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We study various holographic pure and mixed-state entanglement measures in the confined/deconfined
phases of a bottom-up AdS=QCD model in the presence of a background magnetic field. We analyze the
entanglement entropy, entanglement wedge cross section, mutual information, and entanglement negativity
and investigate how a background magnetic field leaves its imprints on the entanglement structure of these
measures. Due to the anisotropy introduced by the magnetic field, we find that the behavior of these
measures depends nontrivially on the relative orientation of the strip with respect to the field. In the
confining phase, the entanglement entropy and negativity undergo a phase transition at the same critical
strip length, the magnitude of which increases/decreases for parallel/perpendicular orientation of the
magnetic field. The entanglement wedge cross section similarly displays discontinuous behavior each time
a phase transition between different entangling surfaces occurs, while further exhibiting anisotropic
features with a magnetic field. We further find that the magnetic field also introduces substantial changes in
the entanglement measures of the deconfined phase; however, these changes remain qualitatively similar
for all orientations of the magnetic field. We further study the inequality involving the entanglement wedge
and mutual information and find that the former always exceeds half of the latter everywhere in the
parameter space of the confined/deconfined phases.
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I. INTRODUCTION

The gauge/gravity duality or holography is an elegant
theoretical framework that provides an interesting con-
nection between quantum field theory and gravity [1–3]. In
its approximate form, the duality maps a classical theory of
gravity in anti–de Sitter (AdS) space to a strongly coupled
quantum field theory living at the boundary of the AdS
space in one lower dimension. The duality has been used to
understand various aspects of strongly coupled field the-
ories using classical gravitational tools, and by now there is
plenty of evidence that numerous nonperturbative and
novel aspects of strongly coupled field theories can be
probed using this duality. In recent years, its applications
have been found in various domains of physics ranging
from condensed matter to black holes. Two of the most

promising areas where the compelling ideas of the duality
can be applied to obtain important physical results are
quantum information and QCD. In this paper, following up
on the seminal work that combined these two areas [4,5],
we further examine how the concept of pure and mixed-
state entanglement measures endows the QCD phase
diagram in the presence of a crucial and anisotropic
parameter: the magnetic field.
Quantum information science in recent years has

emerged as a powerful tool to investigate diverse aspects
in theoretical physics. One of the key ingredients of
quantum information is entanglement, which essentially
means how different parts of the system are correlated.
One of the most commonly used entanglement measures is
entanglement entropy. Aspects related to entanglement
entropy have been used to study quantum phases [6,7],
black hole entropy [8,9], quantum communication [10,11],
etc. Perhaps, one of the most striking developments
appeared in the context of gauge/gravity duality, where a
remarkably successful conjecture for the entanglement
entropy was suggested [12,13]. In this proposal, the
entanglement entropy of the boundary theory is related
to the area of a certain boundary homologous minimal
surface. The proposal geometrizes the concept of entangle-
ment entropy and therefore provides a unique stage in
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which spacetime geometry, quantum field theories, and
quantum information measures can be combined in a single
framework. Indeed, in recent years this proposal has been
used to probe and investigate various physical problems,
such as quantum error-correcting codes and tensor net-
works [14,15], large-N phase transitions [16–18], quantum
gravity [19,20], confinement and deconfinement transitions
[4,5], quench dynamics [21–23], etc.
The entanglement entropy, however, apart from contain-

ing UV divergences, is not a good measure of entanglement
for the mixed and multipartite states. For such states,
various entanglement measures, such as entanglement of
formation, (logarithmic) entanglement negativity, entangle-
ment of purification, etc., have been proposed in the
quantum information literature [24–29]. These quantities
generally are extremely hard to compute in strongly
coupled field theories and only a handful of systems are
known where these can be computed explicitly. From the
gauge/gravity duality point of view, a few suggestions for
these measures have appeared. This includes the entangle-
ment of purification suggestion in Refs. [30,31], where the
purification was suggested to be dual to the minimal cross-
section area of the entanglement wedge EW . Similarly,
there have been two separate suggestions for the entangle-
ment negativity. In the first suggestion, the negativity is
proposed to be given by the area of an extremal cosmic
brane that terminates on the boundary of the entanglement
wedge [32,33], whereas in the second suggestion, it is
given by certain combinations of the minimal areas of
codimension-two surfaces [34–43]. Interestingly, these
holographic quantities, like the entanglement entropy, are
again given by the areas of certain bulk surfaces; however,
unlike the entanglement entropy, they do not contain UV
divergences and are finite by construction.
Let us also mention that EW has appeared in the

holographic proposal of many information-theoretic quan-
tities. This includes the above-mentioned entanglement
of purification proposal [30,31], the reflected entropy
proposal [44], and the odd entropy proposal [45]. It also
closely appears in the entanglement negativity proposal of
Refs. [32,33]. Moreover, these different proposals of EW do
not always coincide with each other, leading to uncertainty
regarding its correct holographic interpretation [46].
Therefore, it appears that more caution is required when
associating an information-theoretic measure with EW . In
spite of the correct interpretational issues of EW , a great
deal of progress has been made in exploring and under-
standing its properties in various physical situations; see
Refs. [47–64] for more details. In this work, we also
take this viewpoint and investigate the properties of EW in
QCD-like holographic confined/deconfined phases in the
presence of a background magnetic field, to probe its
orientation- and anisotropic-dependent properties, and to
see whether it provides any novel signature for confine-
ment, without dwelling on its interpretational issues.

On the other hand, QCD is a well-tested quantum field
theory of strong interactions capable of describing the
subatomic physics of quarks and gluons. At low temper-
ature and chemical potential the hadrons are bound
together in a confined phase, whereas at high temperature
and chemical potential these hadrons are librated and
undergo a phase transition to a deconfined quark-gluon
plasma phase. Probing QCD properties in the parameter
space of temperature, chemical potential, etc. is a non-
trivial task and is of great importance. Unfortunately, this
remains challenging in a large part of the QCD parameter
space. Analytical approaches are difficult because of the
strong coupling, whereas numerical-based approaches of
lattice QCD are inherently Euclidean in nature. Therefore,
the sparse availability of nonperturbative techniques and
the failure of traditional perturbative methods have limited
our understanding of QCD at strong coupling. Here, the
idea of holographic duality again comes in handy and
provides an elegant framework within which the strongly
coupled region of QCD can be probed. Indeed, one of the
main and original motivations of holography was to better
understand gauge theories such as QCD at strong cou-
pling. In particular, building a dual gravity model capable
of describing real QCD features reasonably well and from
which testable predictions and aspects can be obtained is
important, to both complement and support other takes on
the same problem, coming from, e.g., Dyson-Schwinger
or functional renormalization group equations, lattice
QCD, effective QCD models, etc. By now, investigations
using the holographic QCD framework have been
done for both string-theory-inspired top-down and phe-
nomenological bottom-up models, and many QCD-like
properties have been reproduced; see Refs. [65–68] for
detailed reviews.
Recently, there have been further suggestions that

another parameter might play an important role in the
QCD phase structure. In particular, there are suggestions
that a very strong magnetic field, of the order of
eB ∼ 0.3 GeV2, might be generated in noncentral relativ-
istic heavy-ion collisions and can leave important imprints
on QCD properties [69–75]. Though the produced large
magnetic field decays fast after the collision, it remains
sufficiently high near the deconfinement temperature and
is therefore expected to modify QCD properties [76,77].
Indeed, the produced magnetic field has been shown to not
only play a destructive role in the chiral and deconfine-
ment transition temperatures (also known as inverse
magnetic catalysis) [78–89], but also cause suppression/
enhancement of the string tension in a direction parallel/
transverse to the magnetic field [74,90,91]. Similarly, it
was also suggested that it can influence the charge
dynamics in QCD, thereby yielding anomaly-induced
novel transport phenomena such as the chiral magnetic
effect [92–94]. In the context of gauge/gravity duality
as well, a lot of work has been donee to construct
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holographic models to mimic magnetized QCD as closely
as possible. For a related discussion on the interplay
between the magnetic field and QCD observables in
holography, see Refs. [95–127]. Exploring QCD in the
extreme external conditions of high temperature and
magnetic field is not only theoretically challenging, but
of direct possible relevance for current particle-acceler-
ator-driven research programs [128], as well as the study
of dense neutron stars [129], early Universe physics [130],
gravitational-wave physics [131], etc.; see Refs. [132,133]
for reviews.
Thus, it is clear that the magnetic field appears as an

influential parameter in QCD-related physics. Therefore,
it is important to investigate how this magnetic field
influences information-theoretic measures in QCD phases
and, in particular, whether it introduces any anisotropic
features in the entanglement structure of QCD phases.
Unfortunately, getting any reliable information on the

entanglement measures in interacting field theories is rather
difficult. This is primarily due to severe technical difficul-
ties inherent in both analytical and numerical calculations.
For these reasons, the study of entanglement measures in
QCD-like theories is quite limited. With the exception of a
few lattice-related works [134–137], most studies have
been based on holographic proposals. Moreover, these
studies were mainly restricted to entanglement entropy.
In Refs. [4,5], the authors first studied the holographic
entanglement entropy in the top-down confining phases
and observed a phase transition from a connected to a
disconnected minimal surface as the size of the subsystem
varied. This phase transition was accompanied by a change
in the order of the entanglement entropy, reflecting
(de)confinement. Similar nonanalytic behavior of the
entanglement entropy was later observed in lattice-related
studies [134,135]. This idea was then tested in many other
confining models, both top-down and bottom-up, and
similar results were found [138–159].
The discussion of mixed-state entanglement measures in

QCD-like theories is relatively new. A short discussion
appeared in Ref. [53], where EW in a limited confining
model was discussed. A thorough discussion of EW in
various top-down and bottom-up confining models was
later presented in Ref. [47]; see also Ref. [54]. However, the
negativity calculation only appeared in Ref. [47], and that
too was restricted to the confined phase.
Until now, most studies related to probing confinement/

deconfinement physics using the pure and mixed-state
entanglement measures have been performed in the
absence of background electromagnetic fields, in particu-
lar magnetic fields. However, as mentioned before, the
magnetic field does play an important role in QCD-related
physics and, therefore, can influence the entanglement
structure of QCD phases. Indeed, in the presence of a
magnetic field, there are several possibilities to align the
entangling surfaces. For instance, we can align them

parallel or perpendicular to the magnetic field. We can
hence certainly expect to find anisotropic signatures in the
entanglement measures. This is interesting considering
that the standard order parameter, i.e., the Polyakov loop,
does depend on the magnitude of the magnetic field, but is
insensitive to its direction. As such, it is again clear that
further probing confinement/deconfinement physics in an
anisotropic setting is important, from both theoretical and
phenomenological perspectives [78,81]. For the record, let
us mention that the effect of a magnetic field on the
entanglement entropy in the soft-wall AdS=QCD model
was discussed in Ref. [138], while no such study has been
performed for the entanglement wedge, negativity, and
mutual information. For discussions related to the aniso-
tropic entanglement entropy in different contexts, see
Refs. [151,160,161].
In this work, we aim to fill this gap and perform a

