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The swampland cobordism conjecture successfully predicts the supersymmetric spectrum of 7-branes
of IIB/F-theory. Including reflections on the F-theory torus, it also predicts the existence of new
nonsupersymmetric objects, which we dub reflection 7-branes (R7-branes). We present evidence that these
R7-branes only exist at strong coupling. R7-branes serve as end of the world branes for 9D theories
obtained from type IIB asymmetric orbifold and Dabholkar-Park orientifold backgrounds, and an anomaly
inflow analysis suggests the existence of a gapless Weyl fermion, which would have the quantum numbers
of a goldstino. Using general arguments, we conclude that different kinds of branes are able to end on the
R7, and accounting for their charge requires exotic localized degrees of freedom, for which the simplest
possibility is a massless 3-form field on the R7-brane worldvolume. We also show how to generalize the
standard F-theory formalism to account for reflections.
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I. INTRODUCTION

Dualities provide an important handle on nonperturba-
tive phenomena in quantum gravity. This has made it
possible to extract a number of robust features of strongly
coupled systems which would otherwise be computation-
ally intractable.
That being said, the strongest evidence for these dualities

comes from supersymmetric systems where it is possible to
perform precision tests. One of the major stumbling blocks
in recent years has centered on how to study nonperturba-
tive phenomena without the crutch of supersymmetry.
Indeed, there is (as yet) no evidence for supersymmetry
in our Universe, and so it is natural to seek out comple-
mentary methods to address nonperturbative phenomena in
string theory/quantum gravity.
A quite promising recent development in this direction

is the advance of new topological methods to address
such questions. This includes, for example, an improved

understanding on the topological structure of generalized
symmetries in quantum field theory [1]. In gravity, of
course, one does not expect global symmetries, in part
because topology can also fluctuate. The cobordism con-
jecture [2] encapsulates this general feature through the
requirement that the bordism group of quantum gravity is
actually trivial:

ΩQG
k ¼ 0: ð1:1Þ

The power of the cobordism conjecture is that at low
energies, one often considers bordisms which retain spe-
cific symmetry structures G for which ΩG

k is nonzero.
A nonvanishing value ofΩG

k thus predicts that there must be
a corresponding object in the spectrum of quantum gravity
which trivializes this generator in ΩQG

k .
In many cases these correspond to known supersym-

metric defects; but it is especially interesting when the
cobordism conjecture predicts new, nonsupersymmetric
objects. For instance, in [3], supersymmetric objects
predicted by the cobordism conjecture were used to make
a swampland prediction on the rank of 8D and 9D super-
symmetric theories, which matched string theory calcula-
tions. See [3–11] for further applications of the cobordism
conjecture.
The case we will study in this paper corresponds to a

new kind of nonsupersymmetric 7-brane in type IIB string
theory, different from the ½p; q� 7-branes familiar from IIB
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string theory. This brane is the cobordism defect associated
to a duality bundle not contained in SLð2;ZÞ.
While it is common to assert that the duality group of type

IIB string theory is simply SLð2;ZÞ, accounting for reflec-
tions of the F-theory torus and taking into account their
action on fermions leads to the full duality group being
the Pinþ double cover of GLð2;ZÞ which we denote as
GLþð2;ZÞ (see [6,12]).1 Taking into account the correlation
between spacetime spin and duality transformations, in the
10D spacetime, a nontrivial duality bundle will have a
structure group of the form ðSpin ×GLþð2;ZÞÞ=Z2.
Reference [13] computes the bordism groups for these

different choices of duality bundle. For the case of SLð2;ZÞ
and Mpð2;ZÞ duality bundles, we find that there are
corresponding supersymmetric F-theory backgrounds
which serve as generators for the corresponding bordism
groups. This is a remarkably precise test of the cobordism
conjecture, and also provides strong evidence that little is
missing in our understanding of supersymmetric F-theory
backgrounds.
But in the case of the full duality group GLþð2;ZÞ,

where we do not insist on supersymmetry, we find a
surprise. The computations of [13] show that

ΩSpin−GLþð2;ZÞ
1 ¼ Z2 × Z2; ð1:2Þ

where only one of the two Z2 factors is killed by a known
supersymmetric 7-brane (an F-theory singularity with τ ¼ i
such as a type III or type III� fiber). To kill the other one,
we need to introduce a new species of 7-brane.2 It is
nonsupersymmetric and, because it kills the class of
F-theory specified by monodromy consisting of a reflection
along the a or b cycle of the F-theory torus, we call it the
“reflection 7-brane” (R7-brane). The R7-branes can be
regarded as providing a boundary condition for the type IIB
asymmetric orbifold/Dabholkar Park backgrounds con-
structed in [15–17]. An additional outcome of [13] is that
all of the odd bordism groups ΩDuality

k can be accounted for
by backgrounds with such R7-branes (as well as more
standard supersymmetric objects) included [13].
Our goal in this paper will be to establish some basic

properties of such R7-branes. Far from these branes, we can
work at weak string coupling, but general arguments imply
that we expect the dilaton to approach an order one value
near the core of these branes. Based on their monodromy
action, these branes come in two general types which we
refer to as the Ω-brane and the FL-brane, which are related
by S-duality. We find that these branes do not preserve
supersymmetry, but can still form supersymmetric bound

states. For example, the combined monodromy from Ω and
FL is the same as that of an I�0 Kodaira fiber with gauge
algebra soð8Þ as obtained from a configuration of four
D7-branes and an O7− plane. The absence of supersym-
metry means that these branes may be unstable, and
eventually “explode.” Whether they do this or not, we
can still use constraints from topology to study many of
their properties.
To gain more insight into the microscopic structure

of these branes, we also turn to their anomalies. Such
R7-branes arise as boundaries of supersymmetric asym-
metric orbifold backgrounds (AOB) of the type considered
in [16,17]. We can use anomaly inflow arguments from the
bulk to these 8D objects to further constrain their world-
volume degrees of freedom. We find that anomalies can be
canceled in this way, most naturally if the worldvolume
degrees of freedom contains a complex 8D Weyl fermion
(although there are other possibilities compatible with
anomaly cancellation). If the anomaly is indeed canceled
by an 8D Weyl fermion, its natural interpretation would be
a goldstino arising from the spontaneous supersymmetry
breaking on the R7-brane.
We also study brane probes of the worldvolume theory

living on these R7-branes. These probe branes can encircle
the R7-brane, and owing to the presence of nontrivial
branch cuts/monodromy, can form “lasso” configurations
in which a junction of objects encircles the R7-brane and
the excess charge extends to infinity.3 Shrinking this lasso
to zero size then implies the existence of objects which
can end on the R7-brane. As is familiar from the case of
D7-branes, the R7-branes must have the appropriate
worldvolume fields to allow differently charged objects
to end. Due to the different symmetry properties, we learn
that we must have what looks like a massless 3-form field
in the 8D worldvolume of the R7-brane, in addition to
ordinary gauge fields. This is rather different from what
appears in the worldvolume theory of a standard D-brane,
for example, and underscores the novel structure of the
R7-brane.
Finally, we also show how these objects can be com-

bined to yield consistent F-theory backgrounds. In F-theory
it is natural to geometrize the SLð2;ZÞ duality bundle [and
its Mpð2;ZÞ cover] in terms of a family of spacetime
varying elliptic curves (as well as generalizations to genus
one curves). In the broader context of GLð2;ZÞ bundles
[and its GLþð2;ZÞ cover], we must instead allow for
possible orientation reversals. This in turn requires us to
consider a doubled elliptic fibration in which we consider a
pair of two elliptic fibrations with possible orientation
reversals. We mainly illustrate this by way of example, but
it is clear that this provides a general template for capturing

1The elements of GLð2;ZÞ consist of 2 × 2 matrices with
integer entries and determinant �1. All other values of the
determinant are excluded because the inverse [in GLð2;RÞ]
would not have integer entries.

2See also the brief remark on p. 9 of [14].

3In this sense, these R7-branes are a generalization of “Alice
strings” in 4D gauge field theory [18,19].
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the topological structure of F-theory backgrounds with
R7-branes included.
The rest of this paper is organized as follows. We begin

in Sec. II by briefly reviewing the arguments from [13] for
the existence of R7-branes in IIB/F-theory. Using the
asymptotic monodromic action specified by these branes,
we argue that they do not preserve supersymmetry, but can
nevertheless form S-dual pairs with supersymmetry pre-
serving monodromies. Section III discusses brane probes of
R7-branes and establishes that various objects can end on
R7-branes. In Sec. IV we use symmetric mass generation
arguments to conclude that the R7-brane requires a strong
coupling description, and use anomaly inflow and RR
charge conservation to argue that the worldvolume theory
of these branes to be likely given massless fermions and
k-form potentials. In Sec. V we formalize some of these
considerations by introducing a prescription for doubled
elliptic fibrations which can accommodate reflections on
the F-theory torus. We present our conclusions and future
direction in Sec. VI. Appendix A contains further details
on elliptic curves and Weierstrass ℘ functions. Some
additional details on Pin� structures of Klein bottles are
discussed in Appendix B, while Appendix C shows how
(worldsheet) chiral fermion parities in string theory arise
from M-theory reflections. Appendix D presents a more
general analysis of anomalies of various IIB backgrounds
under circle reduction. The main results presented here
were announced in [20,21].

II. R7-BRANES FROM AFAR

In this section we explain how the cobordism conjecture
leads to the prediction of R7-branes. With this in place, our
task in the remaining sections will be to determine some
basic properties of these objects. We begin by briefly
reviewing the cobordism conjecture, as well as its impli-
cations for type IIB duality, and the prediction that
R7-branes exist. With this in place, we show that super-
symmetry is broken by these branes. We then determine
some basic features of such branes, including possible
annihilation channels.

A. Bordisms and dualities

As explained in the Introduction, the cobordism con-
jecture represents an extension of the conjecture that there
are no global symmetries in quantum gravity to situations
involving dynamical topology change, illustrated in Fig. 1.
In physical terms, bordisms describe interpolating spaces
that can be viewed as off-shell configurations of the
gravitational path integral. The existence of these configu-
rations means that the space X in Fig. 1 is not “conserved,”
and it may fluctuate to some other space Y via a process
that, although off-shell, can be completely described by the
low-energy supergravity theory, since it does not involve
singular spaces or infinite energy densities. However, the

bordism class ½X� ¼ ½Y� may be conserved, at least by the
topology-changing processes that can be described by the
low-energy supergravity. In practice, for most supergravity
theories of interest, there are many nonvanishing bordism
groups, and so as a consequence, the cobordism conjecture
predicts that there must be corresponding defects which
trivialize these classes in quantum gravity.4 These objects
may be very singular from the low-energy point of view,
and their inclusion would be completely unjustified from a
low-energy EFT analysis; we only know they must make
sense due to swampland principles.
With this in mind, the basic idea to apply the cobordism

conjecture is to first identify the bordism groups relevant to
the theory under consideration, and then use it to predict
new defects. Our interest in this work will be the specific
case of dualities for type IIB string theory. Of course, to
carry out this analysis, we must first provide a precise
specification of the class of manifolds in which IIB string
theory, or more precisely, its low-energy approximation IIB
supergravity, makes sense. A first approximation would be
to focus on spin manifolds, since the theory contains
fermions. Therefore, both X and Y in Fig. 1, as well as
the bordism C, must carry a spin structure. For the purposes
of this paper, however, we wish to also consider duality
bundles for the type IIB supergravity theory. At the level of
the IIB supergravity action, the duality symmetry is some-
times presented as SLð2;RÞ, which is further broken to
SLð2;ZÞ once one takes into account flux quantization and
branes. A famous fact of F-theory [23–25] is that this

FIG. 1. Depiction of a bordism C between two manifold X and
Y of one dimension less. The physical interpretation of the
cobordism is a topology-changing transition described by a
smooth spacetime that can be treated in the low-energy super-
gravity. If the underlying theory includes additional structures
(orientation, spin, a principal bundle, etc.), we demand these can
be extended from X and Y to C.

