpoint relations for A, — A(1520)£7¢~ decays and
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provided the corresponding angular distributions. Amhis
et al. [34] used the dispersive techniques to provide a
model-independent parametrization of the form factors of
Ay, = A(1520) and further investigated the FCNC decay
A, = A(1520)¢7¢~ with the LQCD data. In addition,
Xing et al. also studied the multibody decay A, — Aj(—
pK™)J/w(— ¢*¢7) [35]. In addition, Amhis ef al. studied
the angular distributions of A, — A(1520)¢ "¢~ and talked
about the potential to identify NP effects [36]. Obviously,
the A, — A(1520) is less studied. Following this line,
we further study the A, — A(1520)(— NK)£ "¢~ with the
NK = {pK~,nK"} process and investigate the corre-
sponding angular observables.

From a theoretical point of view, apart from the con-
sideration of new operators beyond the SM, the calculation
of the weak transition form factors is a key issue. In
addition, how to solve the three-body system for the A,
baryon and A* hyperon involved is also a challenge. In
previous work on baryon weak decays [37-41], the quark-
diquark scheme has been widely adopted as an approximate
treatment. Meanwhile, the spatial wave functions of
hadrons are often approximated as simple harmonic oscil-
lator (SHO) wave functions [37-43], which makes the
results dependent on the relevant parameters. To avoid the
correlative uncertainties of the above approximations, in
this work we calculate the A, — A* form factors by the
three-body light-front quark model. Moreover, in the
realistic calculation, we take the numerical spatial wave
functions as input, where the semirelativistic potential
model combined with the Gaussian expansion method
(GEM) [44-47] is adopted. By fitting the mass spectrum
of the observed single bottom and charmed baryons, the
parameters of the semirelativistic potential model can be
fixed. Compared with the SHO wave function approxima-
tion, our strategy can avoid the uncertainties arising from
the selection of the spatial wave functions of the baryons.

The structure of this paper is as follows. After the
Introduction, we derive the helicity amplitudes of A, —
A (= NK)¢t¢~ (NK = {pK=,nK"}) processes and
define some angular observables with unpolarized A,
baryons and massive leptons in Sec. II. The formulas for
the weak transition form factors are derived in the three-body
light-front quark model in Sec. III. And then, to obtain the
spatial wave functions of the involved baryons, the applied
semirelativistic potential model and GEM are briefly intro-
duced in Sec. IV. In Sec. V, we present our numerical results,
including both the relevant form factors and the physical
observables in A, — A*(— NK)£*¢~ decays. Finally, this
paper ends with a short summary in Sec. VI.

II. THE ANGULAR DISTRIBUTION
OF A, — A*(— NK)£+¢-

In this paper, we use a model-independent approach with
the effective Hamiltonian [48,49]

4
Ho(b = st+e-) = GF VoV Zc Oly) (2.1)

to study the b — s£+£~ process, where G = 1.16637 x
10~ GeV~2 is the Fermi coupling constant and |V, V| =
0.04088 [12] is the product of the Cabibbo-Kobayashi-
Maskawa matrix elements. Furthermore, the Wilson coef-
ficients C;(u) describe the short-distance physics, while the
four fermion operators O;(u) describe the long-distance
physics, where O, , are the current-current operators, O3_g
are the QCD penguin operators, O;¢ denote the electro-
magnetic and chromomagnetic penguin operators respec-
tively, and Oy, stand for the semileptonic operators.

In our calculation, we follow the treatment given in
Refs. [6,23], adding the factorable quark-loop contributions
from O,_g and Oy to the effective Wilson coefficients CSif
and CSf. The effective Hamiltonian can be written as

4Gy
V2

2m . _
- q—;’csff (u)wﬂ”quR} b(Zy,t)

Heff(b - s£+l’ﬂ_) thvts dr . {E |:Cgff(:“v qz)yﬂpL

+cmw)(wLb)(ZmySﬂ}, (22)

where Pg(;) = (1+y°)/2and o = i[y*, y*]/2. The electro-
magnetic coupling constant is @, = 1/137. For the leading
logarithmic approximation, we take m; = 4.80 GeV
[50,51] and the Wilson coefficients as CSt(m,,) = —0.313
and Co(my) = —4.669 in the calculation [50-53]. In
addition, the short-distance contributions from the soft-
gluon emission and the one-loop contributions of the four-
quark operators O;-Og, and the long-distance effects due to
the charmonium resonances, J/y and y(2S) are taken into
account, where we adopt the C5 (1, ¢2) as [50,54,55]
C5(u. %)

= C9(ﬂ> + Ypert(g) + Yres(q2)‘ (23)

The Y, term can be written as

Y per(8) = g, $)C(u)
_% (1,3)(4Cs () + 4Cy () + 3Cs (1) + Co(n))
~200.5)(Cs (1) +3C4(4)
%(303( )+ Call) + 3Cs () + Colp)), (2.4)

where i, = m./my, § = q*/mi, C(u) = 3C (u) + Cy(p)+
3C5(u) + Cy(p) 4 3Cs(u) + Co(u), and [50]
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1+VI1—x

8 8 4 2 ln’ oy
9(z,8) =—-Inz+—=+=-x—=2+x)\/|l —x| x vt ,
9 2799 2arctanﬁ for x =4z%/5 > 1

—ir forx=472/5 <1

8 8, my, 4
§)=——"n ———1 - 2.
9(0,5) = 775 5 n§+ 9m (2.5)

[
The Wilson coefficients are used as C,(m;,) = —0.248, where C©) = 0.362, 7y = 1, and k(25 = 2. The masses

Cy(mp) = 1.107,  C3(m,) = 0.011,  Cy4(m,) = —0.026, and total widths associated with the relevant charmonium
Cs(my) = 0.007, and Cg(m;) = —0.031 [50]. Besides,  resonances are taken to be 3.096 GeV and 92.9 keV for
m = 1.4 GeV [50]. The Yy term can be parametrized  j/y and 3.686 GeV and 294 keV for y(2S) [58]. The
by using the Breit-Wigner ansatz (it is a model-dependent  decay widths are taken as I'(J/y — £1¢7) = 5.53 keV
treatment, and one can refer to Refs. [56,57] for more  and (y(25) - £+£7) = 2.33 keV [58].

detailed discussions) as [51] Since the quarks are confined in hadron, the weak transi-

(V. = ¢+e- tion matrix element cannot be calculated in the framework
Yoo (q?) = 2 CO) Z Kys g i _)2 . )y ’ of perturbative QCD. They are conventionally parametrized
Vil ipws) ™, T4~ imy 'y, in terms of eight (axial-)vector and six (pseudo-)tensor type
dimensionless form factors [21,25,31,32,59-61]. In this
(2.6) work, we adopt the helicity-based form as [31,32]

* a qﬂ m +m * qﬂ
(8 s 5w, )) = Bk ) 71 () ma, =) -t 73 ) ™2 (k= 03, = ) )

+
2m - 2m
+11(a?) <7/" —= - k”)]

+ St
@ 2k 2(ma-pt +my kM
Y 2>[w+mﬁ’—(yﬂ—— mac P + ma, >)]}u<p,sA,,>, @7)
mA S+
* - q" MA — M+ q"
(A (s 5771 (250, )) = —Tig (o5 { [ ), +ma) 5+ 3@2)%(””*"”—("1&—"1%)?)

+f1(q )(y"+2 -pH - 2sAbkﬂ)]

+£5(q%) [9"" —mA*f—a <J/” +%—2<m/\*pﬂ _mA”k”))] }u(p,sAh)» (2.8)

+ N S_

2 H
(N o, 50, = =l o ) (6 = 03, =) % )
+

2mA* p/‘ _ Zm/\b i
S Sy

+fg(q2) |:ga” -+ My f_a <)/” _ ﬁ + 2<m/\*pﬂ —+ mAbkﬂ)>:| }M(p, SAh)y (29)

mA* S+

AT (my, + ma) (w -

2 H
. o . “ q q
(8 s e b p5n)) = =l )P o [ (5 0= 03, =) )
2m - 2m
+f£5(q2)(m,\h—m,\¥)<y”+ SA P”——sAb k”)]

fgs(q2> |:ga'ﬂ - f_a <}/ﬂ n % B 2(m/\*p” — m/\bk/‘)>] }u(p’ SAb)' (210)

T M A« A

This form defined above is convenient for calculating the corresponding helicity amplitudes, where g is the transferred
momentum square and s, = (m,, & my+)* — ¢*.
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A. The helicity amplitudes of the A, — A*¢* ¢~ decay

To calculate the A, - A*ZT¢~ process, we define the
corresponding helicity amplitudes of the A,(s,,) —
A*(s+) transition as

H(V,A,T,TS)(sAb’ saes Aw) = €5(Aw) (A*(sa+)
X [5{y". 7'y i q,. 0" g,y }
Xb|Ab(sAh)>’ (211)

where ¢(dy =1,+,0) are the polarization vectors
of the virtual gauge boson in the A, rest frame, and s,,
and s+ are the polarizations of A, and A*, respectively. For
the vector current, the complete helicity amplitudes
HY(sp, . sa» Aw) read as [31]

HY (sn,. x4 1) = €u() (A" (k. 550 ) |57 I Ay (P. 5, ))

mp, — Mpx _
= fl(q*)— ity (k, sp- ) p%u(p, sa, ),

V7
(2.12)
HY (sp,. 57+, 0) = €5(0)(A*(k, s7+)[57*b|Ay(p. 54,))
+
P TN 1 e (0)
S+

X lg(k, sa-) pPu(p, sa, ), (2.13)

HY (sn,. sx0 %) = € (£) (A" (K, 54°)[57bI Ay (P, 54, )

(71 + 75 ™2 s )
< P (Eu(p.5n,)

+ [y (@) g (k, sp- )€ (£)u(p. sy,)
(2.14)

Analogous expressions for the helicity amplitudes
of the axial-vector, tensor, and pseudotensor currents are
written as

HA(sp, . S0, 1) = €,(1)(N*(k, 57 ) 577 bIAL (P, sa,))
mp, + Mmps _
= —f?(qz)%ua(k, SA+)

q

X p P u(p,sa,) (2.15)

HA(sy,. 57 0) = €(0)(A* (k.55 ) |57’ I Ay (p. 54,))
_ _2f3(q2)wk.€*(o)

X ity (k. sp ) P u(p. sa,)- (2.16)

HA(sp, San£) = €,(£)(A* (k. sp) |57 bIAy (. s4,))
- <fﬁ(q2) —f9<q2>’f—f) falk, 51
x p*d (£)r u(p, sp,)
— [5(q?) g (k. sp )€™ (£)7°u(p. s5,)
(2.17)

H'(sp,. 55, 0) = € (0)(A* (k. sp-)[Sic" q,b| Ay (p. 54,))

q2
=-2f{(q%) sk e(0)

X @iy (k, sp ) pPu(p, sa,), (2.18)

HT(sp,.sn, %) = €,(£) (A" (k, sn:)[5i0* q,b|Ap (. 54,))

- —<f§(q2)(mm, )+ £3(4°) n:_A)

— (@) gk, sp ) (£)u(p. sp, )
(2.19)

H(5,50:.0) = €(0) (A" (kosx-)[5i0™ 4,7 b| Ay (p.s, )
2
=253 Lk-e (0)
S_

X ity (k.sp) p*r°u(p. sy, ), (2.20)

H™(sp, 50 1) =€ (£) (A" (k,sp-)[5i0" q, 7 b Ay (p.sa,))
_ <f£5<q2><mAb —mA»—f;S(qZ)”j—f)
Xitg(k,spe) p*¢* (£)7r u(p.sa,)
- gs (q2)ﬁa(k,sA*)e*“(:I:)fu(p,sAb),
(2.21)

respectively. Using the kinematic conventions presented in
Appendix B 1, the nonzero terms for the above helicity
amplitudes of the vector, axial-vector, tensor, and pseudo-
tensor currents are [31]
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HV(+]/2,+]/2, t) — HV(-]/Z,—]/Z, I) Zf}/(qz) mpy, — My« S+\/E

