
Classical integrability of root-TT̄ flows

Riccardo Borsato,1 Christian Ferko ,2 and Alessandro Sfondrini3,4
1Instituto Galego de Física de Altas Enerxías (IGFAE) and Departamento de Física de Partículas,

Universidade de Santiago de Compostela, Rúa de Xoaquín Díaz de Rábago,
15705 Santiago de Compostela, A Coruña, Spain

2Center for Quantum Mathematics and Physics (QMAP), Department of Physics and Astronomy,
University of California, Davis, California 95616, USA

3Dipartimento di Fisica e Astronomia, Universita degli Studi di Padova and Istituto Nazionale di Fisica
Nucleare, Sezione di Padova, via Marzolo 8, 35131 Padova, Italy

4Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, USA

(Received 20 February 2023; accepted 3 April 2023; published 25 April 2023; corrected 30 January 2024)

The root-TT̄ flow was recently introduced as a universal and classically marginal deformation of any
two-dimensional translation-invariant field theory. The flow commutes with the (irrelevant) TT̄ flow, and it
can be integrated explicitly for a large class of actions, leading to nonanalytic Lagrangians reminiscent of
the four-dimensional modified-Maxwell theory (ModMax). It is not a priori obvious whether the root-TT̄
flow preserves integrability, as is the case for the TT̄ flow. In this paper we demonstrate that this is the case
for a large class of classical models by explicitly constructing a deformed Lax connection. We discuss the
principal chiral model and the nonlinear sigma models on symmetric and semisymmetric spaces, without or
with the Wess-Zumino term. We also construct Lax connections for the two-parameter families of theories
deformed by both root-TT̄ and TT̄ for all of these models.
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I. INTRODUCTION

Given the action S0 of a quantum field theory (QFT) and
an integrated local operator O, it is possible to formally
deform the action infinitesimally by setting

Sλ ¼ S0 þ λOþOðλ2Þ: ð1:1Þ
For instance, in the case where S0 describes a conformal
field theory (CFT) and O is a relevant operator in the
spectrum of the theory, it is natural to interpret S0 as an
ultraviolet (UV) theory and O as the source of a renorm-
alization group (RG) flow. Geometrically, O is a tangent
vector to the RG flow at a fixed point, and the RG flow
equations determine the remainder of the λ expansion in
(1.1). Determining the flow completely is a very difficult
problem in general. Remarkably, in two dimensions it is
sometimes possible to investigate such flows quite explic-
itly in the special setup where the perturbing operator
preserves “sufficiently many symmetries.” In this case, the
flow is integrable and can be studied, e.g., by thermody-
namic Bethe ansatz techniques; see, e.g., Refs. [1–4].

For two-dimensional QFTs it is possible to construct
other deformations quite explicitly. If S0 enjoys at least two
conservation laws with currents jμ0 and kμ0,

∂μj
μ
0 ¼ ∂μk

μ
0 ¼ 0; ð1:2Þ

then we may define the combination

Oj∧k
0 ¼

Z
dτ

Z
dσjμ0ðτ; σÞkν0ðτ; σÞϵμν: ð1:3Þ

It turns out that this composite operator can be defined in
the quantum theory without incurring any short-distance
singularities [5]. Then, it is possible to define a deformed
action by the equation

∂λSλ ¼ Oj∧k
λ ; ð1:4Þ

where Oj∧k
λ is defined in the deformed theory, out of the

deformed currents jμλ and kμλ (which are conserved with
respect to Sλ). This is a rather general definition that
encompasses many well-studied examples, including the
marginal JJ̄ deformation (when Jμ ¼ jμ and ϵμνJν ¼ kμ are
both conserved) and the irrelevant TT̄ deformation [5–7],
which arises when T0μ ¼ jμ and T1μ ¼ kμ. In that case

Oð2Þ
λ ¼ −

Z
dτ

Z
dσ det ½Tμν

λ ðτ; σÞ�: ð1:5Þ
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The TT̄ deformation is universal: it can be constructed for
any translation invariant QFT. Remarkably, it can be
studied very explicitly, both at the classical and at the
quantum level. Moreover, if the seed theory S0 happens to
be a CFT, or an integrable QFT (IQFT), infinitely many
analogues of TT̄ may be constructed [5]: both CFTs and
IQFTs possess infinitely many higher-spin conserved
currents, which may be used to define more and more
irrelevant Poincaré-invariant operators of the form (1.4).
Namely, the currents related to spin �s operators define an
operator Os of dimension (2s − 2). Very remarkably, each
of these operators OðsÞ, including TT̄, defines a flow that
preserves all higher-spin charges [5,8]. In other words, TT̄
and its higher-spin counterparts preserve integrability. This
allows for a quite detailed study of these deformations, e.g.,
yielding flow equations for various physical quantities
along the deformation, most notably the finite-volume
energy spectrum [5,7].
Recently, a new type of classically marginal deformation

of two-dimensional field theories has been considered [9];
see also [10,11]. Here, the deforming operator is taken
to be1

Rγ ¼ −
Z

dτ
Z

dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½T̃μν

γ ðτ; σÞ�
q

;

T̃μν
γ ¼ Tμν

γ −
1

2
gμνTρσ

γ gρσ; ð1:6Þ

where gμν is the two-dimensional metric. In light-cone
coordinates2

Rγ ¼
Z

dσþ

Z
dσ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T̃þþ
γ ðσþ; σ−ÞT̃−−

γ ðσþ; σ−Þ
q

: ð1:7Þ

It is worth emphasizing that T̃�� are chiral only if Sγ

defines a CFT—otherwise they genuinely depend on both
σþ and σ−. The classical flow is generated by setting

∂γSγ ¼ Rγ; ð1:8Þ

and it has several intriguing properties [9]:
(1) It preserves classical conformal invariance; i.e., if

the stress-energy tensor of the seed theory obeys
Tμν
0 gμν ¼ 0, then in the deformed theory Tμν

γ gμν ¼ 0.
(2) It commutes with the TT̄ flow generated by Oð2Þ,

which allows us to define a two-parameter flow
resulting in an action Sðλ;γÞ.

(3) If S0 is given by a member of a large class of
Lagrangian densities L0, it is possible to express Lγ

(as well as Lðλ;γÞ) in closed form.
(4) The resulting deformed Lagrangian is not analytic in

a derivative expansion, and it is very reminiscent of
that of modified Maxwell theories in four dimen-
sions [12,13].

To illustrate the last two points, let us consider the seed
action for N noninteracting massless fields ϕi, i ¼ 1;…N,

S0 ¼
Z

dτ
Z

dσ
1

2
∂μϕ

i
∂
μϕi: ð1:9Þ

Then we have [9,10]

Sγ ¼
Z

dτ
Z

dσ

�
cosh γ
2

∂μϕ
i
∂
μϕi þ sinh γ

2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∂μϕ

i
∂
νϕi

∂νϕ
j
∂
μϕj − ð∂μϕi

∂
μϕiÞ2

q �
: ð1:10Þ

With the exception of the case of the single boson, when

Sγ ¼ eγS0; ðN ¼ 1Þ; ð1:11Þ

the action is nonanalytic for small gradients ∂μϕ
i and, in

fact, quite intricate. For instance, although it still admits
plane waves such as ϕμ ¼ nμeipνσ

ν
as solutions, linear

combinations of plane waves are not solutions. This is very
similar to ModMax theories [12–15] (see [16] for a review),
and in fact, the action (1.10) can be obtained as the
dimensional reduction of the ModMax action [10]. This
nonlinear and nonanalytic structure makes the quantization
of root-TT̄ deformed theories, as well as of ModMax
theories, an outstanding problem. This is in stark contrast
with TT̄ deformed theories where at least some features of
the model—like the spectrum [5,7], S matrix [17], partition
function [18–23], and correlation functions [24,25]—may
be studied quite thoroughly at the quantum level.
In an effort to better understand root-TT̄ theories (and

perhaps ModMax theories, too), it is natural to ask if this
deformation has any further properties, at least at the
classical level. In particular, does it preserve integrability,
as is the case for TT̄ and its higher-spin analogues
generated by OðsÞ, and how can this be seen?
In this work we do not answer this question in full

generality but instead give evidence for a (rather large)
class of theories. These are the principal chiral model
(PCM) on a Lie groupG and two classes of nonlinear sigma
models (NLSMs) on coset spaces G=H, where G is a Lie
(super)group and H a bosonic subgroup thereof, as well as
the extensions of these models by a Wess-Zumino (WZ)
term. These NLSMs are the (bosonic) symmetric-space
sigma model (SSSM) and its supersymmetric extension,
the “semisymmetric-space” sigma model (sSSSM). For all

1In what follows, we will always denote the parameter of the
root-TT̄ flow as γ, in contrast with the parameter λ of a generic
deformation. The parameter of the irrelevant TT̄ deformation will
also be indicated by λ.

2We take g�∓ ¼ −2 and g�∓ ¼ − 1
2
, so for any vector Vμ,

V� ¼ 1
2
ðV0 � V1Þ and V� ¼ V0 � V1.
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these models we construct the deformed Lax connection Lμ

and check that imposing its flatness

∂þL− − ∂−Lþ þ ½Lþ;L−� ¼ 0 ð1:12Þ

is equivalent to the equations of motion of the deformed
model. We also construct the Lax connection for the ðγ; λÞ
doubly deformed models, where we combine TT̄ and root-
TT̄ deformations. Our construction follows a rather explicit
case-by-case analysis, similar to the construction of
TT̄-deformed Lax connections of [26].
It should be noted that the semisymmetric-space sigma

model reduces to the symmetric-space sigma model by
setting its odd (fermionic) part to zero. In turn, the PCM can
also be thought of as a symmetric-space coset ðG ×GÞ=G.
In a sense, we might only describe the most general sSSSM
case (with the addition of a WZ term), and all the others
would follow from it. However, especially given that the
construction of the sSSSM is somewhat technical, we find
it clearer to first work out in detail the PCM, which is
substantially simpler, and then work our way up to the
SSSM and sSSSM.
Let us stress that the identification of a Lax connection is

only the first step in the proof of classical integrability of
the deformed models. One should further check that the
conserved charges constructed from the monodromy matrix
have mutually vanishing Poisson brackets, i.e., they are in
involution. In this regard, the models that we are deforming
are known to possess some technical complications due to a
non-ultralocal Poisson structure. This means that when
taking the Poisson brackets, not only does the Dirac delta
function appear but also its derivative. Nevertheless, it is
still possible to recast the Poisson brackets of the Lax
connection in a useful form known as Maillet brackets
[27,28], which allow one to construct the mutually con-
served charges and argue for the classical integrability of
the models. We expect the deformed models analyzed here
to display a modification of the original structure of Maillet
brackets of the undeformed models. It is very important,
and at the same time very interesting, to construct the
Maillet brackets explicitly.
This paper is structured as follows. We begin in Sec. II

by reviewing the constructions of root-TT̄ flows presented
in [9] to the extent needed later in the paper. Next, in
Sec. III we discuss the case of the PCM (possibly with the
WZ term). We discuss the case of the deformation of the
PCM in quite some detail (Sec. III B) as it nicely illustrates
the mechanism by which integrability is preserved in the
other models, too, but it is less involved technically. Adding
the WZ term also allows us to explicitly consider the
deformation of the classical WZW model; see Sec. III E. In
Sec. IV we first discuss the case of symmetric-space sigma
models and then that of semisymmetric-space sigma
models. Even though the constructions become more
and more involved, the logic follows quite closely the

one we illustrate for the PCM in the previous section. We
conclude and present some open questions in Sec. V. The
derivation of the equations of motion for the various
(deformed) models of interest, which is straightforward
but a little tedious, is presented in the Appendix.