4Strictly speaking, we can either break or gauge the symmetry in
question. In the latter case, this amounts to saying that the
background we started with does not make sense in quantum
gravity to begin with. This can happen if e.g., there is a probe
leading to an anomaly in this background. A concrete example is
the class of RP4 in M-theory with vanishing G4 flux, which is
inconsistent due to an anomaly in the M2-brane worldvolume [22].
All the cases considered in this paper correspond to IIB back-
grounds which we believe make sense, so the only option allowed
by the cobordism conjecture is that we have a suitable defect
killing the bordism class in question.
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duality symmetry can be interpreted geometrically as the
group of large diffeomorphisms of a torus, its complex
structure τ corresponding to the type IIB axio-dilaton.
Including the action on fermionic degrees of freedom such
as the dilatinos and gravitinos, this is refined to the meta-
plectic coverMpð2;ZÞ [26].5We note that including this spin
structure is implicitly handled in most F-theory constructions
since they typically always deal with Calabi-Yau spaces.
But even Mpð2;ZÞ is not the end of the story. Owing to

M/ F-theory duality, or directly from a study of IIB
perturbative symmetries [12], reflections of the F-theory
torus also constitute symmetries of the theory. In purely
type IIB terms, such reflections correspond to acting by
worldsheet parity Ω or left-moving spacetime fermion
parity FL ≡ ð−1ÞFL, depending on whether the reflection
takes place on the a cycle or b cycle. At the level of bosonic
degrees of freedom, this means that we must enlarge the
duality group to GLð2;ZÞ, namely we also allow deter-
minant −1 matrices. Including fermionic degrees of free-
dom, we are finally led to the Pinþ cover of GLð2;ZÞ
denoted by GLþð2;ZÞ. Since the Z2 subgroup of this is
identified with spacetime fermion number, the structure we
will demand in our IIB backgrounds is that the fermions
live in sections of a

Spin ×GLþð2;ZÞ
Z2

ð2:1Þ

bundle over spacetime, which we dub a Spin-GLþð2;ZÞ
structure [6,13]. We will therefore demand that our IIB
backgrounds in Fig. 1 have a spin-GLþð2;ZÞ structure in
both X, Y, and C, and that the Spin-GLþð2;ZÞ structure in
C restricts smoothly to X and Y. Excluding reflections, we
can of course restrict to the special case of spin-Mpð2;ZÞ
bundles, and this is the case which has been studied in
much of the F-theory literature.
Reference [13] computes the bordismgroups for both spin-

Mpð2;ZÞ and spin-GLþð2;ZÞ structure manifolds. Quite
remarkably, it turns out that for all odd k, the generators in the
spin-Mpð2;ZÞ case correspond to known objects of super-
symmetric F-theory backgrounds.6 To give some examples,
in the case k ¼ 1, we obtain the expected 7-branes of F-
theory; for k ¼ 3, this correctly captures 7-braneswrapped on
rigid curves at fixed axio-dilaton, namely the non-Higgsable
clusters of Ref. [27]; and for k ¼ 5 we correctly predict
orientifold 3-planes and their strongly coupled generaliza-
tions known as S-folds (see e.g., [28,29]).
In the case of spin-GLþð2;ZÞ bordisms, a similarly

striking match is obtained, with one notable exception.
It turns out that there is one new bordism generator of

Ωspin-GLþð2;ZÞ
1 which is not generated by a known super-

symmetric background. That being said, combining this
single new object with all of the (supersymmetric) gen-
erators of spin-Mpð2;ZÞ bordism is enough to completely
fill out the full list of objects predicted by the cobordism
conjecture.
This begs the question: what is the new generator

of Ωspin-GLþð2;ZÞ
1 ? To answer this, it is helpful to compare

with the supersymmetric spin-Mpð2;ZÞ case. As explained
in [30], for any structure group G, the bordism groupΩspin-G

1

is given by Ab½G�, the Abelianization of G. Alternatively,
one can use the results in [13] (see also [4]) to obtain

Ωspin-Mpð2;ZÞ
1 ¼ Z3 × Z8; ð2:2Þ

Ωspin-GLþð2;ZÞ
1 ¼ Z2 × Z2: ð2:3Þ

In the case of the Ωspin-Mpð2;ZÞ
1 bordism generators, the

F-theory background is realized as the boundary of the
supersymmetry preserving orbifolds

ðC × T2Þ=Z3 and ðC × T2Þ=Z4: ð2:4Þ

These backgrounds describe a 7-brane with constant
axio-dilaton (see e.g., [31]). In the Z3 case we have τ ¼
expð2πi=3Þ and Kodaira fiber of type IV� (namely an e6
gauge algebra). In theZ8 case we have τ ¼ expð2πi=4Þ and
Kodaira fiber of type III� (namely an e7 gauge algebra). So
these 7-branes are the supersymmetric defects killing the
corresponding bordism classes, as advertised.

Turning next to the case of the Ωspin-GLþð2;ZÞ
1 bordism

generators, one of the Z2 factors is simply a remnant of the
ðC × T2Þ=Z4 background. Compared with its Mpð2;ZÞ
counterpart, it is a smaller group now because due to
reflections, more identifications between backgrounds are
available (more group elements are commutators). On the
other hand, theZ3 group is completely absent and is instead
replaced by another Z2 generator.7 In terms of the local
coordinates ðθ; a; bÞ of an S1 and a torus, this monodromy
acts via a reflection on the a cycle of the torus. Working in a
coordinate system where θ is 2π-periodic, the transforma-
tion rule is

ðθ; a; bÞ ↦ ðθ þ 2π;−a; bÞ: ð2:5Þ

The other S-dual reflection on the b cycle does not generate
a distinct bordism class since we can of course permute the
roles of the a and b cycles.

5This is analogous to the group SpinðnÞ being a double cover
of the group SOðnÞ.

6The case of k even is essentially captured by purely
gravitational defects of the type already found in [2].

7As explained in [13], the Z3 is trivial once reflections are
included because we can annihilate odd order elements of
Ωspin-Mpð2;ZÞ

1 . Again, this can also be understood as the fact that
the spin lift of the U generator can be written as a commutator in
spin-GLþð2;ZÞ, but not in spin-Mpð2;ZÞ.
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From these basic considerations, we conclude that the
cobordism conjecture is making a firm prediction: there is a
new kind of real codimension two object in type IIB
backgrounds as associated with a monodromic action by a
reflection. We will dub these objects reflection 7-branes, or
R7-branes for short. An important difference is that, unlike
for the branes described above, there is no way to construct
these objects as an orbifold of a smooth IIB or F-theory
configuration; we will explain why in more detail when we
study the supersymmetry of the background in Sec. II B.
Let us now determine some basic properties of the

reflection 7-branes. We denote by FL the 7-branes asso-
ciated with an a-cycle reflection and Ω the 7-brane
associated with a b-cycle reflection. In terms of their
representatives in GLð2;ZÞ (i.e., neglecting their action
on spinors) these are captured by the monodromy matrices:

MFL
¼

�−1
þ1

�
; MΩ ¼

�þ1

−1

�
: ð2:6Þ

Note in particular that these are not elements of SLð2;ZÞ.
As reviewed in [12], the action on the bosonic IIB fields is

g ϕ C0 C4 C2 B2

Ω þ1 þ1 −1 −1 þ1 −1
FL þ1 þ1 −1 −1 −1 þ1

: ð2:7Þ

In particular the action on the axio-dilaton τ ¼ C0 þ ie−ϕ

is, for both monodromies,

τ → −τ̄; ð2:8Þ
which is not holomorphic.
Note, however, that the combined productMFL

MΩ is just
minus the identity. In fact, this is precisely the monodromy
obtained from encircling a Kodaira fiber of type I�0 which is
locally modeled as a D4-type singularity (i.e., the quotient
of C2 by the binary dihedral group with eight elements):

MFL
MΩ ¼ MI�

0
¼

�−1
−1

�
: ð2:9Þ

In perturbative type IIB string theory, this is realized by
four D7-branes and an O7− plane filling R7;1 and sitting at
the same point in the transverse directions. As is well
known, this generates an soð8Þ gauge theory with 8D
N ¼ 1 supersymmetry (16 real supercharges). So we have
shown that the fusion of two R7-branes can yield one of
the standard ½p; q� 7-brane stacks previously known in the
F-theory literature. To put it another way, R7-branes
provide a fractionalization of a D4 singularity. As this
fractionalization does not correspond to any of the known
supersymmetric deformations of theD4 singularity, this is a
first hint that the R7-branes are nonsupersymmetric.
So far, we have only discussed the monodromy on

bosonic states, namely we have worked at the level of

GLð2;ZÞ transformations. But as explained above, the
duality group also acts on the fermionic degrees of free-
dom, including the dilatinos and gravitinos of IIB super-
gravity. For constant axio-dilaton backgrounds, one can use
the transformation rules of [26] (see also [6]) to extract the
corresponding action on the fermionic states. These reflec-
tions can be determined by working either in the M-theory
dual picture, or an auxiliary 10þ 2 signature spacetime
(see also [32–34]). In either formulation, this involves
acting on a 2D spinor (supported on the F-theory torus) by a
reflection in the a-cycle or b-cycle direction of the F-theory
torus, encoded by an action of the form

Ri∶ ζ2D → γiζ2D; ð2:10Þ

where ζ2D is a 2DMajorana spinor and i ¼ 1, 2 indexes the
2D Dirac gamma matrices which satisfy the Euclidean
signature Clifford algebra fγi; γjg ¼ 2δij. The overall
phase in this reflection is fixed by the requirement that
M-theory has a Pinþ structure, see Appendix C for more
details. Fixing an explicit basis compatible with our
Ω-brane and FL-brane actions, we set γ1 ¼ σ1 and
γ2 ¼ σ3, the standard Pauli matrices. Explicitly, the reflec-
tion action for Ω and FL on these 2D spinors is [12]

RΩ∶
�
ζð1Þ

ζð2Þ

�
→

�
0 1

1 0

��
ζð1Þ

ζð2Þ

�
¼

�
ζð2Þ

ζð1Þ

�
; ð2:11Þ

RFL
∶
�
ζð1Þ

ζð2Þ

�
→

�
1 0

0 −1

��
ζð1Þ

ζð2Þ

�
¼

�
ζð1Þ

−ζð2Þ

�
: ð2:12Þ

It is convenient to combine this into a single complex
spinor ζ ¼ ζð1Þ þ iζð2Þ, in terms of which we have

RΩ∶ ζ → iζ̄ and RFL
∶ ζ → ζ̄: ð2:13Þ

Comparing with the transformation rules of [26] [which
restricts attention to Mpð2;ZÞ], note that there is an addi-
tional charge conjugation operation acting on the spinors.
We can also deduce that the R7-branes have nontrivial

braiding statistics. Indeed, observe that the operators Ω and
FL do not actually commute [35]. Instead, we have

