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Using an e*e™ collision data sample of (27.08 & 0.14) x 108

w(3686) events collected by the BESIII

detector, we report the first observation of y,;, — Q~QF (J = 0, 1, 2) decays with significances of 5.6¢, 6.40,
and 180, respectively, where the y.; mesons are produced in the radiative y(3686) decays. The branching

fractions are determined to be B(y, — Q Qt) =
(1.49 £0.23 £0.10) x 1073, and By, —» Q- Q") =

(3.51+£0.54 £0.29) x 107>, By, — Q Q") =
(4.52+0.24 +0.18) x 10~ 5, where the first and

second uncertainties are statistical and systematic, respectively.

DOI: 10.1103/PhysRevD.107.092004

I. INTRODUCTION

The study of charmonium decays into baryon antibaryon
(BB) pairs provides a powerful tool for investigating many
topics in quantum chromodynamics, such as the interference
between the strong and electromagnetic interactions, the
color octet and singlet contributions, the violation of helicity
conservation, the “12% rule,” SU(3) flavor symmetry break-
ing effects, the transverse polarization and the electric dipole
momentum of baryons, and many more [1-6]. In contrast to
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J /y decays[7], the decays of the P-wave charmonium states,
Yoy (J=0, 1, 2), to BB have a nontrivial color-octet
contribution [8,9]. Therefore, further experimental studies
of baryonic y.; decays will provide useful input to theoretical
calculations involving the color-octet wave function, and will
enrich our knowledge of the nature of these charmonium
states.

The color-octet model (COM) [10] can be used to
explain the difference in the measured values of the
branching fractions (BFs) of y.;, — pp decays [7] and
those calculated from perturbative quantum chromodynam-
ics. In addition, the measured BFs [7] of ., — £"Z~ and
¥0%° decays show good agreement with COM predictions,
while the agreement is slightly worse when comparing the
measured BFs of o — 2~ and Z°Z° [7] to the results of
calculations based on the charm-meson loop mechanism
[11], which has much in common with the COM. However,
the COM predictions for the BFs of y.;, — AA decays are
about a magnitude lower than the experimental results [7].
Therefore, more baryonic y,.; decays are needed as inputs
to further study the COM contribution.

In the decays y,.;, — pp, AA, I discussed above, the
baryons belong to the ground state octet. It is desirable to
extend these studies to decays of y.; into pairs of decuplet
ground-state baryons with spin 3/2. So far only y. —
X(1385)FX(1385)F decays [12] have been studied by the
BESIII Collaboration. The decay y,, — Q™ Q" isunique due
to the presence of three pairs of strange quarks in the final
state. This may give us a distinct way for understanding
quantum chromodynamics. The decay y,.;, — Q~Q" is also
advantageous from the experimental point of view, as the Q™
is the only baryon of the ground-state decuplet that decays
through the weak interaction; its long lifetime allows it to be
reconstructed with low levels of background.

In this paper, we report the first measurements of the BFs
of y.;, = Q QF decays, where the y., mesons are pro-
duced in y(3686) — yy.; decays [7], based on a sample of
(27.08 4 0.14) x 10® y(3686) events [13] collected by the
BESIII detector.
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I1. BESIII DETECTOR AND
MONTE CARLO SIMULATION

The BESIHI detector [14,15] records e™e™ collisions
provided by the BEPCII storage ring [16], which operates
with a peak luminosity of 1 x 10* ¢cm=2s~! in the center-
of-mass energy range from 2.00 to 4.95 GeV. The cylin-
drical core of the BESIII detector covers 93% of the full
solid angle and consists of a helium-based multilayer drift
chamber (MDC), a plastic scintillator time-of-flight system
(TOF), and a CsI(TI) electromagnetic calorimeter (EMC),
which are all enclosed in a superconducting solenoidal
magnet providing a 1.0 T magnetic field [17]. The solenoid
is supported by an octagonal flux-return yoke with resistive
plate counter muon identification modules interleaved
with steel. The charged-particle momentum resolution at
1 GeV/c is 0.5%, and the dE/dx resolution is 6% for the
electrons from Bhabha scattering at 1 GeV. The EMC
measures photon energies with a resolution of 2.5% (5%) at
1 GeV in the barrel (end-cap) region. The time resolution of
the TOF barrel part is 68 ps, while that of the endcap part is
110 ps. The end-cap TOF system was upgraded in 2015
using multigap resistive plate chamber technology, provid-
ing a time resolution of 60 ps [18-20].