II. REVIEW OF THE ROOT-TT̄ FLOWS

Let us briefly review the construction of the deformed
Lagrangian presented in [9] and fix some notation which
we will use later in the paper. To begin, we are interested in
a Lagrangian featuring N interacting bosons ϕi,
i ¼ 1;…N, of the form

L0 ¼
1

2
½gμνGijðϕÞ þ εμνBijðϕÞ�∂μϕi

∂νϕ
j − VðϕÞ; ð2:1Þ

where gμν is the two-dimensional inverse metric, which in
light-cone coordinates reads g�∓ ¼ − 1

2
(while g�∓ ¼ −2),

and εμν is the Levi-Civita tensor with εþ− ¼ −ε−þ ¼ 1
2
.

Notice that the potential term VðϕÞ is not needed for the
models we study below, but it is easy to include it.
For the purpose of evaluating the Hilbert3 stress-energy

tensor

Tμν ¼ −2
∂L
∂gμν

þ gμνL; ð2:2Þ

it is important to single out the terms in (2.1) which couple
to the two-dimensional metric gμν. Hence, we define

ðX1Þμν ¼ GijðϕÞ∂μϕi
∂
νϕj: ð2:3Þ

When constructing powers of the stress-energy tensor, we
generate new tensor structures by contracting ðX1Þμν with
itself and with the metric in various ways. Due to the
symmetry of the stress-energy tensor and of the metric, it is
immediate to see that these terms will be of the form

ðX2Þμν ¼ ðX1ÞμρðX1Þρν; ðX3Þμν ¼ ðX2ÞμρðX1Þρν; …;

ð2:4Þ

or generally

ðXnþ1Þμν ¼ ðXnÞμρðX1Þρν; n ≥ 1: ð2:5Þ

The deformed action will be a scalar and therefore will
depend on the traces of the various ðXnÞμν, which we
denote by

xn ¼ ðXnÞμμ; n ≥ 1: ð2:6Þ

3The root-TT̄ deformation may also be defined for non-
relativistic theories by using the Noether stress tensor. However,
in this work we restrict our attention to theories which enjoy
boost invariance.
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The deformed Lagrangian will also be a function of the
terms in (2.1) which do not couple to the metric, which we
denote by

x0 ¼
1

2
εμνBijðϕÞ∂μϕi

∂νϕ
j − VðϕÞ: ð2:7Þ

Finally, we note that many of the trace terms xn, n ≥ 1 are
related by trace identities. In fact, ðXnÞμν is a 2 × 2 matrix,
and as such, we may express any trace term as a polynomial
in x1 and x2,

xn ¼ Pnðx1; x2Þ; n ≥ 3: ð2:8Þ

This is sufficient to conclude that the deformed Lagrangian
takes the form

Lγðx0; x1; x2Þ; ð2:9Þ

with the seed action being

L0ðx0; x1; x2Þ ¼
1

2
x1 þ x0: ð2:10Þ

Once the action is recast in this form, an explicit
computation [9] allows us to integrate the flow equation,
obtaining simply

Lγðx0; x1; x2Þ ¼ Lðx0; xðγÞ1 ; xðγÞ2 Þ: ð2:11Þ

In other words, the deformed Lagrangian takes the same
form as the original Lagrangian in terms of the deformed

quantities xðγÞ1 and xðγÞ2 (while x0 remains undeformed).
These are given by

xðγÞ1 ¼ chðγÞx1 þ shðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2 − x21

q
;

xðγÞ2 ¼ chð2γÞx2 þ shð2γÞx1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2 − x21

q
: ð2:12Þ

In conclusion, for the bosonic models below, the deformed
Lagrangian is simply

Lγ ¼
1

2
xðγÞ1 þ x0 ¼

chðγÞ
2

x1 þ
shðγÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2 − x21

q
þ x0:

ð2:13Þ

It is also worth noting that the combination appearing under
the square roots factorizes when expressed in light-cone
coordinates,

2x2 − x21 ¼ ðGijðϕÞ∂þϕi
∂þϕjÞðGklðϕÞ∂−ϕk

∂−ϕ
lÞ; ð2:14Þ

which will be useful later. Finally, we remark that there
exists a conserved quantity along this flow, namely,

ðxðγÞ1 Þ2 − xðγÞ2 ¼ ðx1Þ2 − x2; ð2:15Þ

which can be used to show that this flow preserves
tracelessness of the stress-energy tensor [9]. This discus-
sion can also be extended to models with bosons and
fermions [9]. However, we will not need the details of the
fermionic constructions in what follows. In fact, the only
model where we might expect complications due to the
presence of fermions is the semisymmetric-space sigma
model. In that case, however, the fermionic currents do not
couple to the metric (a fermionic bilinear appears in x0),
while the rest of the dependence on fermions is packaged
inside bosonic currents, as we shall see below.

A. Combining TT̄ and root-TT̄ deformations

Since the root-TT̄ flow commutes with the (irrelevant)
TT̄ flow, it is easy to define a joint deformation which
depends on two parameters: γ for root-TT̄ deformations
and λ for TT̄ deformations [9]. In fact, it is possible to
construct a doubly deformed Lagrangian Lðλ;γÞ so that

∂λLðλ;γÞ ¼−det½Tμν
ðλ;γÞ�; ∂γLðλ;γÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T̃þþ
ðλ;γÞT̃

−−
ðλ;γÞ

q
: ð2:16Þ

A simple way to do this is to first perform a TT̄ deformation
and then deform the resulting action along the lines
illustrated above. The actions resulting from TT̄ flows
can be expressed in closed form [29]. To do so, it is
convenient to restrict ourselves to a slightly more narrow
Lagrangian than (2.1). In fact, while the root-TT̄ flow is
completely insensitive to x0 of Eq. (2.7), this is not the case
for TT̄. In particular, the potential VðϕÞ enters the flow,
which is described by the Burgers’ equation, as an initial
condition; this results in a fairly intricate dependence on
VðϕÞ at finite λ. Conversely, the topological term is left
unchanged by any continuous deformation. For the class of
models that we consider here, it suffices to restrict
ourselves to VðϕÞ ¼ 0, i.e.,

x0 ¼
1

2
εμνBijðϕÞ∂μϕi

∂νϕ
j; x1 ¼ gμνGijðϕÞ∂μϕi

∂νϕ
j:

ð2:17Þ

In this case, starting from a seed Lagrangian

L0ðx0; x1; x2Þ ¼
1

2
x1 þ x0; ð2:18Þ

we have the TT̄-deformed Lagrangian [29]

Lðλ;0Þðx0; x1; x2Þ

¼ 1

2λ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λx1 þ 2λ2ððx1Þ2 − x2Þ

q
− 1

�
þ x0: ð2:19Þ
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Then, according to our general recipe,

Lðλ;γÞðx0; x1; x2Þ ¼ Lðλ;0Þðx0; xðγÞ1 ; xðγÞ2 Þ; ð2:20Þ

or, more explicitly,

Lðλ;γÞðx0; x1; x2Þ

¼ 1

2λ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λxðγÞ1 þ 2λ2ððxðγÞ1 Þ2 − xðγÞ2 Þ

q
− 1

�
þ x0;

ð2:21Þ

with xðγÞ1 and xðγÞ2 as in (2.12).

III. PRINCIPAL CHIRAL MODEL
WITH WESS-ZUMINO TERM

The PCM is a particularly simple sigma model where the
target space is a Lie group G. In this section we briefly
review the construction of the Lax connection for the PCM
(see also the recent review [30]), and then we extend it to
the root-TT̄ deformed model. We later show that similar
arguments also apply to the case with a WZ term and to the
double root-TT̄ and TT̄ deformation.

