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The detection of entanglement provides a definitive proof of quantumness. Its ascertainment might be
challenging for hot or macroscopic objects, where entanglement is typically weak, but nevertheless present.
Here we propose a platform for measuring entanglement by connecting the objects of interest to an
uncontrolled quantumnetwork,whose emission (readout) is processed to recognize the state of the former, and
hence also the amount of entanglement. First, we demonstrate the platform and its features with generic
quantum systems. As the network effectively learns to recognize quantum states, it is possible to sense the
amount of entanglement after training with only nonentangled states. Furthermore, by taking into account
measurement errors, we demonstrate entanglement sensing with precision that scales beyond the standard
quantum limit and outperforms measurements performed directly on the objects. Finally, we utilize our
platform for sensing gravity-induced entanglement between two masses and predict an improvement of two
orders of magnitude in the precision of entanglement estimation compared to existing techniques.
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I. INTRODUCTION

Following the success of the use of neural networks
across different fields of science [1–4] for detecting
patterns in data, proposals have been set forth in the
quantum regime [5,6]. In this direction, a particular
quantum neural network architecture has emerged—
termed quantum reservoir processing, in analogy to
classical reservoir computing [7]. In such architecture,
the quantum network serving as a processor is composed
of randomly interacting quantum systems (the nodes), not
requiring precise control. Regardless of the task one wants
the quantum network to execute, the training is normally
performed on a separate single output layer (not on the
quantum network), which makes it experimentally
friendly. This architecture has been proposed for execut-
ing classical tasks [5,8,9] (showing performance advan-
tage over classical networks) and quantum tasks such as
state characterization [10–12], quantum state preparation

[13–15], gate compression [16], and quantum metrology
[17] (see Refs. [6,18] for reviews). Remarkably, for
characterization and metrological tasks, it is not necessary
to perform correlation measurements, and it suffices to
measure only local observables such as average occupa-
tion numbers or intensities of the network nodes. The
working mechanism of quantum reservoir processing for
these tasks has been presented in Ref. [19]. The platform
is versatile and it holds the potential to directly estimate
important quantities such as quantum entanglement,
which is the focus of our study.
Entanglement is a special type of correlation between two

or more objects, the presence of which witnesses their
quantum nature [20]. In experiments involving objects that
cannot be accessed directly, their quantum character could
be revealed by using such inaccessible systems as mediators
between two accessible probes. The revelation of an
entanglement gain between the probes then provides
proof of another quantum signature—known as quantum
discord—of the mediators [21]. This experimental scheme
has been put forward as a proposal to probe quantum
signatures of gravity through the observation of gravity-
induced entanglement between masses [22–24] (see also
Refs. [25–32] for recent developments and discussion).
This motivates the general framework presented in this
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paper, which is aimed at sensing (possibly weak) entangle-
ment and its application to gravity-induced entanglement.
To date, there are essentially two main schemes proposed

for the observation of gravity-induced entanglement, which
suffer of different practical difficulties. The Bose et al.-
Marletto-Vedral (BMV) scenario [22,23] requires prepara-
tion of a macroscopic superposition of each of two
nearby massive bodies, whose later dynamics might show-
case gravitational entanglement. The challenging state-
preparation stage is bypassed in the proposal of Ref. [24],
which resorts to continuous-variable entanglement between
masses that begin in natural and easy-to-arrange Gaussian
states. In this scheme, the entanglement detection remains as
a demanding step. We show that a relatively simple neural-
network architecture is sufficient to achieve a two-orders-
of-magnitude improvement in the precision with which
entanglement of massive systems can be estimated, when
compared to state-of-the-art values [33].
Specifically, we utilize a reservoir quantumnetwork (QN)

for precise entanglement sensing. In particular, quantum
objects whose entanglement we want to scrutinize (the
input) are put in contact with a QN. The observables from
the QN—which can be as simple as the mean excitation
numbers of the nodes—are measured and postprocessed.
The latter is performed on a separate single output layer,
which linearly combines the measured observables from the
QN and produces output signals. This linear function
(weights and biases) of the output layer is learned through
training so that the output signals can be used to estimate
quantum entanglement of the input objects. Our general
platform is particularly useful in situations where the input is
not accessible for direct measurements, the latter are com-
plicated (this is particularly the case for those that necessitate
conditional or correlation measurements), or in cases where
the input is less resilient to measurement errors than the QN.
First, we will introduce the general framework with generic
quantum systems. We show that a QN can learn from a
random set of nonentangled input states and nevertheless is
able to estimate the amount of entanglement at the testing
stage. For amore realistic scenario consideringmeasurement
errors, we show that the entanglement precision scales better
than ΔE ∝ 1=

ffiffiffiffiffi
N

p
, where N is the number of measured

observables. We shall refer to 1=
ffiffiffiffiffi
N

p
scaling as the standard

quantum limit (SQL). Finally, we demonstrate an explicit
application of our framework and its features to the recent
endeavour whose goal is to reveal quantum features of
gravity bymeasuring gravity-induced entanglement between
masses. In particular, we show that measurements on cavity
modes, which have interacted with the masses, can be
postprocessed to estimate the gravity-induced entanglement.
Importantly, our approach offers better sensitivity compared
to direct measurements on the masses.

II. THE GENERAL FRAMEWORK

Our thought platform is depicted in Fig. 1. Consider that
quantum objects, whose entanglement is to be estimated,

serve as the input. They come in contact with a processor,
namely, a QN composed of quantum nodes. Note that
the QN nodes require minimal control, e.g., they can be
randomly interacting with each other, the input, and
environment. We also allow that they are pumped by
external coherent sources (e.g., in an optical system, lasers).
The purpose of the contact is a flow of information from the
input to the QN. By retrieving the observables from the QN
and processing them via a single output layer, one obtains
output signals. We will show that by training a set of
weights and biases in the single output layer, the output
signals can be used to estimate entanglement of the input
objects.
Let us consider generic quantum systems and their

dynamics with which we demonstrate the general frame-
work described above. In what follows, we consider
continuous-variable systems (bosons). Additionally, the
platform also works for generic discrete systems (e.g.,
qubits), see Appendix A for details, as well as hybrid
discrete-continuous systems, see Appendix B. We begin by
modeling the dynamics of the input ρin and the QN ρqn for a
time τ, after which the observables of the QN are recorded.
The coherent part of the dynamics is described by the
following Hamiltonian, written in a frame rotating with the
pump frequency:

H ¼
X2
n¼1

ℏΔnâ
†
nân þ

XM
m¼1

ℏðΛmb̂
†
mb̂m þ Pmðb̂m þ b̂†mÞÞ

þ
X
⟦n;m⟧

ℏKnmF ðân; b̂mÞ þ
X

⟦m;m0⟧

ℏJmm0F ðb̂m; b̂m0 Þ;