Monte Carlo (MC) simulated data samples produced with
a GEANT4 [21] based software package, which includes the
geometric description of the BESIII detector and the detector
response, are used to optimize the event selection criteria,
estimate the signal efficiency and the level of background.
The simulation models the beam energy spread and initial-
state radiation in the e e~ annihilation using the generator
KKMC [22]. The inclusive MC sample includes the produc-
tion of the w(3686) resonance, the initial-state radiation
production of the J/y meson, and the continuum processes
incorporated in KKMC [22]. Particle decays are generated by
EvtGen [23,24] for the known decay modes with BFs taken
from the Particle Data Group [7] and LUNDCHARM [25,26]
for the unknown ones. Final-state radiation from charged
final-state particles is included using the PHOTOS package
[27]. To determine the detection efficiency, signal MC
samples are generated for each signal process. The decays
w(3686) — yy., are generated according to the angular
distributions from Ref. [28], where the polar angle 6% of
the radiative photon, defined with respect to the z axis which
is along the e™ beam direction in the rest system of the
w(3686) meson, is distributed according to (1 + cos? 6),
(1 —1cos?0*), and (1 + ;5 cos?6*) for y(3686) — 7x.0.12
decays, respectively. The ¥, — Q~Q* decays are generated
uniformly in phase space (PHSP), along with generic ™ and
Q decays.

III. EVENT SELECTION

The cascade decay of interest is w(3686) — yx./,
Yoy — QQF,  with Q(QY) > AK~(AK*)  and
A(A) = pr~(px*). A full reconstruction method suffers

from a lower detection efficiency compared to a partial
reconstruction. Hence, the radiative y and one of the two Q
baryons are fully reconstructed, while the other € is not
reconstructed in the event. In this paper, we use Q™ to
denote the reconstructed Q, and Q" as the unreconstructed
baryon, with charge conjugation implicit. The masses
recoiling against the y and yQ~ are subsequently used to
search for the y.;, and QF signals, respectively.

The charged tracks in the MDC are required to have a
polar angle 6 with respect to the beam direction within the
MDC acceptance |cos6| < 0.93. In order to perform
the particle identification (PID), the dE/dx and TOF infor-
mation are combined to estimate a likelihood value
L(h)(h=p,K,z) for each hadron h hypothesis.
Charged tracks are identified as protons after satisfying
the requirements of L(p) > L(K), L(p)> L(z) and
L(p) > 0.001, and kaons with £(K) > L(x). If there is
more than one K~ candidate, the one with the highest £(K)
is kept for further study. The remaining charged tracks are
assigned as pions by default. Events are required to contain
at least one combination of pz~ K~ candidates.

To reconstruct A candidates, the pz~ pairs are fitted to a
common origin point [29]. The A candidates are required to
satisfy L, /oy, > 2, where L, and o/, are the distance of
the common vertex of the pz~ pair away from the
interaction point, and the corresponding uncertainty,
respectively. The invariant mass of pz~ (M,-) must lie
within the A signal region, M - € [1.111,1.121] GeV/c?.
If more than one A candidate is found, that one with the
minimum value of |M .- — m,| is chosen, where m, is the
known A mass [7]. Subsequently, the A candidate is
combined with the K~ to reconstruct the Q™ candidate.
Similarly, the AK™ pair is fitted to a common vertex. The
Q~ candidate is required to satisfy Lo /0, > 2, where Lg
and o, are the distance of the common vertex of the AK™
pair away from the interaction point, and the corresponding
uncertainty, respectively. The invariant mass of AK~™
(M Ag-) is required to lie within the Q~ signal region,
M pg- € [1.664,1.681] GeV/c?. If both Q= and QF can-
didates are found in an event, we randomly retain only one
of them to avoid double counting.

