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For static matter in a gravitational field, different conventions for equilibrium local temperature exist in
the classic physics literature. We illustrate the difference between two popular conventions using blackbody
radiation in a spherically symmetric gravitational potential. Equilibrium temperatures defined by the
“Landau frame” or “Eckart frame” prescriptions most commonly used in relativistic fluid dynamics do not
satisfy the statistical-mechanical relation 1=T ¼ dS=dE.
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I. INTRODUCTION

Temperature is a fundamental physical quantity that
characterizes matter in equilibrium [1,2]. For equilibrium
matter which is spatially uniform, temperature is constant
everywhere. The absolute temperature, when measured
locally with a properly calibrated thermometer, is well
defined and universal: It does not depend on the type of
thermometer used. In other words, two different thermom-
eters, when used to measure temperatures of two identical
systems in equilibrium, will show the same result. This is
illustrated in Fig. 1, left. The same universality does not
hold out of equilibrium of course: Two different properly
calibrated thermometers, when placed in identical non-
equilibrium states, will in general show different temper-
atures, as illustrated in Fig. 1, right. This is because a
thermometer is a macroscopic object with a finite size and a
finite response time to the disturbances of the environment.
Thus the notion of nonequilibrium, space- and time-
dependent temperature Tðt;xÞ is not universal, but rather
is thermometer-dependent.1 This degree of nonuniversality
will be small for nonequilibrium states whose macroscopic
parameters change slowly in space and time.
Thus it appears that the locally measured out-of-

equilibrium temperature is not universal, but the equilib-
rium temperature is. However, a moment’s thought reveals
that this statement may not necessarily be true in the

presence of gravity. For a system subject to an external
gravitational field, the static equilibrium state does not have
to be spatially uniform, as for example happens for a gas
that forms the atmosphere of a massive planet. In a
nonuniform equilibrium state, it is possible that even the
equilibrium temperature is not universal, but rather depends
on the size and shape of the thermometer. The difference in
the temperature readings between two properly calibrated
thermometers will be of order of at least one spatial
derivative of the gravitational field.
For definiteness, let us take our matter to be a (relativ-

istic) fluid subject to a static external gravitational field
described by a time-independent metric gμνðxÞ. As argued
by Tolman a long time ago [3,4], the local temperature TðxÞ
of the fluid in equilibrium is

TðxÞ ¼ T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00ðxÞ

p ; ð1Þ

with some constant T0. (Conventions: The metric is mostly
plus.) The Tolman temperature (1) is widely viewed as
“the” temperature of the fluid in equilibrium in a gravita-
tional field, and is usually discussed in textbooks that talk
about both thermal physics and gravitation, see e.g. [2],
Sec. 27, or [5], Sec. 9.6. Given the above discussion, one
can ask: Is the locally measured equilibrium temperature in
the presence of gravity universal, or is it dependent on one’s
choice of convention?
In fact, different inequivalent definitions of equilibrium

temperature for matter in a gravitational field have existed
in the classic physics literature for quite some time. A case
in point is the Course of Theoretical Physics by L. D.
Landau and E. M. Lifshitz. In Volume V, Statistical
Physics, the authors argue that the equilibrium temperature
is indeed given by the Tolman’s expression (1), see Ref. [2],
Sec. 27. Less explicit is the argument in Volume VI, Fluid
Mechanics, see [6], Sec. 136, where a general procedure for

1In fluid dynamics, similar ambiguities also exist for the
nonequilibrium velocity field vðt; xÞ. For example, one is free
to define different nonequilibrium “fluid velocities” correspond-
ing to the flow of energy, the flow of particles, the flow of entropy
etc., and then formulate the fluid-dynamical equations using
one’s preferred choice. We will only consider temperature
ambiguities here. In the example we study later in the paper
(blackbody radiation in static equilibrium), different definitions
of the fluid velocity agree, but different definitions of temperature
do not.
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writing down the equations of relativistic fluid dynamics is
proposed. One might think that the equilibrium (hydro-
static) solutions of the fluid-dynamical equations obtained
by using the Landau-Lifshitz procedure of Ref. [6] will give
rise to the equilibrium temperature (1). As we will see
shortly, this is not the case. In other words, the hydrostatic
TðxÞ determined by the procedure of Volume VI does not
agree with the thermodynamic TðxÞ advocated in Volume
V. The fact that there is a difference between these two
temperatures is well known to the handful of people to
whom it is well known. However, for a student of statistical
physics and relativity, the discrepancy may cause confu-
sion. Given the popularity of the Landau-Lifshitz prescrip-
tion [6] in modern relativistic fluid dynamics [7], it is
worthwhile to shed more light on the details, and to
illustrate this difference with a simple pedagogical exam-
ple. This is the goal of the present article.2 We will compare
the two popular temperature definitions, and will argue that
the definition of temperature which maintains Eq. (1) is