ð1Þ

where ân (b̂m) denotes the annihilation operator for the nth
input object (mth QN node). The detunings of all local
frequencies fωn;Ωmg with respect to the frequency of the
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FIG. 1. Illustration of a quantum neuromorphic platform for
entanglement sensing. It involves to-be-measured input objects
that are connected to a quantum network composed of uncon-
trolled nodes having random interactions with the input Knm and
between themselves Jmm0 . Both the input and the nodes interact
with their environments, denoted by γn and κm, respectively. The
observables from the QN are processed by a trained output layer,
producing a signal that estimates input entanglement.
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pumpΘp are denoted byΔn¼ωn−Θp andΛm ¼ Ωm − Θp.
The contact between the input and QN is represented by the
couplings Knm, whereas the interactions within the QN are
denoted by Jmm0. For simplicity, we take the operator
function to represent interactions that are ample in nature,
i.e., F ðX̂; ŶÞ≡ X̂Ŷ† þ ŶX̂†. Each QN node may be coher-
ently driven with strength Pm. The bracket ⟦·; ·⟧ denotes a
particular configuration of the couplings, e.g., all-to-all.
We note that the simulation of the system can be made

efficient when dealing with Gaussian states, see Ref. [34]
for a review. These tools are applicable as the generic
dynamics we consider here preserves Gaussianity, i.e., it
involves a Hamiltonian that is at most quadratic in
operators (Eq. (1)) and Gaussian dissipative processes
(see below). In this case, a complete description of the
system is contained in a covariance matrix (CM) V with
elements Vij ≡ huiuj þ ujuii=2 − huiihuji, where the vec-
tor u≡ ½q̂1; r̂1; q̂2; r̂2; x̂1; p̂1;…; x̂M; p̂M�T is composed
of dimensionless position and momentum quadratures
(of the input and QN nodes, respectively) that are
expressed as q̂n ¼ ðân þ â†nÞ=

ffiffiffi
2

p
, r̂n ¼ ðân − â†nÞ=ði

ffiffiffi
2

p Þ,
x̂m ¼ ðb̂m þ b̂†mÞ=

ffiffiffi
2

p
, and p̂m ¼ ðb̂m − b̂†mÞ=ði

ffiffiffi
2

p Þ. One
can obtain the dynamics of the quadratures in the
Heisenberg picture from the Hamiltonian of Eq. (1),
which with added noise terms gives rise to a set of
Langevin equations that can be written in a matrix form,
_uðtÞ ¼ AuðtÞ þ hðtÞ. The drift matrix A contains the
parameters fΔn;Λm; Knm; Jmm0 ; γn; κmg and the vector
hðtÞ incorporates the pump and noise terms, see
Appendix C for details. The noise terms are of uncolored
Gaussian type, and written as

ffiffiffiffiffiffiffi
2γn

p
âinn and

ffiffiffiffiffiffiffiffi
2κm

p
b̂inm,

where hâinn ðtÞâin;†n0 ðt0Þi¼ δnn0δðt− t0Þ and hb̂inmðtÞb̂in;†m0 ðt0Þi ¼
δmm0δðt − t0Þ [35].
The solution of the Langevin equations is given by

uðtÞ ¼ WþðtÞuð0Þ þWþðtÞ
Z

t

0

dt0W−ðt0Þhðt0Þ; ð2Þ

where W�ðtÞ ¼ expð�AtÞ. This further gives the dynami-
cal equation for the CM, _V ¼ AVðtÞ þ VðtÞAT þ D, where
D ¼ diag½γ1; γ1; γ2; γ2; κ1; κ1;…; κM; κM�. The observables
of the QN hÔmki ¼ trðρðτÞÔmkÞ (k labels observables from
the samemth node) at time τ can be obtained from uðτÞ and
VðτÞ. For more detailed expressions, see Appendix C. Here
we consider local observables, for simplicity. We will see
that it is sufficient to work with average occupation
numbers (intensities) as the observables, although any
additional variables that can be measured can further help.
The observables will be processed in an output layer upon
which a training procedure is used to find a linear
combination of the observables to produce output signals.
The training is performed with ridge regression using a

random set of input CMs fVin;lgNtr
l¼1 as follows. Each of the

input CMs will be in contact with the QN and produce a set

of Nob observables at time τ, recorded as a vector vl.
The observables are used to first estimate the input
state (its unique elements), from which entanglement is
calculated. In the present case, each element of the CM
(labeled s) is estimated linearly as fs ¼ βs½1; vl�, where
βs ¼ ½β0; β1;…; βNob

� contains the coefficients to be
obtained with ridge regression. In particular, βs ¼
ðXTX þ λ1Þ−1XTYs, where X ¼ ½1; vT1 ; 1; vT2 ; � � � ; 1; vTNtr

�
contains all the observables in the training set, Ys contains
the target sth element, and λ is the ridge parameter. This
allows us to obtain an estimated input CM Ṽin from the
trained output layer fβsg, given measured QN observables.
Consequently, the estimated entanglement is computed
using the logarithmic negativity E ¼ LeðṼinÞ [36]. In what
follows, we define the entanglement estimation error as

ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNte

l0¼1

ðEest;l0 − Ein;l0 Þ2
Nte

vuut ; ð3Þ

where Nte is the number of random input CMs in the
testing set.

III. ENTANGLEMENT ESTIMATION

Here we present the performance of entanglement esti-
mation. In simulations, the parameters are taken as random
fΔn;Λm;Knm;Jmm0 ;Pm;10γn;10κmg∈½0;1�Γ, where Γ is an
overall strength in units of frequency, and evolution time
τ ¼ π=2Γ. One set of random parameters will be taken to
define one particular QN. When assessing the performance
of the scheme, we will average over different parameter
choices, to provide a general assessment of the architecture
rather than any specific parameter choice. Indeed, one
advantage of our scheme is that the considered systems
do not need precise control of their parameters.
Figure 2(a) shows the entanglement estimation error

against the number of QN nodes. The sudden shift shown
by the arrow indicates ΔE ∼ 10−10 is obtained for QNs
having at least 4 nodes. This can be understood as follows.
Recall that the number of independent parameters required
to fully characterize an N-mode Gaussian state is
2Nð2N þ 1Þ=2. This suggests that to faithfully estimate
the state of a two-mode Gaussian input, one requires at least
10 observables from the QN. This is fulfilled by having at
least 4 QN nodes as each node is itself in a Gaussian state
and hence requires three independent real parameters (here,
we take two diagonal and one off-diagonal entries from the
local CM) to be determined. The inset shows the entangle-
ment profile of the input CM Vin used in both training and
testing, with Ntr ¼ 50 and Nte ¼ 100, respectively. See
Appendix D for the generation of random input CMs. A
closer look at the comparison between the estimated and
input entanglement during testing is plotted in Figs. 2(b)
and 2(c) for the case where the QN is composed of 3
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and 4 nodes, respectively. It can be seen that the latter offers
minute errors.
We have also simulated the case where we record one

observable (the mean excitation hb̂†mb̂mi) from each QN
node. In this case, one requires either the addition of two-
photon pump, i.e.,