A. Principal chiral model

Consider a Lie group G and its Lie algebra g. The left-
and right-invariant Maurer-Cartan forms are

j ¼ g−1dg; |̃ ¼ −ðdgÞg−1; ð3:1Þ

with j ∈ g and |̃ ∈ g. These are related by the adjoint action
|̃ ¼ −Adgj ¼ −gjg−1. Let g ¼ gðτ; σÞ ∈ G be a G-valued
field. We drop the ðτ; σÞ dependence to keep our notation
lighter. Define jμ and |̃μ to be the pull-back of the Maurer-
Cartan forms

jμ ¼ g−1∂μg; |̃μ ¼ −ð∂μgÞg−1; ð3:2Þ

which both take values in g. Here jμ is invariant under left
multiplicationby a constant group elementg0 ∈ G, g0 ¼ g0g,
and |̃μ is invariant under right multiplication by a constant
group element g0 ¼ gg0. Both jμ and |̃μ satisfy the flatness
condition, which we express in light-cone coordinates,

∂þj− − ∂−jþ þ ½jþ; j−� ¼ 0 ¼ ∂þ|̃− − ∂−|̃þ þ ½|̃þ; |̃−�:
ð3:3Þ

The Lagrangian of the principal chiral model takes a simple
form in terms of jμ, namely,

LPCM ¼ 1

2
gμνtr½jμjν� ¼ −

1

2
tr½jþj−�; ð3:4Þ

which can be equivalently written as

LPCM ¼ 1

2
gμνtr½|̃μ|̃ν� ¼ −

1

2
tr½|̃þ|̃−�: ð3:5Þ

Both expressions are manifestly invariant under left multi-
plication and right multiplication by g0 ∈ G; hence, the
action is invariant under G ×G.
As it is easy to verify explicitly, the Noether current

associated to the invariance under right multiplication is jμ,
and its conservation equation

∂μjμ ¼ 0 ð3:6Þ

is equivalent to the equations of motion of the model; see
also the Appendix for the explicit computation. Therefore,
we may define the Lax connection

L� ¼ j�
1 ∓ z

; ð3:7Þ

which depends on the spectral parameter z ∈ C. Requiring
Lμ to be flat for any z amounts to imposing the equations of
motions of the model (3.6),

0 ¼ ∂þL− − ∂−Lþ þ ½Lþ;L−�

¼ 1

1 − z2
ð∂þj− − ∂−jþ þ ½jþ; j−� − zð∂þj− þ ∂−jþÞÞ;

ð3:8Þ

as may be verified explicitly by using the Maurer-Cartan
equation (3.3). Similarly, the Noether current related to left
multiplication is |̃μ, whose conservation equation

∂μ|̃μ ¼ 0 ð3:9Þ

is also equivalent to the equations of motion, which yields
an equivalent construction of the Lax connection.

B. Root-TT̄ deformation

We write down a deformed Lagrangian by plugging into
Eq. (2.13) the appropriate expressions for the PCM, which
we may read from (3.4). We have

x0 ¼ 0; x1 ¼ −tr½jþj−�;

x2 ¼
1

2
ðtr½jþjþ�tr½j−j−� þ ðtr½jþj−�Þ2Þ; ð3:10Þ

so

LðγÞ
PCM ¼ 1

2

�
−chðγÞtr½jþj−� þ shðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½jþjþ�tr½j−j−�

p �
:

ð3:11Þ
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We can equivalently write

LðγÞ
PCM ¼ 1

2

�
−chðγÞtr½|̃þ|̃−� þ shðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½|̃þ|̃þ�tr½|̃−|̃−�

p �
;

ð3:12Þ
either by expressing the seed Lagrangian in terms of |̃μ in
the first place, or by using the explicit forms of jμ and |̃μ.
The above expressions make it manifest that the deformed

model still has G ×G symmetry. It is possible to derive the
resulting conserved current by Noether’s theorem. In the
Appendix we do so for any Lagrangian which depends on x1
and x2 as in Eq. (3.10), Lðx1; x2Þ, obtaining, for the current
related to the right-multiplication symmetry,

Jμ ¼ 2
∂L
∂x1

jμþ 4
∂L
∂x2

gνρtr½jμjν�jρ; ∂μJμ ¼ 0: ð3:13Þ

We immediately see that for the seed Lagrangian L0 ¼ 1
2
x1,

this reduces to the current jμ. For the action (3.11) this gives

J� ¼ chðγÞj� − shðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½j�j��
tr½j∓j∓�

s
j∓;

∂þJ− þ ∂−Jþ ¼ 0: ð3:14Þ
Note that we may rewrite the Lagrangian (3.11) as

Lγ ¼ −
1

2
tr½jþJ−� ¼ −

1

2
tr½Jþj−�: ð3:15Þ

The current Jμ is conserved; however, it is not flat.
To see this, let us consider the commutator of the J�,
which actually obeys a nice relation:

½Jþ;J−� ¼ chðγÞ2½jþ; j−� þ shðγÞ2½j−; jþ� ¼ ½jþ; j−�:
ð3:16Þ

This relation will be crucial for our construction below. It
shows that

∂þJ− − ∂−Jþ þ ½Jþ;J−� ≠ 0; ð3:17Þ
unless γ ¼ 0, because the first two terms are γ dependent
while the commutator is not. However, this structure
suggests a modification of the Lax connection which is
reminiscent of that discussed in [26],

LðγÞ
� ¼ j� � zJ�

1 − z2
: ð3:18Þ

By construction, this expression reduces to (3.7) when
γ ¼ 0 and Jμ ¼ jμ. Noting the commutators

½J�; j∓� ¼ chðγÞ½j�; j∓�; ð3:19Þ
which, in particular, imply that

½Jþ; j−� − ½jþ;J−� ¼ 0; ð3:20Þ

and exploiting the important relation (3.16), we can work

out the condition for LðγÞ
μ to be flat,4

0 ¼ ∂þLðγÞ
− − ∂−L

ðγÞ
þ þ ½LðγÞ

þ ;LðγÞ
− �

¼ 1

1 − z2

�
∂½þj−� − z∂ðþJ −Þ

þ ½jþ; j−� − zð½jþ;J−� − ½Jþ; j−�Þ − z2½Jþ;J−�
1 − z2

�

¼ 1

1 − z2
ð∂½þj−� þ ½jþ; j−� − z∂ðþJ −ÞÞ: ð3:21Þ

Using the Maurer-Cartan equation (3.3) we see that LðγÞ
μ is

flat for any z if and only if the equations of motion (3.14)
are satisfied.
It is quite clear that we could perform an analogous

construction for the current related to left multiplication by
g0, which would give

J̃� ¼ chðγÞ|̃� − shðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½|̃�|̃��
tr½|̃∓|̃∓�

s
|̃∓;

∂þJ̃− þ ∂−J̃þ ¼ 0: ð3:22Þ

This current is related to J� much in the same way as |̃� is
related to j�, namely,

J̃μ ¼ −AdgJμ: ð3:23Þ

In a similar way, we can define the Lax connection in terms
of J̃�, namely,

L̃�ðzÞ ¼
|̃� � zJ̃�
1 − z2

: ð3:24Þ

As in the undeformed case, the two choices are related by a
gauge transformation of the Lax connection

gðL�ðzÞ þ ∂�Þg−1 ¼ L̃ðz−1Þ: ð3:25Þ

C. Two-parameter deformation

An important property of the root-TT̄ flow is that it
commutes with the usual (irrelevant) TT̄ flow [9].
Following the discussion of Sec. II A, for a theory whose
“seed” Lagrangian is

L0ðx0; x1; x2Þ ¼
1

2
x1; ð3:26Þ

we have, from Eq. (2.21),

4We use the short-hand notations A½μBν� ¼ AμBν − AνBμ and
AðμBνÞ ¼ AμBν þ AνBμ.
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Lðλ;γÞðx0; x1; x2Þ

¼ 1

2λ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λxðγÞ1 þ 2λ2ððxðγÞ1 Þ2 − xðγÞ2 Þ

q
− 1

�
; ð3:27Þ

with xðγÞ1 and xðγÞ2 as in (2.12). This can be immediately
adapted to the case of the PCM by substituting the values in
(3.10) for x1 and x2. Then, we get a deformed action of the
type discussed in Sec. III A. In particular, the equations of
motion are still given by the conservation of Jμ as in
Eq. (3.13). We can writeJ� a little more explicitly in light-
cone coordinates,

Jþ ¼ 2

�
∂Lðλ;γÞ
∂x1

þ x1
∂Lðλ;γÞ
∂x2

�
jþ − 2

∂Lðλ;γÞ
∂x2

tr½jþjþ�j−;

J− ¼ 2

�
∂Lðλ;γÞ
∂x1

þ x1
∂Lðλ;γÞ
∂x2

�
j− − 2

∂Lðλ;γÞ
∂x2

tr½j−j−�jþ;

ð3:28Þ
where jμ is again the pull-back of the left-invariant Maurer-
Cartan one-form.5

We now see that the Lax connection once again takes the
form

Lðλ;γÞ
� ¼ j� � zJ�

1 − z2
; ð3:29Þ

just like in Eq. (3.18), where now Jμ is given by (3.28).
To see why this is the case, we first observe that

½Jþ; j−� ¼ 2

�
∂Lðλ;γÞ
∂x1

þ x1
∂Lðλ;γÞ
∂x2

�
½jþ; j−�;

½jþ;J−� ¼ 2

�
∂Lðλ;γÞ
∂x1

þ x1
∂Lðλ;γÞ
∂x2

�
½jþ; j−�; ð3:30Þ

so that, in particular,

½Jþ; j−� − ½jþ;J−� ¼ 0; ð3:31Þ
as in (3.20). Next, we again compute

½Jþ;J−� ¼ 4

��
∂Lðλ;γÞ
∂x1

þ x1
∂Lðλ;γÞ
∂x2

�
2

−
�
∂Lðλ;γÞ
∂x2

�
2

ð2x2 − x21Þ
�
½jþ; j−�; ð3:32Þ

where we used that tr½jþjþ�tr½j−j−� ¼ 2x2 − x21 to rewrite
the whole coefficient on the right-hand side in terms of
x1 and x2. An explicit computation using the form of Lðλ;γÞ
in (2.21) then shows that, for any γ and λ, the whole
coefficient on the right-hand side simplifies to one. In other
words,

½Jþ;J−� ¼ ½jþ; j−�; ð3:33Þ
just like in (3.16). Using these two observations, the
derivation of Eq. (3.21) goes through immediately, showing

that, also for this model, the flatness of Lðλ;γÞ
� is equivalent

to the equations of motion.6 We note that, when γ ¼ 0, we
recover the Lax connection for the TT̄-deformed PCM
which was obtained in [26].

D. Adding a Wess-Zumino term

The PCM on the Lie group G can be supplemented by a
WZ term. The resulting action, prior to any (root-TT̄)
deformation, reads

SPCMWZ ¼ h
Z
∂B
d2σLPCM þ k

Z
B
d3σ

1

6
εijktr½ji½jj; jk��:

ð3:34Þ

A few remarks are in order. First of all, we have expressed
the WZ term as a three-dimensional integral on a space B
whose boundary ∂B is the usual (1þ 1)-dimensional
Minkowski space.7 For this to lead to a well-defined
(quantum) theory, it may be necessary to impose a con-
straint for the coefficient k. In particular, if G is a compact
simple Lie group, we should take

4πk ∈ Z: ð3:35Þ

The coefficient h, instead, is unconstrained. We could, of
course, introduce h in the discussion of the PCM above, but
it would only amount to a rescaling of the action.
Let us briefly review the construction of the Lax

connection in the undeformed model; see also, e.g., the
review [30]. First of all, jμ (and |̃μ) still satisfies the flatness
condition (3.3). However, the equations of motion are now
modified, and they read

ðhþ kÞ∂þj− þ ðh − kÞ∂−jþ ¼ 0; ð3:36Þ

or, equivalently,

ðh − kÞ∂þ|̃− þ ðhþ kÞ∂−|̃þ ¼ 0: ð3:37Þ

It is easy to see that the Lax connection

L� ¼
�
1 ∓ k

h

�
j�

1 ∓ z
ð3:38Þ

5As before, the whole discussion could be repeated in terms of
the right-invariant current |̃μ.