JE Vemy
HY (+1/2,41/2,0) = HY(=1/2,-1/2,0) = =¥ (¢?) mAqu—;nN SJg\f
HY (412 -1/2.4) = BY(=1/2, +1/2.—) = —f¥ (¢2) Y%
V3m-
HY(=1/2,-3/2,+) = H"(+1/2,43/2,-) = f (¢*) /5., (2.22)

HA(41/2,41/2,1) = —HA(=1/2,=1/2,1) = fA(q?) s RN RVARY

JE& ey
A A . _ A oy A, — A S5
HACH/241/2,0) = =HA=1/2,21/2.0) = () =22,
HA(4+1/2,-1/2,+) = —HA(-1/2,+1/2,-) = fi(q )}\/_
UoN
HA(=1/2,-3/2,4) = —HA(+1/2,43/2, =) = —f4(¢*)\/5_, (2.23)
T — —
HT(+41/2,41/2,0) = HT (—1/2,-1/2,0) = \/7\/'m,\
HT(+1/2,-1/2,4) = HT(=1/2,41/2, =) = f1.(@)(my, + my-) ﬁm,
e
HT(=1/2,-3/2,4) = HT(+1/2,43/2, =) = =1 (¢*) /5=, (2.24)
5 _gTs(_ _ _ TS 2S4S
H3(+1/2,+1/2.0) = —H™(=1/2.-1/2,0) ((”\Ffm
HP(41/2,-1/2,+4) = =H(=1/2,+1/2, =) = f13(¢*)(mp, — my-) i}%\/s__
N
H™(=1/2,-3/2,+) = —H5(+1/2,43/2,-) = = (¢*)\/5_, (2.25)

respectively.
Similarly, we define the leptonic helicity amplitudes as

LYY (s 50+, aw) = & Q) (€M {r, 7,7} £7)0)
=& (Aw)i(ps.se- )1 17’ }o(=pese), (2.26)

where & (1y = t,+,0) are the polarization vectors of the virtual gauge boson in the dilepton rest frame. Using the
kinematic conventions presented in Appendix B 2, the nonzero terms are obtained as [32]

LY(£1/2,+1/2,0) = £2m,cos0,, LY (+1/2,F 1/2,0) = —\/¢*sin6,,
LY(4+1/2,41/2,4) = TV2m,sinf,,  LY(-1/2,—1/2,F) = FTV2m,sin6,,

Ve Vv
% — v — —
LY(+1/2,F1/2,+)=F 7 (1 +cosb,), LY(+1/2,F1/2,F)=F v (1 —cosfy),
LA£1/2,41/2,1) = =2mg,  LA(£1/2,F 1/2,0) = Fsinb,\/ ¢*p,,
/3 /3
LA(£1/2,F 1/2,4) = ——2(1 +cosO,)f,.  LA(x1/2,F1/2,F) = —T‘é(l —cosO,)p,,  (2.27)

where B, = /1 —4m2/q>.
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B. The helicity amplitudes of the A* — NK decay

We use the effective Lagrangian approach to describe the
strong decay process A* — NK. The concerned effective
Lagrangian is

Lykn = gnknNrsAGO°K, (2.28)
where gp-gny 1S the coupling constant. So the decay
amplitude for the A* — NK process can be expressed as
Mok (S Sn) = garniin (Sy)7stns a(sa ks, (2.29)
where & is the four momentum of the K meson, u,- , is the
Rarita-Schwinger spinor describing the hyperon A*, while
uy 1is the Dirac spinor describing the nucleon. The

interference terms between matrix elements with different
A* polarizations can be written as

V=T
Cponk (540 s3:) = Z {MA*—HVK(SAM SN)}

167m3. ™

X MpLnk (S35 sw), (2.30)

where r, = (my- £ my)* — m%, and then the decay width
of A* = NK can be obtained by

I'(A* - NK)

ZFA*_»NK(SA* SA*)s (2.31)

where the factor 4 comes from averaging over the polari-
zation of A*.

With respect to the forms of Rarita-Schwinger spinors
and Dirac spinors presented in Appendix B3, we
obtain [31,32]

6sin”(6,-) 2v/3e7sin(20,.) —2v/3e72sin(6,.) 0
P (st _I(A"— NK) 2\/§ei'/"sin(29,\*) 3c0s(20,:) +5 0 —2\/§e_2""/)sin2(9,\k)
4 —2+/3¢%%5in2(6,.) 0 3c0s(20,)+5  —2v/3esin(20,)
0 —2v/3e%sin?(,.) —2+/3e'sin(26,.) 6sin?(6,+)
(2.32)
with rows and columns corresponding to the polarizations of s$., s%. = =3/2,—1/2,1/2,3/2 from top to bottom and from

left to right. We emphasize that I'(A* — NK)

= B,- x 'y, where B,- = B(A* — NK) is the corresponding branching
ratio and ' is the inclusive decay width of the A* hyperon.

C. The total amplitudes of A, — A*(— NK)Z*¢~ process

The invariant amplitude of A, = A*(— NK)£+ ¢~ is [24]

M(sp, . SNsSp-2Sp+) = <N(SN)I_(K_(SK’>K+(SW)|Heff‘Ab(SA,,)>

*Zkz

SA*

=2 5@

Sp*

Sp*

X LV(Sff, Spty t) + CIOHV(SA[,’ SA*S t)LA(sf,’ Sp+, t)

2mb

MA*—»NK(SA 1SN)9”V<

iN
=2 WMAMNK@N, sw) [ CSTHY (s, 500 DLV (s 04, 1) =
7

2 CSTHT (55, sp+ D)LY (5=, 8+, 1) =

M/\*—WK(SA* SN)<A*(Sf\)f_(sf-)ﬁ(sf*)|Heff|/\b(51\b)>

“(sar)

Jul Mo (55,0 (s2-)C7 (574)4,10)

CgffHA(sAb, Spss 1)

- CIOHA<SAb7SA*v t)LA(sf*,sf‘F, t)

2m
L CSTHT (s, 50 LY (5,574, 1)

- Z (CgffHV(SAb,SA*,/,{)LV(Sbﬂ,Sf+,/1) - CgffHA(SAb,SA*,A>LV(S57,SK+,/1>

A=%£,0

+ CIOHV(S/\b’ S/\*a/,{)LA<Sf_’ str’l)

Zmb

52 CTHT (55, Sp+ ALY (5=, 5+, 2)

- CIOHA(S/\,,7 Spes LA (5=, 54+, 4)

m
_TbcgffHTS(sAb,SA*,/l)LV(Sf—,SﬂJ))}, (2.33)
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where N = %v,,,v;; 1% and the factor 1/2 comes from the definition of P ). Besides, the relation ¢* = ele? —

Yoi—to €;"€¥ is implied. The helicity amplitudes defined in Eqs. (2.11), (2.26), (2.30), and (2.32) are implied. Finally, with
the nonzero helicity amplitudes presented in Eqs. (2.22)—(2.25), (2.27), and (2.32), and the expression of the differential
width by considering the narrow-width approximation shown in Eq. (A7), the differential decay width can be obtained.

As analyzed in Refs. [31,32], the angular distribution for the four-body decay A, — A*(— NK)#*#~ can be reduced as

d'T -
dg*dcosOp-dcosO,dp

3
QzLi(‘]z)fi@Z’@fﬁA*,fﬁ)
3 2 ) 2
=% [(Llc cosf, + Ly..cos°0, + L;sin“0,)cos*0 -
V3

L. €080, + Ly .cos’0, + Ly sin’0,)sin’6 -

+(

+ (L3448in*0,c082p + Lyg,8in’0, sin ¢ cos ¢)sin?G -
+ (Lsgsin@, + Ls. sin @, cos 8,) sin O cos O+ cos ¢
+(

L, sin @, + Lg,. sin 0, cos 0,) sin 6+ cos G+ sin (ﬁ] . (2.34)
The complete expressions for the series angular coefficients L; can be found in Appendix G of Ref. [32].

D. Physical observable in the four-body process

By integrating over the angles in the regions 6, € [0, x|, 8, € [0, z], and ¢ € [0, 27], the relevant physical observables
are listed as follows:
(a) The differential width is

dr 1 1 2 dar
—2:/ dcos@/ dcosQA*/ dp——
q - 1 0 dq=dcos@y-dcosb,d¢p

(Llcc + 2L1ss + 2L2c‘c + 4L2ss =+ 2L3”). (235)

QU

W | =

(b) The lepton-side forward-backward symmetry A% is

0 _ 1 1 L
(f—l fO)dcosef f—l dCOS@A* fO dqﬁdqzdcost‘),\*dcosﬂfd(/)
1 1 Y
f—l dcos by, f—l dcos O fO dg dq*d cos O,«dcos0,dp

3 Ly, + 2Ly,

‘.
AFB_

= . 2.36
2 Llcc + 2Llss + 2L2cc + 4L2ss + 2L3ss ( )
|
(c) The hadron-side forward-backward symmetry A%, Fo—1 2(Lyee+2Loe) 538
and the lepton-hadron-side forward-backward sym- L Ly 42(L1ys+ Loce+2Lo + Lsyy)’ (2.38)
metry A%%  will undoubtedly disappear, since the
decay A* — NK is a strong process [31]. This can respectively.
be tested in future experiments. (e) We also define the normalized angular observables as
(d) The transverse and longitudinal polarization fractions
of the dilepton system are defined as [31] G Hodl G dl
A, = /q?m" Alg ]d—qqu /fIﬁm d—qqu
(2.39)

_ 2(Llcc + 2LZCC)
Llcc + 2(Llss + LZCC + 2L2.§‘S + L3SS)

Fy . (2.37)

with A[g?] = A%[q%, Frlq?], or F1[q].
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III. THE LIGHT-FRONT QUARK MODEL
FOR CALCULATING WEAK TRANSITION
FORM FACTORS

In this section, we will calculate the form factors involved
in the three-body light-front quark model. First, the vertex
function of a baryon 5 with spin J and momentum P is
[42,43,62-67]

d*p) d’py d’ps
B(P,J,J,))=
[B( :)) /2(271)32(271)32(27:)3

X 3 W (P ) CH S (P= i~ pa—bs)
12,23

XFy 00l @1a(P1:40)) | G2p(P2:42))
X |q37<1337/13>>’

2(2x)3

(3.1)

where the C*" and F 419,4; are the color and flavor factors,
respectively, and 4; and p; (i = 1,2,3) are the helicities and
light-front momenta of the on-mass-shell quarks, respec-
tively, defined as

pi=(pi.pi), pi=pl+pl. pii=(ip}). (32)
To describe the motion of the constituents, the intrinsic

variables (x;, l_c'l) (i=1, 2, 3) are as follows:

where x; represents the light-front momentum fractions
bounded by 0 < x; < 1.
The vertex function should be normalized by
(B(P', . J)|B(P.J. J.)) = 222 P*&(P = P')3; .
(3.4)
|

and

J(I5a5 e 5

i=1 i

x 8 <Z’Z‘L)W* (ki Dy (xn ki) =1 (3.5)

As proposed by Refs. [68-70], the spin-spatial wave
functions for the A-type baryon with J© = 1/2% and 3/2~
are written as

WY (i, Ai) = Aoit(pr. A)[(P + Mo)rlv(pa. Aa)

X ﬁQ(Ps,ﬂs)”(P,Jz)l//(Xw/zu)’ (3.6)
W29, 4;) = Boit(p1. 41)[(P + M)y’ lv(pa. 4y)
S uQ(p37/13)K(lu(l(P7Jz)l//(xh ]:iJ_)’
(3.7)

respectively, where

1

AO ==
\/16P+M(3)(e1 +my)(ey + my)(es + m3)

’

V3

BO -
\/16P+M3(€1 +my)(es + my)(e3 — my)(e3 + my)?

are the corresponding normalized factors determined by
Eq. 3.4). The K = [(m; + my)ps — m3(py + p2)]/(m; +
m, + ms3) is the momentum of the 4 mode.