comprehensive investigation of mixed-state entanglement
measures, including both EW and negativity, in the
confined and finite-temperature deconfined QCD phases,
in the presence of a background magnetic field. For
this purpose, we consider the dynamical bottom-up holo-
graphic QCD model of Refs. [111,112], where a closed-
form analytic solution of the Einstein-Maxwell-dilaton
gravity system in the presence of a background magnetic
field was obtained, thereby greatly simplifying the
relevant numerical calculations, and it was shown to
exhibit many desirable anisotropic QCD features. We
briefly highlight this holographic model and its properties
in the next section. For the entanglement entropy, we
consider a strip subsystem of length l in a direction either
parallel or perpendicular to the magnetic field. In both
cases, the entanglement entropy undergoes a phase tran-
sition from a connected surface to a disconnected surface
at some critical strip length lcrit in the confined phase.
Interestingly, the magnitude of this critical strip length
increases/decreases for a parallel/perpendicular magnetic
field. This provides an important magnetic-field-induced
signature of anisotropy in the entanglement structure.
With two equal-size disjoint strips, separated by a
distance x, four different types of minimal area surfaces
fSA; SB; SC; SDg appear, leading to an interesting phase
diagram. This two-strip phase diagram is again greatly
modified in the presence of a magnetic field, while further
exhibiting anisotropic features. The mutual information
turns out to be nonzero only in the SB and SC phases and is
always a monotonic function of l and x. Similarly, the
entanglement wedge cross section EW is also nonzero
only in the SB and SC phases. Interestingly, unlike the
mutual information, EW goes to zero discontinuously
for large values of x and l and exhibits a nonanalytic
behavior while going from the SB to SC phase. In
particular, going from the SB to SC phase, the entangle-
ment wedge cross section increases at the SB=SC transition
line. Interestingly, this increment in the area of the
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entanglement wedge at the SB=SC transition line
decreases/increases for a parallel/perpendicular magnetic
field, yielding a new anisotropic feature in the entangle-
ment structure. We further find that EW always exceeds
half of the mutual information, i.e., the holographically
suggested inequality [30] is always satisfied for both
parallel and perpendicular cases. Similarly, the entangle-
ment negativity exhibits many interesting features in the
confined phase. For a single-strip subsystem, the neg-
ativity turns out to be just 3=2 times the entanglement
entropy. This suggests that the entanglement negativity
also undergoes an order change, from OðN2Þ to OðN0Þ, at
lcrit, and that the magnitude of lcrit increases/decreases
with a parallel/perpendicular magnetic field. Moreover,
for two strips, the negativity behaves smoothly across
various phase transition lines and there is no discontinuity
in its structure. However, unlike the mutual information
and entanglement wedge, the negativity can be nonzero
in some parts of the SA phase. The negativity further
displays anisotropic features in parallel and perpendicular
directions.
The entanglement structure of the deconfined phase

is slightly simpler compared to the confined phase. In
particular, there is no connected/disconnected transition
and the entanglement entropy is now always given by the
connected surface. This implies that it is always of order
OðN2Þ. Accordingly, with two strips, there are only SA and
SB phases, and the mutual information and entanglement
wedge are nonzero only in the SB phase, whereas the
entanglement negativity is nonzero in both the SA and SB
phases. The mutual information vanishes continuously in
the SA phase, whereas the entanglement wedge vanishes
discontinuously. Moreover, the parameter space of the SB
phase is found to increase for both orientations of the
magnetic field, suggesting a larger phase space for the
nontrivial entanglement wedge in the presence of a mag-
netic field. Although the magnetic field does introduce
substantial changes in the entanglement measures, these
changes remain qualitatively the same in both parallel and
perpendicular cases, suggesting a limited anisotropic effect
of the magnetic field in the deconfined phase.
Before performing explicit calculations, let us also

mention that here we model the magnetic field as a constant
external field to obtain insight into the entanglement
structure of QCD phases. This simplistic assumption can
be justified for two reasons: (i) it has been suggested that
after a fast initial decrease, the generated B is almost frozen
for the rest of the lifetime of the plasma, giving more credit
to the assumption of a constant B field, and (ii) from a
technical point of view, it allows us to have better control

over most of the calculations and is therefore quite common
in holographic magnetized QCD model building.
The paper is organized as follows. We give an intro-

duction to the bulk gravitational theory in Sec. II, and
briefly talk about the various entanglement measures that
we consider for our calculations in Sec. III. We study the
various entanglement measures in the presence of a back-
ground magnetic field (both parallel and perpendicular
orientations) in the confining phase in Sec. IV and in the
deconfining phase in Sec. V. Finally, we end the paper with
discussions and conclusions in Sec. VI.

II. EINSTEIN-MAXWELL-DILATON GRAVITY
WITH A MAGNETIC FIELD

In this section, we describe the relevant details of the
magnetized holographic QCD model presented in
Ref. [111]. The corresponding five-dimensional Einstein-
Maxwell-dilaton gravitational action is given by

SEM ¼ −
1

16πGð5Þ

Z
M

d5x
ffiffiffiffiffiffi
−g

p �
R −

fðϕÞ
4

FMNFMN

−
1

2
∂Mϕ∂

Mϕ − VðϕÞ
�
; ð1Þ

wherein R is the Ricci scalar of the five-dimensional
manifold M, FMN is the field-strength tensor for the
Uð1Þ gauge field AM through which a constant background
magnetic field will be introduced, ϕ represents the dilaton
field, and fðϕÞ is the gauge kinetic function which denotes
the coupling between the Uð1Þ and dilaton fields. The
potential for the dilaton field is given by VðϕÞ and Gð5Þ is
the five-dimensional Newton’s constant. Interestingly, with
an Ansätze for the metric gMN , field-strength tensor FMN,
and dilaton field ϕ,

ds2¼L2e2AðzÞ

z2

�
−gðzÞdt2þ dz2

gðzÞþdy21þeB
2z2ðdy22þdy23Þ

�
;

ϕ¼ϕðzÞ; FMN ¼Bdy2∧dy3; ð2Þ

the Einstein, Maxwell, and dilaton field equations coming
from the action (1) can be completely solved in closed form
in terms of a single parameter a,

AðzÞ ¼ −az2; ð3Þ

gðzÞ ¼ 1 −
ez

2ð3a−B2Þð3az2 − B2z2 − 1Þ þ 1

ez
2
hð3a−B2Þð3az2h − B2z2h − 1Þ þ 1

; ð4Þ

ϕðzÞ ¼
Z

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2

z
ð3zA00ðzÞ − 3zA0ðzÞ2 þ 6A0ðzÞ þ 2B4z3 þ 2B2zÞ

r
þ K5; ð5Þ
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fðzÞ ¼ gðzÞe2AðzÞþ2B2z2
�
−
6A0ðzÞ

z
− 4B2 þ 4

z2

�

−
2e2AðzÞþ2B2z2g0ðzÞ

z
; ð6Þ

VðzÞ ¼ g0ðzÞð−3z2A0ðzÞ − B2z3 þ 3zÞe−2AðzÞ
− gðzÞð12þ 9B2z3A0ðzÞÞe−2AðzÞ
þ gðzÞð−9z2A0ðzÞ2 − 3z2A00ðzÞ
þ 18zA0ðzÞ − 2B4z4 þ 8B2z2Þe−2AðzÞ; ð7Þ

wherein the AdS radius L has been set to one and z is the
usual holographic radial coordinate. The above solution is
obtained by using the boundary condition gðz ¼ zhÞ ¼ 0,
corresponding to a black hole with a horizon at z ¼ zh.
The magnetized black hole solution has the temperature
and entropy

T ¼ z3he
−3AðzhÞ−B2z2h

4π
R zh
0 dξξ3e−B

2ξ2−3AðξÞ ;

SBH ¼ V3e3AðzhÞþB2z2h

4Gð5Þz3h
; ð8Þ

where V3 is the volume of the three-dimensional spa-
tial plane.
There also exists another solution to the field equations,

corresponding to the thermal-AdS solution (without a
horizon). This no-black-hole solution corresponds to
gðzÞ ¼ 1 and can be obtained by taking the limit zh → ∞
in the above equations. The coordinate z therefore runs
from z ¼ 0 (asymptotic boundary) to z ¼ zh (for the black
hole) or to z ¼ ∞ (for thermal-AdS). Importantly, both the
thermal-AdS and black hole solutions asymptote to AdS at
the boundary z ¼ 0, but can have a nontrivial structure in
the bulk. The constant K5 appearing in Eq. (5) is fixed by
demanding that ϕjz¼0 → 0 to get an asymptotically AdS
spacetime. Note that in these solutions a constant back-
ground magnetic fieldB is chosen in the y1 direction, which
breaks the SOð3Þ invariance of the boundary spatial
coordinates fy1; y2; y3g.
Apart from its analytic simplicity, this holographic

model also exhibits many desirable anisotropic QCD
properties. A few salient features of this model are the
following:
(1) A Hawking/Page-type phase transition appears be-

tween the thermal-AdS and black hole solutions. In
particular, the black hole phase is favored at high
temperatures, whereas the thermal-AdS phase is
favored at low temperatures. Accordingly, there is
a phase transition between these two solutions.
However, since B explicitly appears in the temper-
ature expression, now the transition temperature is a
B-dependent quantity. The behavior of the transition

temperature as a function of B for various values of a
is shown in Fig. 1.

(2) These thermal-AdS and black hole phases were
further shown to be dual to confined and decon-
fined phases, respectively, in the dual boundary
theory. Since the transition temperature decreases
with B, this provided a holographic model for
inverse magnetic catalysis in the deconfinement
sector [111].

(3) The parameter a is the only free parameter in this
model, and Eqs. (3)–(7) form a self-consistent
solution of the magnetized Einstein-Maxwell-
dilaton gravity for any choice of a. Nonetheless,
in the context of AdS=QCD model building, it is
appropriate to fix its value by taking inputs from the
dual boundary QCD theory. For instance, by de-
manding the confined/deconfined (or the dual
Hawking/Page) phase transition temperature in the
pure glue sector to be around 270 MeV, as is
reported in lattice QCD [162], one fixes the value
of the parameter a to be 0.15 GeV2 [163]. This also
fixes the largest attainable magnitude of B, by
requiring the real-valuedness of the dilaton field,
to be around B ⋍ 0.6 GeV. However, it is important
to note that the inverse magnetic behavior is a
general result of this model that remains true for
other values of a as well, as is shown in Fig. 1.

(4) Interestingly, the string tension was further
found to decrease/increase with magnetic field in
longitudinal/transverse directions. These results
are in good agreement with state-of-the-art lattice
findings [90,91].

(5) Similarly, the chiral critical temperature again goes
down with the magnetic field, indicating inverse
magnetic catalysis behavior in the chiral sector. In
particular, the chiral condensate magnitude increases
with B in the confined phase, whereas it exhibits

0.2 0.4 0.6
B

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tcrit

FIG. 1. Deconfinement transition temperature in terms of
magnetic field for various values of a. Red, green, blue, brown,
and orange curves correspond to a ¼ 0.05, 0.10, 0.15, 0.20, and
0.25, respectively, in units of GeV.
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nonmonotonic thermal features for all B in the
deconfined phase. These chiral results also agree
qualitatively well with lattice QCD findings, where
similar features have been observed in the chiral
sector.

(6) The boundary vector-meson mass spectrum also
exhibits linear Regge behavior.

(7) As far as the stability of the model is concerned, the
mass of the dilaton field ϕ satisfies the Breitenlohner-
Freedman bound for stability in AdS space [164],
and the dilaton potential V is bounded from above
by its UV boundary value, thereby satisfying the
Gubser stability criterion for a well-defined boundary
theory [165]. Similarly, the null energy condition of
the matter field is always satisfied and constructed
geometries—both black hole and thermal-AdS
spacetimes—asymptote to AdS at the boundary
z → 0.

We therefore see that the dual boundary theory of the
model (1) indeed exhibits many desirable anisotropic QCD
features with a magnetic field. Therefore, it is reasonable to
use this model to find the anisotropic imprints of a magnetic
field on the entanglement structure of QCD phases by
studying various entanglement measures.

III. ENTANGLEMENT MEASURES

In this section, we briefly talk about various entangle-
ment measures that have gravity duals. To probe the
entanglement structure of confined/deconfined QCD
phases and make the discussion complete and as general
as possible, we concentrate on both pure and mixed-state
measures. This includes the (i) entanglement entropy,
(ii) mutual information, (iii) entanglement wedge cross
section, and (iv) entanglement negativity.