preferred, while the definition of temperature advocated in
Ref. [6] is best avoided.
Before we explore this difference quantitatively, let us

first recall how the equilibrium temperature (1) is derived.
An argument familiar from basic physics comes from
Maxwell’s velocity distribution in equilibrium [1]. For a
nonrelativistic particle of mass m with gravitational poten-
tial energy mgz, the phase-space probability distribution is
proportional to expð−½1

2
mv2 þmgz�=kBT0Þ, with constant

T0. Now, the gravitational potential energy in the field
of a spherical body of mass M and radius R is really
− GMm

R þmgzþ � � �, where G is Newton’s constant. The
relativistic kinetic energy is Ekin ¼ mc2 þ 1

2
mv2 þ � � �,

hence the probability is proportional to

e−
E

kBT0 ¼ e−½mc2þ1
2
mv2−GMm

R þmgzþOð1=c2Þ�=kBT0

¼ e−
Ekin
kBT0

ffiffiffiffiffiffiffi−g00
p

¼ e−
Ekin
kBT ; ð2Þ

where T ¼ T0=
ffiffiffiffiffiffiffiffiffiffi−g00

p
is the height-dependent temperature,

g00 ¼ −1þ 2GM
c2r is the metric component encoding the

gravitational potential, and r ¼ Rþ z, with z ≪ R. From
now on, we will set the Boltzmann constant kB and the
speed of light c to one.

FIG. 1. Left: Two differently constructed but properly calibrated thermometers will show the same temperature when placed in
identical equilibrium states. A thermometer is visualized as a small reservoir (depicted as a colored blob) in thermal contact with the
system. The thermometer’s reservoir is coupled to a gauge (the white dial) that is used to read off the temperature. Right: The
thermometers that show the same temperature in identical equilibrium states will in general show different temperatures in identical
nonequilibrium states.

2The temperature differences we discuss here are not related to
the Hawking radiation, vacuum selection, or the presence of
horizons. Neither are they related to one’s preferred choice of the
equilibrium Killing vector in stationary nonstatic states. Through-
out the following discussion, the metric is fixed and nondynam-
ical, and Einstein’s equations are never used.
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Tolman’s derivation [4] assumes that the equilibrium
matter such as the blackbody radiation can be modeled by
the “perfect fluid” energy-momentum tensor,

Tμν
ð0Þ ¼ ϵuμuν þ pðgμν þ uμuνÞ; ð3Þ

where ϵðTÞ is the energy density, pðTÞ is the pressure, and
uμ is the fluid velocity, u2 ¼ −1. The conservation law
∇μTμν ¼ 0 then implies the equilibrium profile (1). The
argument in Ref. [2] is different: the temperature is defined
by 1=T ¼ ∂S=∂E, where S is the entropy, and E is the
energy of the equilibrium matter. Given that the energy of a
small volume of matter as measured by a local observer is
redshifted by a factor of

ffiffiffiffiffiffiffiffiffiffi−g00
p

, and assuming that the
entropy of that volume of matter is unchanged by the
gravitational field, one arrives at Eq. (1). There are similar
derivations such as [8]; see e.g. Ref. [9] for a recent
pedagogical discussion. It is then clear that the assumptions
leading to Eq. (1) can only hold if the gravitational field
varies arbitrarily slowly in space. It is conceivable that the
statistical-mechanical temperature ð∂S=∂EÞ−1 will be modi-
fied in curved space as the small volume of matter that is
used to define T senses curvature. Similarly, the perfect
fluid approximation (3) is only true to leading order in the
derivatives of the metric: The general expression for the
energy-momentum tensor of equilibrium matter will have
extra terms determined by the Riemann curvature, such as
Rμν, uαRαðμνÞβuβ etc., in addition to those in Eq. (3). This is
the gravitational analogue of polarization, when the density
of the electric charge in the presence of a nonuniform
electromagnetic potential ðϕ;AÞ receives contributions
proportional to the derivatives of the potential (electric
and magnetic fields). Similarly, the energy-momentum
tensor of matter in the presence of a nonuniform metric
receives contributions proportional to the derivatives of
the metric (Riemann curvature tensor). Analogous to the
electric susceptibility which measures charge density fluc-
tuations in thermal equilibrium, the gravitational suscep-
tibility measures stress fluctuations in thermal equilibrium.
Such equilibrium stress fluctuations are nonzero even in flat
space. Going beyond the “perfect-fluid” approximation
of (3), one indeed finds ambiguities in what the equilibrium
temperature might be. Let us now discuss this in detail.