In the context of the three-body light-front quark model,
the general expression for the weak transition matrix
element is written as

(A (P ) ISTY Bl AG(P. J.) _/< 2(2)°

dxldzlzu dX2d2E2l
2(2x)?

) llfh(xia iéii)‘//f (x;, IZL)

(16/V/3)/ x3x, MM

Tr[(P' — My)y> (¢ + my) (P + Mo)y* (4 — m;)]

V(er +mi)(ex + ma)(es + ms) (e} + mi)(eh + mh)(es —my)(es + my)?

X U (P, JL)K"(ps + ma)Ui (P + m3)u(P. J.),

(3.8)

where the I = {y*, y*y°,ic"q,, ic"*q,y°}. P = p| + p, + p3 and P' = p, + p, + p} are the light-front momenta for
initial and final baryons, respectively, considering p; = p| and p, = p) in the spectator scheme. The following kinematics

of the constituent quarks as
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p"t=x"P0r B =P + k]

- 5 o
P3L— P31 =41,

(3.9)

have been used to simplify the above matrix element.

In addition, the w, and wy, are the spatial wave
functions of A, and A*, respectively. Their forms are
written as

7 €1€7€3 mll_é2 - mzl_él
ki) =Ny, /
W(XI l) 4 x1x2x3M0¢p< my + my >

< &, <(m1 + my)ks —ms(k; + kz)) (3.10)

m1+m2+m3

in this paper, where k; = (l_él 1, k;;) with

_ m12 + ]_C?J_
2.X'iM0 ’

xiMy
ki == (3.11)
By the way, ¢,(,) is the spatial wave function of p(4) mode.

The factor N,, = (47%/?)? for the ground state A, and the

determined by Eq. (3.5). The additional factor /1+/3 for the
P-wave state comes from different angular components of
the spatial wave functions described by the spherical
harmonic functions compared to the ground state.

In previous work [40-42], the spatial wave function of
the baryon is usually adopted as a SHO form with an
oscillator parameter f, which causes the f dependence of
the form factors. To avoid this uncertainty, we adopt the
numerical spatial wave function obtained by solving the
three-body Schrodinger equation with the semirelativistic
potential model. The detailed discussions are presented
in Sec. IV.

The next content discusses how to extract the form
factors in the light-front quark model. Here, we consider
the g = 0 and g, # 0 condition. In order to extract the
four form factors in vector current, one can multiply the

a(P,J.)T] " us(P',J.) on both sides of Eq. (3.8) with
specific setting I = y# and sum over the polarizations of
the initial and final states. And then the left side can be
replaced by Eq. (2.7), and the right side can be calculated
out by carrying out the traces and then the integration. The
Lorentz structures are F}/’” g {g™, PPyr, PPP'" PPPHY,
The complete expressions for the form factors in vector
current are obtained by solving

factor N,, = (47%/?)?//3 for the P-wave state A(1520) are
!
Tr[(G - )P*.[form factors in Eq.(2.7)].(P + M,). I“Vl/j234) ]
_ /(dxldzlil> (dxzdz%L> Wb(xiﬂku_)l//s(x k’l)AOB’Tr[ ]
2(2x) 2(2x) \V/X3X,
X Tr[(Gas) g K" (P53 + m3)y" (p5 + m3) (P + MO)F(I 234040 (3.12)
| 1
where (Gr 1 = =P+ M) = 577 = PP
_ U plv __ VP
Ay = 1/\/16M(3)(€1 +my)(ex +my)(es +ms),  (3.13) 3M|, (P =1'P )]' (3.16)

By = \/3/\/16M63(e’1 +m)(ey+m)) (e —m5) (e +m3)?,
(3.14)

Tr[- -] (#r —my)],

(3.15)

=Tr[(P' = My)r(#1 + my) (P — Mo)y

Analogously, the form factors in the axial-vector, tensor,
and pseudotensor currents can be obtained by using the

structures (P, J )I"A‘”ﬁuﬁ(P’ JL), a(P,J )T uy(P L),
and @(P,J )T ”ﬂuﬁ(P’ J%) with setting T = y*y°, io**q,

in Eq (3.8), respectively. The Lorentz
structures are [0 = {gfuyS PPyryS PPPIyS pPprySY,
FT”ﬁ {g%, PPy#, PPP}, and FTSM} = {y, PPyry3,
PﬂP/”y }. The complete expressions of the form factors
can be obtained by solving

and ic*q,y>

093003-9



LI, JIN, GAO, and LIU

PHYS. REV. D 107, 093003 (2023)

Tr[(G - )P*.[form factors in Eq.(2.8)].(P + MO).FA”ﬂ‘

() ()

X Tr[- - |Tt[(Gg,. ) g K" (P + m5) 7"y (#5 + m3) (P + Mo)rAljzu e

Tr[(G x- )#*.[form factors in Eq.(2.9)].(P + M) T"” (112.3) )

_/ dxldzlzu dxzdzlzu W (i,
B 2(2x)? 2(2x)?

x Tr[(Gg,. ) ju K" (P + m3)ic" q, (3 + m3) (P + MO)F(] L

Tr[(G - )P [form factors in Eq.(2.10)].(P + Mg).I'"> /33) ]

- [ (i) ()

X T((Gay ) g Ky + mb)io"a,7° (s + ms)(P+ ML, .

This approach has been used to evaluate the form factors of
triple heavy baryon transitions from3/2 — 1/2 cases [71,72].

IV. THE SEMIRELATIVISTIC POTENTIAL MODEL
FOR CALCULATING BARYON WAVE FUNCTION

In this section, we will derive the wave function using the
GEM with semirelativistic potential model. In general, to
obtain the wave function and mass of a baryon, we need to
solve the three-body Schrodinger equation,

HTJ,MJ - ElPJ,MJ’ (41)

where H is the Hamiltonian and E is the corresponding
eigenvalue. It can be solved by using the Rayleigh-Ritz
variational principle.

Unlike a meson system, a baryon in the traditional quark
model is a typical three-body system. In our calculation,
the semirelativistic potentials used in Refs. [73-75] are
applied. The Hamiltonian in question [73,74],

H=K+> (Sy+Gy+Vy® + Vi 4 vien 4 yeomy,

| (4.2)

includes the kinetic energy K, the spin-independent linear
confinement piece S, the Coulomb-like potential G, and the
higher-order terms containing the scalar-type spin-orbit inter-
action V*°(8), the vector-type spin-orbit interaction V*°(*), the
tensor potential V**", and the spin-dependent contact poten-
tial V°°". The concrete expressions are given as [73-75]

K= Z \/mlz—l-p,z,

i=123

(4.3)

7 )
AoBj,
\/x3x'3
(3.17)
kiL)V/r(x ku)A 0By T[]
/X35
(3.18)
(12
Lk K,
l//b(xt zJ_)WS( i J_)A()B()TI'[]
\/.X,'3)C3
(3.19)
—6%r.
3 e i 1 2
S, =—2 IR (§ T
/ 4( [f *( +2ozr%j)ﬁ
/ e xDF -F; +3 (4.4)

ay 2/rmj 2 ]
G, = — |— e dx|F;-F; 4.5
! zk:rij [\/77 0 ! (4:3)

for the spin-independent terms with

1 1 dm;m; 4 2mm; \ 2
2 | — 2 =L 4.6
? 70 [2+2 <(mi+mj)2) o (mi +mj> ] (4.6)

and the (F; - F;) = —2/3 for the quark-quark interaction, and

V:O<S) _ _rij Xp'ZS' 1 GS,] rij Xp‘lsz 1 6S,»j’ (47)
J 2ml~ rij 0rij 2mj r,-jarij
VSO(U) _ rij X plz SliaGlj _ rij X pJ2 SJLOGU
Y 2m; rij Orij 2m; rij Orij
_rijxpj-Si—rijxpi-SjL()Gij (48)
m,m/ rl-j arij ’ ’
. 1 R S; - S;j
VP = = (8108, ) =5
’G;; 0G;;
X < 5 —”), (4.9)
arij rij()rl-j
2S; - S;
ven = 2L Tigag 4.10
T gy (4.10)

J
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TABLE I. The parameters used in the semirelativistic potential
model. The quark masses are also chosen to be m, = 220 MeV,
my = 220 MeV, m; = 419 MeV, m, = 1628 MeV, and m,, =
4977 MeV [75,76].

Parameters Values Parameters Values

b (GeVz) 0.1466 + 0.0007 £50(s) 0.5000 £ 0.0762
¢ (GeV)  —0.3490 £ 0.0050 eso(v) —0.1637 £ 0.0131
oo (GeV)  1.7197 +0.0304 eens —0.3790 £+ 0.5011
K 0.5278 +0.0718 eeon —-0.1612 £ 0.0015

for the spin-dependent terms, where m; is the mass of the ith
constituent quark, and S; is the corresponding spin operator.

Next, a general transformation based on the center of
mass of the interacting quarks and the momentum is set up
to compensate for the loss of relativistic effect in the
nonrelativistic limit [75,76]

P2\ 12 P2\ 12
G- [1+2—) "G, (1+2—) ",
”_)< +E,-Ej> ”( +E,»Ej>

Vf m;m; 1/2+¢€; V{( m;m; 1/2+¢€;
J N J J J , (411)
mimj ElEj mimj ElEj

where E; = /p? + m? is the energy of the ith constituent
quark, the subscript k is used to distinguish the contact,
tensor, vector spin-orbit, and scalar spin-orbit terms, and
the ¢; is used to denote the relevant modification para-
meters, which are collected in Table 1.

The total wave function of the baryon is composed of
color, spin, spatial, and flavor wave functions, i.e.,

spatial flavor

lPJ,MJ _ ZCOIOK{)(SPIHS,MS YL M, (ﬁ, A)}J.MJW , (412)
where 5" = (rgb — rbg + gbr — grb + brg — bgr)/\/6
is the universal color wave function for the baryon. For
the affected A, and A*, their flavor wave functions are
chosen as " = (ud — du)Q/+/2 where Q = b or s.
Also, S is the total spin and L is the total orbital angular

spatial

momentum. yyy  is the spatial wave function, which is

composed of the p mode and 4 mode
- R -
U/I[)‘a,rlt/l[all (/)’ ’1) = {¢lﬂ,mll, (p)d’l,l,ml)~ (’1) }L,ML ’
where the subscripts /, and I; represent the orbital angular

momentum quanta for the p and 4 modes, respectively, and
the internal Jacobi coordinates are chosen to be

(4.13)

p =7~
Z:?g_w' (4.14)

m1+m2

As shown in Fig. 1, the A,(A*) is considered as a bound
state with the u and d quarks bound to form the p mode and
then bounded to the b (or s) quark to form the 4 mode.

b(s)

FIG. 1. The definition of the internal Jacobi coordinates p and Z
where we use green spheres to represent the # and d quarks and
yellow spheres to represent the b (or s) quark.

In this calculation, the Gaussian basis [44-46],

glm(?) :¢gl(r)Ylm(?)

21+2 (2yn)l+3/2 . 1 Kunax

lim C vy
\/7_7'-(2[4— 1)” e—0 (Ung)l; im,k€

(?_eﬁlm.k)z ,

(4.15)

is used to expand the spatial wave functions ¢; ,,; and
p 11y
Grm, (n=1,2,...,np,), where the freedom parameter

nmax Should be chosen from positive integers, and then the
Gaussian size parameter v, can be settled as [77]

Uy = 1/’%?