ΩFL ¼ FRΩ ¼ FFLΩ; ð2:14Þ

namely there is an insertion of spacetime fermion parity as
we attempt to cross the branes around each other.8

8What is the interpretation of this further F-parity defect? In
F-theory terms this corresponds to the insertion of adP9 defect, i.e.,
a “1

2
K3 surface.” We recall that these are rational elliptic surfaces

given by an elliptic fibration over a P1. The Weierstrass model for
this geometry is of the general form: y2 ¼ x3 þ f4xþ g6, where f4
and g6 are respectively degree 4 and 6 homogeneous polynomials
in the coordinates of the base P1.
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B. Supersymmetry breaking

We now argue that the R7-branes completely break
supersymmetry. Recall that in a supersymmetric back-
ground, there is a nontrivial solution to the (covariant)
Killing spinor equation, specified by the variation of the IIB
gravitinos:

δΨμ ¼ ∇μQ ¼ 0; ð2:15Þ

in the obvious notation. Here, ∇μ depends on the back-
ground fields, including the connection of the duality
bundle. The main claim is that in the presence of an
R7-brane, there are no zero mode solutions, and thus
supersymmetry is completely broken.
One can already see a potential issuebecause any candidate

7-brane breaks translations in the directions transverse to its
worldvolume, and as such can retain at most half of the
original supersymmetry of the original 32 supercharges of
type IIB. Indeed, for the IIB pair of 10D Majorana-Weyl
spinorsQð1Þ andQð2Þ, only the combinationQð1Þ þ Γ9Γ8Qð2Þ
survives in the presence of the brane. Precisely because the
reflection 7-brane imposes a further transformation on the
QðiÞ’s, the Killing spinor equations become overconstrained,
and no zero mode solution can survive.
It is also instructive to see this directly at the level of the

monodromy action on any putative zero mode solution.
To do so, consider the monodromy action on 10D super-
charges of our system, grouped as a complex supercharge
Q ¼ Qð1Þ þ iQð2Þ. The R7-branes are codimension-two
defects, so we split spacetime as R7;1 × R2.9 The R7-brane
sits at z ¼ 0, and so at the very least, the ten-dimensional
Lorentz algebra is broken to

soð9; 1Þ → soð7; 1Þ × soð2Þ; ð2:16Þ

where soð7; 1Þ describes Lorentz transformations in R7;1

and soð2Þ describes transformations of the R2 factor.10

The supercharges QðiÞ descend from ten-dimensional
spinors, and so decompose into irreducible representations as

soð9; 1Þ ⊃ soð7; 1Þ × soð2Þ; ð2:17Þ

16 → 8þ1=2 ⊕ 8−−1=2: ð2:18Þ

Organizing the original spinors into the complexified
combination,

Q ¼ Qð1Þ � iQð2Þ; ð2:19Þ

under the soð2Þ factor of line (2.16), the supercharge Q
transforms as

Q ↦ expðiθ=2ÞQ: ð2:20Þ

Up to an overall phase (which depends onwhether we use the
Ω or FL R7-brane), any putative zero mode undergoes a
monodromy as we rotate by 2π:

Q ↦ ξQ̄; ð2:21Þ

for a complex phase ξ. One can check that there are no
nonvanishing zero modes for Eq. (2.20) with this boundary
condition, so theR7-brane breaks supersymmetry.Notice that
this is not the case for monodromies in Mpð2;ZÞ since in
this case the connection inherited from the duality bundle
involves a contribution from the spin connection twisted by
the (discrete) connection from the duality bundle. Precisely
becauseMpð2;ZÞ transformations have determinantþ1, any
such transformation can be “undone” by a suitable trans-
formation in the spin connection, and so there are zero mode
solutions to the Killing spinor equations. Said differently, we
recover the statement that standard 7-branes are supersym-
metric. This is not so for reflections since any putative
transformation in soð2Þ would still have a determinant
given by þ1.
We note in passing that (2.20) is a choice, physically

motivated but by no means necessary. We could have taken
the supercharges to transform in a trivial representation of
SOð2Þ; for instance, this is the representation the super-
charges transform in when we consider IIB on S1 and
interpret SOð2Þ as the group of isometries of the S1. The
choice in Eq. (2.20) is equivalent to demanding that the
asymptotic S1 is contractible; we take it to be part of
the definition of a defect for a bordism class. We will give
an independent argument when discussing the R7-brane as
a boundary for the AOB background in Sec. IV.

C. Brane annihilation/recombination

While it is difficult to directly probe the microscopic
degrees of freedom for these branes, the absence of
any preserved supersymmetries means that we should be
wary of potential instabilities. One possibility is that the
R7-brane explodes, expanding into a growing region
without a geometric description, similar to the case of
nonsupersymmetric orbifold singularities [38], where a
localized singularity also resolves by expanding out to
the boundaries of the noncompact spacetime. Furthermore,
it is generally expected that low-codimension objects in
field theory tend to expand since it is energetically

9Topologically there can be a conical deficit in the presence of
our codimension two object.

10A subtlety here is that because the configuration is non-
supersymmetric, it could happen that soð7; 1Þ and soð2Þ could
actually be spontaneously broken. However, both the geometric
construction as well as every 7-brane we know of (including non-
BPS 7-branes that we can construct explicitly in string theory
[36,37]) suggests that these symmetries remain unbroken, and so
we will assume that this is the case. This is also compatible with
the interpretation of R7-branes as “end of the world branes” in
AOB and Dabholkar-Park backgrounds (see Sec. IV).
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favorable for them to do so [39,40], although admittedly
this argument does not readily apply to the R7-brane which
is a gravitational soliton, rather than a field-theoretic one.
On the other hand, the appearance of a conserved charge (as
captured by the bordism group) implies that whatever the
ultimate fate of our object, it cannot completely disappear.
Indeed, the fact that the R7-brane could be unstable does

not contradict the observed monodromy analysis just
presented since this takes place at the boundary of the
spacetime. Although we have not been able to rigorously
determine the stability of R7-branes, many properties of the
object can be studied without answering this important
dynamical question. For instance, since the branes are not
BPS, we expect a net attractive force between R7-branes.
This can be made precise by considering the combined
monodromy of an Ω-brane and an FL-brane. As already
noted, the monodromy for this combined object is identical
to that of a supersymmetric I�0 singularity, i.e., a 7-brane
with soð8Þ gauge symmetry. This strongly suggests that the
Ω-brane and an FL-brane are energetically attracted,
forming a supersymmetric soð8Þ 7-brane and gravitational
radiation:

Ωþ FL → soð8Þ þ radiation: ð2:22Þ

Next, since the monodromies each square to the identity,
we conclude that pairs of the same R7-branes annihilate to
radiation:

ΩþΩ → radiation; ð2:23Þ

FL þ FL → radiation: ð2:24Þ

By the same token, we can also add R7-branes to soð8Þ
7-branes to arrive at the products:

Ωþ soð8Þ → FL þ radiation; ð2:25Þ

FL þ soð8Þ → Ωþ radiation: ð2:26Þ

One subtlety in such recombination analyses is that there
is also a nontrivial braiding relation between the FL- and
Ω-branes. Indeed, due to the low codimension, we have the
rearrangement identity,

ΩFL → FFLΩ; ð2:27Þ

where on the right-hand side, an F brane is associated with
a spacetime fermion parity defect, which in F-theory terms
we interpret as a dP9 geometry.
These annihilation processes are compatible with the

braiding relations obtained in line (2.14). To see why,
consider the special case of the Sen limit of F-theory on an
elliptically fibered K3 surface. In this limit, we have four
soð8Þ 7-branes, which we identify as four separate ΩFL

bound states. This is an on-shell “minimal energy” con-
figuration which we can move off-shell by rearranging the
position of the individual branes. Doing so, we see that
there is a possible annihilation channel which can allow the
various R7-branes to annihilate. Observe, however, that
the annihilation channel which eliminates two soð8Þ
7-branes simply takes us to an F defect, i.e., a dP9

geometry. To see why, consider the rearrangement of a
pair of soð8Þ 7-branes:

ðsoð8ÞÞðsoð8ÞÞ ¼ ðΩFLÞðΩFLÞ ð2:28Þ

¼ ðΩÞðFLΩÞðFLÞ ð2:29Þ

¼ ðΩÞðΩFFLÞðFLÞ ð2:30Þ

¼ ðΩΩÞðFÞðFLFLÞ ð2:31Þ

where in line (2.30) we used the braid relation of
line (2.14). The pair of Ω’s and FL’s can annihilate, leading
now to

ðsoð8ÞÞðsoð8ÞÞ ¼ ðΩΩÞðFÞðFLFLÞ → Fþ radiation;

ð2:32Þ

so the branes simply rearrange to an F defect (namely a dP9

surface), accompanied by radiation.

D. Deficit angles

Self-consistency of the existence of the R7-brane sol-
ution also constrains the net conical deficit angle obtained
from encircling one such object. Recall that the Ω-brane
and FL-brane can combine to form a supersymmetric soð8Þ
7-brane. The conical deficit angle around all four soð8Þ
7-branes leads to a trivial conical deficit angle, i.e.
α4 soð8Þ0s ¼ 4π, so in particular, a single soð8Þ generates
a conical deficit angle of αsoð8Þ ¼ π. Now, since the
Ω-brane and FL-brane have the same deficit angle and
also combine to form an soð8Þ stack accompanied by
radiation, we have

αΩ þ αFL
¼ αsoð8Þ þ αrad ð2:33Þ

or

2αR7 ¼ π þ αrad: ð2:34Þ

Since the deficit angle generated by radiation is bounded
from below, we obtain the inequality,

αR7 ≥
π

2
: ð2:35Þ
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Extracting more detailed properties such as the dilaton
profile is more challenging because of strong coupling
effects, a point we return to shortly.

III. PROBING R7-BRANES

So far, our analysis has centered on the asymptotic
properties of R7-branes far from their core. In this section
we turn to probes of R7-branes by supersymmetric objects
of type IIB string theory. We assume that we are working
on distance scales far from the interior of the R7-brane. If
the R7 is indeed unstable, and tends to expand in size, the
probe approximation will only be valid provided we remain
outside this expanding bubble.
The probe analysis naturally splits according to the

transformation rules of the corresponding p-form potentials
which couple to the worldvolume of these branes. For
stringlike excitations the reflections distinguish between
F1- and D1-string charge. For D3-branes and D7-branes,
however, the R7-brane always acts by charge conjugation
on the corresponding object. Our plan in this section will
be to use these probes to extract further details of such
R7-branes.