II. PRESCRIPTIONS

Let the static external metric vary on length scales much
longer than the microscopic length scale of the fluid
(such as the thermal de Broglie wavelength λth). The
energy-momentum tensor then has the form of a gradient
expansion,

Tμν ¼ Tμν
ð0Þ þ

X
n⩾1

Tμν
ðnÞ; ð4Þ

where Tμν
ðnÞ schematically denotes symmetric tensors made

out of T; uα; gαβ that have n derivatives.3 Among the terms
in this expansion, some terms will vanish in equilibrium
(such as the n ¼ 1 terms corresponding to the shear and
bulk viscosities), and some terms will be nonzero in
equilibrium (such as the “perfect fluid” n ¼ 0 terms, and
certain n ¼ 2 terms).
The ambiguities in how exactly one chooses to define T

and uα for a given Tμν may be fixed by various prescriptions.
For example, the Landau-Lifshitz prescription [6] at each
order in the derivative expansion demands Tμν

ðnÞuν ¼ 0 for
n⩾1. Let us denote the temperature in the Landau-Lifshitz
prescription by TL and the fluid velocity in the Landau-
Lifshitz prescription by Uμ. The Landau-Lifshitz prescrip-
tion amounts to defining the fluid velocity as the normalized
timelike eigenvector of the energy-momentum tensor, i.e.
TμνUν ¼ −ϵUμ, and defining the temperature by the eigen-
value −ϵðTLÞ, where the function ϵðTLÞ is given by the
equilibrium flat-space equation of state. The prescription
applies to both equilibrium and nonequilibrium terms in
Eq. (4) equally. When restricted to hydrostatic equilibrium,
the prescription fixes a definition for the equilibrium temper-
ature. This Landau-Lifshitz prescription is often called “the
Landau frame”.
The Landau-frame prescription for temperature is just a

prescription (out of an infinite multitude of possible
prescriptions) for how to extract a scalar quantity we call
“TL” from the energy-momentum tensor Tμν. Importantly,
the Landau-frame prescription for extracting “TL” from Tμν

is formulated without trying to ensure that the quantity
“TL” is in fact consistent with the statistical-mechanical
temperature in equilibrium, when going beyond the perfect-
fluid approximation. As we will see later, ignoring the
connection with statistical physics is dangerous: simply
postulating a random prescription for how to extract from
Tμν a scalar function one chooses to label as “temperature”
may lead to unphysical answers.
A different prescription for equilibrium quantities was

advocated inRefs. [10,11]. In order for the fluid subject to the
external metric to remain in equilibrium, it is necessary that
the metric has a timelike Killing vector (corresponding to the
time-translation invariance), call it V. The equilibrium
temperature is then defined by T ¼ T0=

ffiffiffiffiffiffiffiffiffi
−V2

p
, and the

equilibrium fluid velocity by uμ ¼ Vμ=
ffiffiffiffiffiffiffiffiffi
−V2

p
to all orders

in the derivative expansion.4 In other words, the prescription

3Weare assuminga finite correlation length.For superfluid phases
where long-range correlations are mediated by gapless “Goldstone
bosons”φ, the expansionwill also include derivatives ofφ.We focus
on normal fluids for simplicity.

4For conformal matter (such as the blackbody radiation), one
can relax the requirement of having a timelike Killing vector, and
only require that V is a timelike conformal Killing vector. As an
example, in the Friedmann-Robertson-Walker metric this defi-
nition of temperature gives T ∝ 1=aðtÞ, where aðtÞ is the scale
factor. This gives the temperature in a “radiation-dominated”
universe, familiar from elementary cosmology.
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of [10,11] fixes the equilibrium temperature by demanding
that Tolman’s law (1) continues to hold to all orders
in the derivative expansion (in equilibrium), consistent
with the argument in Ref. [2]. Following [11], we shall call
this equilibrium prescription “the thermodynamic frame”.
This latter prescription does not fix T and uα out of
equilibrium. For nonequilibrium definitions, one may
further choose either the Landau-Lifshitz-like prescription
Tμν
ðnÞ;nonequil:uν ¼ 0, or some other prescription.
The actual energy-momentum tensor must of course

remain the same, regardless of which prescription for T and
uμ one chooses to adopt.