6Conversely, we could obtain a whole class of integrability-
preserving Lagrangians Lðx1; x2Þ by demanding that the
coefficient on the right-hand side of (3.32) equals one.
Unfortunately, it is not immediate to construct the most general
solution of this nonlinear partial differential equation. The same
PDE appears when demonstrating that TT̄ and root-TT̄ flows of 4d
electrodynamics preserve duality invariance [31].

7Here εijk is the three-dimensional Levi-Civita tensor.
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reduces to (3.7) for k ¼ 0 and that its flatness is equivalent
to the equations of motion. We review the computation as it
will be useful in a moment. We have

0 ¼ ∂½þL−� þ ½Lþ;L−�

¼ 1

1 − z2

�
ð1 − zÞ

�
1þ k

h

�
∂þj− − ð1þ zÞ

�
1 −

k
h

�
∂−jþ

þ
�
1 −

k2

h2

�
½jþ; j−�

�
¼ 1

1 − z2

�
k
h
− z

�

×

��
1þ k

h

�
∂þj− þ

�
1 −

k
h

�
∂−jþ

�
; ð3:39Þ

where in the last step we used the Maurer-Cartan equation
to eliminate the commutator. As a result, Eq. (3.39) is
equivalent to the equations of motion (3.36).
Let us now consider the case of the root-TT̄ deformation

(or the combined root-TT̄ and TT̄ deformation) of the PCM
with a WZ term. The action of the deformed model is
simply

SðγÞ
PCMWZ ¼ h

Z
∂B
d2σLðγÞ

PCM þ k
Z
B
d3σ

1

6
εijktr½ji½jj; jk��;

ð3:40Þ

where LðγÞ
PCM is the very same Lagrangian as in (3.11). This

construction also applies verbatim if LðγÞ
PCM is replaced by

the doubly deformed Lagrangian Lðλ;γÞ
PCM of (2.21). In fact, as

we discussed in Sec. II, the terms of the action which do not
couple to the two-dimensional metric do not affect the flow.
This is the case for the WZ term, which is topological. The
derivation of the equations of motion now splits into two
parts. The part scaling with h is exactly as in Sec. III B (see
also the Appendix for the detailed derivation). The part
scaling with k is similar to the standard WZ term con-
struction. Altogether, the equations take the form

∂þðhJ− þ kj−Þ þ ∂−ðhJþ − kjþÞ ¼ 0; ð3:41Þ

which should be compared to Eq. (3.36); a similar equation
holds for the right-invariant currents. These equations of
motion suggest a straightforward guess for the Lax con-
nection of the deformed model, namely,

LðγÞ
� ¼ ðj� ∓ k

hJ�Þ � zðJ� ∓ k
h j�Þ

1 − z2
: ð3:42Þ

Let us now study the flatness condition for (3.42). By
making use of the identities of the previous section, in
particular, Eqs. (3.16) and (3.20), we can compute

½LðγÞ
þ ;LðγÞ

− � ¼ 1 − h2

k2

1 − z2
½jþ; j−�: ð3:43Þ

Then, the computation closely follows that of Eq. (3.39)
and reads

0¼ ∂½þL−� þ ½Lþ;L−�

¼ 1

1− z2

��
1−

k
h
z

�
∂þj−þ

�
k
h
−z

�
∂þJ−

−
�
1−

k
h
z

�
∂−jþþ

�
k
h
−z

�
∂−Jþþ

�
1−

k2

h2

�
½jþ;j−�

�

¼ 1

1− z2

�
k
h
−z

��
∂þ

�
J−þ

k
h
j−

�
þ∂−

�
Jþ−

k
h
jþ

��
;

ð3:44Þ

where, again, in the last step we used the Maurer-Cartan
equation to eliminate the term involving ½jþ; j−�. The above
equation is therefore equivalent to the equations of motion
(3.41). This construction can be repeated in terms of the
right-invariant current, too.

E. Wess-Zumino-Witten point

The physics of the PCM with a WZ term depends on the
ratio of k=h. In the undeformed model, it is interesting to
consider the equations of motion in the limit when h → k.
One finds that the equations of motion imply that the left-
and right-invariant currents become chiral,

∂þj− ¼ 0; ∂−|̃þ ¼ 0: ð3:45Þ

In the opposite limit, when h → −k, the currents jμ and |̃μ
swap roles. In the quantum theory, these points correspond
to the WZWmodel. At these points, the chiral conservation
laws (3.45) lead to the existence of two (chiral and
antichiral) Kač-Moody algebras built out of G. It is natural
to wonder whether this is the case in the deformed model.
In the limit h → k, the equations of motion (3.41) become

∂þðJ− þ j−Þ þ ∂−ðJþ − jþÞ ¼ 0; ð3:46Þ

which is not chiral. This is still a classical statement, but it
has intriguing implications when we consider a root-TT̄
deformation of the WZWmodel. It points to a rather radical
deformation of the current algebra underlying the WZW
model, which would be very interesting to study at the
quantum level.

IV. NONLINEAR SIGMA MODELS

Let us now consider a sigma model having as a target
space the quotient G=H, where G is a Lie group and H is a
subgroup; see also [32–34] for reviews. Indicating the Lie
algebra as g and its subalgebra as h, we have the vector-
space decomposition

g ¼ h ⊕ f: ð4:1Þ
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Given such a decomposition, we may introduce a map
Ω∶g → g such that

ΩðhÞ ¼ h; ΩðfÞ ¼ −f: ð4:2Þ
The operation Ω is a symmetry of g if we assume that
½f; f� ⊂ h. In this special case, where the Lie algebra g
admits such aZ2 automorphismΩ, the theory is said to be a
symmetric-space sigma model, and we label the subspaces
h and f by to their eigenvalues under Ω as8

g0 ¼ h; g2 ¼ f; ½gn; gm� ⊂ gðnþmÞmod 4: ð4:3Þ
With this notation, ΩðgnÞ ¼ ingn. As we briefly review
below, this fact is sufficient to guarantee the existence of a
Lax connection for the model, and we show that the same is
true even if we perform a root-TT̄ deformation of the model.
A further generalization of such cosets is given by

semisymmetric-space sigma models. These are constructed
from Lie supergroups, whose tangent spaces are Lie
superalgebras. Let G be a Lie supergroup and g its
superalgebra. By definition, the superalgebra has a Z2

grading, given by the “fermion sign” ð−1ÞF. This fact by
itself is not sufficient to guarantee the existence of a Lax
connection on a suitably defined supercoset. If, however,
theZ2 automorphismΩ of this algebra can be extended to a
Z4 automorphism with Ω2 ¼ ð−1ÞF, then it is possible to
construct such an integrable supercoset. In this case, we
decompose the Lie superalgebra in its eigenspaces underΩ,

g ¼ g0 ⊕ g1 ⊕ g2 ⊕ g3; Ωgn ¼ ingn;

½gn; gm� ⊂ gðnþmÞmod 4; ð4:4Þ
where the odd eigenspaces corresponds to fermionic
generators and the even ones to bosonic generators. It
follows, in particular, that h ¼ g0 is a (bosonic) subalgebra
of g. CallingH the corresponding subgroup, the coset space
G=H is the target manifold of the semisymmetric-space
sigma model. This structure is sufficient to construct a
Lax connection for this model, as well as for its root-TT̄
deformation.

A. Symmetric-space sigma model

Here we consider the coset G=H, with H a subgroup of
G such that the corresponding Lie algebras enjoy the
decomposition (4.3). Similarly to what we did for the
PCM in Sec. III A, let us consider an element g ∈ G and
denote the pull-back of the (left-invariant) Maurer-Cartan
form as jμ ¼ g−1∂μg. Since jμ ∈ g ¼ g0 ⊕ g2, it can be
decomposed as

jμ ¼ jð0Þμ þ jð2Þμ ; jðnÞμ ∈ gn: ð4:5Þ

Hence, jð0Þμ takes a value in the subalgebra g0 ¼ h, while

jð2Þμ takes a value in the orthogonal complement.9 It is worth
noting how these two components transform under the
subalgebra h ¼ g0. Letting h ∈ h, and acting on g by right
multiplication, g0 ¼ gh, we see that

ðg0Þ−1∂μg0 ¼ h−1jð0Þμ hþ h−1∂μh|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðj0Þð0Þμ ∈g0

þ h−1jð2Þμ h|fflfflfflffl{zfflfflfflffl}
ðj0Þð2Þμ ∈g2

; ð4:6Þ

so jð0Þμ transforms as a connection while jð2Þμ transforms in
the adjoint representation of h. Thus, it is also natural to
introduce the “covariant derivative”

Dμ ¼ ∂μ þ ½jð0Þμ ; ·�; ð4:7Þ

as well as the “field strength”

Fð0Þ
μν ¼ ∂μj

ð0Þ
ν − ∂νj

ð0Þ
μ þ ½jð0Þμ ; jð0Þν �: ð4:8Þ

The Lagrangian for the SSSM is then

LSSSM ¼ 1

2
gμνtr½jð2Þμ jð2Þν � ¼ −

1

2
tr½jð2Þþ jð2Þ− �: ð4:9Þ

This is immediately invariant under (local) transformations
of H from the right, as well as under global G trans-
formations from the left. To see the left G invariance it is
sufficient to write

tr½jð2Þμ jð2Þν � ¼ tr½g−1∂μgPð2Þg−1∂νg�; ð4:10Þ

where Pð2Þ projects onto g2. This expression is manifestly
invariant under g → g0 ¼ g0g. The equations of motion are

equivalent to the covariant conservation of jð2Þμ ,

gμνDμj
ð2Þ
ν ¼ 0; ð4:11Þ

see the Appendix. The appearance of the covariant deriva-
tive is natural to ensure symmetry with respect to H. Note

that jð2Þμ is now (covariantly) conserved, but, unlike the case
of the PCM, it is not flat—unlike jμ, which still satisfies the
Maurer-Cartan equation

0¼ ∂½þj−� þ ½jþ;j−� ¼Fð0Þ
þ−þ½jð2Þþ ;jð2Þ− �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

g0

þDþjð2Þ− −D−j
ð2Þ
þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

g2

:

ð4:12Þ

8The reason for choosing subscript indices 0 and 2 rather
than 0 and 1 will become clear later, when we introduce the
semisymmetric-space sigma model.