P
mP

0
mðb̂2mþb̂†2m Þwith random strengths

(relatively weaker) P0
m ∈ ½0; 1�Γ=10 or the presence of

ultrastrong coupling F ðb̂m; b̂m0 Þ ¼ ðb̂m þ b̂†mÞðb̂m0 þ b̂†m0 Þ.
The reason for this is that simpler interactions or drives in
Eq. (1) are not sufficient for complex information transfer
during the dynamics, which would allow the mean exci-
tation of the QN nodes to completely recover information
regarding the input objects. We found that the shift to low
estimation error requires at least 10 QN nodes, again
consistent with the number of independent parameters of
the input CM, see Appendix E for details.
As the scheme estimates the CM of the input objects

before computing entanglement, it opens up the possibility
to use a training set consisting of separable input CMs
without affecting its entanglement-testing capabilities. We
used the same setup as in Fig. 2(a) based on 4 QN nodes
and performed training using only nonentangled input
CMs. The testing was performed with entangled input

CMs, finding a profile similar to the inset in Fig. 2(a).
Indeed, the comparison between the estimated and input
entanglement is similar to the one in Fig. 2(c) (see
Appendix F for details). We note that although each input
CM in the training set is not entangled, they are still
correlated. Similarly, learning from separable input objects
is also possible for discrete systems (cf. Appendix F).

IV. SCALING BEYOND THE SQL

For a more realistic model, we incorporate measurement
errors of the observables from the QN. The observables
now read hÔmki → hÔmki þ εmk, where fεmkg are gener-
ated from a normal distribution with zero mean and
standard deviation ζ=2. In what follows, we take
ζ ¼ 10−3. Similar to Fig. 2(a), we present the estimation
errors in Fig. 3(a). The dots indicate the scaling of the error
with respect to the number of nodesM. From Fig. 3(a), one
can see the signature of the shift previously observed in
Fig. 2(a). In particular, the scaling of the estimation error
becomes clearer for M ≥ 4 in Fig. 3(a). It can be seen that
ΔE can exhibit scaling beyond the dashed curve, i.e.,
beyond the SQL ∝ 1=

ffiffiffiffiffi
N

p
¼ 1=

ffiffiffiffiffiffiffi
3M

p
∝ 1=

ffiffiffiffiffi
M

p
.

Another alternative to obtain independent observables
from the QN is through time-multiplexing. For instance, we
consider a single observable from each QN node, i.e., the
mean excitation hb̂†mb̂mi and measure it at T different
times. This gives a total of Nob ¼ MT observables. We
demonstrate the case for T ¼ 3, i.e., at τ ¼ f1; 2; 3gπ=2Γ
in Fig. 3(b). In this case, we have added random two-
photon pump P0

m ∈ ½0; 1�Γ=10 (see Appendix E for the case
with ultrastrong coupling). One can see similar scaling as in
panel (a).

V. GRAVITY-INDUCED ENTANGLEMENT

We present an application of the entanglement sensing
scheme to estimate gravity-induced entanglement (GIE)
generated between masses. Consider two identical spherical
objects, each with mass m, trapped in a 1D harmonic
potential. This configuration has been theoretically predicted
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FIG. 2. Performance of entanglement sensing for generic
dynamics. (a) Estimation error vs number of nodes used in the
QN. The inset shows the profile of entanglement of the randomly
generated input CMs in both training and testing. Panels (b) and
(c) present explicit comparison between the estimated and input
entanglement during testing where the QN is composed of 3 and
4 nodes, respectively.
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to generate entanglement between the masses through
gravitational interactions [24]. Here, each mass is probed
by a cavity mode, see Fig. 4(a). The probes are turned on by
the pump on the respective cavities, Ea (left) and Eb (right).
This way, the observables from the cavity modes can be
processed through an output layer, which then produces an
estimate of the GIE.
First, we consider the dynamics without the probes, in

which the Hamiltonian reads

H0 ¼
ℏω
2

ðp̂2
A þ x̂2A þ p̂2

B þ x̂2BÞ −
ℏGm
ωL3

ðx̂A − x̂BÞ2; ð4Þ

where x̂AðBÞ denotes the dimensionless displacement of
mass AðBÞ, ω the frequency of the trapping potentials, and
L the equilibrium distance between the masses. We have
used x̂AðBÞ ¼ xAðBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mω=ℏ

p
and p̂AðBÞ ¼ pAðBÞ=

ffiffiffiffiffiffiffiffiffiffi
ℏmω

p
,

where xAðBÞ and pAðBÞ are the displacement and momentum
operators, respectively. The gravitational interaction is
expanded from −Gm2=ðL − ðx̂A − x̂BÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p Þ up to a
quadratic term, ðx̂A − x̂BÞ2, which is necessary for

entanglement generation as it contains nonlocal coupling
∝ x̂Ax̂B acting on both masses. We have neglected the
constant and linear term ∝ ðx̂A − x̂BÞ as the former is
simply an energy offset and the latter a bilocal operator
(cannot create entanglement) that constitutes to shifting the
equilibrium position of the masses. One can construct a set
of Langevin equations from Eq. (4) with the addition of
damping γ and Brownian-like noises ξ̂AðBÞ affecting the
masses (see Appendix G for details). As we deal with
Gaussianity-preserving dynamics, we use the tools for
continuous-variable systems. This includes the description
of the system within a CM and its evolution to Vðτ0Þ from
which properties of the system can be calculated (see
Appendix G).
At time τ0, the probes are turned on, where the

Hamiltonian (in a rotating frame with the frequency of
the lasers) now reads

H ¼ H0 þ ℏΔ0aâ†âþ ℏΔ0bb̂
†b̂þ iℏEaðâ† − âÞ

þ iℏEbðb̂† − b̂Þ − ℏG0aâ†âx̂A þ ℏG0bb̂
†b̂x̂B; ð5Þ

where ĵ ¼ â; b̂ denotes the annihilation operator of the left
and right cavity mode, Δ0j ¼ ωj − ωlj the cavity-laser
detuning, Ej ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pjκj=ℏωlj

p
the driving strength of the

cavity, Pj the laser power with frequency ωlj, κj ¼
πc=2FjLj the cavity decay rate with finesse Fj and length