A. Holographic entanglement entropy

We begin with the discussion of entanglement entropy. It
is a good measure of entanglement for the pure states and in
the usual quantum systems it is given by

SðAÞ ¼ −TrAρA ln ρA; ð9Þ

where ρA is the reduced density matrix of subsystem A,
obtained by tracing out the degrees of freedom of the rest of
the system. In quantum field theories, one can use the
replica trick to calculate the entanglement entropy [166].
Holographically, the entanglement entropy can be com-
puted using the Ryu-Takayanagi prescription [12,13],

SðAÞ ¼ AðΓmin
A Þ

4Gðdþ1Þ
; ð10Þ

wherein Gðdþ1Þ denotes the (dþ 1)-dimensional Newton’s
constant and AðΓmin

A Þ represents the area of the

(d − 1)-dimensional minimal surface Γ with the condition
that the boundary ∂A of the subsystem A is homologous
to ∂Γ. The above equation can also be written in the
following way:

SðAÞ ¼ 1

4Gðdþ1Þ

Z
Γ
dd−1σ

ffiffiffiffiffiffiffiffiffi
Gd−1
ind

q
; ð11Þ

wherein the induced metric on the surface Γ is given by
Gd−1
ind , which further needs to be minimized according to the

prescription of Refs. [4,5,12,13]. For the record, we have
d ¼ 4 in our cases of interest.
Notice that, with a background magnetic field, we have

choices to align the subsystem (or the entangling surface)
with respect to the magnetic field. In particular, we can
now have two interesting scenarios: (i) align the entangling
surface parallel to the magnetic field, and (ii) align it
perpendicular to the magnetic field. The relative orientation
of the entangling surface can leave anisotropic imprints of
the magnetic field on various entanglement measures.
Indeed, as wewill see shortly, since most of the holographic
entanglement measures depend nontrivially on the bulk
spacetime metric, which in turn depends nontrivially on the
magnetic field, it is therefore reasonable to expect that
the magnetic field might generate anisotropic features in the
entanglement measures.

B. Holographic mutual information

We next move on to discuss the mutual information,
which serves as a measure of entanglement for disjoint
intervals. For two subsystems (A1 and A2), it reflects the
amount of shared information between A1 and A2, and in
the case of two disjoint intervals on the boundary it is given
as [167,168]

IðA1; A2Þ ¼ SðA1Þ þ SðA2Þ − SðA1 ∪ A2Þ; ð12Þ

wherein SðA1Þ, SðA2Þ, and SðA1 ∪ A2Þ represent the
entanglement entropies pertaining to A1, A2, and
A1 ∪ A2, respectively. From the above equation (12), we
can see that the mutual information vanishes in the case
of uncorrelated systems, whereas it is nonzero for corre-
lated systems. Moreover, the subadditivity property of the
entanglement entropy further implies that the mutual
information is non-negative, which in turn signifies the
fact that IðA1; A2Þ serves as an upper bound on the
correlation between A1 and A2. In the holographic context,
the mutual information of the boundary system can be
evaluated by computing the entanglement entropies
fSðA1Þ; SðA2Þ; SðA1 ∪ A2Þg individually from the Ryu-
Takayanagi prescription. Interestingly, unlike the entangle-
ment entropy, the holographic mutual information does
not contain any UV divergences and is UV finite in
nature. Therefore, it provides a cutoff or regularization-
independent information. For further information related to
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mutual information, see Refs. [169–175]. For more on
mutual information and two disjoint interval entanglement
phase structure in top-down and bottom-up QCD models,
see Refs. [140,142].

C. Entanglement wedge cross section

It is well known that entanglement entropy serves as a
good measure of entanglement in the case of pure states,
but not so in the case of mixed states. Since entanglement
entropy is known to exhibit interesting features in QCD
phases, it is compelling to ask how the mixed-state
measures behave in these phases. When dealing with
mixed states, it turns out that the minimal area of the
entanglement wedge cross section can be considered an
appropriate measure holographically.1

In order to calculate the entanglement wedge cross
section holographically, we follow the method suggested
in Refs. [30,31]. On the d-dimensional boundary, we
consider two nonoverlapping subsystems A and B. The
minimal surfaces in the (dþ 1)-dimensional bulk corre-
sponding to A, B, and AB ¼ A ∪ B are given as Γmin

A , Γmin
B ,

and Γmin
AB , respectively. The entanglement wedge MAB,

which is dþ 1-dimensional (d-dimensional, if the static
case is considered), is then defined as a region in the bulk
which shares its boundary with A, B, and Γmin

AB , implying

∂MAB ¼ A ∪ B ∪ Γmin
AB : ð13Þ

It is important to see that if the size of subsystems A and B
is very small or if they are too far apart, then the wedge
MAB will be of disconnected nature. We can further
divide Γmin

AB as

Γmin
AB ¼ ΓðAÞ

AB ∪ ΓðBÞ
AB ; ð14Þ

and define

Γ̃A ¼ A ∪ ΓðAÞ
AB ;

Γ̃B ¼ B ∪ ΓðBÞ
AB : ð15Þ

From Eqs. (14) and (15), we get the following condition for
the wedge boundary ∂MAB:

∂MAB ¼ Γ̃A ∪ Γ̃B: ð16Þ

Σmin
AB is then defined as a minimum surface whose boundary

conditions are

ðiÞ ∂Σmin
AB ¼ ∂Γ̃A ¼ ∂Γ̃B;

ðiiÞ Σmin
AB is homologous to Γ̃A insideMAB: ð17Þ

Using the area of Σmin
AB , which is denoted by AðΣmin

AB Þ, one
can now define the entanglement wedge cross section as

EWðρABÞ ¼ min
ΓðAÞ
AB⊂Γ

min
AB

�
AðΣmin

AB Þ
4Gðdþ1Þ

�
: ð18Þ

To put it in words, EWðρABÞ is given by the minimal area of
the division of the entanglement wedge MAB which con-
nects subsystems A and B. A pictorial representation of the
entanglement wedge in the connected space, i.e., in the
thermal-AdS spacetime, is shown in Fig. 2.
Let us stress here once again that in recent years several

entanglement measures have been suggested to be holo-
graphically dual to the entanglement wedge cross section.
This includes the entanglement of purification [30,31],
reflected entropy [44], and odd entropy [45]. Unfortunately,
these different interpretations do not exactly coincide with
each other, leading to uncertainty regarding its correct
holographic interpretation. In this work, we do not dwell on
the boundary interpretation issues of the entanglement
wedge cross section and mainly concentrate on its proper-
ties in the confined/deconfined phases of QCD in the
presence of a background magnetic field. Indeed, as we will
shortly see, the entanglement wedge cross section does
provide valuable information as far as the entanglement
structure in the confined phase is concerned.

D. Holographic entanglement negativity

Apart from the entanglement wedge cross section,
another quantity that can be taken as a suitable measure
of mixed-state entanglement is entanglement negativity. In
usual quantum systems this is defined as [24,25]

N ¼ kρT2k − 1

2
; ð19Þ

FIG. 2. The region in blue is the entanglement wedge MAB
corresponding to a pure state. For a thermal state, there would
additionally be a black hole in MAB. The dotted surface is ΣAB,
which divides MAB into two parts.

1For more information on the entanglement wedge cross
section and its properties and applications in various contexts,
see Refs. [47–64].
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where ρT2 denotes the partial transpose of the reduced
density matrix and kρT2k denotes its trace norm. One
can further define its close cousin, the logarithmic
negativity, as

E ¼ ln kρT2k ¼ ln TrjρT2 j: ð20Þ
The logarithmic entanglement negativity serves as an upper
bound to the amount of distillable entanglement and has
been previously calculated in many-body systems and field
theories [176–188]. In gauge/gravity duality, two seemingly
different (yet equivalent) holographic proposals for the
entanglement negativity are available. This includes the
proposal of Refs. [32,33], in which the logarithmic neg-
ativity is given by the area of an extremal cosmic brane that
terminates on the boundary of the entanglement wedge, and
the proposal of Refs. [34–43], in which the logarithmic
negativity is given by certain combinations of the areas of
codimension-two minimal bulk surfaces. Both proposals
have seemingly different mathematical definitions; how-
ever, they both reproduce independent known results for the
negativity in conformal field theories and have been tested in
diverse physical situations. In thiswork,wemainly dealwith
the latter proposal for two reasons: (i) the former proposal is
practically similar to the computation of the entanglement
wedge (which we will compute anyway), and (ii) it is
computationally slightly easier to compute the negativity
from the latter proposal, as opposed to the former proposal,
which requires nontrivial and s cumbersome cosmic brane
backreaction calculation. Therefore, it might not only be
complementary but also more informative if the latter
proposal is adopted for the entanglement negativity calcu-
lation. Indeed, as wewill see shortly, the latter proposal also
provides an interesting andmodel-independent result for the
negativity in all holographic confining/deconfining theories,
which can be tested in independent lattice calculations,
hence providing an intriguing platform for a nontrivial
verification of the proposal.
In order to calculate the holographic logarithmic

negativity in the case of a single interval, we follow
Refs. [34,35] and consider a d-dimensional boundary
system composed of A and its compliment Ac. We now
consider two additional finite intervals B1 and B2 adjacent

to A, implying B ¼ B1 ∪ B2; see the left part of Fig. 3. In
terms of the entanglement entropy (10), the holographic
logarithmic negativity is then written as

E ¼ lim
B→Ac

3

4
½2SðAÞ þ SðB1Þ þ SðB2Þ

− SðA ∪ B1Þ − SðA ∪ B2Þ�: ð21Þ
It is important to note that in Eq. (21) both B1 and B2 have
to be taken to infinity so that B ¼ B1 ∪ B2 ¼ Ac.
In the case of two disjoint intervals A1 (of length l1) and

A2 (of length l2) separated by a distance x (see the right
panel of Fig. 3), the holographic logarithmic negativity is
similarly written as

E ¼ 3

4
½SðA1 ∪ AxÞ þ SðAx ∪ A2Þ

− SðA1 ∪ A2 ∪ AxÞ − SðAxÞ�: ð22Þ

IV. CONFINING PHASE

In this section, we calculate the previously mentioned four
entanglement measures in the confining phase, which is dual
to the thermal AdS background, in the presence of a back-
ground magnetic field B. To compute these measures, we
confine ourselves to the simplest situation where the entan-
gling surface is a strip of length l. However, this entangling
strip can be placed parallel or perpendicular to the magnetic
field, giving us orientation dependence of these measures.