1
rmax nmax =1
a—=\—— .
T'min

In our calculation the values of p,;, and p,,,« are chosen to
be 0.2 fm and 2.0 fm, respectively, and the parameter
n, = 6.For the A mode, we also use the same Gaussian-
sized parameters.

In this paper, we fit the single charmed and bottom baryon
spectrum to fix the phenomenological parameters in the
semirelativistic potential model. The experimentally obser-
ved masses of charmed and bottom baryons are collected in
Table II. The y? method, i.e., finding the minimum y? value,
is used for the fitting. In our fit, the > value is defined as

1 nmERP g The 2
2 = ' )L (4a7
A= () e

i

R N (4.16)

where

E : .
where m;*? and mI™ are experimental and theoretical values

of the mass of the ith baryon, respectively. The errors
6; = 1 MeV' are universal for all baryons. In this fitting, the
x? is given as 2.84. The fitted parameters are collected in

1Checking the PDG [58], we find that the uncertainties of the
measured masses of the charmed and bottom baryons are around a
few MeV. In order to make the baryons act in the same proportions in
our fitting, we choose a universe value of 1 MeV as the uncertainty.
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TABLEII.
central values are given.

Experimentally observed masses of charmed and bottom baryons used to fit the potential model parameters, where only the

States JP  This work (GeV) Experiment (GeV) [58] States JP  This work (GeV) Experiment (GeV) [58]
A, %* 2.286 2.286 Ay %* 5.621 5.619
A.(2595) %— 2.595 2.595 A, (5912) %— 5.896 5912
A, (2625) %— 2.627 2.625 A, (5920) %— 5.909 5.919
A.(2765) 7° 2.768 2.765 A, (6070) %+ 6.046 6.072
A (2860) %+ 2.872 2.856 A, (6146) %+ 6.133 6.146
A,(2880) %* 2.894 2.881 A, (6152) %* 6.144 6.152
z. %+ 2.446 2.453 z, %* 5.809 5.811
%.(2520) %+ 2.519 2.518 g %* 5.835 5.832
B, %* 2.478 2.467 Z, %+ 5.809 5.794
E.(2790) %— 2.787 2.792 E,(6100) %— 6.093 6.100
E.(2815) %— 2.814 2.816 E,(6327) [78] 7 6.316 6.327
E.(2970) 77 2.953 2.970 =,(6333) [78] 77 6.324 6.332
E.(3055) 77 3.059 3.055 B}, (5935) %* 5.939 5.935
E.(3080) 7 3.077 3.080 E,(5945) %* 5.963 5.949
= %* 2.583 2.577 Q, %* 6.043 6.046
E.(2645) %+ 2.648 2.645

Q. %+ 2.693 2.695

Q.(2770) %* 2.755 2.765

Table I. Meanwhile, our results for the masses of the
charmed and bottom baryons are presented in Table II.

With the above preparations, we can calculate the spatial
wave functions of A, and A(1520). Their masses and radial
components of spatial wave functions are shown in
Table III. It is obvious that the calculated mass of A, is
consistent with the Particle Data Group (PDG) [58]
averaged value, while that of A(1520) is about 40 MeV
higher than the PDG value.

V. NUMERICAL RESULTS

A. The weak transition form factors

With the input of the numerical wave functions of A, and
A*, and the complete expressions of the form factors
|

o) Ao

o) A=) n=e(z)
A=oy) =)
w=o() o)

o) neolt) s

obtained by solving Eq. (3.12) and Egs. (3.17)-(3.19),
we present our numerical results of the form factors of the
A, — A* transition. Since the form factors calculated in the
light-front quark model are valid in the spacelike region
(¢*> < 0), we have to extrapolate them to the timelike
region (g> > 0).

Before we do the extrapolation, we need to talk about
some constraints on the form factors at the ¢*> = g2,
point. To make sure that the helicity amplitudes in
Egs. (2.22)—(2.25) have no singularities and are nonzero
values in the g> — g2, limit, we get the constraints in this
limit as

U

(5.1)
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TABLE IIL

The comparison of the masses of A, and A(1520) from our calculation and the PDG [58] data, and the radial components

of the spatial wave functions of the concerned A, and A(1520) from the semirelativistic potential model and GEM. The Gaussian

bases (n,,n,) listed in the fourth column are arranged as [(1,1),(1.2),....(L.n; ). (2.1),(2,2), ..., (2,1, ), ..., (

(M2 2)s oo (s M )]

M 1)

‘max max

States This work (GeV) Experiment (MeV) [58]

Eigenvectors

[0.0068 + 0.0007, 0.0442 + 0.0014, 0.0732 £ 0.0016, 0.0032 =+ 0.0003,
0.0011 £ 0.0001, —0.0004 =+ 0.0000, 0.0270 £ 0.0012, 0.0204 £ 0.0010,
0.0273 £ 0.0022, 0.0067 £ 0.0004, —0.0027 £ 0.0001, 0.0007 £ 0.0000,
—0.0170 £ 0.0002, 0.2541 £ 0.0058, 0.2427 £ 0.0006, 0.0005 £ 0.0002,

Ay 5.621 +0.005 5619.60 £ 0.17

0.0060 £ 0.0001, —0.0017 +£ 0.0000, —0.0037 £ 0.0003, —0.0426 + 0.0010,

0.4052 £ 0.0028,0.0253 £ 0.0025, —0.0023 £ 0.0007, 0.0004 £ 0.0002,
0.0071 £ 0.0001, —0.0052 +£ 0.0008, 0.0105 £ 0.0008, 0.1224 £ 0.0015,
—0.0246 £+ 0.0001, 0.0054 £ 0.0000, —0.0020 =+ 0.0000, 0.0010 £ 0.0003,
—0.0112 £ 0.0003, —0.0139 £ 0.0001, 0.0086 + 0.0001, —0.0017 £ 0.0000]

[0.0000 £ 0.0001, —0.0096 =+ 0.0004, —0.0488 + 0.0017, —0.0576 £+ 0.0010
—0.0011 + 0.0001, —0.0004 + 0.0000, —0.0049 =+ 0.0004, 0.0041 + 0.0002
—0.0295 £ 0.0012, —-0.0279 + 0.0020, 0.0011 % 0.0003, —0.0006 + 0.0002
—0.0010 £ 0.0001, —0.0510 £ 0.0019, —0.1771 £ 0.0036, —0.1890 £ 0.0014

A(1520)  1.561 £ 0.007 1517.5+£04

—0.0036 £ 0.0004, —0.0008 £ 0.0003, 0.0003 £ 0.0001, 0.0222 £ 0.0005

—0.2146 £ 0.0003, —0.2766 £ 0.0040, —0.0001 £ 0.0013, —0.0036 + 0.0006
—0.0025 + 0.0001, 0.0028 £ 0.0001,0.0135 £ 0.0012, —0.1653 £ 0.0011
—0.0174 £ 0.0008, 0.0019 + 0.0005, 0.0010 % 0.0000, —0.0020 + 0.0000
0.0035 = 0.0004, 0.0277 £ 0.0002, —0.0061 =+ 0.0005, 0.0010 + 0.0003]

The form factors that show less singular behavior in the
g*> = q2.x limitare also reasonable. This would lead the heli-
city amplitudes to be zero in g*> = g2, The above features
have been discussed in Ref. [31]. However, the above
requirement is not strict enough, since it gives a broad limit.
This will make nonunique extrapolations of the form factors.

Since the LQCD calculation of A, — A(1520) form
factors has been done in Refs. [28,29], and their results
work well in the kinematic region near ¢2,,, we will talk
about the characters of the form factors in the LQCD. The
LQCD calculation has been completed in Refs. [28,29].
The authors obtained finite values of the form factors of
A, — A(1520) in their definition (i.e., fo, | 1/ Go+.1.17s
hi i isandhy | /) inthe > = gy limit. Their definition
of the form factors can be converted to ours by [28]

N N TN
e I S TN C IR S
+ -_ -

mA* mA* mA*

=90 fo=""9+ [fl=—"-91. [j=-91.
S_ S Sy
m g m

f£=s—h+, fizs—hm fh=(mp, +mp)hy,
Mp* ~ Mpx ~ ~

55 =—h,, ij = hy, 55 = —(mA,, —mp<)hy.

Sy Sy

(5.2)

This shows that in the g> = g2, limit, the LQCD results
[29] show

r=ot. si=o(L). st=o(L). ri=om.

fo=o0(1), fi=0(), fy=0(1),
fi=0 1), 5:0(5), r_o(1),

5= 0(1). (5.3)

These characters fulfill the requirements. Also we have

90
90(q?) = #lmfl)z(a) —1) [29] with @ = (m3 +m3.
pole

Y0

—q*)/(2my,my-), where af” is a nonzero value.

a’
According to Eq. (5.2), the f#(g?) =" !

S— 1=g?/(m] .2
(w—1), and this implies, in the ¢*> = g2, limit, that
4 = O(1). This also satisfies the requirement.
In order to align with the LQCD results, we take the
following strategy for the analytical continuation:
(1) To do the extrapolations of the form factors f}fg,
foﬁl’g, /T, and fgi.g, the z-series form [34,79-81]

1

2 =
f(q ) 1- qz/(mi)(ole)2

x |af + al2 () + a5 (< (¢?)?]  (5.4)

is adopted where a{; , a{ , and ag are free parameters

needed to fit in the spacelike region, and
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TABLE IV. The pole masses of the form factors in Eq. (5.4),
where the 0=, 17, and 1" masses are taken from the PDG [58],
while the 0" mass is taken from the LQCD calculation [82].

f JP pole (GCV)
it 0F 5711
. fy 1- 5.415
ft 0- 5.367
fo L £ FO 2 7 1" 5.828
W ¢/t “t
\/tf q +\/tf —to
l‘i = (mB :i: mK)z. (55)

The parameter ¢, is set to

OStO—t+<l—1/l—t—_> <i. (56
Ly

The mpole is collected in Table IV.

(2) For the form factors f§ , and f{ ., we use the
form as

1

f(qz)zm

[ao+a1zf< 2) 4 al(f (¢?)) ]
(5.7)

where m_ = m,, —my-.

To determine the parameters a{;, a{ , and af;, we

numerically calculate 24 points for each form factor by
Egs. (3.12)-(3.19) from ¢*> = —g2,,x to ¢*> = —0.01 GeV?
in the spacelike region, and then fit them using Egs. (5.4)
and (5.7) with the MINUIT program. The extrapolated
parameters for the form factors of A, — A* are collected
in Table V. The ¢*> dependence of the concerned form
factors is shown in Fig. 2.

However, as discussed earlier, the less singular behaviors
of f§, and f§  in the small-recoil limit are also not
forbidden. Therefore, in this work, we also use the formula
in Eq. (5.4) to perform the extrapolation of the form factors
f(‘i | and fg, | again. This extrapolation scheme gives

different results at the ¢> = g2, point for the four form
factors, but has no effect on other form factors compared
with the previous scheme. For clarification, we compare
our results of the form factors in the ¢*> = ¢2,, point
with the two different extrapolation schemes in Table VI.
Finally, it should be emphasized that there is no established
procedure for the extrapolation. The experimental measure-
ment of A, — A(1520)£7¢~ by the LHCb Collaboration
can test the different extrapolation schemes.

As shown in Egs. (2.7)-(2.10), we need eight
(axial-)vector and six (pseudo-)tensor form factors to
describe the matrix elements in question. The number can
apparently be reduced in the heavy quark limit m;, — oo.
We speak separately of two different kinematic situations,
i.e., the outgoing A* acts softly (the low-recoil limit) and
acts energetically (the large-recoil limit). Accordingly, two
effective theories, namely heavy quark effective theory
(HQET) and soft-collinear effective theory (SCET), are
developed to exploit the behaviors of the form factors.