9Note that the orthogonality of g0 and g2 is necessary for
the Lie algebra metric to be compatible with the grading
g ¼ g0 ⊕ g2.
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Note that we decomposed the right-hand side under Z2 and
that the two underbraced terms must separately vanish.
For this model it is possible to define a Lax connection

L� ¼ jð0Þ� þ z ∓ 1

z� 1
jð2Þ� : ð4:13Þ

Let us sketch the computation of the flatness condition, in
preparation for the case of the root-TT̄ deformed model.
We have

0 ¼ ∂½þL−� þ ½Lþ;L−�

¼ Fð0Þ
þ− þ ½jð2Þþ ; jð2Þ− � þ ðzþ 1Þ2Dþjð2Þ− − ðz − 1Þ2D−j

ð2Þ
þ

z2 − 1
:

ð4:14Þ
We see that the z-independent part vanishes due to the g0
projection of the Maurer-Cartan equation (4.12), while the
remaining terms arrange themselves into the g2 projection
of the Maurer-Cartan equation and the equations of motion
(4.11), which is precisely what we need.

B. Root-TT̄ deformation of the SSSM

The SSSM Lagrangian (4.9) is again of the form
Lðx0; x1; x2Þ (see Sec. II) with x0 ¼ 0 and

x1 ¼ −tr½jð2Þþ jð2Þ− �;

x2 ¼
1

2
ðtr½jð2Þþ jð2Þþ �tr½jð2Þ− jð2Þ− � þ ðtr½jð2Þþ jð2Þ− �Þ2Þ; ð4:15Þ

which is the same form as (3.10). As a result, the deformed

Lagrangian LðγÞ
SSSM takes the same functional form as in

(3.11), that is,

LðγÞ
SSSM¼1

2
ð−chðγÞtr½jð2Þþ jð2Þ− �þshðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½jð2Þþ jð2Þþ �tr½jð2Þ− jð2Þ− �

q
Þ:

ð4:16Þ

This Lagrangian is manifestly invariant under local H
transformations as well as under global G transformations
from the left, g0 ¼ g0g, with g0 a constant element ofG. The
equations of motion can be derived as in the Appendix, and
they read

DμJ
μ
ð2Þ ¼ 0; Jð2Þ

μ ¼ 2
∂L
∂x1

jð2Þμ þ 4gνρ
∂L
∂x2

tr½jð2Þμ jð2Þν �jð2Þρ :

ð4:17Þ

By analogy with the discussion of Sec. III B, it is natural to
define the Lax connection

LðγÞ
� ¼ jð0Þ� þ ðz2 þ 1Þjð2Þ� � 2zJð2Þ

�
z2 − 1

; ð4:18Þ

which reduces to L� in the undeformed model where

Jð2Þ
� ¼ jð2Þ� .
To check the flatness condition, let us start by evalu-

ating more explicitly Jð2Þ
μ . This takes the same form as in

(3.28),

Jð2Þ
þ ¼ 2

�
∂LðγÞ

SSSM

∂x1
þ x1

∂LðγÞ
SSSM

∂x2

�
jð2Þþ − 2

∂LðγÞ
SSSM

∂x2

× tr½jð2Þþ jð2Þþ �jð2Þ− ;

Jð2Þ
− ¼ 2

�
∂LðγÞ

SSSM

∂x1
þ x1

∂LðγÞ
SSSM

∂x2

�
jð2Þ− − 2

∂LðγÞ
SSSM

∂x2

× tr½jð2Þ− jð2Þ− �jð2Þþ : ð4:19Þ

Like in the case of the PCM, we note the analogue of the
identities (3.16) and (3.20), namely,

½Jð2Þ
� ; jð2Þ∓ � ¼ 2

�
∂LðγÞ

SSSM

∂x1
þ x1

∂LðγÞ
SSSM

∂x2

�
½jð2Þ� ; jð2Þ∓ �; ð4:20Þ

so, in particular,

½Jð2Þ
þ ; jð2Þ− � − ½jð2Þþ ;Jð2Þ

− � ¼ 0: ð4:21Þ

Additionally,

½Jð2Þ
þ ;Jð2Þ

− � ¼ ½jð2Þþ ; jð2Þ− �; ð4:22Þ

which can be checked by using that LðγÞ
SSSM obeys the

differential equation

4

��
∂LðγÞ

SSSM

∂x1
þ x1

∂LðγÞ
SSSM

∂x2

�2

−
�
∂LðγÞ

SSSM

∂x2

�2

ð2x2 − ðx1Þ2Þ
�

¼ 1; ð4:23Þ

exactly as in (3.32). The same differential equation is

satisfied by the doubly deformed Lagrangian Lðλ;γÞ
SSSM of

(2.21), so this entire argument can be repeated for the TT̄
and root-TT̄ deformed SSSM, defining the currents (4.19)
appropriately (see Sec. IV E below). Using these obser-
vations we find that

0 ¼ ∂½þL−� þ ½Lþ;L−�

¼ Fð0Þ
þ− þ ½jð2Þþ ; jð2Þ− � þ z2 þ 1

z2 − 1
ðDþjð2Þ− −D−j

ð2Þ
þ Þ

þ 2z
z2 − 1

ðDþjð2Þ− þD−j
ð2Þ
þ Þ; ð4:24Þ

where the various pieces reproduce the Maurer-Cartan
equation (more precisely, its g0 and g2 components), and
the equations of motion.
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C. Semisymmetric-space sigma model

In the sSSSM, G is a supergroup with superalgebra g,
and it enjoys a Z4 decomposition of the form (4.4).
We consider the coset G=H with h ¼ g0. Accordingly,
we decompose the pull-back of the Maurer-Cartan
form as

jμ ¼ jð0Þμ þ jð1Þμ þ jð2Þμ þ jð3Þμ ; jðnÞμ ∈ gn: ð4:25Þ

The Maurer-Cartan equation itself can be decomposed as

gn∶ 0 ¼ ∂þjðnÞ− − ∂−j
ðnÞ
þ þ

X3
j¼0

½jðjÞþ ; jðn−jÞ− �; ð4:26Þ

for n ¼ 0;…; 3, where the indices of the current are
understood to take values modulo 4. It is convenient to
highlight the special role played by h ¼ g0 by expressing
the Maurer-Cartan equation in terms of the covariant
derivative (4.7) and field strength (4.8),10

g0∶ 0 ¼ Fð0Þ
þ− þ ½jð2Þþ ; jð2Þ− � þ 2εμν½jð1Þμ ; jð3Þν �;

g1∶ 0 ¼ Dþjð1Þ− −D−j
ð1Þ
þ þ 2εμν½jð2Þμ ; jð3Þν �;

g2∶ 0 ¼ Dþjð2Þ− −D−j
ð2Þ
þ þ εμνð½jð1Þμ ; jð1Þν � þ ½jð3Þμ ; jð3Þν �Þ;

g3∶ 0 ¼ Dþjð3Þ− −D−j
ð3Þ
þ þ 2εμν½jð2Þμ ; jð1Þν �: ð4:27Þ

The Lagrangian of the sSSSM can be written as [35]11

LsSSSM ¼ 1

2
str½gμνjð2Þμ jð2Þν þ εμνjð1Þμ jð3Þν �; ð4:28Þ

which is written in terms of the supertrace. The equations of
motion then take the form (see the Appendix)

g1∶ εμνDμj
ð1Þ
ν ¼ ðεμν − 2gμνÞ½jð2Þμ ; jð3Þν �;

g2∶ gμνDμj
ð2Þ
ν ¼ 1

2
εμνð½jð1Þμ ; jð1Þν � − ½jð3Þμ ; jð3Þν �Þ;

g3∶ εμνDμj
ð3Þ
ν ¼ ðεμν þ 2gμνÞ½jð2Þμ ; jð1Þν �: ð4:29Þ

These expressions can be further simplified by using (4.27),
giving

g1∶ 0 ¼ ðεμν − gμνÞ½jð2Þμ ; jð3Þν �;

g2∶ gμνDμj
ð2Þ
ν ¼ 1

2
εμνð½jð1Þμ ; jð1Þν � − ½jð3Þμ ; jð3Þν �Þ;

g3∶ 0 ¼ ðεμν þ gμνÞ½jð2Þμ ; jð1Þν �: ð4:30Þ

The Lax connection is [36]

L� ¼ jð0Þ� þ
ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

z − 1

r
jð1Þ� þ z ∓ 1

z� 1
jð2Þ� þ

ffiffiffiffiffiffiffiffiffiffiffi
z − 1

zþ 1

r
jð3Þ� :

ð4:31Þ
The flatness condition for L� can then be expressed over
the components gn, yielding

g0∶ 0 ¼ Fð0Þ
þ− þ ½jð2Þþ ; jð2Þ− � þ 2εμν½jð1Þμ ; jð3Þν �;

g1∶ 0 ¼ Dþjð1Þ− −D−j
ð1Þ
þ þ ðz − 1Þ2

ðzþ 1Þ2 ½j
ð2Þ
þ ; jð3Þ− � þ ½jð3Þþ ; jð2Þ− �;

g2∶ 0 ¼ zþ 1

z − 1
ðDþjð2Þ− þ ½jð1Þþ ; jð1Þ− �Þ − z − 1

zþ 1

× ðD−j
ð2Þ
þ − ½jð3Þþ ; jð3Þ− �Þ;

g3∶ 0 ¼ Dþjð3Þ− −D−j
ð3Þ
þ þ ½jð2Þþ ; jð1Þ− � þ ðzþ 1Þ2

ðz − 1Þ2 ½j
ð1Þ
þ ; jð2Þ− �:

ð4:32Þ
We see that the g0 component matches with the 0th
component of the Maurer-Cartan equation. The g1 compo-
nent, evaluated at z ¼ 0, gives the corresponding compo-
nent of the Maurer-Cartan equation, while its residue at the
double pole gives the equations of motion (4.30) and
similarly for the g3 component. Finally, evaluating the g2
component at z ¼ 0 and z ¼ i gives the Maurer-Cartan and
equations of motion, respectively.