A. Holographic entanglement entropy

1. Strip in the parallel direction

We begin by looking at the holographic entanglement
entropy for a single interval and consider the boundary
subsystem with the domain f−lk=2 ≤ y1 ≤ lk=2; 0 ≤ y2 ≤
ly2 ; 0 ≤ y3 ≤ ly3g. Here, the strip is placed parallel to the
magnetic field in the y1 direction. In the thermal AdS
background, it turns out that there are two surfaces—con-
nected and disconnected—that minimize the entanglement
entropy expression in Eq. (10). The expression of the
entanglement entropy for the connected surface is found to be

FIG. 3. The various bulk minimal surfaces that contribute to the holographic logarithmic entanglement negativity.
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Skcon ¼
ly2ly3L

3

2Gð5Þ

Z
zk�

0

dz

�
zk�
z

�3 e3AðzÞ−3Aðz
k
�ÞeB2z2−B2ðzk�Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðzÞ
h
ðzk�Þ6e−2B2ðzk�Þ2e−6Aðz

k
�Þ − z6e−2B

2z2e−6AðzÞ
ir ; ð23Þ

where zk� is the turning point of the connected surface in the bulk and is defined by z0ðy1Þjz¼zk�
¼ 0. The strip lengthlk in terms of

zk� is given by

lk ¼ 2

Z
zk�

0

dz
z3e−3AðzÞe−B2z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðzÞ
h
ðzk�Þ6e−2B2ðzk�Þ2e−6Aðz

k
�Þ − z6e−2B

2z2e−6AðzÞ
ir : ð24Þ

The entanglement entropy expression of the disconnected surface is similarly found to be

Skdiscon ¼
ly2ly3L

3

2Gð5Þ

�Z
∞

0

dz
e3AðzÞeB2z2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp

�
: ð25Þ

Note that Skdiscon, unlike Skcon, does not depend on the strip
length lk. This is an important feature that will greatly
influence the properties of the entanglement measures in the

confined phase. Also, note that both Skcon and S
k
discon are UV-

sensitive quantities and contain divergences. Here we adopt
the minimal regularization procedure, as is generally done in
the holographic literature,where these divergences are simply
subtracted from the final results.
Unfortunately, it is difficult to solve the above equations

analytically. However, they are straightforward to solve
numerically. The numerical result for the variation of the
strip length lk with respect to the connected surface turning
point zk� for various values of B is shown in Fig. 4. We see
that for any given value of B, there is a maximum length

lk
max above which no connected surface exists and only the

disconnected surface exists. This lk
max is a B-dependent

quantity, whose magnitude not only increases but also

appears at a larger zk� value as B increases. This indicates
that the connected entangling surface propagates deeper
into the bulk for larger B values. We also see that below

lk
max there are two solutions that can minimize the con-

nected surface area. The actual minima correspond to a

solution that appears for small zk� (represented by solid

lines), whereas the large-zk� solution corresponds to the
saddle point (represented by dashed lines).
The difference between the connected and disconnected

entropies ΔSk ¼ Skcon − Skdiscon is shown in Fig. 5 for
various values of the background magnetic field.2 Again,

the solution for small zk� is represented by solid lines,

whereas the solution for large zk� is represented by dashed
lines. It is interesting to see that ΔSk goes from negative to
positive values as lk increases, suggesting that for small

values of lk Skcon minimizes the entanglement entropy,

whereas for large values of lk it is Skdiscon that minimizes the
entanglement entropy. This indicates a phase transition
from connected to disconnected entropy as lk increases.

This phase transition occurs at lk
crit, which is defined by the

length at which ΔSk becomes zero.

We further find that lk
crit depends nontrivially on the

magnetic field. In particular, its magnitude increases with B
in the parallel direction. The overall behavior of the

dependence of lk
crit on B is shown in Fig. 6.

This type of phase transition between connected and
disconnected entanglement entropies was first observed in
top-down models in Ref. [4] and was suggested as a probe
for confinement.3 In particular, such a geometric phase
transition appears only in the confined phase, whereas no

FIG. 4. lk as a function of zk� for different values of B. The red,
green, blue, brown, orange, and cyan curves correspond to B ¼ 0,
0.1, 0.2, 0.3, 0.4, and 0.5, respectively, in units of GeV.

2The perfector ly2ly3L
3=2Gð5Þ, appearing in Eqs. (23) and

(25), is set to one in numerical calculations.
3In Ref. [156], it was recently suggested that such connected

and disconnected entanglement entropy phase transitions might
be related to the mass gap rather than linear confinement.
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such phase transition is observed in the finite-temperature
deconfined phase. Recalling the fact that for large

lkð> lk
critÞ the disconnected solution becomes independent

of lk, this phase transition can be seen as follows:

∂Sk

∂lk ∝
1

Gð5Þ
¼ OðN2Þ for lk < lk

crit

∝
1

G0
ð5Þ

¼ OðN0Þ for lk > lk
crit; ð26Þ

where N denotes the number of colors in the dual boundary

theory. This implies nonanalytic behavior at lk
crit, where the

number of degrees of freedom changes from OðN2Þ to
OðN0Þ, in the entanglement entropy structure of the
confined phase. This type of phase transition has been
observed in other holographic confining theories as well.
Here we have reconfirmed this already established result,
but now in a consistent bottom-up holographic QCD model
in the presence of a background magnetic field.
Interestingly, a similar type of nonanalyticity in the
entanglement entropy has also been observed in SUð2Þ
and SUð3Þ gauge theories using lattice simulations
[134,135]. Therefore, it seems that nonanalyticity is a

generic feature of the entanglement entropy in confining
theories irrespective of whether it has a gravity dual or not.
To further appreciate these results, note that our holo-
graphic estimate for the length scale at which nonanaly-

ticity appears (lk
crit ≃ 0.2 fm) is in the same ballpark as that

estimated by lattice simulations (lk
crit ≃ 0.5 fm). This lends

further support to the notion that certain modeling of
holographic theories can yield compelling predictions for
real QCD-like theories. Moreover, the result that the

magnitude of lk
crit increases with the increase of the

magnetic field in the parallel direction is an important
prediction of our model and could be verified in indepen-
dent lattice settings (as we would not have to worry about
various numerical issues, like the famous sign problem,
with a finite magnetic field in lattice calculations).

2. Strip in the perpendicular direction

We now analyze the entanglement entropy in the
perpendicular case. In this case, the strip subsystem,
with the domain f0 ≤ y1 ≤ ly1 ;−l

⊥=2 ≤ y2 ≤ l⊥=2; 0 ≤
y3 ≤ ly3g, is aligned perpendicular to the magnetic field.
There are again connected and disconnected bulk surfaces
that minimize the entanglement entropy expression. The
expression of the connected surface now reduces to

S⊥con ¼
ly1ly3L

3

2Gð5Þ

Z
z⊥�

0

dz

�
z⊥�
z

�
3 e3AðzÞ−3Aðz⊥� ÞeB2z2−B2ðz⊥� Þ2e−B2z2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðzÞ
h
ðz⊥� Þ6e−2B2ðz⊥� Þ2e−6Aðz⊥� Þ − z6e−2B

2z2e−6AðzÞ
ir : ð27Þ

Similarly, the strip length l⊥ in terms of the turning point z⊥� is

l⊥ ¼ 2

Z
z⊥�

0

dz
z3e−3AðzÞe−3B2z2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðzÞ
h
ðz⊥� Þ6e−2B2ðz⊥� Þ2e−6Aðz⊥� Þ − z6e−2B

2z2e−6AðzÞ
ir : ð28Þ

FIG. 5. ΔSk ¼ Skcon − Skdiscon as a function of lk for different
values of B. The red, green, blue, brown, orange, and cyan curves
correspond to B ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, in
units of GeV.

FIG. 6. lk
crit as a function of B, in units of GeV.

JAIN, JENA, and MAHAPATRA PHYS. REV. D 107, 086016 (2023)

086016-10



The expression for the disconnected surface is again
independent of the strip length l⊥ and is now given by

S⊥discon ¼
ly1ly3L

3

2Gð5Þ

�Z
∞

0

dz
e3AðzÞeB2z2=2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp

�
: ð29Þ

We can clearly see some differences in the above
equations compared to the parallel case. Accordingly, some
differences in the entanglement entropy result are also
expected. The variation of l⊥ with respect to the connected
surface z⊥� for different values of B is shown in Fig. 7. We
observe that for any given value of B, like in the parallel
case, there is again a maximum length l⊥

max above which no
connected solution exists and only the disconnected sol-
ution exists. However, as opposed to the parallel case, now
not only the magnitude of l⊥

max but also the value of the
turning point z⊥� at which it appears decreases with B. This
suggests a lesser penetration of the entangling surface into
the bulk as compared to the parallel case as B increases.
Further, below l⊥

max, there are again two connected sol-
utions (shown by solid and dashed lines) which can
minimize the surface area. The solid line corresponds to
the actual minima and appears for small z⊥� , whereas the
dashed line corresponds to the saddle point and appears
for large z⊥� .
The difference between the connected and disconnected

entropiesΔS⊥ ¼ S⊥con − S⊥discon for the perpendicular case is
shown in Fig. 8 for various values of B. The connected
solution with small z⊥� (indicated by solid lines) always
has a lower entanglement entropy than the large-z⊥� solution
(indicated by dashed lines). Further, ΔS⊥ goes from
negative to positive values as l⊥ increases, indicating that
S⊥con (S⊥discon) minimizes the entropy for small l⊥ (large l⊥).
This results in a phase transition from connected to
disconnected surfaces, similar to the ones in the parallel
case, as we increase l⊥. The critical length at which this

phase transition appears is now defined as l⊥
crit, where

l⊥
crit < l⊥

max. Therefore, similar to Eq. (26) for the parallel
case, we again have a length scale at which the order of the
entanglement entropy changes from OðN2Þ to OðN0Þ.
However, in contrast with the parallel case, this critical
length in the perpendicular case now decreases with B. This
is shown in Fig. 9, where the parallel-case result is also
included for comparison. We find that the difference

between lk
crit − l⊥

crit is small for small B; however, it can
be appreciable for large B. This suggests that the non-
analyticity in the entanglement entropy appears at larger
lengths in the parallel case compared to the perpendicular
case for all values of B. Our whole analysis therefore
suggests appreciable anisotropic changes in the entangle-
ment entropy structure of the confined phase in the
presence of a magnetic field.

B. Holographic mutual information

We now study the holographic mutual information
with two strips in the confined phase. For simplicity,
we concentrate only on equal-size strip subsystems

FIG. 8. ΔS⊥ ¼ S⊥con − S⊥discon as a function of l⊥ for different
values of B. The red, green, blue, brown, orange, and cyan curves
correspond to B ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, in
units of GeV.

FIG. 9. Variation of l⊥
crit (green line) and lk

crit (red line) as a
function of B, in units of GeV.

FIG. 7. l⊥ as a function of z⊥� for different values of B. The red,
green, blue, brown, orange, and cyan curves correspond to B ¼ 0,
0.1, 0.2, 0.3, 0.4, and 0.5, respectively, in units of GeV.
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(l1 ¼ l2 ¼ l), which are separated by a distance x. The
entanglement structure with two subsystems is much more
intriguing than that with one subsystem. In particular,
depending on the magnitudes of l and x, there can be
four possible surfaces that minimize the entropy. These four
surfaces are illustrated in Fig. 10. We can now have only
connected surfaces (i.e., SA and SB), both connected and
disconnected surfaces (SC), or only the disconnected sur-
face (SD). The holographic entanglement entropies for
these four configurations are as follows:

SAðl; xÞ ¼ 2SconðlÞ;
SBðl; xÞ ¼ SconðxÞ þ Sconð2lþ xÞ;
SCðl; xÞ ¼ SconðxÞ þ Sdiscon;

SDðl; xÞ ¼ 2Sdiscon; ð30Þ

where Scon and Sdiscon are the single-interval holographic
entanglement entropies for the connected and disconnected
surfaces, respectively.

1. Parallel case

Let us first discuss the results when the strips are oriented
in a parallel direction relative to the magnetic field. We find
that there can be different phase transitions between the
above-mentioned four configurations. This phase diagram
can be illustrated better in the ðlk; xkÞ plane and is shown in
Fig. 11. We find that for small xk;lk ≪ lk

crit, and the SA
phase is preferred as it has the lowest entropy. As lk
increases, the SB phase becomes dominant. As we keep

increasing lk but keep xkð≪ lk
critÞ fixed, a phase transition

from SB to SC occurs. For xk ¼ 0, this SB-to-SC phase

transition happens at lk ¼ lk
crit=2, whereas for a general

value of xk, it happens at 2lk þ xk ¼ lk
crit. Further, if we

take xk;lk ≫ lk
crit, then the SD configuration becomes the

dominant one. We also observe that these phase transitions
depend nontrivially on B. For example, the SB=SC phase
transition line shifts to the right in the lk − xk plane and
appears for larger values of xk and lk, whereas the SA=SC
transition occurs for lower values of xk when B increases.
Also, there are two tricritical points in this phase

diagram. For B ¼ 0.5, these are indicated by two black
dots. The first tricritical point is recognized when the SA,
SB, and SC phases coexist, and the second tricritical
point occurs when the SA, SC, and SD phases coexist.
The presence of these phase transitions and critical points

0.5 1.0 1.5

0.5

1.0

1.5

FIG. 11. Phase diagram of various minimal area surfaces for the
case of two strips of equal length l separated by a distance x in
the confining background for the parallel case. The red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively. The two black dots indicate the
two tricritical points for B ¼ 0.5, in units of GeV.