TABLE V. The form factors of the A, — A* transition in the standard light-front quark model.

Parameter Value Parameter Value Parameter Value

aofv (0.1041 4 0.0036) GeV~! a{}V (=0.4493 4+ 0.0375) GeV~! afz‘}v (0.5425 4 0.0954) GeV~!
aJOCX (0.0850 4 0.0037) GeV~! a{g (=0.2465 +0.0386) GeV~! a{g (0.0637 & 0.0984) GeV~!
agi (0.1538 4 0.0046) GeV~! a‘lﬁ (=0.7505 + 0.0478) GeV~! a‘g (1.0292 £ 0.1210) GeV~!
a'g v 0.0223 4+ 0.0001 a.le —0.0807 + 0.0003 a";"/ 0.0798 £ 0.0031

aJO"ﬁ‘ (0.1052 £ 0.0026) GeV~! aJl"? (=0.5337 £ 0.0263) GeV~! ajz"? (0.7542 £ 0.0665) GeV~!
agé (0.0878 4 0.0028) GeV~! a{é (=0.3647 £ 0.0293) GeV~! an’"S (0.4197 £+ 0.0747) GeV~!
a{)”l (0.0804 +0.0022) GeV~! afl"’l (=0.3619 +0.0227) GeV~! aé’i (0.4573 4+ 0.0578) GeV~!
agﬁ 0.0441 + 0.0023 a{ﬁ —0.2012 +0.0240 agﬂ? 0.2596 + 0.0605

a.(i)”g (=0.0178 £ 0.0003) GeV~! a.i’g (0.5398 £ 0.0037) GeV~! a'gg (—=1.4719 £ 0.0098) GeV~!
aé"ﬂ (0.0565 4 0.0032) GeV~! a{z (=0.0233 4+ 0.0331) GeV~! aj; (=0.3596 + 0.0853) GeV~!
aoif (0.0851 + 0.0034) GeV al;‘ (—0.4603 £+ 0.0334) GeV 023‘ (0.6616 + 0.0805) GeV
aok'f (0.0923 4 0.0026) GeV~! aJl‘ISS (=0.4516 £ 0.0272) GeV~! azé’f (0.6337 £ 0.0687) GeV~!
aof (0.0790 4 0.0020) GeV~! alij (=0.3482 4+ 0.0206) GeV~! azf (0.4288 4-0.0527) GeV~!
a.g? (—0.3839 + 0.0276) GeV a'{’ii (1.6524 +0.2814) GeV a.;? (—=2.1223 + 0.6945) GeV
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FIG. 2. The ¢* dependence of the form factors of the vector, axial-vector, tensor, and pseudotensor type currents of the A, — A*
transition, where the red solid curves are central values, and the light red bands are the corresponding errors. The units of the form factors

are neglected here.
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In the low-recoil limit, where HQET is valid [83-86], the
weak transition matrix element can be re-expressed by two
Isgur-Wise functions as [30,32,86]

(A (P)ISTbIA (p)) = #X(P")vall1 (@) + Yo (@) Tun, ().

(5.8)

Here, I' is an arbitrary Dirac structure, and w = v -0 =
(my, +m3. = q*)/(2my,my-), where v = p/my, and
v’ = p’/my represent the four velocities of the bottom
baryon and hyperon, respectively. The eight form factors
are derived as two independent form factors ¢;(w) and
{(w). In the low-recoil limit this gives g> — gaux =
(my, —mp-)* (or @ — 1). With slightly different defini-
tions of the form factors in Refs. [25,60,87], we have [31]

TV (@hax) = £ (@han) = 4 (dmax)

= f5 (qmax) = FT (@hax) = [E1 (1) + G(1)]/my,,
S8 (@max) = 1 (@hax) = FY (Gmax)

= [ (gmax) 2 f7 (@) 2 [€1(1) = (1)) /my,
Fo (@max) = £ (dimax) = F} (@imax) = F4” (@max) =0, (5.9)

while in the large-recoil limit where SCET is valid, we have
[60,87,88]

(A (P))ISTbIA,(p)) = #X (P)va[l(@)Tun, (p),  (5.10)

where {(w) is the only remaining form factor. This gives,
in the large-recoil limit, ¢*> -0 (or w— (m} +m3.)/
(2mp,my-)),

f7(0) = f5(0) = f1(0) = £i'(0) = £5(0) = f(0)
0
(5.11)

and four f; form factors will disappear. From Fig. 2, we can

see that apart from the fg(TS)(qz), which deviates from the
predictions, the remaining calculated form factors are con-
sistent with the requirements of HQET and SCET.

In addition, Bordone has completed the heavy quark
expansion (HQE) calculation of the A, — A* form factors
beyond the leading order [30]. At the zero-recoil limit, the
HQE predicts the ratios of the form factors, which are
independent of the Isgur-Wise functions, as [30]

F F My, — My

Y20 _ Z120 A TN ys
Fipir Fipa mpy, + mp:

2Ly 20 — =M A — 348,
F3/2’J_ T1/2,J_ mp, = My
T 2m -

20 _ AN 74,
T3,  mp, —my
T *

2L M — _021. (5.12)
T5p1 my, + 1y

Note that the form factor base used in Ref. [30] is different
from ours. By wusing the conversions collected in
Appendix B of Ref. [30] and Eq. (5.2), we can get our
results of these ratios as

Fthis work v

120 fo _

i = 7 = 0.521 40026,
1/2.1 1

Fthis work 14
Ji S-J1_ 338100
3/2,1

- Vv
UON f g
Flhis work

1/20 s- fo

this work \%
F35 T my fq

Tthis work T

% = ]{—% — —0.63+0.04,
1/2,1

Tthis work T

Ttlh/izy\.i/ork = 5= f_(Y)" = —2.56 £0.09,
3/2.L S
his k

YT

Tf;h/iiﬁ‘“k =S- E

Fthis work

=-17.6+0.7,

=4.09 +0.28. (5.13)

Our results are very different from those of the HQE.

In addition, we also compare our results of the form
factors with the NRQM [22] and the LQCD [29] at q2 =0
and ¢*> = g2, endpoints in Table VI. Until now, less work
has been done on the A, — A(1520) transition, so more
theoretical work is needed to validate these form factors.

B. The branching ratio and angular observables

With the above preparations, we will present our
numerical results. The baryon and lepton masses used in
our calculation are taken from the PDG [58], as well as
ta, = 1.470 ps. We also use By = B(A* > NK) = 45%
[58]. To compare with the experimental data, we examine a
number of angular observables, including the CP-averaged
normalized angular coefficients, the differential branching
ratios, the lepton’s forward-backward asymmetry (A?B),
and the transverse (F'7) and longitudinal (F;) polarization
fractions of the dilepton system.

First, we examine the CP-averaged normalized angular
distributions
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FIG.3. The ¢* dependence of the normalized angular coefficients S|, S1ocs Stss Saes Saces Sasss Sass» S5, and Ss,.. Here, the red curve
and the blue curve are our results of the y and 7 channels, respectively, and the concomitant shadows are corresponding errors.

L+ L;
dT+T)/dg*’

where L;(g?) can be obtained by doing the full conjugation
for all weak phases in L;(g*). We should also do the
substitutions as

S; = (5.14)

where the angular distributions L; and the differential decay _ _
width dr/qu are defined in EqS (234) and (235), Ll(,‘,2c - _LIC,ZC’ Llcc,ls‘\‘,ch.Zss - Llcc,lss,2cc,2ss’

respectively. For the CP-conjugated mode, the correspond- Ly, — Ljy,. Ly, — —Ly,,,
ing expression for the angular decay distribution should be - -
written as LSs - _LSS’ LSsc - LSscv
L6s - L6s7 L6sc - _L6scv (516)
a‘v 3

— 2N (22 )
dg*d cosOp-dcosOpdgp 8w 4 Li(a)fi(a".0¢.On-- ¢). where the minus sign is a result from the operations of
0, — 0, — m and ¢p - —¢. The differential decay width of

(5:15)  the conjugated mode is
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FIG. 4. The behaviors of the normalized angular coefficients
Stes Soce = Siee/4s Szg and Ss,. in the low-recoil region with
my = 0.

ar

q2 - g (I_‘lcc + 2I:lss + 2£2cc + 4E2SS + 21—‘35\\')' (517)

QU

In Fig. 3, we present our results for the ¢> dependent
normalized angular coefficients. Since the e channel shows
similar behavior to the y channel, we only present the
results of the u and the z channels here. These angular
distributions are important physical observables, and can be
checked by future experiments.

At the low-recoil endpoint for g* — (m,, —my-)?,
Descotes-Genon and Novoa-Brunet predicted [31]

S]C —)O,
S3SS - _1/47

SQCC - Slcc/4 - 3/81
SSsc - _1/2

by neglecting the contribution from the photon pole. In
Fig. 4, we present the behavior of the normalized angular
coefficients S;., Sycc — Sice/4, S34 and Ssg. in the low-
recoil region by assuming m, = 0. It is obvious that our
result for Sy, is strictly consistent with the above prediction,

while the S,..— Si../4, Ssz, and Ss,. show apparent
deviations.

We further evaluate the differential branching ratios using
Eq. (2.35). The ¢? dependence of the differential branching
ratios is shown in Fig. 5, where the orange solid curve, the
blue dashed curve, and the purple dot-dashed curve are
our results for the e, y, and = channels, respectively. The
gray zones in the regions of the dilepton mass squared
8.0 < g*> < 11.0 GeV? and 12.5 < ¢*> < 15.0 GeV? show
the contributions from the charmonium resonances J /y and
w(2S5), respectively.

Recently, the LHCb collaboration measured the “non-
resonant” contributions, which are different from the
“resonant” contribution from A) - pK=Jy(— £7¢7), to
B(AY) - pK=eTe™) and B(A) —» pK~putu~) decays as

B(A) - pK~ete™) = (3.1 £0.4£02+03%0%) x 107,
B(A) - pK~ptp~) = (2.65 £0.14 £ 0.12 £ 0.29755%)
x 1077,

in the region of 0.1 < ¢?> <6 GeV?/c* and m(pK~) <
2600 MeV/c? [89]. Assuming B(A(1520) —» pK~) =
B(A(1520) — nK°), we calculate

B(A) - A*(— PK™)et e ) 1< <6 Gev?
— (1.618 £ 0.108) x 1077,

B(A) = A* (= PK_)/ﬁM_)o.Iqusﬁ GeV?
= (1.610 £ 0.106) x 1077,

This indicates that the contribution from A(1520) is
significant. We find from the PDG [58] that A(1600),
A(1670), and other hyperons can also decay to the NK
final state. Their contributions need to be carefully studied.
Further studies with more excited A hyperons will make a
difference to the A) — pK=¢*¢~ decays.

In addition, the ¢*> dependence of the lepton-side forward-
backward asymmetry (A%;), and the transverse (F7) and

30 30 10
2 2 =
5 5 =y s =1
3 20 wEs) { 320 Jy wes) | 3
o o O ep Y(2s)
2 15 2 15 e
X X X
N e < 4+
3 10 1 = 10 3
Q Q Q
© © o
2 -
5t L\ 5 L\
o , , | o , , | o , . | ,
0 5 10 15 0 5 10 15 11 12 13 14 15 16
q*(GeV?) q*(GeV?) q*(GeV?)

FIG. 5. The ¢* dependence of the differential branching ratios for A, — A*(—= NK)£* ¢~ [¢ = e(left panel), p(center panel),
z(right panel)], where the red, the blue, and the purple curves are our results from the e, u, and 7 channels, respectively, and the

concomitant shadows are the corresponding errors.
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FIG. 6. The ¢*> dependence of the lepton-side forward-backward asymmetry parameter (A%;) for A, — A*(— NK)£ ¢~
[¢ = e(left panel), u(center panel), z(right panel)], where the red, blue, and purple curves are our results from the e, y, and 7
channels, respectively, and the shadows are the corresponding errors.
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FIG. 7. The ¢*> dependence of the transverse polarization fractions (Fy) for A, — A*(— NK)£*¢~ [£ = e(left panel),
u(center panel), z(right panel)], where the red, blue, and purple curves are our results of the e, u, and 7 channels, respectively,
and the shadows are the corresponding errors.