A. String lasso

We begin by considering stringlike probes of R7-branes.
Since we know the action of Ω and FL on the two 2-form
fields B2 and C2 in type IIB supergravity

Ω∶
�
C2

B2

�
→

�
C2

−B2

�
; FL∶

�
C2

B2

�
→

�−C2

B2

�
; ð3:1Þ

we can conclude that some stringlike excitations can end on
the R7-brane. To see why, consider a string with ½p; q�
charge wound around the monodromy defect. This string
couples to the 2-form potential pB2 þ qC2,

11 where p tells
us the number of units of F1 charge and q tells us the
number of units of D1 charge.
We now show that such strings can end on the appro-

priate R7-branes. Consider “lassoing” the R7-brane by
surrounding it with one type of ½p; q� string, i.e., a loop
junction. As in [42] (see also [43]), the idea is to consider a
½p; q� string which begins at infinity and proceeds to
encircle the R7-brane. We can consider a string junction
in which we consider an ½r; s� string exiting the junction
and an ½r0; s0� string entering the junction. Passing the ½r; s�
string around the R7-brane, its charge undergoes mono-
dromy in passing through the branch cut of the R7. We can

form a closed loop precisely when the monodromy yields
½r; s� ↦ ½r0; s0�. Consequently, there is an “excess charge”
which can escape to infinity. See Fig. 2 for a depiction of
this configuration.
The excess charge carried by the asymptotic leg of the

lasso configuration is then

�
p

−q

�
asymptotic

¼ ðMR7 − 12×2Þ
�

r

−s

�
; ð3:2Þ

where MR7 is the monodromy of the R7-brane in question.
In the two cases of interest, we find

Ω∶
�
p

−q

�
asymptotic

¼
�−2r

0

�
;

FL∶
�
p

−q

�
asymptotic

¼
�
0

2s

�
: ð3:3Þ

Subsequently, one contracts the loop onto the defect. The
final configuration is the asymptotic string ending on the
7-brane generating the monodromy.
We therefore see that an even number of fundamental

strings can end on the Ω-brane and an even number of D
strings can end on the FL-brane. Of course, our arguments
here make heavy use of the string lasso picture, and will not
capture any junction that is not apparent from that per-
spective. For instance, it could be that a single F1 string can
end on the FL-brane, but that the corresponding endpoint
cannot be “resolved” to a configuration such as the one
depicted in Fig. 2 (see also [43] where this was related to
center 1-form symmetries of F-theory backgrounds).
Although this possibility is certainly interesting, we empha-
size that at least the effects described in this section are
unavoidable.

FIG. 2. Depiction of a lasso configuration encircling an
R7-brane. There is an excess charge in the configuration which
is carried away to infinity. Shrinking the lasso to the core of the
R7-brane, we obtain a string which ends on the R7-brane. We find
that an even number of D1 strings can end on an FL-brane and an
even number of F1 strings can end on an Ω-brane.

11In our conventions (see [41]), the SLð2;ZÞ matrix ½ac b
d� acts

on the doublet ½C2

B2
� by left multiplication. The convention is

chosen so that the monodromy around a D7-brane is given by the
T-transformation ½1

0
1
1
�. The charge of a ½p; q� string is represented

by the column vector ½ p−q�. The pairing between the charge and the
potential follows from the two-index ε tensor.
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B. 5-brane lassos

Essentially the same argument used for ½p; q� strings also
carries over for ½p; q� 5-branes. Indeed, these objects are
magnetic dual in ten dimensions, so the same reasoning
allows us to conclude that such 5-branes can also end on an
R7-brane. More precisely, an even number of NS5-branes
can end on an Ω-brane and an even number of D5-branes
can end on the FL-brane.

C. 3-brane lasso

Consider next the case of D3-branes and 7-branes in
the vicinity of the R7-brane. Recall that for both sorts of
R7-brane, the zero-form potential and the chiral 4-form
potential flip sign under monodromy. What this means is
that a probe D3-brane will, under monodromy, convert to
an anti-D3-brane, and a probe supersymmetric D7-brane
will change into an anti-7-brane. In this sense, the R7-brane
functions as a higher-dimensional generalization of an
Alice string (see [18,19]).12

As one moves a D3 around the R7-brane, the corre-
sponding opposite charge must be induced in the defect, in
a higher-dimensional version of the Alice string for charge
conjugation discussed in [18,19]. From this it follows that,
just like ordinary D7-branes, the reflection 7-brane must
have appropriate worldvolume fields that allow it to carry
D3-brane charge, as we will discuss in Sec. IV C.
Perhaps more surprisingly, we can also form a D3-brane

lasso around the R7-brane. Indeed, because a D3-brane
converts to an anti-D3 in encircling the R7-brane, we can
build a lasso configuration of the sort depicted in Fig. 3,
namely a pair of D3’s extend to infinity, and split off into a
junction of individual D3-branes. We can join up these
D3-branes by passing them around the branch cut of the
R7-brane, since in doing so, D3-brane charge is conjugated.
Since parallel D3-branes form a BPS configuration, there is
an energetic preference for this loop to shrink to zero size,
and in this limit, we observe a pair of D3-branes ending
on the R7-brane. We comment that this does not happen
for ordinary ½p; q� 7-branes, since the monodromy of a
D3-brane around that configuration is trivial.

D. 7-brane probes

Finally, let us turn to the case of 7-brane probes. Moving
a D7-brane around the R7-brane has a stronger back-
reaction, and the Alice effect is instead encoded in the
monodromy action on 7-branes. Given an element of
SLð2;ZÞ, we can conjugate by either the Ω-brane or the
FL-brane to extract the monodromy. For example, we have

�
a b

c d

�
↦
R7

�
a −b
−c d

�
ð3:4Þ

for both sorts of R7-branes. In particular, for a D7-brane
this produces an anti-D7-brane. More generally, if we take a
½p; q� 7-brane with monodromy matrix,

M½p;q� ¼
�
1þ pq p2

−q2 1 − pq

�
; ð3:5Þ

around an R7-brane with monodromy given by

M−1
½p;q�MR7M½p;q�; ð3:6Þ

one obtains the associated anti-½p; q� 7-brane.
The lasso configuration for 7-branes is more complicated

due to the branch cuts in the configuration and we leave a
study of these setups for future work.

IV. R7-BRANE WORLDVOLUME

In this section we study the worldvolume theory of
R7-branes. In particular, we present evidence that they have
gapless degrees of freedom in their worldvolume theory, as
well as nontrivial topological sectors. While this sugges-
tively hints at the possibility of an interacting fixed point in
D > 6 spacetime dimensions, we defer a more complete
analysis of this tantalizing possibility to future work.
To establish these properties, we will first argue that

R7-branes can be viewed as end of the world branes in well-
known perturbative 9D string backgrounds. With this in
place, the task of determining the anomaly polynomial for
R7-branes amounts to computing the relevant anomalies in
the bulk of the 9D model. The mechanism of anomaly
inflow [44] then allows us to deduce the anomalies on the

FIG. 3. Illustration of a lasso configuration of D3-branes (black
lines) surrounding an R7-brane (red dot). Two D3-branes extend
off to infinity, and by local charge conservation, they can split off
to form a junction. Since the R7-brane sends D3’s to anti-D3’s,
the orientation of charge flow in the junction can reverse,
allowing us to close off a lasso in passing through the branch
cut. It is energetically favorable for this lasso to shrink to small
size, leading to a pair of D3-branes which can end on the
R7-brane. Similar considerations also hold for ½p; q� 7-brane
configurations.

12An example of this sort in four dimensions is QED with
gauged charge conjugation.
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boundary R7-branes. We show that the anomalies are
canceled if the 8D worldvolume has a massless spectrum
containing a Weyl fermion, or something anomaly-
equivalent to it. In case it was an 8D weyl fermion, it
would naturally serve as the goldstino associated to break-
ing 8D N ¼ 1 supersymmetry. Additionally, in order for
the BPS branes of type IIB to consistently end on the R7,
we argue that topological degrees of freedom on the R7 can
indeed be inferred from conservation of RR charge.
The two perturbative string backgrounds of interest

are the asymmetric orbifold of type IIB, and its S-dual
counterpart the Dabholkar-Park (DP) background. The
FL-brane serves as an end of the world (EOW) brane for
the AOB background, and the Ω-brane serves as an EOW
brane for the DP background. Since the two configurations
are S-dual, it is enough to focus on the AOB background.
For further discussion of the various backgrounds, as well
as closely related 9D vacua, see [17].
The rest of this section is organized as follows. We begin

with a brief review of the AOB and DP backgrounds. With
these results in place, we next extract the (perturbative)
anomaly polynomial for the 8D theory specified by the
worldvolume of the FL-brane. In Appendix D we provide
additional details on the structure of anomalies as obtained
from circle reduction.

A. AOB and DP backgrounds

Let us now briefly review the different backgrounds
of interest. We shall be interested in compactifications of
type IIB strings on a circle of length 2πR9. The type IIB
asymmetric orbifold background is obtained by gauging the
Z2 symmetry generated by H9FL whose action is

AOB∶ ðX9 → X9 þ πR9Þ × FL: ð4:1Þ

The S-dual of this system is the Dabholkar-Park back-
ground, as obtained by gauging the Z2 symmetry generated
by H9Ω:

DP∶
�
Xμðu; ūÞ → Xμðū; uÞ for μ ≠ 9

X9ðu; ūÞ → X9ðū; uÞ þ πR9

�
: ð4:2Þ

From the target space viewpoint these backgrounds are
obtained from 10D type IIB strings compactified on an S1

with a suitable Wilson line switched on along the circle.
The low energy effective theory consists of a 9D N ¼ 1
supergravity multiplet and Uð1Þ vector multiplet which
enhances to an SUð2Þ vector multiplet at a self-dual radius
in the AOB case.13 An R7-brane serves as an EOW brane
for these 9D theories since we can interpret this configu-
ration as type IIB compactified on a long cylinder with

certain Wilson lines, with the R7-brane placed at the
end of the cylinder. This is similar to the case of IIB on a
long cylinder, without any Wilson lines, ending on two
stacks each consisting of four D7-branes and one
O7− brane (or I�0 singularities in F-theory language)
placed at X9 ¼ 0 and πR9.
Finally, we mention that one can also consider the

discrete theta angles for AOB and DP backgrounds recently
found in [45]. These result from a nontrivial value ofR
S1 C0 ∈ f0; 1=2g, much like the Sethi string [46], except
they have physical consequences on the spectrum since
they cannot be undone by chiral rotations of fermions.
The AOB and DP string theories have a non-BPS D7-brane
with K-theory charge Z2 and this acts as a domain wall
between the AOB/DP backgrounds with

R
S1 C0 ¼ 1=2 andR

S1 C0 ¼ 0. Therefore, an EOW brane for the AOB/DP
background with a nontrivial theta angle is a fusion
between the non-BPS D7-brane and an R7-brane.
Turning on the θ angle can also be regarded as changing
the holonomy around the S1 from Ω or ð−1ÞFL to Tð−1ÞFL

or TΩ, where T is just the T generator of SLð2;ZÞ, which
corresponds to the second of the two Z2 factors of (2.3).