FIG. 10. Pictorial representation of the four different minimal surface configurations for the case of two strips of equal length l
separated by a distance x in the thermal-AdS background. The dashed line represents the entanglement wedge.
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reflects the nonanalytic nature of the entanglement entropy
with multiple strips. The magnitudes of xk and lk at these
tricritical points also depend nontrivially on B and can be
observed in Fig. 11.
It is also interesting to note that the order of the

entanglement entropy (from N2 to N0 or vice versa)
may or may not change as we pass through various phase
transition lines in the two-strip case. For instance, there is
no change in the order if the SA, SB, or SC phases are
involved, whereas the order can change if the SD phase is
involved.
Let us now address the holographic mutual information,

I ¼ S1 þ S2 − S1 ∪ S2, which in the above four different
phases has the form

IAðlk; xkÞ ¼ SkconðlkÞ þ SkconðlkÞ − 2SkconðlkÞ ¼ 0;

IBðlk; xkÞ ¼ SkconðlkÞ þ SkconðlkÞ − SkconðxkÞ
− Skconð2lk þ xkÞ ≥ 0;

ICðlk; xkÞ ¼ SkconðlkÞ þ SkconðlkÞ − SkconðxkÞ
− Skdiscon ≥ 0;

IDðlk; xkÞ ¼ Skdiscon þ SEEdiscon − 2SEEdiscon ¼ 0; ð31Þ

which in turn means that

∂IA
∂lk ∝

1

G0
ð5Þ

¼ OðN0Þ; ∂IB
∂lk ∝

1

Gð5Þ
¼ OðN2Þ;

∂IC
∂lk ∝

1

Gð5Þ
¼ OðN2Þ; ∂ID

∂lk ∝
1

G0
ð5Þ

¼ OðN0Þ: ð32Þ

Therefore, depending on the transition line, the order of the
mutual information may or may not change as we go from
one phase to another. For instance, going from the SA phase
to the SB phase (by decreasing xk) causes a change in its
order [from OðN0Þ to OðN2Þ], whereas no such change
occurs when we go from the SB phase to the SC phase (by
increasing lk).
The variation of the mutual information with respect to

strip length lk and separation length xk for different values
of B is shown in Figs. 12 and 13. Here the mutual
information in the SB (SC) phase is represented by the
solid (dashed) lines. We observe that the mutual informa-
tion varies smoothly as we move from SB to SC via the
SB=SC transition line. In Fig. 12 we show the results for a
fixed xk ¼ 0.2 line, but similar results exist for other values
of xk as well. As we increase B along the parallel direction,
IB almost remains the same but IC increases slightly.
Similarly, the mutual information smoothly goes to zero
as we approach the SA (or SD) phase from the SB (or SC)
phase. This is shown in Fig. 13.

2. Perpendicular case

We now move on to discuss the two-strip phase diagram
and the corresponding mutual information when the strips
are oriented in the perpendicular direction. This phase
diagram is shown in Fig. 14. We see that there are again
four phases, with each one dominating different parts of the
l⊥ − x⊥ phase space, and they undergo various phase
transitions as we vary l⊥ and x⊥. There are again two
tricritical points, which are B dependent. This is qualita-
tively similar to the parallel-case phase diagram. However,
there are some differences as well. In particular, the values
of fl⊥; x⊥g at both tricritical points now decrease with B,
in contrast to the parallel case where these values at the
second tricritical point increase with B. Similarly, in
contrast to the parallel case, the size of the SB phase
now decreases for higher values of B. Moreover, the SA=SC
transition line also moves slightly upward for higher
values of B.

FIG. 12. Variation of the mutual information with lk for
different values of B. Here xk ¼ 0.2 is used, and the red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively, in units of GeV.

FIG. 13. Variation of the mutual information with xk for
different values of B. Here lk ¼ 0.5 is used, and the red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively, in units of GeV.
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We can similarly compute the mutual information. The
structure of the mutual information is qualitatively similar
to the parallel case [Eq. (31)]. In particular, it goes to zero
in the SA and SD phases, whereas it is finite and positive in
the SB and SC phases. Therefore, it is again of order N2 in
the fSB; SCg phases and is of order N0 in the fSA; SDg
phases. The variation of the mutual information with l⊥
for different values of B is shown in Fig. 15, where the
solid and dashed lines are used to represent the mutual
information in the SB and SC phases, respectively. We find
that it varies smoothly as we move from the SB phase to
the SC phase (or vice versa) via the SB=SC transition line.
Further, the mutual information also varies smoothly with
x⊥ and it goes to zero as the SA or SD phase is approached.
This is shown in Fig. 16. This is consistent with the
physical expectation that the entanglement between the

two subsystems should decrease when they are moved
farther apart.
It is interesting to point out that, unlike the entanglement

entropy, lattice results for the QCD mutual information are
not available yet. These results from holography can have
analogous correlations in real QCD, and therefore these
results for the mutual information can be treated as a
prediction from holography.

C. Entanglement wedge cross section

We now discuss the entanglement wedge cross section
EW in the confining phase. The surface that divides the
entanglement wedge, associated with two strip subsystems
A and B, into two parts can be identified as a vertical flat
surface Σ from the symmetry consideration. Therefore, for
the strip subsystems under consideration, EW is given by
the area of a constant y1 (for the parallel case) or y2 (for the
perpendicular case) hypersurface located in the middle of
the strips (see Fig. 10).

1. Parallel case

The entanglement wedge cross section in this case is
given by the minimum area of the constant ðy1; tÞ hyper-
surface. The induced metric on this hypersurface is

ðds2ÞindΣ ¼ L2e2AðzÞ

z2

�
dz2

gðzÞ þ eB
2z2ðdy22 þ dy23Þ

�
; ð33Þ

from which we obtain the entanglement wedge cross
section as

Ek
W ¼ ly2ly3L

3

4Gð5Þ

�Z
dz

e3AðzÞeB2z2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp

�
: ð34Þ

From the phase diagram, we can conclude that the
entanglement wedge only exists for the SB and SC phases,

FIG. 15. Variation of the mutual information with l⊥ for
different values of B. Here x⊥ ¼ 0.2 is used, and the red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively, in units of GeV.

FIG. 16. Variation of the mutual information with x⊥ for
different values of B. Here l⊥ ¼ 0.5 is used, and the red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively, in units of GeV.

FIG. 14. Phase diagram of various minimal area surfaces for the
case of two strips of equal length l⊥ separated by a distance x⊥ in
the confining background for the perpendicular case. The red,
green, blue, brown, orange, and cyan curves correspond to B ¼ 0,
0.1, 0.2, 0.3, 0.4, and 0.5, respectively, in units of GeV.
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whereas it is zero in the SA and SD phases. For the SB phase,
it is given by

Ek
WðSBÞ ¼

ly2ly3L
3

4Gð5Þ

�Z
zk�ð2lþxÞ

zk�ðxÞ
dz

e3AðzÞeB2z2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp

�
: ð35Þ

Interestingly, the above integral can be evaluated
explicitly as

¼ ly2ly3L
3

4Gð5Þ

���� 12 ðB2 − 3aÞEi½ðB2 − 3aÞz2�

−
ez

2ðB2−3aÞ

2z2

����
z¼zk�ð2lþxÞ

z¼zk�ðxÞ
; ð36Þ

where Ei is the exponential integral function. Similarly, for
the SC phase, we have

Ek
WðSCÞ ¼

ly2ly3L
3

4Gð5Þ

�Z
∞

zk�ðxÞ
dz

e3AðzÞeB2z2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp

�

¼ −
ly2ly3L

3

4Gð5Þ

�
1

2
ðB2 − 3aÞEi½ðB2 − 3aÞz2�

−
ez

2ðB2−3aÞ

2z2

�
z¼zk�ðxÞ

: ð37Þ

From the above results, it is clear that both Ek
WðSBÞ

and Ek
WðSCÞ are not only positive as z ¼ zk�ðxÞ ≤

zk�ð2lþ xÞ ≤ ∞, but also UV finite. The analytic expres-

sions of Ek
WðSBÞ and Ek

WðSCÞ further allow us to make
several concrete observations about the entanglement
wedge in the confining phase without resorting to
any numerics. In particular, the difference between

Ek
WðSBÞ − Ek

WðSCÞ, for the allowed range of the magnetic
field

Ek
WðSBÞ−Ek

WðSCÞ ¼
ly2ly3L

3

4Gð5Þ

����12 ðB2 − 3aÞEi½ðB2 − 3aÞz2�

−
ez

2ðB2−3aÞ

2z2

����
z¼zk�ð2lþxÞ

; ð38Þ

is always negative and finite at the SB=SC transition line

(defined by 2lk þ xk ¼ lk
crit). This indicates that, irrespec-

tive of the values of the magnetic field, the entanglement
wedge cross section will exhibit a discontinuous behavior
at the SB=SC transition line. This should be contrasted with
the mutual information which behaves smoothly near this

transition line. Similarly, since zk�ðxÞ ≠ ∞, this implies that

Ek
WðSCÞ does not go to zero continuously as the SC=SD

transition line is approached. The same is true for Ek
WðSBÞ,

as it also does not go to zero when the SA=SB transition line

is approached [since zk�ðxÞ ≠ zk�ð2lk þ xkÞ]. Therefore, we
clearly see that, unlike the mutual information, the entan-
glement wedge exhibits discontinuity every time we pass
through a transition line in the lk − xk phase space.

Further details pertaining to the behavior of Ek
W are

summarized in Figs. 17 and 18 for two different values of
B. Here, a particular line xk ¼ 0.5lk is considered so that

the behavior of Ek
W in the SB, SC, and SD phases can be

probed simultaneously. The solid and dashed lines are used

to represent Ek
W of the SB and SC phases, respectively.4

0.5 1.0 1.5 2.0

2

4

6

8

10

FIG. 17. Ek
W as a function of separation length lk along a fixed

line xk ¼ 0.5lk. Here B ¼ 0 is used. Solid and dashed lines

correspond to Ek
W of the SB and SC phases, respectively, in units

of GeV.

FIG. 18. Ek
W as a function of separation length lk along a fixed

line xk ¼ 0.5lk. Here B ¼ 0.5 is used. Solid and dashed lines

correspond to Ek
W of the SB and SC phases, respectively, in units

of GeV.

4In Figs. 17 and 18, the perfector
ly2ly3L

3

2Gð5Þ
is again set to one.
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From the subplots, we clearly see that Ek
W becomes

discontinuous at the SB=SC transition line. Moreover, there

is an upward jump in the magnitude of Ek
W when the SB=SC

transition line is approached from the SB phase, i.e.,

Ek
WðSCÞ > Ek

WðSBÞ, indicating that the area of the wedge
grows at this transition line. These results are in complete

agreement with our analytical analysis. Similarly, Ek
WðSCÞ

does not go to zero at the SC=SD transition line, indicating
that the entanglement wedge cross section vanishes
abruptly for large values of lk and xk. The same results
are true for other values of B as well.
It is also interesting to see how the area of the

entanglement wedge changes at the, e.g., SB=SC transi-
tion line for different values of B. This is shown in

Fig. 19. We see that the difference Ek
WðSCÞ − Ek

WðSBÞ is
always positive at the transition point for all values of B.
However, we further find that this difference decreases
with B for relatively large B, suggesting a smaller

discontinuity in the structure of Ek
W at this transition line

due to B. Moreover, the difference Ek
WðSCÞ − Ek

WðSDÞ at
the SC=SD transition line is found to be exactly similar to
the behavior shown in Fig. 19. This can again be traced
back to the fact that these differences depend only on the

critical values lk
crit (¼ xkcrit) at the corresponding transition

lines. On the other hand, the difference Ek
WðSCÞ − Ek

WðSAÞ
at the SA=SC transition line is found to be increasing
with B for all values of xk and lk, implying a strengthen-
ing of the wedge discontinuity at this transition line
with B. This is shown in Fig. 20. Overall, we find that

Ek
WðSCÞ is a monotonically decreasing function of xk

which abruptly vanishes at xk ¼ lk
crit.