Lj, G0j ¼ ðωj=LjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
the optomechanical coupling

strength. From Eq. (5), one can construct a set of linearized
Langevin equations, which are then used to evolve the CM
Vðτ0Þ toVðτ0 þ τÞ at which the observables from the cavity
modes are recorded.
In what follows, we take into account the features shown

previously for entanglement sensing using generic systems.
As the task is estimating entanglement of a two-mode CM
(of the masses), at least 10 observables are required for
recording. This is taken from 10 independent CM elements
of the joint cavity modes. From the central limit theorem it
follows that ζ=2 ∝ 1=

ffiffiffiffiffiffiffiffiffi
Nrep

p
, where Nrep is the number of

repetitions that an element is measured. To make a
comparison with entanglement measurement in Ref. [33]
whereby Nrep ¼ 104, we shall assume error statistics with
ζ ∼ 2=

ffiffiffiffiffiffiffiffiffi
Nrep

p ¼ 2 × 10−2. As the initial CM at t ¼ 0,
we use squeezed (local) thermal state for the masses
diag½e2r0 ; e−2r0 ; e2r0 ; e−2r0 �ð1þ 2n̄Þ=2 with r0 being the
squeezing strength and n̄ the mean thermal phonon number,
and vacuum for the cavity modes. The training is performed
using random separable input states Vinðτ0Þ, which are
generated using random n̄ > 0. This is such that entangle-
ment does not yet grow for initial thermal states within τ0.
On the other hand, testing is performed with n̄ ¼ 0. For
better precision, one can use time-multiplexing during the
dynamics with the probes at f1; 2;…; T gτ.
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FIG. 4. Sensing gravity-induced entanglement (GIE) between
masses. (a) The setup of two trapped masses interacting gravi-
tationally. After a time τ0, two cavity modes are turned on,
whose observables are processed to estimate the GIE. (b) The
estimated GIE for different initial evolution of the masses τ0 vs
testing instances. One observes that the standard deviation
δE < 10−4. The parameters used in simulations are m ¼ 1 kg
made of Osmium with density 22.59 g=cm3, ω ¼ 0.1 Hz with
ω=γ ≫ 1, r0 ¼ 1.73, τ ¼ 1 μs, LaðbÞ ¼ 25 mm, laser wavelength
1064 nm, PaðbÞ ¼ 50 mW, fκa; κb;Δa;Δbg ¼ 2.36 × 105 Hz,
L ≃ 2R with R the radius of the mass, and ζ=2 ¼ 10−2. See
Appendix G for references of the parameters.

QUANTUM NEUROMORPHIC APPROACH TO EFFICIENT … PHYS. REV. D 107, 086014 (2023)

086014-5



We present the estimated GIE for different initial
accumulation time τ0 in Fig. 4(b). We have taken T ¼ 4
(see Appendix H for the scaling of standard deviation δE
against T ), Ntr ¼ 50, and Nte ¼ 100. The standard devia-
tions of the GIE in Fig. 4(b) follow δE < 10−4, which is
two orders of magnitude better than the experimentally
achieved ∼10−2 in Ref. [33]. We also computed the
estimated GIE from direct measurements, which is done
by adding measurement errors directly to the elements of
Vðτ0Þ. In this case, standard deviation δE ∼ 10−4 is only
possible if the system permits three orders of magnitude
weaker measurement error strength ζ=2 ¼ 10−5. This
demonstrates the efficiency of our method, which requires
less number of single-shot measurements Nrep to obtain
precision comparable to measurements directly on the
masses, i.e., with noisy Vðτ0Þ.
Figure 4(b) shows that our method is able to estimate

GIE efficiently for τ0 ¼ 0.5 s. We note that this is shorter
than the coherence times resulting from thermal photons
from environment and collisions with air molecules (both
in the range of about 5 s) if the experiments were conducted
on Earth with liquid helium in ultrahigh vacuum [24].

VI. DISCUSSION

We have shown that a simple neural network (quantum
reservoir processor) can be used for efficient estimation of
quantum entanglement. Our main motivation for develop-
ment of such a method is provided by present efforts to
design experiments capable of detection of gravity-induced
entanglement. The introduced method shows that the
entanglement precision can be improved by two orders
of magnitude from what was achieved in Ref. [33].
The entanglement sensing step is crucial for masses

initialized in natural Gaussian states and any improvement
on it relaxes other requirements of the setup. The most
direct one is the requirement on coherence times: since
smaller values of entanglement become detectable, the
system can be measured earlier. With entanglement esti-
mation accuracy on the order 10−4 detection of GIE could
be performed within decoherence times available on Earth,
whereas accuracy 10−2 would rather require an experiment
in space [24]. Moreover, in order to understand how other
experimental parameters can be changed, let us recall that
the figure of merit for entanglement generated via gravity
between trapped masses m separated by a distance L is
given by 2Gm=ω2L3, where ω characterizes the trapping
potential or spread of the initial wave function of each mass
[24]. Therefore, better entanglement precision also trans-
lates to smaller masses in the experiment that could be
placed further apart.
The method presented in this paper also holds potential

for other settings where one estimates entanglement of the
easily accessed probes with precision advantage and
reveals quantumness of a macroscopic mediating object.

In particular, this includes an extension of Refs. [37–40]
towards showing quantum properties of photosynthetic
bacteria [41] or that of a macroscopic mechanical mem-
brane in the membrane-in-the-middle optomechanics set-
ting [21,42,43]. Additionally, we note that our scheme can
work not only for continuous-variable or discrete systems,
but also hybrid configurations such as discrete systems as
input and continuous-variable systems as the QN or vice
versa (see Appendix B).
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APPENDIX A: GENERIC DISCRETE SYSTEMS:
ENTANGLEMENT ESTIMATION AND SCALING

Here, we consider that all quantum systems, i.e., the
input objects and the QN nodes, are qubits. Each qubit has
two energy levels, the ground state jgi and excited state jei.
Let us take the generic Hamiltonian in Eq. (1) in the main
text, where now ân (b̂m) denotes the lowering operator
jgihej for the nth input qubit (mth QN node).
In addition, the input and QN nodes may interact with

their environment, adding an incoherent element to the
dynamics. We consider a simple dissipative process such
that the dynamics of the whole system is described within
the Lindblad master equation