III. SPHERICAL HYDROSTATIC EQUILIBRIUM

To be concrete, let us consider a definite physical system,
the blackbody radiation. For such a fluid, the energy-
momentum tensor defined with the Landau-Lifshitz pre-
scription was written down in Ref. [12], up to second order
in derivatives, i.e. including terms up to n ¼ 2 in the
expansion (4). For fluid in equilibrium, the answer in 3þ 1
dimensions is

Tμν ¼ pðTLÞgμν þ 4pðTLÞUμUν

þ κðTLÞ½Rhμνi − 2UαRαhμνiβUβ� þ λðTLÞωhμ
α ωνiα;

ð5Þ

where Rμν is the Ricci tensor, Rαμνβ is the Riemann tensor,
and the angular brackets denote the transverse (to Uμ)
symmetric traceless part of a tensor. The vorticity tensor is
defined as ωμν ¼ 1

2
ΔμαΔνβð∇αUβ −∇βUαÞ, where Δμν ≡

gμν þ UμUν projects onto the space orthogonal to Uμ,
and ∇α is the covariant derivative. The coefficients κ and λ
are thermodynamic susceptibilities whose values have
to be found from the microscopic theory. For blackbody
radiation (ideal gas of photons in equilibrium), pðTÞ ¼
π2T4=ð45ℏ3Þ [2], while for κ one finds κðTÞ ¼ T2=ð18ℏÞ
[13]. More generally, we will write pðTÞ ¼ p0T4,
κðTÞ ¼ κ0T2, as dictated by dimensional analysis for a
generic radiation fluid. The coefficient λðTÞ has also been
evaluated for blackbody radiation [14], however it will not
be needed for the discussion of nonrotating fluids below.5

Expression (5) does not assume any particular model of
matter, nor any particular calculational technique, such as
kinetic theory or holography. Rather, Eq. (5) is written on
symmetry grounds, assuming that: a) the energy-momentum
tensor in equilibrium is a local function of the metric and its
derivatives, b) when the curvature is small on the length scale

set by the state of the fluid (λth∂g ≪ 1, where λth is the
thermal deBrogliewavelength), its contribution toTμν can be
treated perturbatively as a small correction to the perfect-
fluid energy-momentum tensor, c) matter has conformal
symmetry (which is a symmetry of blackbody radiation and
other radiation fluids), d) fluid’s temperature and velocity are
defined by the Landau-Lifshitz prescription. For more
details, see Ref. [12].
Let us now explore the consequences of Eq. (5) for

spherical nonrotating equilibrium. The metric in the static
coordinates is

ds2 ¼ −e2ΦðrÞdt2 þ dr2

1 − 2GMðrÞ=rþ r2ðdθ2 þ sin2 θdφ2Þ:

ð6Þ

The Schwarzschild solution corresponds to MðrÞ ¼ const,
and e2ΦðrÞ ¼ 1 − 2GM

r , where G is Newton’s constant. For
the radiation fluid at rest, with vanishingUr;Uθ; Uφ,6 let us
parametrize the equilibrium temperature as

TLðrÞ ¼ T0e−ΦðrÞhðrÞ; ð7Þ

with hðrÞ → 1 at large r, so that T0 is the temperature at
infinity. The energy-momentum conservation ∇μTμν ¼ 0

together with the expression (5) with vanishing vorticity
now give an ordinary differential equation for the function
hðrÞ, whose coefficients depend onΦðrÞ andMðrÞ. For the
Schwarzschild background, the equation takes a simple
form:

ρ5hðρÞ2h0ðρÞ þ ε

�
ρð1 − ρÞh0ðρÞ þ 1

4
hðρÞ

�
¼ 0; ð8Þ

where ρ≡ r=lS > 1, and lS ¼ 2GM is the Schwarzschild
radius. The dimensionless parameter ε in Eq. (8) reflects the
effect of the gravitational susceptibility, ε ¼ κ0=ðp0T2

0l
2
SÞ.