In holography, it has been suggested that the entangle-
ment wedge always at least exceeds half the mutual

information, i.e., Ek
W ≥ Ik=2 [30]. Therefore, it is interest-

ing to check if this inequality is satisfied in the current
holographic model. The comparison between the

entanglement wedge and mutual information is shown in
Fig. 21 along the line xk ¼ 0.5lk for different values of B.
We find that, irrespective of the phases involved, this
inequality is always satisfied for all values of B.

2. Perpendicular case

The computation of the entanglement wedge cross
section E⊥

W in the perpendicular direction is completely
analogous to the parallel case. In this case, it is given by
the minimum area of the constant ðy2; tÞ hypersurface. The
induced metric on this hypersurface is

ðds2ÞindΣ ¼ L2e2AðzÞ

z2

�
dz2

gðzÞ þ dy21 þ eB
2z2ðdy23Þ

�
; ð39Þ

from which the expression of the entanglement wedge cross
section can be obtained as

FIG. 20. Variation of Ek
WðSCÞ − Ek

WðSAÞ with B at the SC=SA
transition line. Here the red, green, and blue curves correspond to
xk ¼ 0.5, 0.6, and 0.7, respectively.

FIG. 21. Entanglement wedge Ek
W and mutual information Ik as

functions of lk along a fixed line xk ¼ 0.5lk. The solid curves

correspond to Ek
W , whereas the dashed curves correspond to I

k=2.
The red, green, blue, brown, orange, and cyan curves correspond
to B ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.

FIG. 19. Variation of Ek
WðSCÞ − Ek

WðSBÞ with B at the SB=SC
transition line along a fixed line xk ¼ 0.5lk.
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E⊥
W ¼ ly1ly3L

3

4Gð5Þ

�Z
dz

e3AðzÞeB2z2=2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp

�
: ð40Þ

The two-strip phase diagram of the perpendicular case
again tells us that the nontrivial entanglement wedge
can exist only in the SB and SC phases. For the SB phase,
we have

E⊥
WðSBÞ ¼

ly1ly3L
3

4Gð5Þ

�Z
z⊥� ð2lþxÞ

z⊥� ðxÞ
dz

e3AðzÞeB2z2=2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp

�

¼ ly1ly3L
3

4Gð5Þ

���� 14 ðB2 − 6aÞEi
�
1

2
ðB2 − 6aÞz2

�

−
e
1
2
z2ðB2−6aÞ

2z2

����
z¼z⊥� ð2l⊥þx⊥Þ

z¼z⊥� ðxÞ
; ð41Þ

whereas for SC it is given by

E⊥
WðSCÞ ¼

ly1ly3L
3

4Gð5Þ

�Z
∞

z⊥� ðxÞ
dz

e3AðzÞeB2z2=2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp

�

¼ −
ly1ly3L

3

4Gð5Þ

���� 14 ðB2 − 6aÞEi
�
1

2
ðB2 − 6aÞz2

�

−
e
1
2
z2ðB2−6aÞ

2z2

����
z¼z⊥� ðxÞ

: ð42Þ

The variation of E⊥
W with l⊥ along the line x⊥ ¼ 0.5l⊥

for two different values of B is shown in Figs. 22 and 23.
We find that the behavior of E⊥

W is qualitatively similar
to the parallel case. In particular, E⊥

W again behaves
discontinuously at the SB=SC transition line. This can be
seen mathematically from Eqs. (41) and (42), where the

condition z⊥� ð2l⊥ þ x⊥Þ ≠ ∞ ensures that E⊥
WðSBÞ and

E⊥
WðSCÞ do not attain the same value at the SB=SC transition

line. Moreover, the entanglement wedge does not vanish
smoothly as the SA (or SD) phase is approached from the SB
(or SC) phase. This result can again be traced back to the
fact that z⊥� ðx⊥Þ ≠ z⊥� ð2l⊥ þ x⊥Þ ≠ ∞. Accordingly, we
find that the entanglement wedge is a monotonic function
of x⊥, which vanishes discontinuously at x⊥ ¼ l⊥

crit.
Therefore, like in the parallel case, the entanglement wedge
exhibits discontinuity each time a phase transition between
different phases occurs in the perpendicular case as well.
We can further analyze how much the area of the

entanglement wedge changes at the transition point in
the perpendicular case. At the SB=SC transition line, this
is shown in Fig. 24. This can be compared with Fig. 19
of the parallel case. We find that the difference between
E⊥
WðSCÞ − E⊥

WðSBÞ is always positive [since z⊥� ðx⊥Þ <
z⊥� ð2l⊥ þ x⊥Þ], suggesting an increment in the area of

FIG. 22. E⊥
W as a function of separation length l⊥ along a fixed

line x⊥ ¼ 0.5l⊥. Here B ¼ 0 is used. Solid and dashed lines
correspond to E⊥

W of the SB and SC phases, respectively, in units
of GeV.

FIG. 23. E⊥
W as a function of separation length l⊥ along a fixed

line x⊥ ¼ 0.5l⊥. Here B ¼ 0.5 is used. Solid and dashed lines
correspond to E⊥

W of the SB and SC phases, respectively, in units
of GeV.

FIG. 24. Variation of E⊥
WðSCÞ − E⊥

WðSBÞ with B at the SB=SC
transition line along a fixed line x⊥ ¼ 0.5l⊥.

HOLOGRAPHIC CONFINING-DECONFINING GAUGE THEORIES … PHYS. REV. D 107, 086016 (2023)

086016-17



the entanglement wedge at the transition point. This result
is similar to the parallel case. However, in contrast to the
parallel case, the difference E⊥

WðSCÞ − E⊥
WðSBÞ increases

with B. This points to a larger discontinuity in the
entanglement wedge cross section at the SB=SC transition
point with B in the perpendicular direction. Similarly, the
difference E⊥

WðSCÞ − E⊥
WðSAÞ at the SA=SC transition line is

found to be an increasing function of B for all values of x⊥
and l⊥. This behavior is quite similar to the parallel case,
though the magnitude of the difference is slightly higher
now. This is shown in Fig. 25.
We further test the inequality E⊥

W ≥ I⊥=2 in the
perpendicular case. The results are shown in Fig. 26. We
find that this inequality is again satisfied everywhere in the
l⊥ − x⊥ plane for all values of B. The inequality saturates
only at the critical points, at which I⊥=2 continuously goes
to zero, whereas E⊥

W exhibits a sharp drop to zero.
From the above analysis, we see that the entanglement

wedge not only exhibits nontrivial features each time a

phase transition between different phases occurs but also is
sensitive to the orientation of the magnetic field. This is an
important result considering that the entanglement wedge
has been suggested as the holographic dual of many mixed-
state entanglement measures. Therefore, our whole analysis
suggests that nontrivial and anisotropic features are
expected in these measures in the presence of a magnetic
field, especially in the confined phase.

D. Holographic entanglement negativity

We now study the holographic entanglement negativity
in the confined phase. We begin with the single-interval
case. This is given in Eq. (21). In the limit B → Ac → ∞,
the disconnected entropy dominates for both the parallel
and perpendicular cases (see Fig. 3 for more details). So for
both cases, we have

E ¼ lim
B→Ac

3

4
½2SðAÞ þ SðB1Þ þ SðB2Þ

− SðA ∪ B1Þ − SðA ∪ B2Þ�;

E ¼ 3

2
SðAÞ: ð43Þ

This is an interesting new result implying that the holo-
graphic entanglement negativity is just 3=2 times the
entanglement entropy in the single-interval case. This
suggests that the entanglement negativity is also discon-

tinuous at the critical lengths lk
crit (l

⊥
crit) for the parallel

(perpendicular) case. Therefore, the entanglement negativ-
ity also undergoes an order change from OðN2Þ to OðN0Þ
at these critical lengths. For instance, for the parallel case,
we have

∂Ek

∂lk ¼ OðN2Þ for lk < lk
crit;

∂Ek

∂lk ¼ OðN0Þ for lk > lk
crit; ð44Þ

with similar results for the perpendicular case. The dis-
continuous aspect of E in the confined phase is an
interesting new result and a prediction from holography
(strictly speaking, a prediction from the entanglement
negativity proposal of Refs. [34,35]) and should be
amenable for independent testing. Here, we further find
that this discontinuous behavior of E in the confined phase
persists in the presence of a magnetic field as well.
Moreover, the direction and B dependence of the critical
lengths associated with the negativity remain the same as
that illustrated in Fig. 9, implying that the magnetic field
induces orientation-dependent features in this particular
entanglement measure as well.
We now proceed to discuss the holographic entangle-

ment negativity when we have two disjoint intervals

FIG. 25. Variation of E⊥
WðSCÞ − E⊥

WðSAÞ with B at the SC=SA
transition line. Here the red, green, and blue curves correspond to
x⊥ ¼ 0.5, 0.6, and 0.7, respectively.

FIG. 26. Entanglement wedge E⊥
W and mutual information I⊥

as functions of l⊥ along a fixed line x⊥ ¼ 0.5l⊥. The solid
curves correspond to E⊥

W , whereas the dashed curves correspond
to I⊥=2. The red, green, blue, brown, orange, and cyan curves
correspond to B ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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[40,42]. In comparison to Refs. [40,42], in our case we have
ls ¼ x; l1 ¼ l2 ¼ l. Hence, E is expressed as

E ¼ 3

4
½Sðlþ xÞ þ Sðlþ xÞ − Sð2lþ xÞ − SðxÞ�; ð45Þ

wherein S denotes the holographic entanglement entropy
for a single interval. If x > lcrit, then E ¼ 0 in Eq. (45) as
all terms are now dominated by the disconnected entropy
Sdiscon. This implies that, just like the mutual information
and entanglement wedge, E is zero in the SD phase as well.
This is true for both the parallel and perpendicular cases.
However, as we will see shortly, the entanglement neg-
ativity does not vanish in the SA phase.

1. Negativity for two strips in the parallel direction

The variation of Ek with xk for two strips is shown in
Fig. 27. Here lk ¼ 0.8 is used for illustration, but similar
results exist for other values of lk as well. We find that Ek

varies monotonically with xk and smoothly approaches

zero at xk ¼ lk
crit. In particular, as is expected, the neg-

ativity decreases as the two subsystems are taken further
and further apart, and eventually vanishes. An interesting
result to note is that Ek is finite in some parts of the SA
phase. This is in sharp contrast to the behavior of the
mutual information and entanglement wedge, which was

zero everywhere in the SA phase. Only when xk ≥ lk
crit does

the negativity go to zero in the SA phase.
We further find that Ek also varies monotonically

with lk. This is shown in Fig. 28. Here we use a fixed
xk ¼ 0.1 line such that all three phases can be simulta-
neously probed. We observe that as we increase B, the
value of Ek increases for all three phases fSA; SB; SCg.
We find that the negativity first increases as the size of the

subsystems increases and then saturates to a B-dependent
constant value. This B-dependent constant value, in par-
ticular, increases as B increases. Moreover, our analysis
further suggests that, unlike the entanglement wedge,
the entanglement negativity behaves smoothly across
various phase transition lines and there is no discontinuity
in its structure.

2. Negativity for two strips in the perpendicular direction

The negativity results for two strips in the perpendicular
direction are shown in Figs. 29 and 30. The results are again
qualitatively similar to the parallel case. The negativity
again decreases monotonically with separation size and
only goes to zero at the critical separation length x⊥ ¼ l⊥

crit,

FIG. 27. Ek as a function of length xk for different values of B.
Here lk ¼ 0.8 is used. The dot-dashed and solid lines correspond
to Ek of the SA and SC phases, respectively. The red, green, blue,
brown, orange, and cyan curves correspond to B ¼ 0, 0.1, 0.2,
0.3, 0.4, and 0.5, respectively, in units of GeV.