B. Symmetric mass generation

From the point of view of the AOB and DP backgrounds,
the interpretation of the R7-branes is simple: they provide a
boundary condition for the theory, similar to a bubble of
nothing [47] or the E8 wall in M-theory [48]. Indeed, one
formulation of the cobordism conjecture is the requirement
that every consistent quantum gravity admits a boundary
condition. The reflection 7-brane can be obtained by
demanding that this happens for either the AOB or DP
backgrounds. Applying the same argument to the AOB/DP
backgrounds with discrete theta angle turned on found
in [45] merely yields a reflection 7-brane with monodromy
ΩT, see also the last paragraph of the previous section.
Hence, we will not discuss this last example.
This perspective can be used to argue that the R7-brane

should be strongly coupled, and that the dilaton should flow
to a large value at its core. The argument is similar to
the ones that can be made for the IIA/IIB domain wall, and
is essentially that, since anomalies cancel by a Green-
Schwarz mechanism, a boundary condition cannot be
constructed at weak coupling. Let us review this in detail.
First, consider the theory of a single 9D dilatino, and
suppose that we want to construct a boundary condition for
it. The modern understanding of the 9D theory of a single
Majorana fermion in a manifold X9 is as a boundary mode
for a topological field theory in ten dimensions, which in
this case is simply the η invariant of a ten-dimensional
Majorana-Dirac operator. The relevant bordism group

Ωspin
10 ¼ Z2 × Z2 × Z2 ð4:3Þ

13This is due to the fact that the AOB background is self-dual
under T-duality. For a review of the various components of the 9D
N ¼ 1 rank-1 moduli space of string/F-/M-theory, see [17,45].
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is nonvanishing on one of the classes (represented by an
exotic 10-sphere [49]). This not only means that there is a
global gravitational anomaly and one cannot make sense of
the dilatino theory by itself; it also means that there is no
boundary condition for the dilatino field in 9D. A boundary
condition can be regarded as a domain wall between a phase
where the dilatino is massless and another one where the
dilatino is gapped, but there is no symmetry-preserving
gapped boundary condition for any TQFTwith nonvanishing
value on a sphere [50]. Therefore, there can be no boundary
condition for the dilatino by itself. As a cross-check of this,
notice that any fermion that admits a mass term also admits a
boundary condition, since one can just take a space-
dependent mass from zero to a very large value. But there
is no mass term for a 9D dilatino, as the requisite mass
matrix is symmetric rather than antisymmetric [51,52].
The anomaly of the dilatino is exactly canceled by that of

the gravitino, but this in turn has another anomaly [53] on
HP2 × T2. Similar arguments show that one cannot find a
single boundary condition for the combined gravitino and
dilatino system. As explained in [53], however, these
anomalies can be canceled by discrete fields, or topological
couplings. Once these discrete fields are taken into account,
the anomaly cancels, and it is possible to construct a
boundary condition in principle. Such a boundary condition
will mix the gravitino, dilatino, and discrete fields, and it
cannot happen at weak coupling, simply because there is no
Lagrangian term that one can write down that would gap
these fields at weak coupling. Nevertheless, it can happen
in principle at strong coupling, an example of the phe-
nomenon dubbed as symmetric mass generation in [54].
For this to be the case, the core of the R7-brane should be
strongly coupled. We will not study this mechanism in
detail, since a full treatment would require additional
knowledge of the R7-brane worldvolume; we simply note
that the same must be true of other domain walls predicted
by the cobordism conjecture, such as the domain wall
between IIA and IIB.
There is a further refinement of the above story that also

involves the topological terms that will be discussed in the
next section. As we have established above, the AOB or DP
backgrounds have a gauged SOð2Þ symmetry coming from
the isometry in the compactification space. Although the
nine-dimensional supercharge is uncharged under this sym-
metry, since the 9D fields are all zero modes from the 10D
perspective, there is a closely related symmetry that affects
the supercharge. The dimensional reduction on a circle of
any theory with Lorentz/Euclidean invariance has a reflec-
tion symmetry. To see why, consider x to be a coordinate of
the noncompact space, and let θ parametrize the internal S1.
Reflecting x → −x or θ → −θ may or may not be a
symmetry, depending on the properties of the parent theory.
However, the combined action of two reflections

ðθ; xÞ → ð−θ;−xÞ ð4:4Þ

is an isometry of determinant þ1, and as such, is part of the
Lorentz group in the higher-dimensional theory. Since this
isometry is preserved by the circle background, it remains as
a symmetry of the lower-dimensional theory. From the nine-
dimensional point of view, where we forget about θ and keep
only x, it is a reflection. Furthermore, it squares to −1 on
fermions, since (4.4) uplifts to a rotation by π in the parent
theory, whose square is ð−1ÞF. As a result, the reduced
theory has what we call a Pin− structure [51]. This applies to
the AOB and DP backgrounds; indeed, the only reflection
symmetry compatible with 9D N ¼ 1 supersymmetry is
precisely Pin− [3].
If the theory has aPin− symmetry, the anomalies are now

classified by the much larger group

ΩPin−
10 ¼ Z2 × Z8 × Z128: ð4:5Þ

In principle, the anomalies should cancel here possibly
against discrete terms such as in [53], plus an additional
contribution of potential Green-Schwarz terms in the
action. For instance, a term such as

Z
A ∧ X8; ð4:6Þ

where X8 is a combination of gravitational classes, can
contribute to a Pin− anomaly, since the vector fields A are
odd under the Pin− symmetry [3]. Again, a full study of
anomaly cancellation in the AOB and DP backgrounds
would be very interesting but lies beyond the scope of
this work. The only point that we wish to make is that,
because (4.6) participates in anomaly cancellation together
with the dilatino and gravitino, a boundary condition must
mix all three, and this cannot possibly happen at weak
coupling.

C. Worldvolume degrees of freedom

Having just argued that the R7-brane is strongly coupled,
one might wonder whether we can say anything about its
worldvolume theory. One fruitful technique to learn about
the worldvolume theories of strongly coupled objects is
anomaly inflow; see [55] for a similar, recent application in
the context of F-theory for low codimension objects (as is
the case here). The analysis of Appendix D establishes that
there is an anomaly inflow from the bulk of an AOB/DP
background to the respective FL=Ω-brane, and this can be
canceled by the anomaly of a single Weyl fermion, charged
under the Uð1ÞR symmetry which corresponds to rotations
of the normal bundle, or something anomaly-equivalent
to it.
Another interesting way to obtain information about the

worldvolume degrees of freedom is using the lasso argu-
ments of Sec. III. Consider, for concreteness, the AOB
background. As shown for the strings in Fig. 2, one expects
(at least even numbers of) D1-, D3-, and D5-branes to be
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able to end on the R7-brane. This phenomenon also
happens for ordinary D-branes [56], and famously, this
requires the presence of worldvolume degrees of freedom
to absorb the charge of the brane. For instance, consider say
a D5-brane ending on a D7-brane. The D5-brane has a
worldvolume coupling,

Z
D5

C6; ð4:7Þ

which is not gauge invariant under the gauge transforma-
tion C6 → C6 þ dλ5 if the D5 worldvolume has a boun-
dary. The variation is precisely

Z
∂D5

λ5; ð4:8Þ

and since the boundary of the D5 is contained on the D7,
it can be canceled by a coupling which also transforms
under C6 → C6 þ dλ5 as14

−
Z
D7

λ5 ∧ PDð∂D5Þ: ð4:9Þ

In the D7 worldvolume theory, this happens because there
is a localized Uð1Þ gauge field, with field strength f2, and
Chern-Simons coupling

Z
D7

C6 ∧ f2; ð4:10Þ

whose gauge variation equals, upon integration by parts,

Z
D7

λ5 ∧ df2: ð4:11Þ

Hence, if we identify df2 with PDð∂D5Þ, that is, if the
endpoint of a D5-brane on a D7 is a magnetic monopole for
the worldvolume Uð1Þ gauge field, the whole system will
be gauge invariant.
The same argument works for the FL-brane, leading to

the conclusion that it must have a localized Uð1Þ gauge
field with field strength f2 and worldvolume coupling

Z
R7

C6 ∧ f2: ð4:12Þ

Therefore, the Uð1Þ gauge field can account for D5-branes
ending on the FL-brane. Notice that the C6 field is odd
under ð−1ÞFL, and therefore theUð1Þ field strength f2 must
also be odd. Similar considerations apply for D1-branes
ending on the FL-brane.

We must also take into account the fact that D3’s can end
on the R7-brane as well. To do this in the same spirit as
above, we need a coupling

Z
R7

C4 ∧ X4; ð4:13Þ

where X4 is some R7 worldvolume class to be determined.
One natural option is to take X4 ¼ f2 ∧ f2, but this has two
problems: on the one hand, its integral vanishes on S4,
while we would need

R
S4 X4 ≠ 0 to capture the ingoing

D3-brane charge. On the other hand, C4 is odd under
ð−1ÞFL , and thus X4 must be odd as well. Since it is
quadratic in the field strength, it is impossible for f2 ∧ f2
to be odd. Both these obstacles are remedied if we
postulate that

X4 ¼ da3; ð4:14Þ

where a3 is a massless 3-form gauge field living on the
worldvolume of the R7-brane. Although we have not
proven this is the only kind of structure that can account
for the D3-brane charge inflow required by the lasso
arguments in Sec. III, it is certainly the simplest solution.
As emphasized above, a3 is odd under reflections, meaning
that its field strength takes values in a cohomology group
with twisted coefficients.15

To the best of our knowledge, this is the first appearance
of a massless 3-form as a worldvolume field of a brane in
string theory, as opposed to a spacetime field. The existence
of the massless 3-form raises tantalizing questions: for
instance, the electrically charged objects coupled to a
3-form are membranes, and although the codimension of
the object is very low, so that gravitational backreaction
cannot be neglected in principle, one can speculate about
the existence of a “little membrane” description of the
theory at high energies.
We cannot resist presenting another speculation before

closing this section. We have seen that the R7-brane breaks
supersymmetry, has interesting worldvolume dynamics,
and is a strongly coupled object. All these could be taken
as hints that the low-energy dynamics of the R7-brane
corresponds to a nonsupersymmetric CFT in eight dimen-
sions. Although we certainly do not have an argument that
this is the case, we believe that the idea certainly warrants
attention, and we hope to come back to it in the future. A
first example of a nonsupersymmetric CFT in high dimen-
sions would have far-reaching implications in both quan-
tum gravity and quantum field theory.

14PD denotes the Poincaré dual of the boundary of the
D5-brane ∂D5 in the D7-brane worldvolume.

15The coefficients are given by a local system as specified
by the appearance of a nontrivial reflection bundle. The analo-
gous feature is already present in the 3-form potential of 11D
supergravity [57,22].
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V. DOUBLED F-THEORY

From a practical point of view, one of the key features of
F-theory is that it provides a geometric characterization of
nonperturbative type IIB vacua in terms of elliptically
fibered Calabi-Yau spaces (or more generally, genus one
fibered spaces). Indeed, the existence of the elliptic fibra-
tion provides a convenient way to encode an SLð2;ZÞ
duality bundle on the 10D spacetime. For Calabi-Yau
spaces, the existence of a Killing spinor is guaranteed,
and thus implies that the spin structure of the Calabi-Yau
induces a spin-Mpð2;ZÞ duality bundle. An important
feature of this formulation is that the Ricci-flatness con-
dition in the total space of the fibration also implies that we
solve the Einstein field equations in the presence of a
possibly nontrivial axio-dilaton profile. This in particular
allows us to read off intricate configurations of intersecting
7-branes in type IIB vacua.
Given the fact that the full IIB duality group is actually

GLþð2;ZÞ, it is natural to ask whether we can develop a
similar formulation for more general backgrounds. As a
preliminary step in this direction, we will first discuss the
GLð2;ZÞ bundle detected by bosons. Note that because
GLð2;ZÞ has determinant −1 elements, a principal
GLð2;ZÞ bundle will not be captured by an elliptic curve,
simply because we must allow for orientation reversal on
the torus. Since any nonorientable space has an oriented
double cover, one approach to building geometries with a
GLð2;ZÞ bundle is to work in the double cover, which has
an SLð2;ZÞ bundle and can therefore be described by an
ordinary genus one fibration.
Now, whereas F-theory on an elliptically fibered Calabi-

Yau space automatically furnishes us with a solution to the
type IIB equations of motion, this need not be the case for
these more general doubled configurations. Indeed, these
configurations are helpful in characterizing possible
“off-shell” brane configurations which will ultimately relax
to “lower-energy” equilibrium configurations. It is never-
theless useful to specify these duality bundles geometrically
because it provides a concise way to encode the monodromy
of all the codimension two defects in a way which is
consistent with constraints such as tadpole cancellation. Just
as in standard F-theory backgrounds, a doubled F-theory
background is supersymmetric whenever the corresponding
dual M-theory background is supersymmetric.
To encode reflection 7-branes and possibly more general

spin-GLþð2;ZÞ duality bundle structures, we can build
examples by specifying a pair ðX̂; ρÞ, where X̂ → B̂ is a
genus one fibration and ρ is an involution which preserves
the orientation of the base B̂. The restriction that ρ
preserves the base orientation is necessary since IIB string
theory is not invariant under reflections. The case where ρ is
orientation-preserving can always be reduced to trivial ρ,
because the quotient by ρ also produces a genus one
fibration. So, the only interesting case is when ρ is

orientation-reversing along the fibers. The action of ρ on
fermions should be of Pinþ type as required by M-/F-
theory duality.
In this section we will focus on some examples of local

models with R7-branes. It would be quite interesting to
build more general compact models in doubled F-theory
(ꟻF-theory) with such structures, but we leave this to
future work.