For a gas of photons, ε ¼ 5ℏ2=ð2π2T2
0l

2
SÞ. To get a sense of

the numerical value, recall that the temperature T0 of 1K
corresponds to ℏ=T0 of about 2 millimeters, while the
Schwarzschild radius of the Earth is about 9 millimeters.
Physically, one expects that the derivative expansion for the
energy-momentum tensor of macroscopic matter in Eq. (5)
will be valid when ε is small. The condition ε ≪ 1 also
ensures that the mean photon wavelength is much smaller
than lS, and the macroscopic description in terms of a fluid
remains valid. When ε ¼ 0, the solution to Eq. (8) is
hðρÞ ¼ 1, and Tolman’s temperature (1) is reproduced.

5We emphasize that κ and λ describe real physical effects
(gravitational and vortical susceptibilities), and as such are
independent on one’s prescription for T and uμ. A prescription
(Landau-Lifshitz or otherwise) determines where κ and λ appear
in Tμν, but does not change the value of κ and λ. See also Sec. IV.

6The fluid velocity for the fluid at rest is thusUμ ¼ Vμ=
ffiffiffiffiffiffiffiffiffi
−V2

p
,

where Vμ ¼ ð1; 0; 0; 0Þ is the timelike Killing vector, in static
coordinates, reflecting the existence of equilibrium. Thus in this
example the fluid velocity is the same in the “Landau frame”, and
in the “thermodynamic frame”. The fluid temperatures in the two
conventions are different though.
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When ε is nonzero, the solutions to Eq. (8) are plotted in
Fig. 2. The solutions asymptote to 1 as r → ∞, and stay
regular as r → lS. The deviation of hðrÞ from 1 shows that
the equilibrium hydrostatic temperature in the Landau-
Lifshitz prescription does not agree with Eq. (1).
Also shown in Fig. 2 is the large-r solution,

hðrÞ ¼ 1þ ε
16
ðlS=rÞ4 þOð1=r7Þ. It can be understood as

arising from two-derivative corrections to the perfect-
fluid constitutive relations. Indeed, for the Tolman temper-
ature in the Schwarzschild background ð∂rTÞ2=T4 ∼
ðlS=rÞ4ð1=l2ST2

0Þ is the dimensionless parameter which
determines the importance of two-derivative corrections.
The terms beyond Oð1=r4Þ in the solution for hðrÞ should
not be trusted, as their effect is the same as that of the
higher-derivative terms not taken into account in Eq. (5).
Near the surface of a spherical body of radius R, we write

r ¼ Rþ z, and find

TLðzÞ ¼ TLðz ¼ 0Þ
�
1 −

�
1

2

lS
R − lS

þ εs
4

R
R − lS

�
lS
R

�
4
�

z
R

þO

�
z2

R2
;
z
R
ε2s

��
; ð9Þ

where εs ≡ κ0=ðp0TLðz ¼ 0Þ2l2SÞ. The εs-independent term
comes from the universal Tolman’s temperature, while the
εs-dependent contribution is the correction to Tolman’s law
due to the gravitational susceptibility κ in the Landau-frame
hydrostatics.

IV. TRANSLATING BETWEEN PRESCRIPTIONS

To get a better handle on the discrepancy between the
hydrostatic temperature (7) in the Landau-Lifshitz pre-
scription and Eq. (1), let us consider the same equilibrium
configuration in the “thermodynamic frame” [10,11]. The
latter is the prescription in which the equilibrium temper-
ature T ≡ T0=

ffiffiffiffiffiffiffiffiffi
−V2

p
and the fluid velocity uμ ≡ Vμ=

ffiffiffiffiffiffiffiffiffi
−V2

p
are written in terms of the timelike Killing vector V, which
is needed to define the equilibrium in the first place. In
other words, the convention is such that Tolman’s law (1) is
satisfied identically in equilibrium without any corrections,
even once the gravitational susceptibilities are taken into
account. The energy-momentum tensor in the “thermody-
namic frame” is obtained by varying the effective action
(equilibrium free energy for a fluid subject to external
gravitational field) with respect to the metric. The effective
action does not assume any particular model of matter, nor
any particular calculational technique, such as kinetic
theory or holography. Rather, the effective action is written
on symmetry grounds, assuming diffeomorphism invari-
ance, locality, and derivative expansion (valid when
λth∂g ≪ 1). For conformal matter (such as the blackbody
radiation) the effective action must also be invariant under
the Weyl rescaling of the metric. For more details, see
Refs. [10,11].
Let us write the energy-momentum tensor in the thermo-