FIG. 28. Ek as a function of length lk for different values of B.
Here xk ¼ 0.1 is used. The dot-dashed, solid, and dashed lines
correspond to Ek of the SA, SB, and SC phases, respectively. The
red, green, blue, brown, orange, and cyan curves correspond to
B ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, in units of GeV.
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FIG. 29. E⊥ as a function of length x⊥ for different values of B.
Here l⊥ ¼ 0.7 is used. The dot-dashed and solid lines correspond
to E⊥ of the SA and SC phases, respectively. The red, green, blue,
brown, orange, and cyan curves correspond to B ¼ 0, 0.1, 0.2,
0.3, 0.4, and 0.5, respectively, in units of GeV.
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and thus it is again nonzero in some parts of the SA phase.
We further observe that as we increase B along the
perpendicular direction, the value of E⊥ initially increases
and then decreases. In particular, the negativity always
increases with B in the SC phase; however, in the SA phase
it increases withB for small x⊥, whereas it decreases with B
near x⊥crit. This behavior is different from the parallel case
wherein only the increment in negativity was observed.
Similarly, we observe that E⊥ first monotonically increases
with l⊥ and then saturates to a B-dependent constant value.
This B-dependent constant value, like in the parallel case,
increases with B. Importantly, E⊥ is again continuous
across various phase transitions.
We end this section by making a few observations about

the entanglement negativity. As mentioned in the last
section, there are two different holographic proposals for
the entanglement negativity. In the first proposal [32,33],
the negativity is proportional to the entanglement wedge
(neglecting the quantum correction term). Since the entan-
glement wedge is zero in the SA and SD phases, this
suggests that the negativity, if computed using the proposal
of Refs. [32,33], would also be zero in these phases.
However, as discussed above, the second proposal of
Refs. [34,35] gives a nonzero negativity in some parts of
the SA phase. Therefore, as far as the negativity for two
strips in the confined phase is concerned, these two
proposals seem to provide inequivalent results. It should
be mentioned that both of these proposals have been tested
for conformal field theories and have independently repro-
duced exact known results for the negativity. Therefore, our
results provide the first counterexample where the disparity
between these two proposals is observed. Also, as we
will see shortly, a similar feature is present for all values
of the magnetic field and temperature in the deconfined
phase, suggesting that the proposal of Refs. [34,35] points

to some kind of universality in the structure of the
entanglement negativity.

V. DECONFINING PHASE

Having thoroughly discussed the various holographic
entanglement measures in the confined phase, we now
proceed to discuss them in the finite-temperature decon-
fined phase. This corresponds to having a black hole on
the dual gravity side. Apart from the magnetic field, we also
have another parameter, i.e., temperature, in the theory.
There is again an option of aligning the strip subsystems
parallel or perpendicular to the magnetic field.

A. Holographic entanglement entropy

We start by studying the entanglement entropy for a
single interval where the boundary subsystem can be
aligned parallel or perpendicular to the magnetic field in
a fashion similar to the thermal-AdS case. In the AdS black
hole background, we again have two types of solutions
for the entanglement entropy: connected and disconnected
[139]. The disconnected entropy, however, turns out to be
always higher than the connected entropy. The expressions
of the connected entropy and strip length are the same as in
the thermal-AdS case, except that gðzÞ is now given by
Eq. (4). So, for the parallel direction, we have Eqs. (23)
and (24) for the connected entanglement entropy and strip
length, whereas analogous equations for the perpendicular
direction are given in Eqs. (27) and (28).
The entanglement entropy of the disconnected surface,

however, will get an additional contribution. In the parallel
direction we have

Skdiscon ¼
ly2ly3L

3

2Gð5Þ

�Z
zh

0

dz
e3AðzÞeB2z2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp þ e3AðzhÞB2z2h

2z3h
lk
�
;

ð46Þ

and for the perpendicular direction we have

S⊥discon ¼
ly1ly3L

3

2Gð5Þ

�Z
zh

0

dz
e3AðzÞeB2z2=2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp þ e3AðzhÞþB2z2h

2z3h
l⊥

�
;

ð47Þ

where the last terms in both the parallel and perpendicular
cases come from the surface along the horizon at z ¼ zh.
We now proceed to discuss the numerical results for the

entanglement entropy in the deconfined phase. The varia-
tion of the strip length with respect to the turning point
of the connected surface at two different temperatures
T ¼ 1.5Tcrit and 2.0Tcrit for different values of B is shown
in Fig. 31 for the parallel case and in Fig. 32 for the
perpendicular case. We observe that for both orientations
there exist certain common features. To begin with, unlike

in the confined phase, there is no lk
max or l⊥

max and the

FIG. 30. E⊥ as a function of length l⊥ for different values of B.
Here x⊥ ¼ 0.1 is used. The dot-dashed, solid, and dashed lines
correspond to E⊥ of the SA, SB, and SC phases, respectively. The
red, green, blue, brown, orange, and cyan curves correspond to
B ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, in units of GeV.
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connected solution exists for the entire strip length. Second,
as we increase the strip length, the connected surface’s
turning point moves closer to the horizon. Last, as we
increase B, for a given value of the strip length, the value of
the turning point increases. These observations imply that,
irrespective of the orientation of the strip, the strip goes
deeper into the bulk by increasing B. This result is in
contrast to the confining-phase results wherein the orien-
tation of the magnetic field does induce anisotropy.
The corresponding entanglement entropy behavior is

shown in Figs. 33 and 34 for the parallel and perpendicular
cases, respectively. We again see common features for both

orientations. First, we see that there is no lk
crit (or l⊥

crit)
for the parallel (or perpendicular) case and therefore no
phase transition is observed from a connected to a dis-
connected surface on increasing the strip length in both
cases. Next, we see that for both orientations, the difference

in the entropy is always less than zero, implying that the
connected entropy is always less than the disconnected
entropy. Further, in the limit lk → ∞, we have

Skcon ¼ Skdiscon ¼ SBH ¼ V3e3AðzhÞþB2z2h

4Gð5Þz3h
: ð48Þ

Similarly, in the limit l⊥ → ∞, we have

S⊥con ¼ S⊥discon ¼ SBH ¼ V3e3AðzhÞþB2z2h

4Gð5Þz3h
; ð49Þ

where the SBH represents the Bekenstein-Hawking entropy
of the AdS black hole. This reproduces the expected result
that the entanglement entropy reduces to the thermal
entropy when the size of the subsystem goes to infinity.
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FIG. 31. lk as a function of zk� for different values of magnetic
field and temperature. The red, green, blue, brown, orange, and
cyan curves correspond to B ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5,
respectively. Dot-dashed and solid lines correspond to T=Tcrit ¼
1.5 and 2.0, respectively, in units of GeV.

FIG. 32. l⊥ as a function of z⊥� for different values of magnetic
field and temperature. The red, green, blue, brown, orange, and
cyan curves correspond to B ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5,
respectively. Dot-dashed and solid lines correspond to T=Tcrit ¼
1.5 and 2.0, respectively, in units of GeV.

FIG. 33. ΔSk ¼ Skcon − Skdiscon as a function of lk for different
values of magnetic field and temperature. The red, green, blue,
brown, orange, and cyan curves correspond to B ¼ 0, 0.1, 0.2,
0.3, 0.4, and 0.5, respectively. Dot-dashed and solid lines
correspond to T=Tcrit ¼ 1.5 and 2.0, respectively, in units of GeV.

FIG. 34. ΔS⊥ ¼ S⊥con − S⊥discon as a function of l⊥ for different
values of magnetic field and temperature. The red, green, blue,
brown, orange, and cyan curves correspond to B ¼ 0, 0.1, 0.2,
0.3, 0.4, and 0.5, respectively. Dot-dashed and solid lines
correspond to T=Tcrit ¼ 1.5 and 2.0, respectively, in units of GeV.
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So, effectively, the entanglement entropy in the deconfined
phase is always of order N2,

∂Sk

∂lk ∝
1

Gð5Þ
¼ OðN2Þ; ∂S⊥

∂l⊥ ∝
1

Gð5Þ
¼ OðN2Þ: ð50Þ

Essentially, the behavior of the entanglement entropy
remains qualitatively the same for both the parallel and
perpendicular cases in the deconfined phase.

B. Two-strip phase diagram and mutual information

Since there is no phase transition between connected
and disconnected entanglement entropies, the correspond-
ing two-strip phase diagram in the deconfined phase is
much simpler. Here, we only have two phases SA and SB
as the connected surface dominates for any given strip
length. Therefore, in the phase diagram, as shown for the
parallel orientation in Fig. 35 and for the perpendicular
orientation in Fig. 36, we can only see the phase transition
between the SA and SB phases. We observe that the SA
phase is preferred when xk (or x⊥) is large, while the SB
phase is preferred for large lk (or l⊥). We further observe
that on increasing B, the parameter space of the SB phase
increases, suggesting its preference over the SA phase for
larger magnetic field values. This is true for both the
parallel and perpendicular cases. We again see that,
although the magnetic field does introduce substantial
changes in the phase diagram, these changes are quali-
tatively similar for the parallel and perpendicular cases,
suggesting limited orientational effects of B in the
deconfined phase. Similarly, for a fixed B, the phase
space of SB is found to increase with temperature.
The mutual information in the SA and SB phases displays

similar features as in the confined phase. This is shown in

Figs. 37 and 38 for the parallel and perpendicular cases,
respectively. The mutual information is zero in the SA
phase, whereas it is a monotonically increasing function
of strip length in the SB phase. Moreover, the behavior
of the mutual information as a function of separation
length is similar to the ones shown in Fig. 13, and
therefore we do not present it here for brevity. In
particular, it is a monotonically decreasing function of
the separation length and it goes to zero in a smooth
fashion as we pass from the SB phase to the SA phase.
Therefore, an order change in the mutual information
appears during the SA=SB phase transition as IA ∝ OðN0Þ
and IB ∝ OðN2Þ. This behavior is again true for both the
parallel and perpendicular orientations.

FIG. 35. Two-strip phase diagram in the deconfining back-
ground for the parallel case for different values of magnetic field
and temperature. The red, green, blue, brown, orange, and cyan
curves correspond to B ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respec-
tively. Dot-dashed and solid lines correspond to T=Tcrit ¼ 1.5 and
2.0 respectively In units of GeV.

FIG. 36. Two-strip phase diagram in the deconfining back-
ground for the perpendicular case for different values of magnetic
field and temperature. The red, green, blue, brown, orange, and
cyan curves correspond to B ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5,
respectively. Dot-dashed and solid lines correspond to T=Tcrit ¼
1.5 and 2.0, respectively, in units of GeV.

FIG. 37. Ik as a function of lk for different values of magnetic
field and temperature. Here xk ¼ 0.2 is used. The red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively. Dot-dashed and solid lines
correspond to T=Tcrit ¼ 1.5 and 2.0, respectively, in units of GeV.
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C. Entanglement wedge cross section

We now move on to discuss the entanglement wedge
cross section EW in the deconfining phase. Guided by the
symmetry of the configuration (see Fig. 2), the area of the
vertical surface Σmin

AB gives the entanglement wedge cross
section. In the case of an AdS black hole, EW exists only for
the SB phase and its expression is similar to the thermal-
AdS case, except that gðzÞ is now given by Eq. (4).
Therefore, for the parallel orientation we have

Ek
WðSBÞ ¼

ly2ly3L
3

4Gð5Þ

�Z
zk�ð2lþxÞ

zk�ðxÞ
dz

e3AðzÞeB2z2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp

�
: ð51Þ

Similarly, for the perpendicular orientation we have

E⊥
WðSBÞ ¼

ly1ly3L
3

4Gð5Þ

�Z
z⊥� ð2lþxÞ

z⊥� ðxÞ
dz

e3AðzÞeB2z2=2

z3
ffiffiffiffiffiffiffiffiffi
gðzÞp

�
: ð52Þ

Since no wedge exists between two subsystems in the SA
phase, accordingly the entanglement wedge cross section is
zero in this phase.
The behavior of EW as a function of strip length for

different values of magnetic field and temperature is shown
in Figs. 39 and 40 for the parallel and perpendicular cases,
respectively. Here we choose a fixed separation length
xkðor x⊥Þ ¼ 0.2 for illustration purposes, but similar results
exist for other values of xkðor x⊥Þ as well. The nature of EW
is again qualitatively similar in both orientations. In
particular, the magnitude of EW increases with B in both
cases. However, the increment is slightly higher in the
parallel case compared to the perpendicular case. EW again
turns out to be a monotonic function of strip length in the
SB phase, which vanishes discontinuously in the SA phase.