1.0 1.0
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FIG. 8. The ¢*> dependence of the longitudinal polarization fractions (F;) for A, — A*(— NK)¢T¢~ (¢ = e(left panel),
u(center panel), 7(right panel)), where the red, blue, and purple curves are our results of the e, p, and 7 channels, respectively,
and the shadows are the corresponding errors.

longitudinal (F;) polarization fractions of the dilepton  are presented in Table VII. The angular distributions provide
system are presented in Figs. 6, 7, and 8, respectively, a rich set of physical observables to study the weak
where we also show the contributions from the charmonium  interaction and the structure of A(1520), and are also
resonances J/y and y(2S) with gray zones. The averaged  important to study the NP effects beyond the SM
values of these angular observables for the e and y channels [24,31,32,36,51], so we call for the ongoing LHCb experi-
defined in Eq. (2.39) in the region of 0.1 < g*> < 6.0 GeV?>  ment to measure them.
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TABLE VII. The predictions for the averaged lepton-side
forward-backward asymmetry (A%,), the averaged transverse
polarization fraction (F), and the averaged longitudinal polari-
zation fraction (F;) in the region of 0.1 < ¢ < 6.0 GeV>.

Channels (A%) (Fr) (Fp)
f=e —0.030+£0.012  0.208 £ 0.055  0.792 £ 0.231
£=u —0.032 +£0.010 0.221 £0.057  0.779 £ 0.225

VI. SUMMARY

With the accumulation of experimental data in the LHCb
Collaboration, the experimental exploration of rare decays
b — sttt (¢ = e, u, 7) in the baryon sector, especially
the P-wave final state A, — A(1520)27¢~, will attract
more attention. Given this opportunity, in this work
we focus on the quasi-four-body decay A, — A(1520)
(= NK)¢*+¢~, where the angular coefficients, the differ-
ential branching ratio, and several angular observables,
including the lepton-side forward-backward asymmetry
(A%g), and the transverse and longitudinal polarization
fractions (Fr(;)) are investigated.

To describe the weak process, we have worked in the
helicity formula, where the relevant weak transition form
factors are obtained through the three-body light-front quark
model. Our main advantage is the improved treatment of
the spatial wave functions of the involved baryons, where
a semirelativistic potential model is applied to solve the
numerical spatial wave functions of the baryons assisted
by the GEM. Thus, we emphasize that our study of the rare
decay A, — A(1520)(— NK)£*¢~ is supported by the
baryon spectroscopy. Our results of the form factors are
comparable with the predictions of HQET and SCET, and
also with the calculations by the LQCD approach. These
form factors will be useful for the study of the corresponding
weak decays.

Overall, we have systematically investigated the A, —
A(1520)(= NK)Z+¢~ (¢ = e, u, t) processes in the frame-
work of the three-body light-front quark model based on the
Gaussian expansion method. We believe that the present
work can serve as an essential step toward strong dynamics
on the beauty baryon decays. We expect that under the
considerable progress on the experimental side, the above
predictions could be tested by future LHCb experiments.
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APPENDIX A: THE DIFFERENTIAL DECAY
WIDTH

The differential decay width for the quasi-four-body
decay A, » A*(—> NK)¢+¢™ is

_IMP

mAb

dr

d(l>4(p;k1,k2,q1,q2), (Al)

where d®, is the four-body phase space given by

d®y(ps ki, ks, g1 42)
= (2n)** (p—ky —ky — 41 — q2)
g,

S
X 1
E (27)32E,, ]1:[1 (271)32qu

_aedr

= on d®, (ki ky, ky)dD®,(q: g1, 92)dPy(ps k. q),

(A2)
where the two-body phase spaces are written as

1 \JAK? k3, k3) (1 27
27 ( 2 ! 2)/ dcosGA*/ dg,
7 -1 0

| AP [
/dtbz(q;ql,cn)— g qu 612)/ dcos, x (2r),

/d‘bz(k;kl,kz):3

3272 q 1
1 APk, q°
/dsz(p;k,q):n”2 ( = )X2X(27l'). (A3)

As shown in Fig. 9, three angles are defined: (i) the angle
0+ is defined as the angle that the nucleon makes with the
+z axis in the (NK) center of mass system, (ii) the angle 6,
is defined as the angle made by the £~ with the 4z axis in
the (£7¢7) center of mass system, and (iii) the angle ¢
between the two decay planes, respectively.

The decay width of the concerned decay A, — A*
(= NK)£+¢~ is expressed as

FIG. 9. Kinematics of the four-body A, — A*(— NK)£+£-
decay, where the angles are defined in the corresponding rest frames.
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We also take into account the width of A* to modify its propagator, but treat it as narrow (I'y+ << m1,+) state.” This gives [24]

(k? = m3.)?

2 2
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with the properties of the Dirac delta function,
y—{% 2+ 76(x),
K 2 2 2
| —5—1) =m3.6(k> —m3.), (A6)
miy-
applied.
Following the above discussion, we can finally obtain
2 1 1 k2,k2’k2 gl 2’ 2, 2 1 2,](2, 2
/dq)4 |M| — = /dqdeOSQAdCOSQKd¢\/ ( 5 1 2)\/ (q 2ql ‘12)\/ (p K C])
2mAb 2°r mAbmA*FA* k q p
X (1 = mp PIMPlye (A7)

where A(x,y,z) = x> + y? + 72 — 2xy — 2xz — 2yz is the kinematic triangle Killén function.

APPENDIX B: THE KINEMATIC CONVENTIONS

In this paper, we assign the particle momenta and spin
variables for the hadrons in the A, — A*(— NK)¢+¢~
process according to

Ap(p.sa,) = Nk, sa- )07 (g1, 52)ve(q2.5,)

A (k,sp-) = N(ky, SN)I_((kZ)’ (B1)

as shown in Fig. 9. Here we have some relations like
4" =4\ + ¢y, ¥ =K + Kk, and p* = k* + ¢

2Checking the PDG [58], we notice that m,(1529) = 1519 MeV
and I'y(150) = 16 MeV, indicating that it is reasonable to take the
narrow-width approximation.

In the following, we will introduce some kinematic
conventions that are useful for the calculation of the
involved helicity amplitudes.

1. Some conventions in A, rest frame

In the A, rest frame, we have the four-momentum of A,
A* and the vector boson as

pt = (my,,0,0,0),
k= (EA*’Ov()? ﬁA*
7" = (40,0,0,—|gl),

)-
(B2)

where
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We have the following solutions for the Dirac spinor of A, ) ) ] )
for different s, as and the solut}ons for the Rarita-Schwinger spinor
b Up4(sp+) for different s,- as [31]
0 0 0 0
< 3) 1 0 sy 0 —/s_
M\T2) T2, /iy, | 0 —iy/se 0 iyss |
0 0 0 0
0 2./5¢ 0 =2\/s_
2mp<my, 2mpemy,
< 1> S_5, V- 0 e 0
U\ =5 ) = 7= 372 | —2imem —2impyxm ’
2 Imemi | U0 =0
S_+8y s tsy
0 Nos 0 Vo
2./5¢ 0 2\/s_ 0
—2mpy=my, 2myemy,
<+ 1) S84 0 e 0 e
Up= Al = &5 312 —2imy+m 2imp=m ’
2 NI 0 N 20 \?STA”
S8y stse
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0 0 0 0

where the column and row notations correspond to the
spinor indices a and the vector indices, respectively. In
addition, the polarization vectors for the virtual vector
boson alone on the —z axis in the A, rest frame are
expressed as

1 o
e"(1) :ﬁ(QO’O,O’_qu?
1
e(0) = —— (=[], 0.0. o).
en(4) = \% (0, F 1,i,0), (B6)

where we use f and 0 to distinguish the two 1y, = O states
(0 for J =1 and ¢ for J = 0), and = to represent Ay, = +
for J = 1, respectively.

2. Some conventions in the dilepton rest frame

In the dilepton rest frame, we have the four-momentum
of the vector bosons and leptons as

g = <\/¥,0,0,0),

qI;* = (Ef7
4y = (Ez.~|Gs|sin6,,0,~|G,| cosb,),

Gr|sin,,0,|G,| cosby),

(B7)
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where |G,| =\/¢*Bs/2 and E,=+/q*/2. The Dirac
spinors for #~ and #" in Dirac representation are

VE; +mey(Ge, se-) )
250-Er —mey(Grsse-) ’

VE = mgE(=Gr.50) ) (58)
~250\Ep + me&(=Gp, s¢+)

W-(éw Sf-) = (
vw(—%,w) = (

respectively, where
1 1 cos%
)(<QK12> —§<—Qf,2> = <sin%>7
-0,
| | —sin~
== ==& =G, —=) = . B9
i) =e() = (L) @

In addition, the polarization vectors of the virtual vector
boson in the dilepton rest frame are written as

é'(r) = (1,0,0,0),
é'(0) = (0,0,0,1),

a(4) —%(O,qt 1,—i,0),

which satisfy the following orthogonality and completeness
relations [24,31,32]

(B10)

et (m)e,(n) = Gun, (B11)

Zé*ﬂ<m)él/(n)gmn =g,

m,n

(B12)

where m,n € {t,+,0},  §,, = diag(+1,-1,—1,-1),
and ¢* = diag(+1,-1,—1,-1).

3. Some conventions in A* rest frame

In the A* rest frame, we have the following solutions
for the Rarita-Schwinger spinor u- ,(s5+) with different
sa+ as [31,32]

0O 0 0 0
0 0 0
uA*(—3/2):,/mA* 0 _l 0 O y
0O 0 0 0
0O 0 0 O
mr~1 1 0 0 0
”A*(_l/z): 3A i 00 o0l
0O 2 0 O
0O 0 0 0
mia] O =1 0 O
up-(+1/2) = 3A 0 =i 0 0]
2 0 0 O
0O 0 0 O
-1 0 0 O
un(13/2) = vy | o] (B13)
0O 0 0 O

where the column and row notations correspond to the
spinor indices a and the vector indices, respectively, and
the solutions for the Dirac spinor of the nucleon for
different sy as

s Op
- r+sm7€ ¢
Op%
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N sing% et
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Opx
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1 L sin%- e
O
,/V_COST
7 sin%" e

MN(—I/Z) = 2mp

uy(+1/2) =

B14
2m 5 ( )

[1] M. Huschle et al. (Belle Collaboration), Measurement of the
branching ratio of B — D™~ 5, relative to B — DW¢ D,
decays with hadronic tagging at Belle, Phys. Rev. D 92,
072014 (2015).

[2] R. Aaij et al. (LHCb Collaboration), Measurement
of the Ratio of Branching Fractions B(B° — D**7z7p,)/
B(B° — D**/ff/”), Phys. Rev. Lett. 115, 111803 (2015);
115, 159901(E) (2015).

093003-24


https://doi.org/10.1103/PhysRevD.92.072014
https://doi.org/10.1103/PhysRevD.92.072014
https://doi.org/10.1103/PhysRevLett.115.111803
https://doi.org/10.1103/PhysRevLett.115.159901

TRANSITION FORM FACTORS AND ANGULAR DISTRIBUTIONS ...

PHYS. REV. D 107, 093003 (2023)

[3] S. Hirose et al. (Belle Collaboration), Measurement of the 7
Lepton Polarization and R(D*) in the Decay B — D*z"1,,
Phys. Rev. Lett. 118, 211801 (2017).