_ρ¼−
i
ℏ
½H;ρ�þ

X
n

γn
2
Lðρ; ânÞþ

X
m

κm
2
Lðρ; b̂mÞ; ðA1Þ

where Lðρ; X̂Þ≡ 2X̂ρX̂† − fX̂†X̂; ρg and the QN nodes
are initialized in their ground state jgi. The dissipation
rate of the nth input and mth QN node are denoted by γn
and κm, respectively. These processes are not essential
for our scheme, but are included to show robustness in
their presence. After a time τ, the observables hÔmki ¼
trðρðτÞÔmkÞ are recorded as a vector v and sent to a trained
output layer (the training with ridge regression is described
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in the main text). Note that the index k denotes different
observables from the same mth QN node. The trained
output layer is used to estimate the unique elements of the
input state, giving us ρ̃in, from which the entanglement is
quantified using negativity E ¼ Neðρ̃inÞ [36].
In simulations, the system parameters are randomized in

the same way as that described in Sec. III in the main text.
The procedure to generate random input states for training
fρin;lgNtr

l¼1 and testing fρin;l0 gNte
l0¼1

are described below in
Sec. D.
We tested the scheme to estimate entanglement of

two-qubit input states. The estimation error is plotted in
Fig. 5(a) against the number of qubits used in the QN. Here
we recorded three observables from each qubit in the QN at
τ ¼ π=2Γ, i.e., hσxi, hσyi, and hσzi, where σfx;y;zg stand for
the Pauli matrices. Similar shift is seen whereΔE ∼ 10−11 is
obtained for a QN with at least 5 qubits. This is because
to fully characterize an N-qubit input state, one requires
22N − 1 parameters. This way, to estimate entanglement of
a two-qubit input state ideally, at least 5 qubits are needed
in the QN, corresponding to a total of 15 observables. The
direct comparison between the estimated and input entan-
glement can be seen in Figs. 5(b) and 5(c) when the QN is
composed of 4 and 5 qubits, respectively. We note that, in
principle, if one were to record one observable from each
qubit in the QN, it would require at least 15 qubits, which is
too demanding to simulate on classical computers. In this
case, we show below that time-multiplexing is of help.
We also performed simulations by taking into account

measurement errors with ζ ¼ 10−3. We present the esti-
mation errors in Fig. 6(a) against the number of qubits used
in the QN. One can also utilize time-multiplexing with only
measurements of hb̂†mb̂mi from each QN node. An example
of this is plotted in Fig. 6(b), where the measurements
are performed three times at τ ¼ f1; 2; 3gπ=2Γ on each
QN node. One can see that both panels in Fig. 6 show

error scaling beyond the SQL (dashed curves) ∝ 1=
ffiffiffiffiffi
N

p
∝

1=
ffiffiffiffiffiffiffi
3Q

p
∝ 1=

ffiffiffiffi
Q

p
.

APPENDIX B: HYBRID SYSTEMS

Here we show that the general scheme introduced in the
main text is not limited to particular quantum systems (only
continuous-variable or discrete systems). In what follows,
we demonstrate this with a simple hybrid system: discrete
input with continuous-variable QN. It is important to note
that as this involves discrete systems, the dynamics will not
preserve Gaussianity of the continuous-variable systems in
general. Covariance matrix does not fully describe the
involved continuous-variable systems. Therefore, we
describe all quantum systems by their density matrices
(truncated dimension for continuous-variable systems
at d ¼ 20).
Let us demonstrate sensing entanglement of two-qubit

input with a single bosonic mode as the QN. In particular,
take the Hamiltonian as
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FIG. 5. (a) Estimation error vs number of qubits used in the QN. The inset shows the profile of entanglement of the randomly
generated input states in both training and testing. Panels (b) and (c) present explicit comparison between the estimated and input
entanglement during testing where the QN is composed of 3 and 4 qubits, respectively.
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Number of qubits

FIG. 6. (a) Estimation error plotted against the number of qubits
Q in QN. Panel (b), taking only mean excitation from each QN
node as the observable with time-multiplexing performed T ¼ 3
times. The scaling for SQL is given by the dashed curve in
each panel.
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H ¼ ℏ
X2
n¼1

Δnâ
†
nân þ ℏΛb̂†b̂þ ℏ

X2
n¼1

Knðânb̂† þ b̂â†nÞ

þ ℏPðb̂þ b̂†Þ; ðB1Þ
where ân denotes the lowering operator (jgihej) for the nth
input qubit and b̂ is the bosonic lowering operator for the
single QN node. For simplicity, we take the evolution as
unitary, i.e., ρðtÞ ¼ Ûρð0ÞÛ† with Û ¼ expð−iHt=ℏÞ. The
initial state is random ρin for the qubits and vacuum j0i for
the QN node.
The parameters are randomized as fΔn;Λ; Kn; 2Pg ∈

½1; 2�Γ. As the readout, we take the mean excitation of the
QN node hb̂†b̂iwith time-multiplexing at T different times,
i.e., τ ¼ f1; 2;…; T gπ=10Γ. We tested this architecture for
10 different realizations of the parameters, where in each
we performed training with Ntr ¼ 50 and testing with
Nte ¼ 100. Our simulations show a transition to low entan-
glement estimation error ΔE ∼ 10−8 for T ≥ 15. Again, this
is because it requires at least 15 different parameters to
characterize two-qubit input states.
Note that one can also apply the scheme to estimate

entanglement of continuous-variable input systems (with
truncated dimension) using discrete systems as the QN. In
general, the following requirements set the guidelines for a
particular setup to be viable:
(1) The number of independent observables from the

QN nodes has to be at least equal to the number of
independent parameters required to characterize the
state of the input objects.

(2) A dynamics ensuring that sufficient information
about the inputs are carried forward to the QN
observables. This requires the essential interactions
between the input and QN nodes as well as within
the QN nodes.

(3) The independent QN observables may be obtained
from different QN nodes or/and time-multiplexing
(measurement of observables at different times).
Normally, for simpler QN observables such as
mean excitations, relatively richer dynamics is
necessary. For continuous-variable systems, the
latter can be achieved by, e.g., adding two-photon
pumping for the QN nodes, having ultrastrong
coupling between the involved quantum systems,
or even nonlinearity.

For a more quantitative way of assessing the information
complete criteria and robustness of a particular scheme, we
refer to Ref. [19].

APPENDIX C: GENERIC CONTINUOUS-
VARIABLE SYSTEMS: DETAILS

From the Hamiltonian of Eq. (1) in the main text, a
set of Langevin equations is obtained from the equations

of motion in Heisenberg picture and the addition of
noise terms:

_̂an ¼ −ðγn þ iΔnÞân − i
X
m

Knmb̂m þ
ffiffiffiffiffiffiffi
2γn

p
âinn ;

_̂bm ¼ −ðκm þ iΛmÞb̂m − i
X
n

Knmân − i
X
m0

Jmm0 b̂m0

− iPm þ
ffiffiffiffiffiffiffiffi
2κm

p
b̂inm; ðC1Þ

where âinn and b̂inm are zero mean Gaussian noise operators
with correlation functions hâinn ðtÞâin;†n0 ðt0Þi ¼ δnn0δðt − t0Þ
and hb̂inmðtÞb̂in;†m0 ðt0Þi ¼ δmm0δðt − t0Þ [35]. This allows us to
write the Langevin equations in terms of dimensionless
position and momentum quadratures