dynamic-frame convention as

Tμν ¼ Euμuν þ PΔμν þQμuν þQνuμ þ T μν; ð10Þ

where Qμ is transverse to uμ, and T μν is transverse to uμ,
symmetric, and traceless. The spatial projector is again
Δμν ≡ gμν þ uμuν. This defines E (energy density), P
(pressure), Qμ (energy flux) and T μν (stress). For a fluid
in equilibrium in a static external gravitational field, we have
E ¼ ϵðTÞ þ fE ,P ¼ pðTÞ þ fP , where fE ; fP;Qμ; T μν are
Oð∂2Þ. Using the notation of [15], the energy-momentum
tensor for conformal matter in external gravitational field is
given by

E ¼ ϵðTÞ þ f1R − 6f1a2 − ð4f1 þ f3ÞΩ2

þ 6f1uαRαβuβ þOð∂3Þ; ð11Þ

Qμ ¼ ð2f1 þ 4f3ÞðϵμλρσaλuρΩσ þ Δρ
μRρσuσÞ þOð∂3Þ;

ð12Þ

T μν ¼ ð2f3 − f1ÞΩhμΩνi þ 4f1uαRαhμνiβuβ

− 2f1Rhμνi þOð∂3Þ; ð13Þ

and P ¼ 1
3
E. Here aμ ≡ uλ∇λuμ is the acceleration, Ωμ ≡

ϵμνρσuν∇ρuσ is the vorticity vector, and R is the Ricci scalar.
The functions f1ðTÞ are f3ðTÞ are the two equilibrium

FIG. 2. The function hðrÞ which determines the Landau-
Lifshitz temperature through TL ¼ hðrÞT0=

ffiffiffiffiffiffiffiffiffiffi−g00
p

, plotted for
the radiation fluid in the Schwarzschild background. The value of
the parameter ε is determined by the gravitational susceptibility κ
which parametrizes the leading-order response of equilibrium
matter to curvature, see Eq. (5). The solid curves are obtained by
solving Eq. (8). The leading-order approximation to the solution
of Eq. (8), hðrÞ ≈ 1þ ε

16
ðlS=rÞ4 is shown by the dotted lines. The

deviation of hðrÞ from 1 shows that the hydrostatic temperature in
the Landau-Lifshitz prescription does not follow Eq. (1).
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susceptibilities.7 The relation to the susceptibilities which
appear in (5) is κðTÞ ¼ −2f1ðTÞ, λðTÞ ¼ 2T∂f1=
∂T − 8f3ðTÞ. For a gas of photons, an explicit calculation
gives f1 ¼ −f3 ¼ −T2=ð36ℏÞ. The vorticity vector is
related to the vorticity tensor by ωμν ¼ − 1

2
ϵμνρσuρΩσ.

For equilibrium matter, its vorticity and the Ricci tensor
are not independent.8 Using the definition of the fluid
velocity uμ ≡ Vμ=

ffiffiffiffiffiffiffiffiffi
−V2

p
and the Killing equation obeyed

by V, it is not difficult to derive that in equilibrium

ð∇μ þ aμÞωμν þ Rνλuλ þ ðuαRαβuβ þ ωαβω
βαÞuν ¼ 0:

ð14Þ

Thus for an equilibrium fluid without vorticity, the fluid
velocity is an eigenvector of the Ricci tensor, and
Δρ

μRρσuσ ¼ 0. This is what happens in the case of a static
fluid in the Schwarzschild metric (6): Both the vorticity Ωμ

and the energy fluxQμ vanish, the f3 contributions drop out
from Tμν, and the energy-momentum tensor at Oð∂2Þ is
determined by the pressure pðTÞ and the susceptibil-
ity f1ðTÞ.
By construction, the energy-momentum tensor (10)–(13)

in the thermodynamic frame is conserved in equilibrium
identically. In other words, the solution to the hydrostatic
conservation equations ∇μTμν ¼ 0 is given by T ¼
T0=

ffiffiffiffiffiffiffiffiffi
−V2

p
and uμ ¼ Vμ=

ffiffiffiffiffiffiffiffiffi
−V2

p
to all orders in the deriva-

tive expansion, which is the whole point of the “thermo-
dynamic frame” construction. The function hðrÞ of the
Landau-frame hydrostatics in Eq. (7) thus parametrizes
the deviation of the Landau-frame temperature from the
thermodynamic-frame temperature.
The energy-momentum tensor (5) expressed in terms of