[4] G. Caria er al. (Belle Collaboration), Measurement of R (D)
and R(D*) with a Semileptonic Tagging Method, Phys.
Rev. Lett. 124, 161803 (2020).

[5] T.M. Aliev, A. Ogzpineci, and M. Savci, Exclusive
A, = AT~ decay beyond standard model, Nucl. Phys.
B649, 168 (2003).

[6] D. Das, On the angular distribution of A, > A(— Nz)rt 7~
decay, J. High Energy Phys. 07 (2018) 063.

[7] T. Aaltonen et al. (CDF Collaboration), Observation of the
Baryonic  Flavor-Changing Neutral Current Decay
A, = AuTp~, Phys. Rev. Lett. 107, 201802 (2011).

[8] R. Aaij et al. (LHCb Collaboration), Differential branching
fraction and angular analysis of A(,)) — Aptu~ decays,
J. High Energy Phys. 06 (2015) 115; 09 (2018) 145(E).

[9] R. Aaij et al. (LHCb Collaboration), Angular moments of
the decay A9 — AuTp~ at low hadronic recoil, J. High
Energy Phys. 09 (2018) 146.

[10] G. Li, C. W. Liu, and C. Q. Geng, Bottomed baryon decays
with invisible Majorana fermions, Phys. Rev. D 106,
115007 (2022).

[11] W. Altmannshofer and F. Archilli, Rare decays of b and ¢
hadrons, arXiv:2206.11331.

[12] W. Detmold and S. Meinel, A, —» A£T¢~ form factors,
differential branching fraction, and angular observables
from lattice QCD with relativistic b quarks, Phys. Rev. D
93, 074501 (2016).

[13] W. Detmold, C.J.D. Lin, S. Meinel, and M. Wingate,
A, = AT ¢~ form factors and differential branching frac-
tion from lattice QCD, Phys. Rev. D 87, 074502 (2013).

[14] C.H. Chen and C. Q. Geng, Lepton asymmetries in heavy
baryon decays of A, - AZ¢~, Phys. Lett. B 516, 327
(2001).

[15] M.J. Aslam, Y. M. Wang, and C.D. Lii, Exclusive semi-
leptonic decays of A, - AZT#~ in supersymmetric theo-
ries, Phys. Rev. D 78, 114032 (2008).

[16] Y.M. Wang and Y.L. Shen, Perturbative corrections to
A, = A form factors from QCD light-cone sum rules,
J. High Energy Phys. 02 (2016) 179.

[17] T.M. Aliev, K. Azizi, and M. Savci, Analysis of the A, —
AZT¢~ decay in QCD, Phys. Rev. D 81, 056006 (2010).

[18] Y.M. Wang, Y. Li, and C.D. Lii, Rare decays of
Ay > A+y and Ay > A+ T¢ in the light-cone sum
rules, Eur. Phys. J. C 59, 861 (2009).

[19] Y. M. Wang, Y. L. Shen, and C. D. Lii, A, — p, A transition
form factors from QCD light-cone sum rules, Phys. Rev. D
80, 074012 (2009).

[20] T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij,
and P. Santorelli, Rare baryon decays A, — AlTI~(l =
e,u,7) and A, — Ay: Differential and total rates,
lepton- and hadron-side forward-backward asymmetries,
Phys. Rev. D 87, 074031 (2013).

[21] L. Mott and W. Roberts, Rare dileptonic decays of A, in a
quark model, Int. J. Mod. Phys. A 27, 1250016 (2012).

[22] L. Mott and W. Roberts, Lepton polarization asymmetries
for FCNC decays of the A, baryon, Int. J. Mod. Phys. A 30,
1550172 (2015).

[23] L.L. Liu, X. W. Kang, Z. Y. Wang, and X. H. Guo, Rare
A, — A£T¢~ decay in the Bethe-Salpeter equation ap-
proach, Chin. Phys. C 44, 083107 (2020).

[24] H. Yan, Angular distribution of the
Ay = A(= Nr)tt ¢, arXiv:1911.11568.

[25] P. Béer, T. Feldmann, and D. van Dyk, Angular analysis of
the decay A, — A(— Nz)£*¢~, J. High Energy Phys. 01
(2015) 155.

[26] T. Blake and M. Kreps, Angular distribution of polarised A,
baryons decaying to AZ"¢~, J. High Energy Phys. 11
(2017) 138.

[27] T. Blake, S. Meinel, and D. van Dyk, Bayesian analysis of
b — sutu~ Wilson coefficients using the full angular
distribution of A, - A(— pz~)u"u~ decays, Phys. Rev.
D 101, 035023 (2020).

[28] S. Meinel and G. Rendon, A, — A*(1520)77¢~ form
factors from lattice QCD, Phys. Rev. D 103, 074505 (2021).

[29] S. Meinel and G. Rendon, A, — A(1520) form factors from
lattice QCD and improved analysis of the A, — A(1520)
and A, — A%(2595,2625) form factors, Phys. Rev. D 105,
054511 (2022).

[30] M. Bordone, Heavy quark expansion of A, — A* (1520)
form factors beyond leading order, Symmetry 13, 531
(2021).

[31] S. Descotes-Genon and M. Novoa-Brunet, Angular analysis
of the rare decay A, - A(1520)(— NK)Z*¢~, I. High
Energy Phys. 06 (2019) 136; 06 (2020) 102(E).

[32] D. Das and J. Das, The A, — A*(1520)(— NK)£+ £~
decay at low-recoil in HQET, J. High Energy Phys. 07
(2020) 002.

[33] G. Hiller and R. Zwicky, Endpoint relations for baryons,
J. High Energy Phys. 11 (2021) 073.

[34] Y. Amhis, M. Bordone, and M. Reboud, Dispersive analysis
of A, = A(1520) local form factors, J. High Energy Phys.
02 (2023) 010.

[35] Z.P. Xing, F. Huang, and W. Wang, Angular distributions
for A, = Aj(pK~)J/w decays, Phys. Rev. D 106, 114041
(2022).

[36] Y. Amhis, S. Descotes-Genon, C. Marin Benito, M. Novoa-
Brunet, and M.H. Schune, Prospects for new physics
searches with A) — A(1520)¢" ¢~ decays, Eur. Phys. J.
Plus 136, 614 (2021).

[37] P. Guo, H.W. Ke, X.Q. Li, C.D. Lii, and Y. M. Wang,
Diquarks and the semi-leptonic decay of A, in the hyrid
scheme, Phys. Rev. D 75, 054017 (2007).

[38] J. Zhu, Z.T. Wei, and H. W. Ke, Semileptonic and non-
leptonic weak decays of A), Phys. Rev. D 99, 054020
(2019).

[39] Z. X. Zhao, Weak decays of heavy baryons in the light-front
approach, Chin. Phys. C 42, 093101 (2018).

[40] C.K. Chua, Color-allowed bottom baryon to charmed
baryon nonleptonic decays, Phys. Rev. D 99, 014023
(2019).

[41] C.K. Chua, Color-allowed bottom baryon to s-wave and
p-wave charmed baryon nonleptonic decays, Phys. Rev. D
100, 034025 (2019).

[42] H.W. Ke, N. Hao, and X.Q. Li, Revisiting A, — A,
and X, — X. weak decays in the light-front quark model,
Eur. Phys. J. C 79, 540 (2019).

rare decay

093003-25


https://doi.org/10.1103/PhysRevLett.118.211801
https://doi.org/10.1103/PhysRevLett.124.161803
https://doi.org/10.1103/PhysRevLett.124.161803
https://doi.org/10.1016/S0550-3213(02)00964-1
https://doi.org/10.1016/S0550-3213(02)00964-1
https://doi.org/10.1007/JHEP07(2018)063
https://doi.org/10.1103/PhysRevLett.107.201802
https://doi.org/10.1007/JHEP06(2015)115
https://doi.org/10.1007/JHEP09(2018)145
https://doi.org/10.1007/JHEP09(2018)146
https://doi.org/10.1007/JHEP09(2018)146
https://doi.org/10.1103/PhysRevD.106.115007
https://doi.org/10.1103/PhysRevD.106.115007
https://arXiv.org/abs/2206.11331
https://doi.org/10.1103/PhysRevD.93.074501
https://doi.org/10.1103/PhysRevD.93.074501
https://doi.org/10.1103/PhysRevD.87.074502
https://doi.org/10.1016/S0370-2693(01)00937-6
https://doi.org/10.1016/S0370-2693(01)00937-6
https://doi.org/10.1103/PhysRevD.78.114032
https://doi.org/10.1007/JHEP02(2016)179
https://doi.org/10.1103/PhysRevD.81.056006
https://doi.org/10.1140/epjc/s10052-008-0846-5
https://doi.org/10.1103/PhysRevD.80.074012
https://doi.org/10.1103/PhysRevD.80.074012
https://doi.org/10.1103/PhysRevD.87.074031
https://doi.org/10.1142/S0217751X12500169
https://doi.org/10.1142/S0217751X15501729
https://doi.org/10.1142/S0217751X15501729
https://doi.org/10.1088/1674-1137/44/8/083107
https://arXiv.org/abs/1911.11568
https://doi.org/10.1007/JHEP01(2015)155
https://doi.org/10.1007/JHEP01(2015)155
https://doi.org/10.1007/JHEP11(2017)138
https://doi.org/10.1007/JHEP11(2017)138
https://doi.org/10.1103/PhysRevD.101.035023
https://doi.org/10.1103/PhysRevD.101.035023
https://doi.org/10.1103/PhysRevD.103.074505
https://doi.org/10.1103/PhysRevD.105.054511
https://doi.org/10.1103/PhysRevD.105.054511
https://doi.org/10.3390/sym13040531
https://doi.org/10.3390/sym13040531
https://doi.org/10.1007/JHEP06(2019)136
https://doi.org/10.1007/JHEP06(2019)136
https://doi.org/10.1007/JHEP06(2020)102
https://doi.org/10.1007/JHEP07(2020)002
https://doi.org/10.1007/JHEP07(2020)002
https://doi.org/10.1007/JHEP11(2021)073
https://doi.org/10.1007/JHEP02(2023)010
https://doi.org/10.1007/JHEP02(2023)010
https://doi.org/10.1103/PhysRevD.106.114041
https://doi.org/10.1103/PhysRevD.106.114041
https://doi.org/10.1140/epjp/s13360-021-01194-5
https://doi.org/10.1140/epjp/s13360-021-01194-5
https://doi.org/10.1103/PhysRevD.75.054017
https://doi.org/10.1103/PhysRevD.99.054020
https://doi.org/10.1103/PhysRevD.99.054020
https://doi.org/10.1088/1674-1137/42/9/093101
https://doi.org/10.1103/PhysRevD.99.014023
https://doi.org/10.1103/PhysRevD.99.014023
https://doi.org/10.1103/PhysRevD.100.034025
https://doi.org/10.1103/PhysRevD.100.034025
https://doi.org/10.1140/epjc/s10052-019-7048-1

LI, JIN, GAO, and LIU

PHYS. REV. D 107, 093003 (2023)

[43] H. W. Ke, Q. Q. Kang, X. H. Liu, and X. Q. Li, Weak decays
of in the light-front quark model, Chin. Phys. C 45, 113103
(2021).

[44] E. Hiyama, Y. Kino, and M. Kamimura, Gaussian expansion
method for few-body systems, Prog. Part. Nucl. Phys. 51,
223 (2003).

[45] T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, and K. Sadato,
Spectrum of heavy baryons in the quark model, Phys. Rev.
D 92, 114029 (2015).

[46] G. Yang, J. Ping, P. G. Ortega, and J. Segovia, Triply heavy
baryons in the constituent quark model, Chin. Phys. C 44,
023102 (2020).

[47] E. Hiyama and M. Kamimura, Study of various few-body
systems using Gaussian expansion method (GEM),
Front. Phys. (Beijing) 13, 132106 (2018).