_̂qn ¼ −γnq̂n þ Δnr̂n þ
X
m

Knmp̂m þ
ffiffiffiffiffiffiffi
2γn

p
q̂inn

_̂rn ¼ −γnr̂n − Δnq̂n −
X
m

Knmx̂m þ
ffiffiffiffiffiffiffi
2γn

p
r̂inn

_̂xm ¼ −κmx̂m þ Λmp̂m þ
X
n

Knmr̂n

þ
X
m0

Jmm0 p̂m0 þ
ffiffiffiffiffiffiffiffi
2κm

p
x̂inm

_̂pm ¼ −κmp̂m − Λmx̂m −
X
n

Knmq̂n −
X
m0

Jmm0 x̂m0

−
ffiffiffi
2

p
Pm þ

ffiffiffiffiffiffiffiffi
2κm

p
p̂in
m: ðC2Þ

We have used the following quadrature relations:

q̂n ¼
ânþ â†nffiffiffi

2
p ; r̂n ¼

ân− â†n
i

ffiffiffi
2

p ; x̂m ¼ b̂mþ b̂†mffiffiffi
2

p ;

p̂m ¼ b̂m− b̂†m
i

ffiffiffi
2

p ; q̂inn ¼ âinn þðâinn Þ†ffiffiffi
2

p ; r̂inn ¼ âinn − ðâinn Þ†
i

ffiffiffi
2

p ;

x̂inm ¼ b̂inmþðb̂inmÞ†ffiffiffi
2

p ; p̂in
m ¼ b̂inm− ðb̂inmÞ†

i
ffiffiffi
2

p : ðC3Þ

The Langevin equations in Eq. (C2) can be written in a
matrix form

_uðtÞ ¼ AuðtÞ þ hðtÞ; ðC4Þ

where the vector

u ¼ ½q̂1; r̂1; q̂2; r̂2; x̂1; p̂1; x̂2; p̂2;…; x̂M; p̂M�T ðC5Þ

contains the quadratures, the drift matrix reads
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A ¼

2
6666666666666666666666664

−γ1 Δ1 0 0 0 K11 0 K12 � � � 0 K1M

−Δ1 −γ1 0 0 −K11 0 −K12 0 � � � −K1M 0

0 0 −γ2 Δ2 0 K21 0 K22 � � � 0 K2M

0 0 −Δ2 −γ2 −K21 0 −K22 0 � � � −K2M 0

0 K11 0 K21 −κ1 Λ1 0 J11 � � � 0 J1M
−K11 0 −K21 0 −Λ1 −κ1 −J11 0 � � � −J1M 0

0 K12 0 K22 0 J11 −κ2 Λ2 � � � 0 J2M
−K12 0 −K22 0 −J11 0 −Λ2 −κ2 � � � −J2M 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 K1M 0 K2M 0 J1M 0 J2M � � � −κM ΛM

−K1M 0 −K2M 0 −J1M 0 −J2M 0 � � � −ΛM −κM

3
7777777777777777777777775

; ðC6Þ

and the vector

h ¼

2
6666666666666666666666664

0

0

0

0

0

−
ffiffiffi
2

p
P1

0

−
ffiffiffi
2

p
P2

..

.

0

−
ffiffiffi
2

p
PM

3
7777777777777777777777775

þ

2
6666666666666666666666664

ffiffiffiffiffiffiffi
2γ1

p
q̂in1ffiffiffiffiffiffiffi

2γ1
p

r̂in1ffiffiffiffiffiffiffi
2γ2

p
q̂in2ffiffiffiffiffiffiffi

2γ2
p

r̂in2ffiffiffiffiffiffiffi
2κ1

p
x̂in1ffiffiffiffiffiffiffi

2κ1
p

p̂in
1ffiffiffiffiffiffiffi

2κ2
p

x̂in2ffiffiffiffiffiffiffi
2κ2

p
p̂in
2

..

.

ffiffiffiffiffiffiffiffi
2κM

p
x̂inMffiffiffiffiffiffiffiffi

2κM
p

p̂in
M

3
7777777777777777777777775

ðC7Þ

contains the pump and noise terms. The solution to Eq. (C4)
is given by

uðtÞ ¼ WþðtÞuð0Þ þWþðtÞ
Z

t

0

dt0W−ðt0Þhðt0Þ; ðC8Þ

where W�ðtÞ ¼ exp ð�AtÞ. One can then form the CM at
time t and show that it follows

dV
dt

¼ AVðtÞ þ VðtÞAT þ D; ðC9Þ

where D ¼ diag½γ1; γ1; γ2; γ2; κ1; κ1; κ2; κ2;…; κM; κM�.
In simulations, the initial CM of the system is taken as

Vð0Þ ¼
�
Vinð0Þ 0

0 Vqnð0Þ
�
; ðC10Þ

where Vinð0Þ is the initial CM for the input objects,
whereas that for the QN nodes is initiated with vacuum
Vqnð0Þ ¼ 1=2.

APPENDIX D: THE GENERATION OF RANDOM
INPUT STATES FOR GENERIC DYNAMICS

For continuous-variable systems, the random two-mode
input CMs are generated dynamically as follows. We take a
Hamiltonian of the form

H ¼ ℏΔ1â
†
1â1 þ ℏΔ2â

†
2â2 þ ℏKðâ1â†2 þ â2â

†
1Þ

þ ℏP0
1ðâ1â1 þ â†1â

†
1Þ þ ℏP0

2ðâ2â2 þ â†2â
†
2Þ; ðD1Þ

where the two modes are coupled and pumped (two-photon
drives). The drives have terms similar to single mode
squeezing operations. As the initial CM, we take vacuum
1=2. The parameters are taken as random, i.e.,
ðΔ1;Δ2; K; P0

1; P
0
1Þ ∈ ð1; 1; 1; 0.3; 0.3Þ½0; 1�Γ, and the evo-

lution time τ0 ¼ π=2Γ. The random input CMs used for
continuous-variable systems in the main text are sampled
from Vðτ0Þ. The entanglement profile resulting from this
distribution is plotted in the inset of Fig. 2(a) in the main
text. For the scheme where learning is done with non-
entangled states, the evolution time is taken as τ0 ¼ 1=2Γ
with thermal states (CM is 31=2) as the initial condition.
For discrete systems (qubits), the random input states are

sampled as follows:

Z=10 ¼ 2ðυ1 þ iυ2Þ − ð1þ iÞJ þ H:c:;

ρin ¼ ZZ†=trðZZ†Þ; ðD2Þ

where υ1;2 is a random 4 × 4 matrix whose elements are
sampled from standard normal distribution and J is a 4 × 4
matrix of ones. This sampling results in entanglement profile
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shown in the inset of Fig. 5(a). For generating classically
correlated states, one can simply destroy the entanglement in
ρin by projective measurements on one input object, i.e.,
ρin;sep ¼ Π1ρinΠ1 þ Π2ρinΠ2 with fΠ1;Π2g as random pro-
jection operators and Π1 þ Π2 ¼ 1.