TL and Uμ (Landau frame), and the energy-momentum
tensor (10)–(13) expressed in terms of T and uμ (thermo-
dynamic frame) is one and the same Tμν. In an arbitrary
“primed” frame, one can write

Tμν ¼ E0u0μu0ν þ P0Δ0μν þQ0μu0ν þQ0νu0μ þ T 0μν; ð15Þ

with Δ0μν ¼ gμν þ u0μu0ν. The two equilibrium expressions
of Tμν are converted to each other by the transformation
u0μ ¼ uμ þ δuμ, T 0 ¼ T þ δT, where δuμ, δT are Oð∂2Þ,
explicitly

δuμ ¼ Qμ −Q0μ

ϵþ p
; δT ¼ fE − f0E

∂ϵ=∂T
: ð16Þ

Taking the unprimed frame to be the thermodynamic frame,
and the primed frame to be the Landau frame, we have
Q0μ ¼ 0, f0E ¼ 0, hence δuμ ¼ Qμ=ðϵþ pÞ and δT ¼
fE=ð∂ϵ=∂TÞ. Further, in the static background (6) the
energy current (12) vanishes, as does the vorticity Ωμ.
Hence toOð∂2Þwe have for conformal fluids Uμ ¼ uμ, and
TL ¼ T þ δT, with

δT
T

¼ f1
12p

ðR − 6a2 þ 6uαRαβuβÞ: ð17Þ

For the Schwarzschild background, we have a2 ¼
l2S=ð4r4Þð1 − lS=rÞ−1, while both R and uαRαβuβ vanish.
One thus finds from Eq. (17) that the Oð∂2Þ transformation
from the thermodynamic frame to the Landau-Lifshitz
frame for conformal matter in the Schwarzschild back-
ground is given by

δT
T

¼ ε

16

l4S
r4

; ð18Þ

where ε ¼ κ0=ðp0T2
0l

2
SÞ as before. Remembering that

TLðrÞ ¼ TðrÞhðrÞ, the change δT is related to hðrÞ by
δT=T ¼ hðrÞ − 1. We thus see that the leading-order
transformation δT from the thermodynamic frame to the
Landau frame gives rise to the leading-order behavior of
hðrÞ, shown in Fig. 2 by dotted lines, as it should be. This
shows very explicitly that the deviation of TLðrÞ from
Tolman’s law (1) is a consequence of the Landau-Lifshitz
hydrodynamic prescription, inherited by the Landau-
Lifshitz hydrostatics. The deviation can be eliminated by
converting to the thermodynamic prescription where
Tolman’s law is preserved.

V. DISCUSSION

Returning to the discussion in the Introduction, one may
ask which temperature convention is “better”. It seems clear
that the thermodynamic convention implicitly adopted in
[2] (in which the Tolman law stays uncorrected) is
universal, while the convention implicitly adopted in [6]
is not. In the latter case, the equilibrium temperature in the
Landau-Lifshitz convention will depend on the substance
whose temperature is being measured. Indeed, Eq. (18)
shows that the correction to the Tolman law in the Landau-
Lifshitz convention of [6] depends on κ0, p0 which are
different for different substances. In other words, according
to the “Landau frame” convention of [6], two different
substances which have exactly the same temperature in the
absence of gravity will develop different temperatures
when subject to exactly the same gravitational potential.
On the other hand, the thermodynamic-convention result
(1) is agnostic to the detailed microscopic nature of matter
whose temperature is being measured.
Nonuniversality of the Landau-frame convention is

disconcerting: Substance dependence is not what we expect

7For fluids whose microscopic degrees of freedom are not
charged, there are in general three gravitational susceptibilities
f1, f2, f3. For radiation fluids, conformal symmetry implies
f2 ¼ 6f1.

8I thank Kristan Jensen for a discussion on this point.
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of a sensible physical temperature. One may recall
Maxwell’s argument: in The Theory of Heat [16], Ch.
XXII, Maxwell argues that a possible temperature gradient
in a gravitational potential can not be substance dependent;
otherwise one can drive a heat engine using the temperature
difference between the two substances, and violate the
second law of thermodynamics. This is illustrated in Fig. 3.
As one can see from Eq. (9), the Landau-frame temperature
gradient is indeed substance dependent because κ0=p0 is in
general different for different substances. So, does the
Landau-Lifshitz temperature convention of [6] violate the
second law of thermodynamics?
Imagine connecting the tops of the two columns in