Photon candidates are reconstructed from isolated show-
ers in the EMC. The deposited energy of each shower is
required to be greater than 25 MeV in the barrel region
(|cos@| < 0.8) and greater than 50 MeV in the endcap
region (0.86 < |cos@| < 0.92). To reject showers that
originate from charged tracks, the angle between the
shower and its closest charged track must be greater than
10°. In addition, the timing of each shower is required to be
within 700 ns of the e~e™ collision, in order to reduce
contributions from electronic noise and beam-related back-
ground. At least one photon candidate is demanded in
an event.

The best radiative photon is selected with the minimum
value of |[RM - — mg- | from the photon candidates, where
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RM - is the mass recoiling against the yQ~ system, and
mg+ 1s the known Q" mass [7]. For the signal modes, the
unreconstructed QF peaks in the RM o spectrum. The Qf
signal region is defined as RM o~ € [1.647,1.703] GeV/c?,
corresponding to approximately 43¢ of the Q mass, where
o is the fitted resolution of RM,q- from the signal MC
samples.

IV. BACKGROUND STUDY

The decay y(3686) — Q~QF, when occurring with a
fake soft photon, constitutes a background process. The
mass recoiling against the reconstructed Q- (RMq-) for
this background accumulates around mg+, as shown in
Fig. 1. Studies performed on MC simulation indicate
that the requirement of RMq- > 1.73 GeV/c? suppresses
98.9% of y(3686) — Q~Q* background events with only
a loss of 0.03% in signal efficiency.

Backgrounds from continuum quantum electrodynamics
processes, cosmic rays, beam-gas, and beam-wall inter-
actions are estimated by using the data samples collected
outside of the y(3686) peak, and are found to be negligible.

Potential peaking backgrounds are investigated by study-
ing the surviving events in the Q™ signal region from the
inclusive MC sample, and the events in the Q™ mass sideband
regions from data (defined as Mg € ([1.647,1.655] U
[1.69, 1.699]) GeV/c?), respectively. These studies indicate
that there are no significant sources of peaking backgrounds.

V. SIGNAL YIELDS AND BFS

To determine the signal yields of y,, — Q~Q events, an
unbinned maximum-likelihood fit is performed to the
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FIG. 1. Recoil mass RMq-. The blue dotted line histogram is
from the signal MC samples of y.;, = Q QF, where the
proportions of the three signal channels are distributed according
to the measured BFs from this study. The red solid line histogram
is from the MC sample of background (3686) — Q~Q decays,
and the black arrow denotes the chosen RMq- requirement. The
normalization between the signal MC and background MC
samples is arbitrary.
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FIG. 2. Fitto the RM, distribution of the accepted candidates in
data. The dots with error bars are data, the blue solid line is the
total fit, the green short dashed line represents the fitted
combinatorial background shape, and the red long dashed, dark
brown short dot-dashed and magenta long dot-dashed lines
indicate the y.q, y.1, and y., signals, respectively.

recoil-mass spectrum against the radiative photon (RM,),
as shown in Fig. 2. In the fit, the signal shape of each signal
mode is described by the corresponding MC simulated
shape convolved with a Gaussian function with free
parameters. The Gaussian function is used to compensate
for the minor mass shift and resolution difference between
data and MC simulation. The background shape is
described by a third-order Chebyshev polynomial function.
The statistical significances are 6.30, 7.16, and 230 for y .,
xe1» and y., decays, respectively, which are determined
from the change in the log-likelihood values and the
corresponding change in the number of degrees of freedom
with and without including the signal contributions in the
fit. In the significance calculations, systematic uncertainties
are taken into account as discussed below. The signal yields
and detection efficiencies are summarized in Table 1.