A. Geometry of a single R7-brane

Let us see how the framework of doubled F-theory
captures reflection 7-branes. We first consider a trivial T2

fibration over a circle, parametrized as ðθ; zÞ with the
identifications

θ ∼ θ þ 2π; z ∼ zþ 1 ∼ zþ τ ð5:1Þ

and quotient by the orientation reversing (free) action

ρFL
∶ ðθ; zÞ → ðθ þ π; z̄Þ: ð5:2Þ

For this to be a symmetry of the lattice, one must require
that τ is purely imaginary.16 The pair ðT3; ρÞ thus con-
structed is the doubled F-theory description of a IIB
compactification with a Wilson line of ð−1ÞFL IIB sym-
metry, precisely the AOB background described in
Sec. IVA, see [16,17], the F-theory description of this
background is explained in [45]. Unlike similar construc-
tions with the holonomy of ordinary 7-branes, this back-
ground preserves 16 supercharges.
A similar construction, using the orientation reversing

action,

ρΩ∶ ðθ; zÞ → ðθ þ π;−z̄Þ ð5:3Þ

yields a IIB compactification with a Wilson line of Ω, the
Dabholkar-Park background of Sec. IVA. As described
there, this is another supersymmetric compactification,
S-dual to the AOB background. In both cases, the action
on the torus lattice parameter τ maps it to −τ̄, which forces
the real part to be 0 or π. We will mostly set Reτ ¼ 0, but
our construction can equally accommodate the Reτ ¼ π
vacua which have only recently been explored [45].
Our aim will be to “fill in” the circle, to describe the

cobordism defect at the core of the AOB and DP back-
ground we have just constructed. To proceed further, let us
return to the “trivial” Weierstrass model:

y2 ¼ x3 þ f0xþ g0; ð5:4Þ

16Again, we neglect the more general possibility that τ ¼
1=2þ i

gs
which is relevant for the backgrounds studied in [45].

IIB STRING THEORY EXPLORED: REFLECTION 7-BRANES PHYS. REV. D 107, 086015 (2023)

086015-13



where here, f0 and g0 are constant. As explained in
Appendix A, the two reflections act on the holomorphic
coordinates x and y via

RFL
∶ ðx; yÞ→ ðx̄; ȳÞ and RΩ∶ ðx; yÞ→ ðx̄;−ȳÞ: ð5:5Þ

We observe that the Weierstrass equation is invariant under
this action provided we take f and g to be purely real.
The doubled F-theory description of an R7-brane is then

simply

y2 ¼ x3þf0xþg0; f0;g0 ∈R; ðz;x;yÞ∼ ð−z; x̄;�ȳÞ:
ð5:6Þ

Away from z ¼ 0, the action is free. At z ¼ 0 we have a
singularity, which is where the R7-brane is located. In the
description of ordinary 7-branes, we are used to the torus
fiber pinching at loci of the base. In the doubled F-theory
picture, one might then be tempted to conclude that the
fiber just degenerates in a simple way, for instance, as an
interval or a Mobius strip. While this makes sense at the
level of the geometry, there is an issue with defining
spinors. The spin structure along the circle with coor-
dinate argðzÞ in the double cover, X̂ must have periodic
spin structure in order for X̂=ρ to have Pinþ structure.
This is because the torus formed from the argðzÞ coor-
dinate, and either the a or b cycle of the torus fiber of X̂
(depending on if the R7 is a FL or Ω brane) becomes a
Klein bottle after quotienting by ρ. We then see from
Appendix B that the base circle of a Klein bottle must
have periodic spin structure in the torus double cover in
order for the Klein bottle to have Pinþ structure. This
means that, to define the R7-brane, we must choose a
periodic spin structure in the double cover, i.e. we must
“remove the point” where the R7-brane is located, which
introduces a new 1 cycle along which fermions are
periodic. A natural possibility then is that the presence
of the R7 causes the base of X̂ to be asymptotic to a
cylinder rather than a cone with deficit angle α < 2π. In
the physical spacetime, X̂=ρ, this translates to the deficit
angle of the R7 satisfying αR7 ≥ π. While this is con-
sistent with the lower bound mentioned in (2.35), we do
not have an analytic handle on the (presumably time-
dependent) metric produced by the R7-brane so we
cannot yet say if this minimal possibility is correct.

B. Including other 7-branes

We also mention how one can write double F-theory
fibrations with R7-branes in the presence of other 7-branes.
We still work in a local patch, but the complex structure of
the double cover torus can now be fibered nontrivially over
the spacetime. To present an explicit example, consider the
doubled F-theory model:

y2 ¼ x3 þ ðz − aÞ2ðz̄þ āÞ2xþ αðz − aÞ3ðz̄þ āÞ3;
ðz; x; yÞ ∼ ð−z; x̄; ȳÞ ð5:7Þ

for a ≠ 0. Close to the origin, where there is a fixed point,
the model describes the FL-brane. Close to z ¼ �a, the
model describes a local I�0 singularity. The model as a
whole then describes the bound state of a FL-brane and an
soð8Þ 7-brane. As expected from the analysis of mono-
dromies already given, the total monodromy at infinity is
that corresponding to an Ω-brane.

VI. CONCLUSIONS

In this paper we have used the cobordism conjecture,
in tandem with the known duality symmetry of IIB strings/
F-theory to predict the existence of a new class of reflection
7-branes, which we dubbed R7-branes. Such objects
are predicted to exist because the bordism group ΩG

1 for
G ¼ spin-GLþð2;ZÞ is nontrivial. Under monodromy
around such an object, there is a corresponding reflection
on the torus of F-theory. There are two possible reflections,
which correspond to an Ω-brane and an FL-brane. We have
shown that these branes break all supersymmetries, that
the core of these objects exists at order one values of the
axio-dilaton, and that these objects are potentially unstable.
Our approach to studying these objects has involved first
determining some basic features of monodromy, proceed-
ing next to various brane probes, and finally to a study, via
anomaly inflow, of the degrees of freedom localized on
such objects. We put forward a proposal for “doubled
F-theory” (ꟻF-theory) configurations which can be used to
characterize the topological features of such objects. In the
remainder of this section we discuss some avenues for
future investigation.
We have argued that the axio-dilaton likely approaches

an order one value in the core of the R7-branes. It would be
most instructive to find a more microscopic characteriza-
tion of these strong coupling features, or alternatively, to
find related weakly coupled avatars which might be used to
build closely related analogs of these same systems.
One of the basic features of F-theory with reflections is

that our main examples have all been nonsupersymmetric.
It would be interesting to determine backgrounds where
supersymmetry is preserved, but in which there is no
holomorphic Calabi-Yau geometry present. We find it
suggestive that similar nonholomorphic structures have
been considered in the context of F-theory on spinð7Þ
backgrounds (see [58,59,33,60–62]).
Perhaps even more intriguing would be to use these

nonsupersymmetric R7-branes as an ingredient in the con-
struction of nonsupersymmetric vacua. Quite likely, the best
we can hope to achieve in this setting is a sufficiently long-
lived metastable configuration of such branes. This holds out
the possibility of building new classes of string-based
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models where topological considerations can serve as a
strong constraint on the ultimate fate of these constructions.
Our anomaly inflow analysis strongly suggests that theR7-

branes support gapless degrees of freedom. Since we are
dealing with an intrinsically nonsupersymmetric system at
strong string coupling, it is tempting to speculate that this
construction realizes a nonsupersymmetric conformal fixed
point in eight dimensions, which is of course higher than the
limit allowed by supersymmetry [63]. To make this system
stable, we would also need to take a limit in which the string
coupling is tuned to zero, much as one takes a decoupling
limit for coincident M5-branes to reach the celebrated
N ¼ ð2; 0Þ superconformal field theories in six dimensions.
To truly demonstrate that we have an interacting fixed point,
i.e., that we have nontrivial 3-point functions, will likely
require further detailed computations such as the calculation
of various greybody factors on such branes (see e.g., [64,65]).
We leave an investigation of such possibilities for futurework.
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APPENDIX A: ELLIPTIC CURVES AND
WEIERSTRASS ℘-FUNCTIONS

Recall that for an elliptic curve with complex structure τ
the Weierstrass ℘-function is defined as

℘ðz; τÞ ¼ 1

z2
þ

X
ðm;nÞ∈Z2≠ð0;0Þ

�
1

ðzþmþ nτÞ2 −
1

mþ nτ

�
;

ðA1Þ

which satisfies the following differential equation:

ð℘ðz; τÞ0Þ2 ¼ ℘ðz; τÞ3 þ fðτÞ℘ðz; τÞ þ gðτÞ ðA2Þ

provided the definitions

f ¼ −41=3 · 60
X

ðm;nÞ≠ð0;0Þ

1

ðmþ nτÞ4 ;

g ¼ −540 · 60
X

ðm;nÞ≠ð0;0Þ

1

ðmþ nτÞ6 : ðA3Þ

Now that we have the Weierstrass coefficients f and g
written as modular forms of τ, we see that the requirement
that τ is purely imaginary restricts the f and g functions
to be real themselves. From (A3), we also see that
f < 0, g > 0.
To understand the action of the orientation-reversing

isometries described in Sec. V, we can use the expressions
for x, y as Weierstrass functions of the lattice data,

x ¼ 42=3℘ðz; τÞ

¼ 42=3
�
1

z2
þ

X
ðm;nÞ≠ð0;0Þ

�
1

ðzþmþ nτÞ2 −
1

ðmþ nτÞ2
��

;

y ¼ ℘ðz; τÞ0 ¼
X

ðm;nÞ≠ð0;0Þ

1

ðzþmþ nτÞ3 : ðA4Þ

One can see that the orientation-reversing involutions
described above acts on the coordinates of the
Weierstrass model as

ðx;yÞ→ ðx̄; ȳÞ for ρFL
; and ðx;yÞ→ ðx̄;−ȳÞ for ρΩ: ðA5Þ

Both of these are symmetries of the Weierstrass model (A2)
if the constants f, g are real.