APPENDIX E: ENTANGLEMENT ESTIMATION
FOR CONTINUOUS-VARIABLE SYSTEMS USING

MEAN EXCITATIONS

In the main text, we have demonstrated that by taking
three observables from each QN node, the shift to low
estimation error requires at least 4 QN nodes, see Fig. 2(a).
Here, we present the case where we utilize the mean
excitation from each QN node instead. In this case, we
present two options both of which require additional
(necessary) ingredient. First, one can add two-photon pump
to each QN node (the two-photon pump can be relatively
weaker in strength than the single-photon pump). This is
carried out by adding

P
m P0

mðb̂mb̂m þ b̂†mb̂
†
mÞ to the

Hamiltonian of Eq. (1) in the main text. For simulations,
we take P0

m ∈ ½0; 1�Γ=10. We present the estimation error
in Fig. 7(a), where the shift to low estimation error is
achieved for a QN having at least 10 nodes. For option
two, the interactions between the QN nodes are taken

following the ultrastrong coupling type. In this case, one
simply replaces the operator function in Eq. (1) with
F ðb̂m; b̂m0 Þ ¼ ðb̂m þ b̂†mÞðb̂m0 þ b̂†m0 Þ. Similarly, the esti-
mation error is plotted in Fig. 7(b).
Similar to Fig. 3(b) in the main text, we present the

estimation error in Fig. 7(c) for continuous-variable sys-
tems using ultrastrong coupling. The time-multiplexing is
T ¼ 3 and the strength of measurement errors is ζ ¼ 10−3.
We appreciate that the function of the quantum reservoir is

tomap the input state (or its parameters) to themeasured local
observables. The mapping is unknown, as the parameters
defining the reservoir are allowed to be random. However,
one can assume that the measured local observables attained
by the mapping must contain sufficient information to be a
representation of the initial input state. Apparently, without
two-photon pumping or ultrastrong coupling information is
not well spread, i.e., many distinct states are mapped to the
same QN state, and therefore, information is lost. The two-
photon pumping creates and destroy two excitations on QN
nodes and ultrastrong coupling ensures creation/annihilation
of two excitations in addition to the normal hopping type
coupling between the QN nodes. Both processes result in
more states being populated, explore higher-dimensional
subspace of the QNHilbert space, whichmakes the spread of
information more complex.
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FIG. 7. Performance of entanglement sensing for continuous-variable systems using mean excitations fhb̂†mb̂mig: (a) with the addition
of two-photon pump or (b) the use of ultrastrong coupling. Measurement errors are not taken into account in panels (a) and (b). (c) The
estimation error as in panel (b) with time-multiplexing at τ ¼ f1; 2; 3gπ=2Γ, taking into account measurement errors with ζ ¼ 10−3. The
dashed curve represents the SQL scaling.
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APPENDIX F: LEARNING WITH
NONENTANGLED STATES: RESULTS

As described in the main text (Fig. 2) and Sec. A above,
entanglement sensing may be performed using generic
continuous-variable or discrete systems. There, the training
and testing both use random entangled input states, with
entanglement profile given in the inset of Figs. 2(a) and
5(a). We present similar analysis in Fig. 8 where the
training only utilizes separable input states. For continu-
ous-variable systems, panel (a1) shows the entanglement
profile of the input states used in testing and (b1) the
comparison between estimated and input entanglement
for a QN composed of four nodes. Similarly, the case
for discrete systems are presented in panels (a2) and (b2)
using a QN composed of 5 qubits. One can see that panels
(b1) and (b2) are similar to Fig. 2(c) in the main text and
Fig. 5(c), respectively.

APPENDIX G: GRAVITY-INDUCED
ENTANGLEMENT: DETAILS

For the case without probes, the equations of motion in
Heisenberg picture read

_̂xA ¼ ωp̂A; _̂xB ¼ ωp̂B;

_̂pA ¼ −ωð1 − ηÞx̂A − ωηx̂B − γp̂A þ ξ̂A;

_̂pB ¼ −ωð1 − ηÞx̂B − ωηx̂A − γp̂B þ ξ̂B; ðG1Þ

where η≡ 2Gm=ω2L3, γ represents the damping of each
mass, and ξ̂AðBÞ the Brownian-like noise for the masses. We
assume high mechanical quality factor, ω=γ ≫ 1, where the

noises can be treated as uncolored noise with correlation
function hξ̂jðtÞξ̂jðt0Þ þ ξ̂jðt0Þξ̂jðtÞi=2 ¼ γð2n̄þ 1Þδðt − t0Þ,
j ¼ fA;Bg [44,45]. The thermal phonon number n̄ is
related to the temperature of the environment T as
n̄ ¼ 1=ðexpðℏω=kBTÞ − 1Þ.
The matrix form of the Langevin equations in (G1) is

written as _uðtÞ ¼ AuðtÞ þ hðtÞ, where

u ¼ ½x̂A; p̂A; x̂B; p̂B�T; ðG2Þ

A ¼

2
6664

0 ω 0 0

−ωð1 − ηÞ −γ −ωη 0

0 0 0 ω

−ωη 0 −ωð1 − ηÞ −γ

3
7775; ðG3Þ

and

h ¼ ½0; ξ̂A; 0; ξ̂B�T: ðG4Þ
The solution to the quadratures uðtÞ and CM VðtÞ are
obtained as in Eqs. (C8) and (C9), where D ¼
diag½0; γð2n̄þ 1Þ; 0; γð2n̄þ 1Þ�.
As the initial state for each mass, we take thermal

squeezed state, i.e., Vð0Þ¼diag½e2r0 ;e−2r0 ;e2r0 ;e−2r0 �×
ð1þ2n̄Þ=2. The system is evolved for a time τ0, after
which one obtains uðτ0Þ and Vðτ0Þ.
When the probes are turned on at τ0, the new dynamics is

now described as follows. From the Hamiltonian of Eq. (5)
in the main text, the new Langevin equations read

_̂xA ¼ ωp̂A; _̂xB ¼ ωp̂B;

_̂pA ¼ −ωð1 − ηÞx̂A − ωηx̂B − γp̂A þ G0aâ†âþ ξ̂A;

_̂pB ¼ −ωð1 − ηÞx̂B − ωηx̂A − γp̂B −G0bb̂
†b̂þ ξ̂B;