Fig. 3, so that the columns can exchange heat. The two
Landau-frame temperatures on top are different, but the
condition of no-heat-flow is not TL;1 ¼ TL;2, but rather
dS1=dE1 ¼ dS2=dE2, where Sa and Ea are the entropy and
energy of the two volumes matter in heat contact, located at
the same potential. In order to save the Landau-Lifshitz
convention of [6] from violating the second law, it appears
that one must have 1=TL ≠ dS=dE in the presence of
gravity. This is consistent with the original argument in [2]:

the temperature defined by dS=dE is the Tolman temper-
ature T, while the Landau-frame temperature differs from
T, as illustrated in Sec. III.
The convention-dependence of equilibrium temperature in

curved space may seem unintuitive, but ultimately it arises
because the energy-momentum tensor of equilibrium matter
in general depends not just on the background metric, but
also on its derivatives. This dependence is parametrized
through susceptibilities such as κ in Eq. (5), which are
gravitational analogues of the electric and magnetic suscep-
tibilities. Different conventions for T and uλ determinewhere
exactly the susceptibilities will appear when Tμν is expressed
in terms of the chosen T and uλ, but the Tμν itself is of course
the same, regardless of our preference for T and uλ.
The fact that the energy-momentum tensor of an ideal

quantum gas in thermal equilibrium depends on curvature
has been known for many years from calculations of
effective actions in thermal field theory, see e.g. [17–19].
Gravitational susceptibilities were identified in the context
of relativistic fluid dynamics in [12,20,21], and connected
to the equilibrium free energy of fluids in curved space
in [10,11]. While the direct experimental observation of
gravitational susceptibilities is difficult, they can be in
principle computed analytically or numerically. There
are more recent results for ideal quantum gases [13–15,
22–24], as well as for interacting theories including
lattice QCD [25], the O(N) model [26], unitary Fermi
gas [27], and the N ¼ 4 supersymmetric Yang-Mills
theory [12,20,28,29]. As expected, the actual values of
the susceptibilities depend on the microscopic degrees of
freedom and their interactions.
We have focused on the Landau frame for definiteness

when discussing temperature conventions, but it is worth
mentioning another popular convention for relativistic fluid
dynamics, the “Eckart frame” [30,31]. In this convention,
the fluid velocity is aligned with the particle number flux,
while the temperature is defined in the same way as in the
Landau frame, TμνUμ;EUν;E ¼ ϵðTEÞ. Eckart’s convention
is not relevant for our example of the blackbody radiation
because there is no conserved particle number current. For
other substances where Eckart’s convention is relevant, the
hydrostatic Eckart-frame temperature will suffer from the
same nonuniversality in curved space as the hydrostatic
Landau-frame temperature.
Both the Landau-Lifshitz and Eckart conventions were

proposed before the gravitational susceptibilities were dis-
covered (theoretically), and the nonuniversality of the
corresponding temperature conventions wasn’t explored at
the time. In order to minimize potential confusion, it seems
best to avoid using either Landau-frame or Eckart-frame
temperature conventions when discussing hydrostatics
beyond perfect fluids, and instead use the thermodynamic
frame where Tolman’s law is preserved. The Landau-frame
or Eckart-frame prescriptions can then be used on top

FIG. 3. Maxwell’s argument demonstrating why temperature
gradient in a gravitational potential can not depend on the
substance [16]. Two columns filled with different substances
are subject to the same gravitational potential Φ ¼ gz, where g is
the gravitational acceleration. The columns are connected by a
conducting plate at the bottom, so that at z ¼ 0 the temperatures
are equal. If the temperatures of the two columns are not the same
at high z, one can run a heat engine using the temperature
difference between the tops of the two columns. As the engine
runs, both columns will cool, while maintaining different temper-
atures on top. Eventually, all the energy of the two-column
system will be converted into work, in violation of the second law
of thermodynamics.
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of the thermodynamic frame in order to simplify out-of-
equilibrium contributions to the constitutive relations of
hydrodynamics.
Finally, we have focused on the nonuniversality of the

Landau-frame temperature caused by the gravitational field.
A similar substance-dependence for the Landau-frame tem-
perature will also emerge in a rotating fluid without gravity,
as is evident from the transformation formula (16) given the

vorticity-dependent fE ≡ E − ϵ in Eq. (11). Thus, we sim-
ilarly expect that the Landau-frame temperature will not be
equal to ðdS=dEÞ−1 for rotating fluids.
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