APPENDIX B: Pin� STRUCTURES ON THE
KLEIN BOTTLE

Here we describe the eight possible choices of pin
structures a spinor may have on a Klein bottle. Four of
these are Pinþ where the reflectionR acts such thatR2 ¼ 1,
while the other four are Pin− structures whereR2 ¼ ð−1ÞF.
We first start with a torus, Σ̂, with real coordinates ðx; yÞ
and complex structure τ ¼ 2iL,17 i.e., we have the iden-
tifications x ∼ xþ 1 and y ∼ yþ 2L. We obtain a Klein
bottle Σ after quotienting by

σ∶ ðx; yÞ ∼ ð−x; yþ LÞ: ðB1Þ

If Σ̂ has Ramond spin structure along the y direction, then
the Klein bottle has Pinþ structure because the orientation

17A similar construction equally works for τ ¼ 2iLþ 1=2.
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reversal (B1) acted on twice should act as þ1 on spinors.
Therefore, Σ̂ with ðR;RÞ or ðNS; RÞ along the ðx; yÞ
directions induce two separate Pinþ structures on Σ. The
other two Pinþ structures are obtained by composing the
quotient (B1) by ð−1ÞF: this allows the Klein bottle to have
NS structure along its b cycle. In total, the a-=b-cycle
holonomies are ð�1;�1Þ.
We now see that when Σ̂ has Neveu-Schwarz spin

structure along the y direction, the Klein bottle has Pin−

structure. The ðR;NSÞ and ðNS;NSÞ spin structures of Σ̂
induce two Pin− structures. Since the holonomy of a spinor
winding twice around the B cycle of Σ is −1, the holonomy
of single winding is �i, the choice of sign of which
depends on whether or not we compose σ with ð−1ÞF. In
summary, the a-=b-cycle holonomies are ð�1;�iÞ. For
more details on pin structures of Klein bottles see [66].
Applying this knowledge to the F-theory geometry of FL

7-branes, the a cycle (the cycle whose direction flips) from
above is one of circles in the elliptic fiber, E, while the b
cycle is the angular direction of the X8-X9 plane. To have a
valid M-theory realization, the space must have a Pinþ
structure which from above we see requires spinors to be
periodic along the spacial angular direction prior to the
quotient. In other words, there must be a spin defect (or
Ramond puncture) located at Z ¼ X8 þ iX9 ¼ 0 in order
for the F-theory geometry to describe the FL 7-brane.

APPENDIX C: M-THEORY LIFT OF FL;R

The purpose of this appendix is to show that the
M-theory uplift of the IIA symmetries FL and FR are
reflections along the M-theory circle, S111, where the
difference between the two arise from a choice of sign
in the fermion action.
Looking first at the IIA massless bosonic fields, we

have that

þ1 underð−1ÞFL∶ gμν; B2;ϕ; ðC1Þ

−1 underð−1ÞFL∶ C1; C3: ðC2Þ

This matches what we expect from M-theory after applying
dx11 ↦ −dx11, and the fact that the M-theory 3-form
transforms as a “pseudo 3-form”: CM−th

3 → −CM−th
3 . As

for the massless fermionic states, we need to understand
how the x11 reflection acts on the 11D gravitino, ΨMA. Our
indices decompose as M ¼ μ; 11 and A ¼ ðα; _αÞ, where α
denotes 8s in the spinð8Þ little group. Since 11D Majorana
fermions must have Pinþ structure, the reflection must
satisfy R2

11 ¼ 1 so from the 11D kinetic term we have two
choices,

R11∶ ΨμA → �Γ11ΨμA ðC3Þ

Ψ11;A → ∓Γ11Ψ11;A: ðC4Þ

For an 11D Majorana spinor, QA, we can choose a
convention so that Γ11 decomposes in the following way
in 10D:

Γ11Q ¼
�
1 0

0 −1

��
Qα

Q _α

�
; ðC5Þ

i.e., it becomes the 10D chirality matrix. Let us choose
a þ sign in (C3), and name the reflection Rþ

11 accordingly,
then the 10D gravitinos, ψμα ≔ Ψμ;α, and dilatinos,
λα ≔ Ψ11;α, transform as

ψμα ↦ þψμα ψμ _α ↦ −ψμ _α: ðC6Þ

λα ↦ −λα λ _α ↦ þλ _α: ðC7Þ

This is exactly the expected behavior of ð−1ÞFL on the
left moving R-NS states after noting that the dilatinos
and gravitinos have opposite chirality in a given chiral/
antichrial worldsheet sector as we can see from

8v × 8c ¼ 8s þ 56c: ðC8Þ

This was nicely reflected in the fact that we had an
additional minus sign from the dilatino coming from a
gravitino with a leg along the reflected direction. Clearly if
we chose the other sign (C3), we would have ð−1ÞFR so in
summary

R�
11 ¼ ð−1ÞFL;R : ðC9Þ

APPENDIX D: COMPUTING ONE-LOOP
CHERN-SIMONS TERMS

WITH DUALITY BUNDLES

In this appendix, we provide the technical details behind
the anomaly results in Sec. IV. While the kind of calcu-
lations described here are not new (see [67–71]), some of
the detailed results are, and we also provide an introduction
to computing them using modern techniques (using the
formalism of η invariants and the Atiyah-Patodi-Singer
(APS) index theorem). Appendix D 1 describes the general
computation to be carried out, and its relation to modern
techniques. Appendix D 2 contains the application of the
formalism to the R7-brane in the main text.

1. One-loop Chern Simons terms
from the anomaly theory

Let us review the general setup we are interested in,
using the oldest example of it, the Redlich anomaly [72].
Consider a four-dimensional theory of a Weyl fermion,
charged under a global Uð1Þ symmetry, compactified on an
S1 with periodic boundary conditions for fermions. Upon
dimensional reduction, one obtains a 3D theory containing
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one massless Dirac fermion, and a Kaluza-Klein (KK)
tower of massive Dirac ones. The sign of the mass is
correlated to the KK quantum number k. In the framework
of effective field theory, one then integrates out the KK
tower to produce a low-energy effective action producing a
3D theory including a massless Weyl fermion and the
background current for the Uð1Þ symmetry.
As usual, integrating out the KKmodes produces higher-

derivative couplings in the effective action. But somewhat
unusually, there is a triangle diagram contributing an (in
general improperly quantized) Chern-Simons term to the
one-loop effective action, depending only on the sign of the
mass [72,71]:

S3D ⊃ kCS

Z
F ∧ A; kCS ¼

X
n≠0

sgnðnÞ: ðD1Þ

Here, A is the connection for the background Uð1Þ
symmetry, and n is an index running over KK momentum.
Regulating the sum via e.g. zeta-function regularization,
one obtains

kCS →
1

2
; ðD2Þ

which is the original result of Redlich [72]. Since then, this
formalism has been extended to the computation of CS
terms in any number of dimensions, and also including the
KK photon AKK in the reduction as well. For instance, as
explained in [71], including the KK photon in the example
above also yields a one-loop term of the form

S3D⊃ k̃CS

Z
FKK∧A; k̃CS¼

X
n≠0

nsgnðnÞ→−
1

12
: ðD3Þ

The general rule is that the contribution of the KKmodes of
a fermion of charge q to a CS term of degree m in FKK or
AKK and l in F or A will involve a regularized sum

X
n≠0

qlnmsgnðmnÞ; ðD4Þ

where mn is the mass of the nth KK mode. For instance,
when antiperiodic boundary conditions are chosen,
mn ¼ nþ 1

2
. Using these rules, and zeta function regulari-

zation, it is possible to compute the effective action coming
from KK modes in all cases.
The CS terms described above have peculiarities; in

particular, they are not properly quantized in general, unless
anomalies in the parent theory cancel [71]. We would like
to understand the features of the above calculation using
the modern formalism of the anomaly theory for the
fermions [51,73]. We will describe the setup more gen-
erally, so it can be of help to modern computations of
one-loop effective actions in a wider class of problems.

Consider a dþ 1-dimensional theory, in which there is a
chiral fermion which is potentially anomalous. As is
described in many places [51,73,74], the phase of the
partition function is not well defined, and this variation
is encoded in terms of a (dþ 2)-dimensional topological
anomaly theory, which for a chiral fermion is an η
invariant [51]. In general, the partition function of the
fermion on a (dþ 1)-dimensional manifold Xdþ1 is given
by extending to an open (dþ 2) manifold Ỹdþ2, which has
∂Ỹdþ2 ¼ Xdþ1, and defining

ZXdþ1
¼ jZXdþ1

j expð2πiηðỸdþ2ÞÞ; ðD5Þ

where one uses generalized APS boundary conditions for
the corresponding Dirac operator in Ỹdþ2. The anomaly is
encoded in the fact that the partition function thus defined
clearly depends on the choice of Ỹdþ2. This dependence can
be studied by considering the anomaly theory on a closed
(dþ 2)-dimensional manifold Ydþ2. In cases where this
manifold is itself the boundary of a (dþ 3)-dimensional
manifold Zdþ3, the value of the η invariant can be computed
by means of the APS index theorem as

ηðYdþ2Þ ¼ IndexðZdþ3Þ −
Z
Zdþ3

½ÂðRÞchðFÞ�dþ3: ðD6Þ

In general, it is impossible to write down an expression
for ηðỸdþ2Þ as an integral of a local density, i.e. in terms of
cohomology classes [75]. But we are interested only in the
particular case where we are doing KK reduction on a
circle; this means that the manifold Xdþ1 where the parent
theory lives, as well as the closed manifolds Ydþ2 we use to
study anomales, are both S1 bundles,

S1 → Xdþ1 → Bd; ðD7Þ

S1 → Ydþ2 → Bdþ1; ðD8Þ

over some bases Bd, Bdþ1 of d, and (dþ 1) dimensions,
respectively. In the limit where the fiber S1 becomes
very small (known in the math literature as the adiabatic
limit [75–77]), it is actually possible to write down an
expression for the η invariant in terms of cohomology
classes. The corresponding cohomological expression,
including an “eta form” piece, was computed in [76] and
reads

ηðS1 → Bdþ1Þ ¼
Z
Bd

½ÂðRÞchðFÞη̂ðFKKÞ�d;

η̂ðFKKÞ ¼
2 tanhðFKK=2Þ − FKK

2FKK tanhðFKK=2Þ
; ðD9Þ

where the chðFÞ piece encodes the charges that the fermion
may have under additional internal bundles, and FKK
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corresponds to the field strength of the KK photon. We
remark that the calculation in [76] is only valid for the
bounding spin structure on the S1 fiber.18 The expression
for η̂ above can be rewritten as

η̂ðFKKÞ ¼
X∞
n¼0

ζð−nÞ
n!