_̂a ¼ −ðκa þ iΔ0aÞâþ iG0aâx̂A þ Ea þ
ffiffiffiffiffiffiffi
2κa

p
âin

_̂b ¼ −ðκb þ iΔ0bÞb̂ − iG0bb̂x̂B þ Eb þ
ffiffiffiffiffiffiffi
2κb

p
b̂in; ðG5Þ

where âin and b̂in are Gaussian noise operators with
hâinðtÞâin;†ðt0Þi¼δðt−t0Þ and hb̂inðtÞb̂in;†ðt0Þi¼δðt−t0Þ [35].
The linearized version of the Langevin equations is

obtained through the following transformations:

x̂A → xAs þ δx̂A; p̂A → pAs þ δp̂A;

x̂B → xBs þ δx̂B; p̂B → pBs þ δp̂B;

â → αs þ δâ;

b̂ → βs þ δb̂;

and by ignoring any nonlinear term such as δâ†δâ, δâδx̂A,
δb̂†δb̂, and δb̂δx̂B in the fluctuation operators. In what
follows, we will consider a much shorter evolution time
such that one may neglect the contribution from the
gravitational coupling (η ≈ 0). In particular, we have
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FIG. 8. Learning with nonentangled states. For continuous-
variable systems: (a1) entanglement profile of the input states in
testing and (b1) estimated vs input entanglement in testing using
four QN nodes. The corresponding plots for discrete systems are
presented in panels (a2) and (b2) using 5 qubits in the QN. All
input states for training have zero entanglement Ein ¼ 0.
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δ _̂xA ¼ ωδp̂A; δ _̂xB ¼ ωδp̂B;

δ _̂pA ¼ −ωδx̂A − γδp̂A þ Gaδx̂a þ ξ̂A;

δ _̂pB ¼ −ωδx̂B − γδp̂B −Gbδx̂b þ ξ̂B;

δ _̂xa ¼ −κaδx̂a þ Δaδp̂a þ
ffiffiffiffiffiffiffi
2κa

p
x̂ina ;

δ _̂pa ¼ −κaδp̂a − Δaδx̂a þ Gaδx̂A þ
ffiffiffiffiffiffiffi
2κa

p
p̂in
a

δ _̂xb ¼ −κbδx̂b þ Δbδp̂b þ
ffiffiffiffiffiffiffi
2κb

p
x̂inb ;

δ _̂pb ¼ −κbδp̂b − Δbδx̂b − Gbδx̂B þ
ffiffiffiffiffiffiffi
2κb

p
p̂in
b ; ðG6Þ

where

pAs ¼ 0; pBs ¼ 0;

xAs ¼
G0ajαsj2

ω
; xBs ¼ −

G0bjβsj2
ω

;

αs ¼
jEajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2a þ Δ2

a

p ; βs ¼
jEbjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2b þ Δ2

b

q : ðG7Þ

In these equations, we have introduced the quantities
Δa¼Δ0a−G0axAs, Δb ¼ Δ0b þ G0bxBs, Ga ¼ G0aαs

ffiffiffi
2

p
,

and Gb ¼ G0bβs
ffiffiffi
2

p
. Note that αs and βs have been

assumed real, which can be done by tuning the phase of
the laser Ea and Eb, respectively. We have also used the
following quadrature relations:

x̂a¼
âþ â†ffiffiffi

2
p ; p̂a¼

â− â†

i
ffiffiffi
2

p ; x̂b¼
b̂þ b̂†ffiffiffi

2
p ; p̂b¼

b̂− b̂†

i
ffiffiffi
2

p ;

x̂ina ¼ âinþðâinÞ†ffiffiffi
2

p ; p̂in
a ¼ âin−ðâinÞ†

i
ffiffiffi
2

p x̂inb ¼ b̂inþðb̂inÞ†ffiffiffi
2

p ;

p̂in
b ¼ b̂in−ðb̂inÞ†

i
ffiffiffi
2

p : ðG8Þ

One can write the Langevin equations for the fluctuation
of the quadratures in (G6) as _uðtÞ ¼ AuðtÞ þ hðtÞ, where
now

u ¼ ½δx̂A; δp̂A; δx̂B; δp̂B; δx̂a; δp̂a; δx̂b; δp̂b�T; ðG9Þ

A ¼

2
6666666666666664

0 ω 0 0 0 0 0 0

−ω −γ 0 0 Ga 0 0 0

0 0 0 ω 0 0 0 0

0 0 −ω −γ 0 0 −Gb 0

0 0 0 0 −κa Δa 0 0

Ga 0 0 0 −Δa −κa 0 0

0 0 0 0 0 0 −κb Δb

0 0 −Gb 0 0 0 −Δb −κb

3
7777777777777775

;

ðG10Þ

and

h ¼ ½0; ξ̂A; 0; ξ̂B; x̂ina ; p̂in
a ; x̂inb ; p̂

in
b �T: ðG11Þ

The solution uðtÞ and VðtÞ are obtained from Eqs. (C8) and
(C9), where D¼diag½0;γð2n̄þ1Þ;0;γð2n̄þ1Þ;κa;κa;κb;κb�.
As the initial CM, we take Vðτ0Þ for the masses and
vacuum 1=2 for the cavity modes.
The parameters chosen in the main text (see the caption

of Fig. 4) are motivated as follows. Mechanical mirrors of
mass m ∼ 1 kg and frequency ω ∼ 0.1 Hz have been
cooled down near their ground state [46], see also
Ref. [47]. The initial state for each mass (squeezed thermal)
can be prepared by appropriate optical driving [48,49], and
the strength r0 ¼ 1.73 is motivated by the squeezing
of light mode [50] and advances in the state transfer in
optomechanics [42]. Cavity length (25 mm) and laser
wavelength 1064 nm are typical in optomechanics
[51], see also Ref. [42] for cavity finesse up to 105. For
example, a cavity finesse F ¼ 8 × 104 gives a decay rate
Γ ¼ πc=2FLaðbÞ ≈ 2.36 × 105 Hz. This is used in simula-
tions as a basis for the random cavity decay rates and
effective detunings, i.e., fκa; κb;Δa;Δbg ∈ ½1; 2�Γ.

APPENDIX H: GRAVITY-INDUCED
ENTANGLEMENT: ERROR SCALING

Figure 9 presents the entanglement estimation error
against time-multiplexing instances T for the case of
Fig. 4(b) with τ0 ¼ 5 s. The estimation error is taken as
standard deviation,

δE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNte

l0

ðEest;l0 − EinÞ2
Nte − 1

vuut : ðH1Þ

1 2 3 4
0

0.5

1

1.5
10-4

Time-multiplexing instances

FIG. 9. Error scaling. The standard deviation for the setup in
Fig. 4(b) in the main text for τ0 ¼ 5 s vs instances of time-
multiplexing T .
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One can see that the scaling of the estimation error is
beyond the SQL (dashed curve). In fact, it follows a
Heisenberg-like scaling with δE ∝ T −1 (dashed-dotted

curve). We note that for T ¼ 4, the estimation error is
comfortably below 10−4, which is two orders of magnitude
lower than what was experimentally achieved in Ref. [33].
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