This is true for all temperatures and magnetic fields.
Further, in the presence of B, the thermal profile of EW
exhibits an interesting feature, i.e., EW decreases with
temperature for small trip lengths, whereas it increases with
temperature for large strip lengths. This novel feature
appears only in the presence of B and is true for both
the parallel and perpendicular cases.
Similarly, EW is also a monotonic function of the

separation length. This is shown in Figs. 41 and 42 for
the parallel and perpendicular cases, respectively. For both
cases, like in the confined phase, EW decreases with the
separation length in the SB phase and discontinuously
becomes zero as we enter the SA phase. We find that this
discontinuous behavior of EW at the SA=SB transition line is
true for all values of magnetic field and temperature.

FIG. 38. I⊥ as a function of l⊥ for different values of magnetic
field and temperature. Here x⊥ ¼ 0.2 is used. The red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively. Dot-dashed and solid lines
correspond to T=Tcrit ¼ 1.5 and 2.0, respectively, in units of GeV.

FIG. 39. Ek
W as a function of lk for different values of magnetic

field and temperature. Here xk ¼ 0.2 is used. The red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively. Dotted and solid lines
correspond to T=Tcrit ¼ 1.5 and 2.0, respectively, in units of GeV.

FIG. 40. E⊥
W as a function of l⊥ for different values of magnetic

field and temperature. Here x⊥ ¼ 0.2 is used. The red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively. Dotted and solid lines
correspond to T=Tcrit ¼ 1.5 and 2.0, respectively, in units of GeV.
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We further test (although not explicitly shown here) the
inequality EW ≥ I=2 in the deconfined phase and find that
this inequality is again satisfied everywhere in the l − x
plane of the parallel and perpendicular orientations for all
values of magnetic field and temperature. The inequality
saturates only at the SA=SB transition line, at which I=2
continuously goes to zero, whereas EW exhibits a sharp
drop to zero.

D. Holographic entanglement negativity

In this subsection, we talk about the holographic
entanglement negativity in the deconfined phase.
Beginning with the single-interval case, wherein the holo-
graphic negativity is given by Eq. (21), we have in the limit
B → Ac → ∞

E ¼ lim
B→Ac

3

4
½2SðAÞ þ SðB1Þ þ SðB2Þ

− SðA ∪ B1Þ − SðA ∪ B2Þ�;

E ¼ 3

2
SðAÞ ð53Þ

as, apart from SA, the rest of the four terms represent the
same quantity in the limit B → Ac → ∞, i.e., the black hole
entropy, and therefore cancel each other. Accordingly, in
the single-interval case, we have E ¼ 3

2
SA irrespective of

the orientation of the magnetic field. This is the same result
that we got in the confined phase as well. Therefore, for a
single-interval case, the negativity in the confined and
deconfined phases is always 3=2 times the entanglement
entropy. Accordingly,

∂E
∂l

∝
1

GN
¼ OðN2Þ: ð54Þ

The negativity is always of order OðN2Þ in the deconfined
phase for both parallel and perpendicular magnetic fields.
This is different from the confined phase, where the
negativity undergoes an order change at some critical
strip length.
Moving on to the two-disjoint-interval case, we have the

entanglement negativity as [40,42]

E ¼ 3

4
½Sðlþ xÞ þ Sðlþ xÞ − Sð2lþ xÞ − SðxÞ�; ð55Þ

where S denotes the holographic entanglement entropy for
a single interval. Notice that, as is expected, when x → ∞,
i.e., for large separations, the negativity goes to zero as
all terms in the above equation represent the black hole
entropy. Interestingly, like in the confined case, there can
be some region in the parameter space of the SA phase
where the negativity is nonzero. This once again has to be
contrasted with the mutual information and entanglement
wedge of the deconfined phase where these quantities were
zero everywhere in the SA phase. Indeed, as shown in
Figs. 43 and 44 for the parallel and perpendicular cases,
respectively, the negativity is nonzero in the SA phase as
well. The nonzero negativity for large separations in the
deconfined phase is again an important prediction (again,
strictly speaking, a prediction of the negativity proposal
of Refs. [40,42]). Moreover, the negativity turns out to be a
monotonic function of both strip length and separation
length; in particular, it decreases for higher separation
lengths, whereas it increases for higher strip lengths. We
further find that for a fixed strip length and separation
length the negativity increases slightly with higher mag-
netic fields, whereas thermal effects try to decrease it.
These results are again qualitatively similar for both the
parallel and perpendicular cases.

FIG. 41. Ek
W as a function of xk for different values of magnetic

field and temperature. Here lk ¼ 0.5 is used. The red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively. Dotted and solid lines
correspond to T=Tcrit ¼ 1.5 and 2.0, respectively, in units of GeV.

FIG. 42. E⊥
W as a function of x⊥ for different values of magnetic

field and temperature. Here l⊥ ¼ 0.5 is used. The red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively. Dotted and solid lines
correspond to T=Tcrit ¼ 1.5 and 2.0, respectively, in units of GeV.
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We end this section by mentioning that our investigation
suggests that the orientation-dependent effects of the
magnetic field in the high-temperature deconfined phase
are rather limited compared to the low-temperature con-
fined phase. Though some nontrivial changes do arise in
various entanglement measures between parallel and trans-
verse magnetic fields in the deconfined phase, these
changes are not as substantial as in the confined phase.
For example, the magnetic field produced distinct effects in
the entanglement phase diagram of the confined phase in
the parallel and transverse directions, whereas the phase
diagram is quite similar for both orientations in the
deconfined phase. In the deconfined phase, the anisotropic
effects might be suppressed by the large thermal effects.
Indeed, if we do a large-temperature expansion of the

entanglement entropy and strip length, the effect of the
magnetic field appears in a similar fashion for both
orientations.

VI. DISCUSSION AND CONCLUSION

In this work, we performed a comprehensive analysis
of the effects of a background magnetic field on various
pure and mixed entanglement measures in the holographic
confined/deconfined phases dual to a bottom-up phenom-
enological Einstein-Maxwell-dilaton gravity model. The
magnetic field is expected to play an important role in
QCD-related physics and here we analyzed in detail how
this magnetic field alters the structure of the entanglement
entropy, mutual information, entanglement wedge cross
section, and entanglement negativity, in the confined/
deconfined phases of QCD.
We first reestablished the known results of the entangle-

ment entropy of a single strip in the confining phase, but
now in the presence of a magnetic field. In particular, a
phase transition from connected to disconnected entangle-
ment entropy is observed at some critical strip length in the
confined phase, at which the order of the entanglement
entropy changes from OðN2Þ to OðN0Þ. Interestingly, this
critical length is found to increase/decrease for parallel/
perpendicular magnetic fields, thereby providing aniso-
tropic imprints of the magnetic field on the entanglement
structure. We then analyzed the two-equal-strip entangle-
ment phase diagram in the parameter space of strip length l
and separation length x and found four distinct phases
fSA; SB; SC; SDg. These four phases exchange dominance
as x and l are varied, leading to an interesting phase
diagram. This two-strip phase diagram is again greatly
modified in the presence of a magnetic field, while further
exhibiting anisotropic features. The mutual information
turned out to be nonzero only in the SB and SC phases and is
always a monotonic function of x and l. Similarly, the
entanglement wedge cross section EW was found to be
nonzero only in the SB and SC phases. Interestingly, unlike
the mutual information, EW vanishes discontinuously for
large values of x and l and exhibits nonanalytic behavior
across various transition lines. In particular, going from the
SB phase to the SC phase, EW increases at the SB=SC
transition line. Interestingly, this increment in the area of
the entanglement wedge at the SB=SC transition line is
found to decrease/increase for magnetic fields in parallel/
perpendicular directions, yielding yet another anisotropic
feature in the entanglement structure. Moreover, we tested
the inequality concerning the mutual information and EW
and found that the latter always exceeds half of the former
everywhere in the l − x parameter space for all values of B.
Similarly, we analyzed the behavior of the entanglement
negativity with one and two intervals using the holographic
proposal suggested in Refs. [34,35] and found many
interesting features in the confined phase. For a single-
strip subsystem, the negativity turned out to be just 3=2
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FIG. 43. Ek as a function of lk for different values of magnetic
field and temperature. Here xk ¼ 0.2 is used. The red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively. Dot-dashed and solid lines
correspond to T=Tcrit ¼ 1.5 and 2.0, respectively, in units of GeV.

FIG. 44. E⊥ as a function of l⊥ for different values of magnetic
field and temperature. Here x⊥ ¼ 0.2 is used. The red, green,
blue, brown, orange, and cyan curves correspond to B ¼ 0, 0.1,
0.2, 0.3, 0.4, and 0.5, respectively. Dot-dashed and solid lines
correspond to T=Tcrit ¼ 1.5 and 2.0, respectively, in units of GeV.

HOLOGRAPHIC CONFINING-DECONFINING GAUGE THEORIES … PHYS. REV. D 107, 086016 (2023)

086016-25



times the entanglement entropy, implying that it also
undergoes an order change, from OðN2Þ to OðN0Þ, as
the strip length is varied. This suggests that it can also be
used, like the entanglement entropy, to probe confinement.
The corresponding critical length is further found to
increase/decrease for parallel/perpendicular magnetic
fields. Moreover, for two strips, the negativity behaves
smoothly across various phase transition lines and no
discontinuity in its structure is realized. However, unlike
the mutual information and entanglement wedge, the
negativity can be nonzero in some parts of the SA phase,
an interesting feature that may not be observed in the
holographic negativity proposal of Refs. [32,33]. In addi-
tion, the negativity was found to display anisotropic
features in parallel and perpendicular directions.
We then analyzed the entanglement structure of the

deconfined phase. We found that there is no connected/
disconnected transition and the entanglement entropy is
always given by the connected surface. Accordingly, the
two-strip phase diagram is much simpler in the deconfined
phase. In particular, there are now only phases (SA and SB),
with mutual information and entanglement wedge nonzero
only in the SB phase, whereas the entanglement negativity
can be nonzero in both the SA and SB phases. We further
found that the parameter space of the SB phase increases for
both orientations of the magnetic field, suggesting a larger
phase space for the nontrivial entanglement wedge in the
presence of a magnetic field. Similarly, the entanglement
negativity of a single strip was again found to be propor-
tional to the entanglement entropy, whereas for two strips it
was found to be a monotonic function of x and l for all
values of magnetic field and temperature. Our analysis
suggests that, although the magnetic field introduces
substantial changes in the entanglement measures, these
changes remain qualitatively similar in both the parallel and
perpendicular cases, suggesting a limited anisotropic effect

of the magnetic field in the deconfined phase as compared
to the confined phase.
We end this discussion by mentioning a few directions to

extend our work. The next step in our research setup would
be to include the chemical potential, as it also plays an
important role in QCD physics, and to simultaneously
discuss the effects of magnetic field and chemical potential
on the entanglement structure of confined/deconfined
phases. In the simplistic situation, this can be done in
the current holographic setup as well by adding another
gauge field on the gravity side. Similarly, it would also be
interesting to compute EW and E after a global quantum
quench and analyze the thermalization process via these
measures, as this might also provide important information
about the formation of quark-gluon plasma in QCD. We
hope to come back to these issues in the near future.
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