D. Root-TT̄ deformation of the sSSSM

The action of the sSSSM is still of the form Lðx0; x1; x2Þ.
Moreover, x1 and x2 take the same form as in the (bosonic)

SSSM if we express them in terms of jð2Þμ up to exchanging
the trace for the supertrace,

x1 ¼ −str½jð2Þþ jð2Þ− �;

x2 ¼
1

2
ðstr½jð2Þþ jð2Þþ �str½jð2Þ− jð2Þ− � þ ðstr½jð2Þþ jð2Þ− �Þ2Þ ð4:33Þ

[see also Eq. (4.15)]. The main new ingredient here is that
x0 ≠ 0, and instead

x0 ¼
1

2
εμνstr½jð1Þμ jð3Þν �: ð4:34Þ

Still, the deformed Lagrangian LðγÞ
sSSSM can be easily found

from (2.13) and the doubly deformed version Lðλ;γÞ
sSSSM from

(2.21). The equations of motion of the deformed model can
be expressed in terms of

10Recall that in our conventions εþ− ¼ −ε−þ ¼ 1
2
, while gþ− ¼

g−þ ¼ − 1
2
and gþ− ¼ g−þ ¼ −2.

11The two terms in the sum are separately Z4 invariant. The
model is only integrable if their relative coefficient is �1; this is
also the only choice that guarantees κ symmetry when one wants
to interpret this models as a string theory [32].
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Jð2Þ
μ ¼ 2

∂LðγÞ
sSSSM

∂x1
jð2Þμ þ 4

∂LðγÞ
sSSSM

∂x2
gνρstr½jð2Þμ jð2Þν �jð2Þρ ;

ð4:35Þ

which generalizes the expression in Eq. (4.17). Note,
however, that the form of the equations of motion is rather
more complicated now, due to the contributions from the
odd currents in x0. We refer the reader to the Appendix for
their derivation. They are

g1∶ 0 ¼ ½ðεμνjð2Þμ − gμνJð2Þ
μ Þ; jð3Þν �;

g2∶ gμνDμJ
ð2Þ
ν ¼ 1

2
εμνð½jð1Þμ ; jð1Þν � − ½jð3Þμ ; jð3Þν �Þ;

g3∶ 0 ¼ ½ðεμνjð2Þμ þ gμνJð2Þ
μ Þ; jð1Þν �; ð4:36Þ

and it is immediately apparent that they reduce to (4.30) in

the undeformed limit when Jð2Þ
μ ¼ jð2Þμ . We now define the

Lax connection

LðγÞ
� ¼ jð0Þ� þ

ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

z − 1

r
jð1Þ� þ ðz2 þ 1Þjð2Þ� ∓ 2zJð2Þ

�
z2 − 1

þ
ffiffiffiffiffiffiffiffiffiffiffi
z − 1

zþ 1

r
jð3Þ� : ð4:37Þ

Clearly the manipulations involving terms which do not

involve jð1Þμ or jð3Þμ go through exactly as for the SSSM. In
particular, we can still use Eqs. (4.21)–(4.22). The flatness
condition for LðγÞ

� then becomes12

g0∶ 0 ¼ Fð0Þ
þ− þ ½jð2Þþ ; jð2Þ− � þ 2εμν½jð1Þμ ; jð3Þν �;

g1∶ 0 ¼ D½þj
ð1Þ
−� þ

�ðz2 þ 1Þjð2Þþ − 2zJð2Þ
þ

ðzþ 1Þ2 ; jð3Þ−

�
þ
�
jð3Þþ ;

ðz2 þ 1Þjð2Þþ þ 2zJð2Þ
−

ðzþ 1Þ2
�
;

g2∶ 0 ¼ z2 þ 1

z2 − 1
D½þj

ð2Þ
−� þ

2z
z2 − 1

DðþJ
ð2Þ
−Þ þ

zþ 1

z − 1
½jð1Þþ ; jð1Þ− � þ z − 1

zþ 1
½jð3Þþ ; jð3Þ− �;

g3∶ 0 ¼ D½þj
ð3Þ
−� þ

�ðz2 þ 1Þjð2Þþ − 2zJð2Þ
þ

ðz − 1Þ2 ; jð3Þ−

�
þ
�
jð3Þþ ;

ðz2 þ 1Þjð2Þ− þ 2zJð2Þ
−

ðz − 1Þ2
�
: ð4:38Þ

We now require these equations—in particular, the last
three—to hold for any z ∈ C. We can see that the g1 and
g3 components give the components of the Maurer-Cartan
equations at z ¼ 0, as well as the equations of motion when
taking the residues of the double poles. The component along
g2 gives the Maurer-Cartan equation for z ¼ 0 and the
equations of motion for z ¼ �i. This shows the equivalence

of the flatness condition forLðγÞ
� with the equations ofmotion.

E. sSSSM with Wess-Zumino term

For certain semisymmetric superspaces, it is possible to
add a nontrivial Wess-Zumino coupling while preserving
integrability [37]. As before, letG be a supergroupwith Lie
superalgebra g. If G is a simple supergroup, the candidate
Wess-Zumino term vanishes identically, so we will not
consider models of this form in the current section.
However, a Wess-Zumino coupling exists and is nontrivial
if G is a direct product G ¼ G0 ×G0 where G0 is another
supergroup. For the present discussion, we assume that G
admits such a direct product structure. In particular, this
means that g ¼ g0 ⊕ g0, and such a Lie algebra always
admits aZ4 action given by the semigraded permutation of
the two factors. This choice of grading is referred to as
permutation cosets; see [37] for further details. We use this

structure to decompose g¼g0⊕g1⊕g2⊕g3 as in Eq. (4.4).
We again decompose the current jμ using the grading of g as

jμ ¼ jð0Þμ þ jð1Þμ þ jð2Þμ þ jð3Þμ ; jðnÞμ ∈ gn: ð4:39Þ

In terms of the components in this decomposition, the action
for the semisymmetric-space sigma model with a Wess-
Zumino term takes the form [37]

SSMWZ¼h
Z
∂B
d2σ

1

2
strðgμνjð2Þμ jð2Þν þlϵμνjð1Þμ jð3Þν Þ

þk
Z
B
d3σ

1

3
εijkstrðjð2Þi ½jð2Þj ;jð2Þk �þ3jð1Þi ½jð3Þj ;jð2Þk �Þ:

ð4:40Þ

A few comments about this action are in order. The
first is that, although the current jμ itself admits a
decomposition according to the grading of g, the super-
trace is not compatible with this new Z4 grading. In
particular, one may have a nonvanishing supertrace

12Recall that in our conventions A½μBν� ¼ AμBν − AνBν.
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strðgmgnÞ not only if13 ðmþ nÞmod 4 ¼ 0 but also if
ðmþ nÞmod 4 ¼ 2. This is in fact reflected in the Wess-
Zumino term on the second line of (4.40), which does not
respect the Z4 grading. In particular, this means that the
equations of motion for this theory will mix terms from
different subspaces gn, so we can no longer decompose
equations according to the grading and demand that the
components in each subspace vanish separately. However, it
is important to remark that the second line of (4.40) is chosen
so that it gives rise to a well-defined WZ term, whose
variation reduces to a 2-dimensional integral.
The second comment is that we have introduced an

additional parameter l which controls the relative scaling
between the sigma model term and the odd-current term.
Taking k → 0 and l → 1 recovers the sSSSM with the
usual conventions, up to the overall scaling of the action
controlled by h. Although we fixed l ¼ 1 in the preceding
discussion, we see that it is not consistent to do so when we
include the Wess-Zumino term, and in fact, the parameters
are required to satisfy a constraint l2 ¼ 1 − k2

h2 in order to
maintain integrability.14

The equations of motion arising from (4.40) can be
written as

0 ¼ ðlεμν − gμνÞ½jð2Þμ ; jð3Þν � − k
h
εμν½jð2Þμ ; jð1Þν �;

gμνDμj
ð2Þ
ν ¼ l

2
εμνð½jð1Þμ ; jð1Þν � − ½jð3Þμ ; jð3Þν �Þ

þ k
h
εμνð½jð1Þμ ; jð3Þν � þ ½jð2Þμ ; jð2Þν �Þ;

0 ¼ ðlεμν þ gμνÞ½jð2Þμ ; jð1Þν � þ k
h
εμν½jð2Þμ ; jð3Þν �;

ð4:41Þ

and we can see that the terms proportional to k
h explicitly

break the grading. However, the Maurer-Cartan identity
for jμ is unchanged, so we may still use the same
equations (4.27) as in the discussion of the sSSSM without
the WZ term.
The Lax connection for this model takes the form [37]

L� ¼ jð0Þ� þ l
z2 þ 1

z2 − 1
jð2Þ� �

�
k
h
−

2lz
z2 − 1

�
jð2Þ� þ

�
zþ l

1 − k
h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1 − k

hÞ
z2 − 1

s
jð1Þ� þ

�
z −

l
1þ k

h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1þ k

hÞ
z2 − 1

s
jð3Þ� : ð4:42Þ

Although the equations of motion (and thus the flatness condition for the Lax connection) do not respect the Z4 grading of
g, they of course still respect the Z2 grading of the algebra into bosonic and fermionic subalgebras gB and gF. Projecting the
equation ∂þL− − ∂−Lþ þ ½Lþ;L−� ¼ 0 onto these subspaces gives the equations

gB∶ 0 ¼ Fð0Þ
þ− þ

�
l
z − 1

zþ 1
þ k
h

��
l
zþ 1

z − 1
−
k
h

�
½jð2Þþ ; jð2Þ− � þ

��
zþ l

1 − k
h

��
z −

l
1þ k

h

�l
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

h2

q
z2 − 1

�

× ð½jð1Þþ ; jð3Þ− � þ ½jð3Þþ ; jð1Þ− �Þ þ
�
l
zþ 1

z − 1
−
k
h

�
Dþjð2Þ− −

�
l
z − 1

zþ 1
þ k
h

�
D−j

ð2Þ
þ þ

�
zþ l

1 − k
h

�
2

×
lð1 − k

hÞ
z2 − 1

½jð1Þþ ; jð1Þ− � þ
�
z −

l
1þ k

h

�
2 lð1þ k

hÞ
z2 − 1

½jð3Þþ ; jð3Þ− � ð4:43Þ

and

gF∶ 0¼
�
zþ l

1− k
h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1−

k
h

�s
ðDþjð1Þ− −D−j

ð1Þ
þ Þþ

�
l
z−1

zþ1
þ k
h

��
z−

l
1þ k

h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1þ k

h

�s
½jð2Þþ ;jð3Þ− �

þ
�
l
zþ1

z−1
−
k
h

��
z−

l
1þ k

h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1þ k

h

�s
½jð3Þþ ;jð2Þ− �þ

�
z−

l
1þ k

h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1þ k

h

�s
ðDþjð3Þ− −D−j

ð3Þ
þ Þ

þ
�
l
z−1

zþ1
þ k
h

��
zþ l

1− k
h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1−

k
h

�s
½jð2Þþ ;jð1Þ− �þ

�
l
zþ1

z−1
−
k
h

��
zþ l

1− k
h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1−

k
h

�s
½jð1Þþ ;jð2Þ− �: ð4:44Þ

14In the case where the sigma model should be interpreted as a string theory, this requirement can be understood as enforcing κ
symmetry [37].