The BFs of ., — Q Q" decays are calculated with the
formula

~ N;bs
By — Q Q) = . (D)
bres ) Ny(3686) * By(3686)~110s * €1s

where N9™ is the signal yield, N, (366) is the total number
of y(3686) events, €, | is the detection efficiency including

the subsequent € and A decays, and B, 3636)-y,, 1S the BF

TABLE I. The y.; signal yields (N)‘;PJS), detection efficiencies
(¢,,,)s BFs of y.; — Q Q" (B) and the signal significances
(Sig.). Here the uncertainties are statistical only.

Mode NP €, , (%) Sig.(o) B(x1073)

Yoo 284 + 44 3.05 5.6 351 +0.54
Yo 277+ 42 7.02 6.4 1.49 +0.23
Yo 1038 -+ 56 8.91 18 452+ 024
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of the w(3686) — yy., decay [7]. The measured BFs for
the three signal modes are listed in Table I.

VI. SYSTEMATIC UNCERTAINTY

The systematic uncertainties originate from the event
selection criteria, the fit to the RM, distribution, the size
of the MC samples, the assumptions in the signal MC
generator, the knowledge of the input BFs [7], and the total
number of y(3686) events [13]. The sources from the event
selection criteria are associated with the reconstruction
efficiencies for the photon and A, the tracking and PID
efficiencies for kaons, and the requirements placed on
Lo/or,, Mpg- and RM o-. In the fit to RM,, systematic
uncertainties arise from the signal and background shapes.

The systematic uncertainty associated with the photon
reconstruction efficiency is estimated to be 1.0% per
photon [30]. The uncertainties arising from the tracking
and PID efficiencies are both 1.0% per kaon track [31].

The systematic uncertainty associated with the A
reconstruction efficiency includes the effects from the
tracking (PID) efficiencies for protons and pions, and
requirements on M ,,- and L,/o;, . The size of the
uncertainty is assessed through studies of a control sample
of J/w — pK~A +c.c. decays. The momentum-depen-
dent differences on the A reconstruction efficiencies
between data and MC simulation, which are obtained from
the control sample, are used to reweight the signal MC
samples. The differences between the nominal detection
efficiencies and those after re-weighting, which are 3.6%,
1.2%, and 0.5% for y .o, .1, and y.,, respectively, are taken
as the systematic uncertainties.

The systematic uncertainty associated with the require-
mentof Ly /o, > 2 is evaluated with the control sample of
w(3686) — Q~Q+ decays. The difference in the efficien-
cies from this requirement between data and MC simulation
is taken as the systematic uncertainty, which is 0.6%.

The systematic uncertainty associated with the require-
ment on M » g~ is estimated by changing the mass resolution.
In the nominal procedure, the requirement of M,x- €
[1.664,1.681] GeV/c? is obtained by the fit to M,x-
spectrum from the signal MC samples, which is about
430 around the known Q~ mass. With the same fit
procedure, an alternative requirement of M x- € [1.664,
1.679] GeV/c? is calculated from data. The relative
differences in the BFs arising from these two requirements
are taken as the systematic uncertainties, which are 1.1%,
0.2%, and 0.2% for y .9, y.1> and y.,, respectively.

The systematic uncertainty due to the requirement placed
on the RM - is studied by changing the range from [1.647,
1.703] to [1.644,1.707] GeV/c?. The relative changes in
the BFs are taken as the corresponding systematic uncer-
tainties, which are 2.0%, 2.0%, and 0.9% for y .y, y.1, and
X2, Tespectively.

Two sources of uncertainty associated with the signal
shape are considered. One is due to wrongly reconstructed
photons. Since we only reconstruct the radiative photon and
one Q7, it is possible for the chosen y to not arise from the
w(3686) decay. These photons could be from the Q* decay
or fake photons. To be conservative, we only extract the
correct radiative photons, convolved with a Gaussian
function with floated parameters, as an alternate shape to
investigate the effect from the signal shape. The relative
differences in the BFs, 2.3%, 4.7%, and 1.5%, are assigned
as the uncertainties for y.q, y.i, and y.,, respectively. The
second source is the E1 transition effect [32] on the signal
shape. To assess the effect of this, the correction method
described in Ref. [33] is applied and the effects on the BFs
are found to be negligible.