Fn
KK; ðD10Þ

which makes contact with the expressions involving zeta-
regularized sums described above; what Zhang computed
in [76] can be interpreted as the generating function for the
zeta-regularized sums that have appeared in the physics
literature [67–69,71]. In fact, the connection can be made
even more precise: as explained in [51], the partition
function of a massive Dirac fermion in odd dimensions
is itself naturally an η invariant, which can be written in
terms of an anomaly polynomial in one dimension more.
Therefore, one naturally gets the expression

ηðS1 → Bdþ1Þ ¼
X

KK modes

ηKK ¼
X

KK modes

Pdþ1; ðD11Þ

i.e. a sum over the (dþ 1)-dimensional part of
anomaly polynomials of fermions, rather than the
(dþ 3)-dimensional part that was relevant in [76]. If the
sums in (D11) are regularized, one ends up with the same
result as in (D9).
Let us illustrate this by going back to our original

example, the Redlich anomaly, this time including gravi-
tational terms. The contribution for a single 4D Weyl
fermion reduced on a circle and charged under an addi-
tional Uð1Þ field (of field strength F) is

ηðS1 → Bdþ1Þ ¼
1

24

Z
Y4

ð12F2 − 2FFKK − p1Þ; ðD12Þ

which corresponds to an improperly quantized Chern-
Simons term in 3D,

1

24

Z
Y4

ð12F2 − 2FFKK − p1Þ

¼ 1

24

Z
X3

ð12F ∧ A − 2A ∧ FKK − CS3½g�Þ; ðD13Þ

where CS3½g� is the gravitational Chern-Simons term. This
reproduces the results of [71]. The anomaly of the theory,
encoded in the Y4 dependence of the η invariant due to the
Dai-Freed theorem, gets mapped to the more ordinary fact

that an improperly quantized Chern-Simons term depends
on the extension to Y4. In a theory where local anomalies
cancel, the theory is actually independent of the choice
of Y4, and this maps to properly quantized Chern-Simons
terms. To see this, just use the APS index theorem for the
total fermion content of the theory,

ηðS1 → Bdþ1Þ ¼ Index −
Z
Zdþ2

X
fields

½ÂðRÞchðFÞ�dþ3

¼ index; ðD14Þ
where in the second equality we used the fact that local
anomalies vanish. We see that the η invariant is always
integer quantized, which means, when written as a sum of
Chern-Simons terms, that their coefficients must always be
properly quantized.
We will also need the anomaly theory for Rarita-

Schwinger and self-dual fields. The expression for the
eta form of a self-dual field is19

η̂SD ¼ FKK − tanhðFKKÞ
FKK tanhðFKKÞ

; ðD15Þ

so that

ηSDðS1 → BdÞ ¼
1

2

Z
Bd

½LðRÞchðFÞη̂SDðFKKÞ�d: ðD16Þ

Finally, for a Rarita-Schwinger field, we have

ηRS ¼ ½ÂðRÞ½chðRÞ − d�chðFÞη̂ðFKKÞ�d; ðD17Þ
which can be derived from the APS index theorem and
the fact that the restriction of a (dþ 2)-dimensional RS
fermion to the boundary produces both a RS and a Dirac
fermion. Using these results, and as a warm-up, we can
reproduce the main result in [69] for the one-loop CS terms
of F-theory on a circle, namely the anomaly theory

1

24
ð2c1p1ðT − 12Þ þ c31ðT − 9ÞÞ: ðD18Þ

Recovering these results is a nice consistency check of the
expressions above. We can also recover this using (D11);
the anomaly polynomial for a Rarita-Schwinger and self-
dual field KK mode are then

PRS
dþ1 ¼ ½ÂðRÞðchðRÞ − dÞchðnFKKÞ�dþ1;

PSD
dþ1 ¼ −

1

2
½LðRÞchð2nFKKÞ�dþ1 ðD19Þ

respectively.
18Although the bounding spin structure depends on the spin

structure of the base and the precise choice of S1 fiber bundle, it
does not necessarily coincide with the antiperiodic spin structure
on the fiber. This is the case for a product total space S1 × B; but
for instance, for the Hopf fibration S1 → S3 → S2, the induced
spin structure is periodic [78].

19This can be obtained via the standard trick of regarding the
self-dual field as a bispinor field, which is valid at the level of
local anomalies; it can also be found in [77].
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2. Application to circle compactifications of IIB

We are now ready to move to our main area of interest, compactifications of type IIB string theory on a circle. It is easiest
to approach the problem using (D11) to write the Chern-Simons terms as a sum of 10D anomaly polynomials of the KK
modes. The contribution of the qth KK mode for the (complex) dilatini and gravitini, as well as self-dual fields, is

Pdilatini;q ¼ −
FKKqð−40F2

KKp1q2 þ 48F4
KKq

4 þ 7p2
1 − 4p2Þ

5760
sgnðmdilatino

q Þ;

PSelf-dual;q ¼
1

90
FKKqð−10F2

KKp1q2 − 6F4
KKq

4 þ p2
1 − 7p2ÞsgnðmSD

q Þ;

PRS;q ¼
FKKqð200F2

KKp1q2 þ 144F4
KKq

4 þ 101p2
1 − 332p2Þ

1920
sgnðmGravitino

q Þ: ðD20Þ

As in (D11), the full anomaly theory is obtained by summing
over KKmodes. Since we are interested in compactifications
of IIB string theory with a duality holonomy, the mass of
each field will take the general expression

mq ¼ qþ α; ðD21Þ

for α dictated by the holonomy of each particular field under
the duality transformation. In general, there is an ambiguity,
since α is a real number, but the action of the duality bundle
on fields only dictates the fractional part of α. However, the
expression (D11) for the η invariant degenerates when mq

crosses zero, as the η invariant changes discontinuously (the
η invariant can jump as one crosses a fermion zero mode).
So (D11) only really works if we restrict α to jαj < 1 for all
fields in type IIB. Regularizing the sums according to [71],

X
q

q sgnðqþ αÞ → −
1

12
þ α2

2
; ðD22Þ

we obtain, for a circle with trivial holonomy (so that
αdilatino ¼ αgravitino ¼ αSD ¼ 0)

dCSIIB ¼ −
1

192
FKKðp2

1 − 4p2Þ: ðD23Þ

In particular, the terms proportional to q3 and q5 cancel out.
Therefore, we recover a term AKK ∧ X8 in the 9d action,
where the gravitational class X8 is exactly right to match the
dual IIA picture, as explained in [70,79]. Thus, our calcu-
lations are consistent with T-duality and reproduce the
known one-loop topological terms of IIB in ten dimensions,
and nothing more. Although this matching between IIA and
IIB perspectives had appeared before in the literature, to our
knowledge the explicit matching of F3

KK, F
5
KK terms seems

to be new.
We can also look at other Mpð2;ZÞ holonomies. For

instance, for a holonomy of Ŝ2 [corresponding to an soð8Þ
stack, so that αdilatino ¼ αgravitino ¼ 1=4; αSD ¼ 0] we obtain
a term

dCSIIB ⊃ −
1

256
FKKðp2

1 − 4p2Þ: ðD24Þ

Presumably, this is canceled by anomaly inflow from the
orientifold planes. This is a subtle topic, which is not fully
understood; Ref. [80] studied this in detail and found some
contributions that did not completely cancel. However, this
reference did not take into account the one-loop contribu-
tion of loop modes as in [70,79]; it would be very
interesting to see if the term (D24) is enough to find a
perfect match with the results of [80], but this is beyond the
scope of this paper. In this case, the terms proportional to
F3
KK and F5

KK no longer cancel; but these contributions can
be canceled by inflow of RR fields, as in [80]. It would be
interesting to study this in the future.
We are now ready for the calculation we set out to

perform: the anomaly inflow on the R7-brane. For either
R7-brane, we must now decompose dilatino and gravitino
into two real fermions, each of which has α ¼ 0; 1=2,
corresponding to the �1 eigenvalues of the action of the
duality bundle in the AOB and DP backgrounds. And the
self-dual field has αSD ¼ 1=2, corresponding to the fact that
Ω and ð−1ÞFL flips its sign. Taking everything into account,
we obtain an anomaly polynomial

FKKð10F2
KKp1 þ F4

KK þ 7p2
1 − 4p2Þ

11520
: ðD25Þ

The last two terms coincide with the anomaly polynomial
of a single Weyl fermion with charge q ¼ 1=2. We cannot
single out this possibility, since, as we will discuss at the
end of the section, there are more possibilities that can
cancel anomalies. However, if the fermion is really present,
it has a natural physical interpretation; the DP and AOB
backgrounds are supersymmetric, and the R7-brane is a
boundary condition that spontaneously breaks that super-
symmetry, so the fermion could be interpreted as a gold-
stino. It transforms in the same R-symmetry representation
as the (spontaneously broken) supercharges. This calcu-
lation constitutes yet another line of reasoning indicating
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that these backgrounds break supersymmetry, comple-
menting the arguments in Sec. II.
There is one last caveat we must discuss. In (D25), the

first two terms match the anomaly of a Weyl fermion, but
this is not the case for the last two. The difference, namely

10F3
KKp1 − F5

KK

5760
; ðD26Þ

can be accounted for by additional terms not coming from
the supergravity action which can contribute to the anomaly
inflow, as in [80], and cancel this additional contribution.
For instance, a term of the form

Z
B2X6 þ B6X2 ðD27Þ

contributes to the anomaly a quantity proportional to [80]

X2X6FKK; ðD28Þ

and so it potentially has the right form to cancel (D26). One
might worry that couplings like

Z
C0X8 or

Z
C4X4 ðD29Þ

could contribute, in principle, to pieces not of the form
X2X8FKK, potentially spoiling the anomaly match with
Weyl fermions we found already for these terms. However,
the R7 preserves one of the two symmetries Ω and ð−1ÞFL .
Either of these flips the sign of C0, C4, forbidding the
terms above.
Finally, we also report on a partial consistency check of

our picture, whose details we do not fully understand.
Consider the case αdilatino ¼ αgravitino ¼ 1=2; αSD ¼ 0, cor-
responding to a circle with antiperiodic boundary con-
ditions. A circle with antiperiodic boundary conditions is
the boundary of a disk, so the corresponding domain wall is
just a simple “cigar” geometry that can in principle be
completely described in supergravity, unlike all other
objects in this paper. A naive expectation would be that

the Chern-Simons terms should vanish identically, since
there is no singular brane. However, the result we find is
instead exactly twice that in (D25), in spite of the fact that
the combination of η invariants that one must take is
completely different. The fact that the two agree, which
hinges on detailed cancellations, has a natural interpreta-

tion. As discussed in Sec. II, Ωspin−GLþð2;ZÞ
1 ¼ Z2 × Z2 is

generated by either R7-brane, and so in particular there is a
bordism taking two Ω or two ð−1ÞFL branes to the vacuum,
i.e. a cigar geometry. As we have seen, configurations with
R7-branes are particularly simple, and devoid of many of
the RR couplings or axio-dilaton gradients that complicate
inflow analysis for other setups; so the anomaly of the two
branes together must simply add up to that of the cigar.
While our study of the anomaly of the cigar geometry

has provided a nice consistency check, it raises questions of
its own. The cigar is a completely smooth geometry in IIB,
so what kind of fields can provide a boundary for the
Chern-Simons terms? A piece of the answer is that, perhaps
surprisingly, there are supergravity chiral zero modes
(dilatino, gravitino,20 and self-dual field) at the core of
the cigar geometry. These zero modes are not directly
detected in a simple application of the index theorem, but
they may still contribute to the anomaly involving Uð1ÞKK.
Some of these modes can be constructed explicitly using
the conformal covariance of the Dirac, Rarita-Schwinger,
and Laplace equations; but we have not been able to show
that the combined contributions of the modes we have
identified add up to twice (D25). It is possible we are
missing additional zero modes that cannot be constructed
easily with our techniques; in any case, we hope to return to
this interesting question in the future.
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