13In Sec. IV C, for simplicity, when deriving the equations of motion, we implicitly assume compatibility of the supertrace with theZ4

grading, i.e., strðgmgnÞ only if ðmþ nÞmod 4 ¼ 0. See also the Appendix. However, it is worth stressing that the final expression for the
equations of motion is the same even when relaxing this assumption, thanks to the fact that the Lagrangian is given by the supertrace of
an element of grading 0.
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By substituting the equations of motion (4.41), as well as
the Maurer-Cartan identities (4.27), into the right sides of
Eqs. (4.43) and (4.44), one finds that the resulting
expressions vanish identically if and only if

l2 ¼ 1 −
k2

h2
; ð4:45Þ

as we mentioned above. When the parameters are related in
this way, the equations of motion and flatness of jμ imply
the flatness of the Lax connection for any value of z. The
converse is also true, as one can show by evaluating the
flatness conditions at several values of z to obtain several
independent equations and then solving the resulting
system. For instance, one can obtain three independent
equations by evaluating the bosonic projection (4.43) at z ¼
0 and extracting the two residues at z ¼ 1 and at z ¼ −1.
These three equations can be solved simultaneously to

yield expressions for Fþ−, Dþjð2Þ− , and D−j
ð2Þ
þ which are

equivalent to the g0 and g2 parts of the Maurer-Cartan

identity, along with the equation of motion for jð2Þμ .
Similarly, one can extract four independent equations from
the fermionic projection (4.44) by computing the two
residues at z ¼ �1 and then evaluating the equation at
two other values of z, for instance, z ¼ 0 and z ¼ l=ð1þ k

hÞ.
The resulting systemof four equations is equivalent to the g1
and g3 components of the Maurer-Cartan identity, along

with the two equations of motion for jð1Þμ and jð3Þμ on the first
and third lines of (4.41). This shows that the flatness of the
Lax connection for any z implies the equations of motion
and the Maurer-Cartan identities, which completes the
second part of the equivalence.

F. Two-parameter deformation of the sSSSM
with the WZ term

We now consider a two-parameter family of models
which arise from deforming the semisymmetric-space
sigma model action (4.41) by both TT̄ and root-TT̄. Our
Lagrangian Lðλ;γÞ satisfies the two simultaneous flow
equations in Eq. (2.16), which are written in terms of
the Hilbert stress tensor of the theory. It is easy to see from
the definition of the Hilbert stress tensor,

Tμν ¼ −
2ffiffiffiffiffiffi−gp δS

δgμν
; ð4:46Þ

that the only term in (4.40) which will contribute to Tμν is

the first term, which involves gμνjð2Þμ jð2Þν . The two remaining
terms are written in terms of εμν and εijk, respectively, and
therefore do not couple to the metric either via an explicit
metric contraction or through implicit dependence on the
measure. They are topological, and they are not deformed
along our combined TT̄ and root-TT̄ flow.

The deformed action can be written as

Sðλ;γÞ
SMWZ ¼ h

Z
∂B
d2σ

1

2
ðLðλ;γÞ

SMWZðx1; x2Þ þ lstrðεμνjð1Þμ jð3Þν ÞÞ

þ k
Z
B
d3σ

1

3
εijkstrðjð2Þi ½jð2Þj ; jð2Þk �

þ 3jð1Þi ½jð3Þj ; jð2Þk �Þ; ð4:47Þ
where

x1 ¼ gμνstrðjð2Þμ jð2Þν Þ; x2¼ gμρgνσstrðjð2Þμ jð2Þν Þstrðjð2Þρ jð2Þσ Þ;
ð4:48Þ

as before, and Lðλ;γÞ
SMWZðx1; x2Þ is the same Lagrangian (2.21)

that we considered above. The only feature of this
Lagrangian which we need for the present analysis is that
the corresponding current

Jð2Þ
μ ¼ 2

∂Lðλ;γÞ
SMWZ

∂x1
jð2Þμ þ4gνρ

∂Lðλ;γÞ
SMWZ

∂x2
tr½jð2Þμ jð2Þν �jð2Þρ ; ð4:49Þ

built from Lðλ;γÞ
SMWZðx1; x2Þ (where x0 does not play a role),

satisfies

½Jð2Þ
þ ; jð2Þ− � − ½jð2Þþ ;Jð2Þ

− � ¼ 0; ½Jð2Þ
þ ;Jð2Þ

− � ¼ ½jð2Þþ ; jð2Þ− �;
ð4:50Þ

as we saw before, cf. (4.21) and (4.22). In terms of
this current, the equations of motion for the deformed
model are

0¼ ½ðlεμνjð2Þμ − gμνJð2Þ
μ Þ; jð3Þν �− k

h
εμν½jð2Þμ ; jð1Þν �;

gμνDμJ
ð2Þ
ν ¼ l

2
εμνð½jð1Þμ ; jð1Þν �− ½jð3Þμ ; jð3Þν �Þþ k

h
εμνð½jð1Þμ ; jð3Þν �

þ ½jð2Þμ ; jð2Þν �Þ;

0¼ ½ðlεμνjð2Þμ þ gμνJð2Þ
μ Þ; jð1Þν � þ k

h
εμν½jð2Þμ ; jð3Þν �:

ð4:51Þ

We now claim that these equations of motion, along with
the Maurer-Cartan identities, are equivalent to the flatness
of the Lax connection

LðγÞ
� ¼ jð0Þ� þ l

z2 þ 1

z2 − 1
jð2Þ� �

�
k
h
−

2lz
z2 − 1

�
Jð2Þ

�

þ
�
zþ l

1 − k
h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1 − k

hÞ
z2 − 1

s
jð1Þ�

þ
�
z −

l
1þ k

h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1þ k

hÞ
z2 − 1

s
jð3Þ� ;
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at any value of the spectral parameter z. As in the undeformed case, we decompose this flatness condition into its
components along the bosonic and fermionic subalgebras. In order to compute the commutator ½Lþ;L−�, it is convenient to
note that the contribution arising from jð2Þ� and Jð2Þ

� , namely,

�
l
z2 þ 1

z2 − 1
jð2Þþ þ

�
k
h
−

2lz
z2 − 1

�
Jð2Þ

þ ;l
z2 þ 1

z2 − 1
jð2Þ− −

�
k
h
−

2lz
z2 − 1

�
Jð2Þ

−

�
¼

�
l2

�
z2 þ 1

z2 − 1

�
2

−
�
k
h
−

2lz
z2 − 1

�
2
�
½jð2Þþ ; jð2Þ− �;

ð4:52Þ

is identical to that of the undeformed theory; see Eq. (4.43). Here, we have used the commutator property (4.49). The
bosonic part of the flatness condition for our candidate Lax connection is then

gB∶ 0 ¼ Fþ− þ
�
l2

�
z2 þ 1

z2 − 1

�
2

−
�
k
h
−

2lz
z2 − 1

�
2
�
½jð2Þþ ; jð2Þ− �

þ
��

zþ l
1 − k

h

��
z −

l
1þ k

h

�l
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

h2

q
z2 − 1

�
ð½jð1Þþ ; jð3Þ− � þ ½jð3Þþ ; jð1Þ− �Þ

þ
�
l
z2 þ 1

z2 − 1

�
ðDþjð2Þ− −D−j

ð2Þ
þ Þ −

�
k
h
−

2lz
z2 − 1

�
ðDþJð2Þ

− þD−J
ð2Þ
þ Þ

þ
�
zþ l

1 − k
h

�
2 lð1 − k

hÞ
z2 − 1

½jð1Þþ ; jð1Þ− � þ
�
z −

l
1þ k

h

�
2 lð1þ k

hÞ
z2 − 1

½jð3Þþ ; jð3Þ− �: ð4:53Þ

Likewise, the fermionic component of the flatness condition is

gF∶ 0 ¼
�
zþ l

1 − k
h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1 −

k
h

�s
ðDþjð1Þ− −D−j

ð1Þ
þ Þ þ

�
z −

l
1þ k

h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1þ k

h

�s

×

��
l
z2 þ 1

z2 − 1

�
jð2Þþ þ

�
k
h
−

2lz
z2 − 1

�
Jð2Þ

þ ; jð3Þ−

�
þ
�
z −

l
1þ k

h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1þ k

h

�s

×

�
jð3Þþ ;

�
l
z2 þ 1

z2 − 1

�
jð2Þ− −

�
k
h
−

2lz
z2 − 1

�
Jð2Þ

−

�
þ
�
z −

l
1þ k

h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1þ k

h

�s
ðDþjð3Þ− −D−j

ð3Þ
þ Þ

þ
�
zþ l

1 − k
h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1 −

k
h

�s ��
l
z2 þ 1

z2 − 1

�
jð2Þþ þ

�
k
h
−

2lz
z2 − 1

�
Jð2Þ

þ ; jð1Þ−

�

þ
�
l
z2 þ 1

z2 − 1

��
zþ l

1 − k
h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
�
1 −

k
h

�s
×

�
jð1Þþ ;

�
l
z2 þ 1

z2 − 1

�
jð2Þ− −

�
k
h
−

2lz
z2 − 1

�
Jð2Þ

−

�
: ð4:54Þ

By an explicit calculation, substituting in the deformed
equations of motion (4.51) and the Maurer-Cartan identity
(4.27), one finds that (4.53) and (4.54) both vanish
identically, assuming that we again impose the condition
for l in (4.45) precisely as in the undeformed theory.
Conversely, one can obtain four independent equations
by extracting the residues of (4.53) and (4.54) at z ¼ �1,
two additional constraints from evaluating both equations
at z ¼ 0, and one more relation from evaluating the gF
equation at another value of z, for instance, z ¼ l=ð1þ k

hÞ.
This gives a system of seven equations relating the various

jðnÞμ , Jð2Þ
μ , and their derivatives. The solution to this system

satisfies the three equations of motion (4.51) and the four
Maurer-Cartan identities. Therefore, we see that the im-
plication goes in both directions, so the flatness of the Lax
connection at any z is equivalent to the equations of motion
and Maurer-Cartan identities, as claimed.