[48] G. Buchalla, A.J. Buras, and M. E. Lautenbacher, Weak
decays beyond leading logarithms, Rev. Mod. Phys. 68,
1125 (1996).

[49] B. Grinstein, R.P. Springer, and M. B. Wise, Effective
Hamiltonian for weak radiative B meson decay, Phys. Lett.
B 202, 138 (1988).

[50] Q.S. Yan, C.S. Huang, W. Liao, and S. H. Zhu, Exclusive
semileptonic rare decays B — (K,K¥¢*¢~ in super-
symmetric theories, Phys. Rev. D 62, 094023 (2000).

[51] K. Azizi, S. Kartal, A.T. Olgun, and Z. Tavukoglu,
Comparative analysis of the semileptonic A, - AZT£~
transition in SM and different SUSY scenarios using
form factors from full QCD, J. High Energy Phys. 10
(2012) 118.

[52] W.J.Lj, Y. B. Dai, and C. S. Huang, Exclusive semileptonic
rare decays B — K(*)Zt¢~ in a SUSY SO(10) GUT, Eur.
Phys. J. C 40, 565 (2005).

[53] A. Ahmed, I. Ahmed, M. A. Paracha, M. Junaid, A.
Rehman, and M.J. Aslam, Comparative Study of
B. = D¢ ¢~ Decays in Standard Model and Supersym-
metric Models, arXiv:1108.1058.

[54] A. Ali, G.F. Giudice, and T. Mannel, Towards a model
independent analysis of rare B decays, Z. Phys. C 67, 417
(1995).

[55] A.J. Buras and M. Munz, Effective Hamiltonian for
B — X eTe™ beyond leading logarithms in the NDR and
HV schemes, Phys. Rev. D 52, 186 (1995).

[56] A. Khodjamirian, T. Mannel, A. A. Pivovarov, and Y. M.
Wang, Charm-loop effect in B — K®*)£+¢~ and B — K*y,
J. High Energy Phys. 09 (2010) 089.

[57] A.Khodjamirian, T. Mannel, and Y. M. Wang, B — K£7¢~
decay at large hadronic recoil, J. High Energy Phys. 02
(2013) 010.

[58] P. A. Zyla et al. (Particle Data Group), Review of particle
physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

[59] A.K. Leibovich and 1. W. Stewart, Semileptonic A, decay
to excited A, baryons at order Agcp/m g, Phys. Rev. D 57,
5620 (1998).

[60] T. Feldmann and M. W. Y. Yip, Form factors for A, - A
transitions in the soft-collinear effective theory, Phys. Rev.
D 85, 014035 (2012); 86, 079901(E) (2012).

[61] M. Pervin, W. Roberts, and S. Capstick, Semileptonic
decays of heavy lambda baryons in a quark model,
Phys. Rev. C 72, 035201 (2005).

[62] C.Y. Cheung, W.M. Zhang, and G.L. Lin, Light front
heavy quark effective theory and heavy meson bound states,
Phys. Rev. D 52, 2915 (1995).

[63] H.Y. Cheng, C.Y. Cheung, and C. W. Hwang, Mesonic
form-factors and the Isgur-Wise function on the light front,
Phys. Rev. D 55, 1559 (1997).

[64] C. Q. Geng, C.C. Lih, and W. M. Zhang, Radiative leptonic
B decays in the light front model, Phys. Rev. D 57, 5697
(1998).

[65] H.Y. Cheng, C.K. Chua, and C. W. Hwang, Light front
approach for heavy pentaquark transitions, Phys. Rev. D 70,
034007 (2004).

[66] C.Q. Geng, C. W. Liu, and T. H. Tsai, Semileptonic weak
decays of antitriplet charmed baryons in the light-front
formalism, Phys. Rev. D 103, 054018 (2021).

[67] C.Q. Geng, C.W. Liu, Z.Y. Wei, and J. Zhang, Weak
radiative decays of antitriplet bottomed baryons in light-
front quark model, Phys. Rev. D 105, 073007 (2022).

[68] J. G. Korner, M. Kramer, and D. Pirjol, Heavy baryons,
Prog. Part. Nucl. Phys. 33, 787 (1994).

[69] F. Hussain, J.G. Korner, J. Landgraf, and S. Tawfiq,
SU(2N;) ® O(3) light diquark symmetry and current
induced heavy baryon transition form-factors, Z. Phys. C
69, 655 (1996).

[70] S. Tawfiq, P.J. O’Donnell, and J.G. Korner, Charmed
baryon strong coupling constants in a light front quark
model, Phys. Rev. D 58, 054010 (1998).

[71] W. Wang and Z.P. Xing, Weak decays of triply heavy
baryons in light front approach, Phys. Lett. B 834, 137402
(2022).

[72] Z.X. Zhao, Weak decays of triply heavy baryons: The
3/2 — 1/2 case, arXiv:2204.00759.

[73] Y.S. Li, X. Liu, and E. S. Yu, Revisiting semileptonic
decays of Ay supported by baryon spectroscopy, Phys.
Rev. D 104, 013005 (2021).

[74] Y.S. Li and X. Liu, Restudy of the color-allowed two-body
nonleptonic decays of bottom baryons Z,, and €, supported
by hadron spectroscopy, Phys. Rev. D 105, 013003 (2022).

[75] S. Capstick and N. Isgur, Baryons in a relativized quark
model with chromodynamics, AIP Conf. Proc. 132, 267
(1985).

[76] S. Godfrey and N. Isgur, Mesons in a relativized quark
model with chromodynamics, Phys. Rev. D 32, 189 (1985).

[77] S.Q. Luo, L.S. Geng, and X. Liu, Double-charm hepta-
quark states composed of two charmed mesons and one
nucleon, Phys. Rev. D 106, 014017 (2022).

[78] R. Aaij et al. (LHCDb Collaboration), Observation of Two
New Excited E) States Decaying to AYK~z", Phys. Rev.
Lett. 128, 162001 (2022).

[79] C. G. Boyd, B. Grinstein, and R. F. Lebed, Model indepen-
dent extraction of |V,| using dispersion relations, Phys.
Lett. B 353, 306 (1995).

[80] C. Bourrely, I. Caprini, and L. Lellouch, Model-independent
description of B — nfv decays and a determination of
|V, Phys. Rev. D 79, 013008 (2009); 82, 099902(E)
(2010).

[81] A. Khodjamirian, T. Mannel, N. Offen, and Y. M. Wang,
B — #n¢v; Width and |V ;| from QCD light-cone sum rules,
Phys. Rev. D 83, 094031 (2011).

093003-26


https://doi.org/10.1088/1674-1137/ac1c66
https://doi.org/10.1088/1674-1137/ac1c66
https://doi.org/10.1016/S0146-6410(03)90015-9
https://doi.org/10.1016/S0146-6410(03)90015-9
https://doi.org/10.1103/PhysRevD.92.114029
https://doi.org/10.1103/PhysRevD.92.114029
https://doi.org/10.1088/1674-1137/44/2/023102
https://doi.org/10.1088/1674-1137/44/2/023102
https://doi.org/10.1007/s11467-018-0828-5
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1016/0370-2693(88)90868-4
https://doi.org/10.1016/0370-2693(88)90868-4
https://doi.org/10.1103/PhysRevD.62.094023
https://doi.org/10.1007/JHEP10(2012)118
https://doi.org/10.1007/JHEP10(2012)118
https://doi.org/10.1140/epjc/s2005-02132-2
https://doi.org/10.1140/epjc/s2005-02132-2
https://arXiv.org/abs/1108.1058
https://doi.org/10.1007/BF01624585
https://doi.org/10.1007/BF01624585
https://doi.org/10.1103/PhysRevD.52.186
https://doi.org/10.1007/JHEP09(2010)089
https://doi.org/10.1007/JHEP02(2013)010
https://doi.org/10.1007/JHEP02(2013)010
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.57.5620
https://doi.org/10.1103/PhysRevD.57.5620
https://doi.org/10.1103/PhysRevD.85.014035
https://doi.org/10.1103/PhysRevD.85.014035
https://doi.org/10.1103/PhysRevD.86.079901
https://doi.org/10.1103/PhysRevC.72.035201
https://doi.org/10.1103/PhysRevD.52.2915
https://doi.org/10.1103/PhysRevD.55.1559
https://doi.org/10.1103/PhysRevD.57.5697
https://doi.org/10.1103/PhysRevD.57.5697
https://doi.org/10.1103/PhysRevD.70.034007
https://doi.org/10.1103/PhysRevD.70.034007
https://doi.org/10.1103/PhysRevD.103.054018
https://doi.org/10.1103/PhysRevD.105.073007
https://doi.org/10.1016/0146-6410(94)90053-1
https://doi.org/10.1007/s002880050069
https://doi.org/10.1007/s002880050069
https://doi.org/10.1103/PhysRevD.58.054010
https://doi.org/10.1016/j.physletb.2022.137402
https://doi.org/10.1016/j.physletb.2022.137402
https://arXiv.org/abs/2204.00759
https://doi.org/10.1103/PhysRevD.104.013005
https://doi.org/10.1103/PhysRevD.104.013005
https://doi.org/10.1103/PhysRevD.105.013003
https://doi.org/10.1063/1.35361
https://doi.org/10.1063/1.35361
https://doi.org/10.1103/PhysRevD.32.189
https://doi.org/10.1103/PhysRevD.106.014017
https://doi.org/10.1103/PhysRevLett.128.162001
https://doi.org/10.1103/PhysRevLett.128.162001
https://doi.org/10.1016/0370-2693(95)00480-9
https://doi.org/10.1016/0370-2693(95)00480-9
https://doi.org/10.1103/PhysRevD.79.013008
https://doi.org/10.1103/PhysRevD.82.099902
https://doi.org/10.1103/PhysRevD.82.099902
https://doi.org/10.1103/PhysRevD.83.094031

TRANSITION FORM FACTORS AND ANGULAR DISTRIBUTIONS ...

PHYS. REV. D 107, 093003 (2023)

[82] C.B. Lang, D. Mohler, S. Prelovsek, and R. M. Woloshyn,

Predicting positive parity B, mesons from lattice QCD,
Phys. Lett. B 750, 17 (2015).

[83] N.Isgurand M. B. Wise, Weak decays of heavy mesons in the
static quark approximation, Phys. Lett. B 232, 113 (1989).

[84] N. Isgur and M.B. Wise, Weak transition form-factors
between heavy mesons, Phys. Lett. B 237, 527 (1990).

[85] N. Isgur and M. B. Wise, Heavy baryon weak form-factors,
Nucl. Phys. B348, 276 (1991).

093003-27

[86] T. Mannel, W. Roberts, and Z. Ryzak, Baryons in the heavy
quark effective theory, Nucl. Phys. B355, 38 (1991).

[87] T. Mannel and Y. M. Wang, Heavy-to-light baryonic form
factors at large recoil, J. High Energy Phys. 12 (2011) 067.

[88] W. Wang, Factorization of heavy-to-light baryonic transi-
tions in SCET, Phys. Lett. B 708, 119 (2012).

[89] R. Aaij et al. (LHCb Collaboration), Test of lepton univer-
sality with A) — pK~=£*#~ decays, J. High Energy Phys.
05 (2020) 040.


https://doi.org/10.1016/j.physletb.2015.08.038
https://doi.org/10.1016/0370-2693(89)90566-2
https://doi.org/10.1016/0370-2693(90)91219-2
https://doi.org/10.1016/0550-3213(91)90518-3
https://doi.org/10.1016/0550-3213(91)90301-D
https://doi.org/10.1007/JHEP12(2011)067
https://doi.org/10.1016/j.physletb.2012.01.036
https://doi.org/10.1007/JHEP05(2020)040
https://doi.org/10.1007/JHEP05(2020)040