The systematic uncertainty associated with the back-
ground shape is estimated by changing the background
shape from the third-order Chebyshev polynomial to a
fifth-order Chebyshev polynomial or the RM, shape in the
M p k- side-band region. The largest differences in the BFs
from these alternative treatments, of 6.0%, 0.7%, and 0.7 %,
are assigned as systematic uncertainties for y.y, y.;, and
X2, Tespectively.

The MC generators for the y., = Q~QF decays are
modified to include the angular distribution of 1 + a cos? 9,
where 9 is the polar angle of Q~ in the rest frame of y;
mesons. By considering the dominant contribution to
possess a relative orbital angular momentum of 1 between
the Q~ and QT we take the conservative values of @ = +1
to generate alternative signal MC samples. The greatest
differences on the detection efficiencies are taken as the
systematic uncertainties from the this source, which is
1.4% for both y.; and y., decays. Since the spin of y.
meson is 0, the angular distribution of y,, — Q~Q* decay
is expected to be flat, and thus there is an negligible
systematic uncertainty from this source.

The systematic uncertainties arising from the finite MC
sample sizes are 0.5%, 0.3%, and 0.3% for y .o, 1, and y .,
respectively. The uncertainty associated with the number
y(3686) events is 0.5% [13]. The systematic uncertainties
arising from the knowledge of the BFs of y(3686) — yy.,
are 2.0%,2.5%,2.1% for y .o, y .1, and y ., [7]. The systematic
uncertainties arising from the BFs of Q= — AK™, and
A — pr~ are 1.0% and 0.8% [7], respectively.

Table II summarizes all of the systematic uncertainties
discussed above. The total systematic uncertainties on the
BFs of y., — Q Q" are the quadratic sums of each
corresponding source.

The signal significances are estimated again after con-
sidering the systematic effects of the requirements of M , -
and RM -, and the signal and background shapes in the fit
to RM,. Based on the different variations, the lowest
significances are 5.60, 6.40, and 18¢ for y.y, y.;, and
X2, Tespectively, as listed in Table 1.
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TABLE II. Summary of the relative systematic uncertainties on
the BFs of y., — Q- Q" decays.

Source Xeo(%) X (%) xea(%)
Photon reconstruction 1.0 1.0 1.0
Kaon tracking 1.0 1.0 1.0
Kaon PID 1.0 1.0 1.0
A reconstruction 3.6 1.2 0.5
Lg/6y,, requirement 0.6 0.6 0.6
M px- requirement 1.1 0.2 0.2
RM - requirement 2.0 2.0 0.9
Signal shape 2.3 4.7 1.5
Background shape 6.0 0.7 0.7
MC generator Negligible 1.4 1.4
MC sample size 0.5 0.3 0.3
Cited BW<3686)_’7J(L~J 2.0 2.5 2.1
Cited Bo-_ Ak~ 1.0 1.0 1.0
Cited By, 0.8 0.8 0.8
w(3686) number 0.5 0.5 0.5
Total 8.3 6.5 39

VII. SUMMARY

In summary, utilizing the world’s largest w(3686)
sample taken with the BESIII detector, we observe the
X012 = Q~Q7 decays for the first time based on a partial
reconstruction method, where only one of the Q™ and Q
baryons is fully reconstructed in each event. The measured
BFs are B(y, — Q Q") = (3.51 £0.54 £0.29) x 107,
By, = QQF) = (1.49 4+ 0.23 £ 0.10) x 107>, and
Blyep = Q Q1) = (4.52 4 0.24 £0.18) x 107>, Here the
first and second uncertainties are statistical and systematic,
respectively. It is noteworthy that the measured BF of
Yo = Q~QF is one order of magnitude smaller than those
of y.o decaying to baryon antibaryon pairs with spin 1/2
and 3/2 [7], which will be useful for theorists to investigate
the helicity selection rule evading mechanism in y
decays. This is the first observation of y.; decays into a
pair of decuplet ground-state baryons with spin 3/2. The
Zes = Q™ Q7 decays can also be used to probe the spin
polarization of Q~ baryon in the charmonium production at
the future tau-charm factories [34-36].
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