V. CONCLUSIONS AND OUTLOOK

In this paper we have shown that a large class of
classical integrable models still admits a Lax connection
after an arbitrary combination of root-TT̄ and (irrelevant)
TT̄ deformations. While this is not an indication of
integrability for the deformation of all classically
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integrable models, it is still a striking and nontrivial
statement about the interplay of root-TT̄ deformations
with symmetries. Moreover, having explicit Lax connec-
tions at our disposal for a large class of models provides us
with a powerful tool to study properties of classical
solutions in the deformed theory, such as the value of
the conserved charges under deformations.
There are many natural and pressing questions. First,

properly establishing integrability at the classical level
requires not only the existence of a Lax connection but
also its compatibility with the Poisson structure of the
model. This is what allows us to construct charges that are
not just conserved under time evolution but are also
mutually Poisson-commuting [27,28,38]. This is a natural
step to truly establish classical integrability of these models
(this is sometimes called “strong integrability”). Naturally,
it would also be interesting to study the classical integra-
bility of even more general classes of theories such as Toda
field theories (see, e.g., [39]) or more general sigma models
such as the ones that arise as Yang-Baxter deformations of
(semi)symmetric sigma models [40–43] (see also [34]).
This would be a strong hint of integrability, in general, and
it would provide an even larger playground for the study of
these deformations.
For the irrelevant TT̄ deformation, it is possible to

generate solutions by recasting the flow as a dynamical
change of coordinates [44]. It would be interesting to see if
a similar construction is possible here, as this might provide
a way to prove that root-TT̄ preserves integrability, in
general. It would also be interesting to extend this con-
struction to nonrelativistic models and one-dimensional
(quantum-mechanical) systems, as was done for TT̄ (see
[45–47] and [48–52], respectively). In fact, it was recently
shown that a root-TT̄ deformation of a simple quantum-
mechanical system preserves integrability, too [53]. Again,
it would be important to understand whether this is a
general feature of such deformations.
An important outstanding question is how to quantize

root-TT̄ theories (as well as ModMax theories [12–16]). It
might be worth undertaking this study on some particular
examples which are integrable. For instance, we have seen
in Sec. III E that the root-TT̄ deformation of a G-valued
Wess-Zumino-Witten model is still classically integrable
and conformal, but it does not enjoy the conservation of
two (anti)chiral g currents. This suggests that, at the very
least, the Kač-Moody symmetry of the quantum model is
modified—if the model remains conformal at the quantum
level, which is not obvious. It would be interesting to
perform an analysis similar to what was done for current-
current deformations [54–56] to determine the effect of the
deformation.15

An immediate by-product of our construction is the
observation that root-TT̄ deformations “play well” with
symmetries. In particular, they manifestly preserve the G
symmetries of the sigma models that we have considered.
In the case where G is a supergroup, this means that they
preserve integrability and target-space supersymmetry. One
of the crucial applications of the semisymmetric sigma
models has been the study of string theory on curved
backgrounds—the most celebrated example being AdS5 ×
S5 [32,35,36], as well as other AdSn ×M10−n backgrounds
[57,58],16 and deformations thereof. Even if the deformed
actions are not of the sigma-model type, it would be very
interesting to consider them as potential deformations of a
string action. In particular, they may still enjoy a local
fermionic symmetry inherited from the κ symmetry of the
original sigma model, which is usually related to the
condition of integrability (see, e.g., [32,37]).17 On top of
the obvious physical interest of this study, this would
probably allow for the perturbative quantization of the
deformed models once a suitable gauge is fixed. In fact, we
would expect the gauge-fixed theory to become analytic in
the small-field expansion of the transverse modes of the
string (as is the case for the Nambu-Goto action). In the
case of TT̄ deformation, a similar analysis was performed
in the uniform light-cone gauge [32,66]; see, e.g., [67–70].
For root-TT̄ this might offer a way, however roundabout, to
interpret the deformation at the level of the S matrix (as was
done for the irrelevant TT̄ deformation [5,7,17]) and obtain
some information on the deformed spectrum via the
thermodynamic Bethe ansatz [1,71] for a suitable mirror
model [72]. In a first approximation one could ask this
question for bosonic strings in light-cone gauge, but it
would be quite intriguing to understand it for AdS-type
backgrounds, as it might have important implications for
their holographic duals.
Another natural question is whether these deformations

also “play well” with (1þ 1)-dimensional worldsheet
supersymmetry. Encouragingly, it is possible to super-
symmetrize the ModMax model [14]. Since the dimen-
sional reduction of ModMax yields a root-TT̄ flow
[10,73,74] with a particularly simple seed action, one
may suspect that supersymmetry persists for any super-
symmetric seed. This is certainly the case for the irrelevant
TT̄ deformation [75–81]. In that case, it was useful to
understand the whole deformation in terms of superfields; it
may be important to do the same here.

15Another direction worth exploring with the aim of quantiza-
tion, following recent work on ModMax [15], would be to
understand the root-TT̄ model by adding auxiliary fields, which
should make the deformed action analytic.

16In fact, the introduction of the WZ term in the semisym-
metric sigma model by [37] has been a key ingredient in the
development of integrability for AdS3=CFT2 [59,60].

17It is worth remarking that, even for sigma-model actions, κ
symmetry does not imply Weyl invariance of the action [61]; see,
e.g., [62–65] for some examples. Hence, it would actually be
interesting, though possibly harder, to check the stronger property
of Weyl invariance.
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All the above questions are very interesting in and of
themselves, but they also pave the way to applying these
deformations to stringy and holographic setups (both on the
worldsheet and in the dual CFT) and to a deeper under-
standing of the ModMax theories [12–16], to which root-
TT̄ deformations are intimately connected.
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APPENDIX: DERIVATION OF THE
EQUATIONS OF MOTION

Here, we collect the derivation of the equations for the
(deformed) models of our interest.

1. Deformed principal chiral model

If we consider an infinitesimal variation of the group
element g ∈ G as δg ¼ gϵ with ϵ ∈ g, then the variation of
the Maurer-Cartan current reads δjμ ¼ ∂μϵþ ½jμ; ϵ�. Taking
x1 ¼ trðjμjμÞ and x2 ¼ trðjμjνÞtrðjμjνÞ [as done in (3.10)],
one finds

δx1 ¼ 2trðjμδjμÞ ¼ 2trðjμð∂μϵþ ½jμ; ϵ�ÞÞ ¼ 2trðjμ∂μϵÞ;
ðA1Þ

where the term with ½jμ; ϵ� vanishes thanks to the cyclicity
of the trace. Similarly, we have

δx2 ¼ 4trðjμjνÞtrðjμ∂νϵÞ: ðA2Þ
It follows that the variation of the generic Lagrangian
Lðx1; x2Þ is

δL ¼ 2
∂L
∂x1

trð∂μϵjμÞ þ 4
∂L
∂x2

trðjμjνÞtrð∂μϵjνÞ: ðA3Þ

When considering the variation of the action S ¼ R
d2σL,

we can integrate by parts and conclude that

δS ¼ −
Z

d2σtr½ϵ∂μJμ�; ðA4Þ

where Jμ is

Jμ ¼ 2
∂L
∂x1

jμ þ 4
∂L
∂x2

tr½jμjν�jν; ðA5Þ

as we presented in Eq. (3.13) of the main text.

a. Adding a Wess-Zumino term

When adding a WZ term to the action, of the form

SWZ ¼ k
6

Z
d3σϵijktrðji½jj; jk�Þ; ðA6Þ

the equations of motion are modified by the additional
contribution

δSWZ ¼ k
2

Z
d2σtrðϵð∂þj− − ∂−jþÞÞ: ðA7Þ

Therefore, we have that they take the form of the con-
servation of

∂þðhJ− þ kj−Þ þ ∂−ðhJþ − kjþÞ ¼ 0; ðA8Þ

with Jμ as in (A5), that is, Eq. (3.41) of the main text.

2. Deformed symmetric-space sigma model

In the case of the SSSM it is convenient to rewrite

δjμ ¼ Dμϵþ ½jð2Þμ ; ϵ�; ðA9Þ
where Dμ is the covariant derivative defined in (4.7). Then,
writing (4.15) as

x1 ¼ gμνtr½jð2Þμ jð2Þν �; x2 ¼ gμρgνσtr½jð2Þμ jð2Þν �tr½jð2Þρ jð2Þσ �;
ðA10Þ

one obtains

δx1 ¼ 2gμνtr½jð2Þμ δjð2Þν � ¼ 2gμνtr½jð2Þμ δjν� ¼ 2gμνtr½jð2Þμ Dνϵ�;
ðA11Þ

where we used that trðxð0Þyð2ÞÞ ¼ 0 for any xð0Þ ∈ g0,
yð2Þ ∈ g2, and the cyclicity of the trace, and all indices
are contracted with the metric. Similarly, we have

CLASSICAL INTEGRABILITY OF ROOT-TT̄ … PHYS. REV. D 107, 086011 (2023)

086011-17



δx2 ¼ 4gμρgνσtr½jð2Þμ jð2Þν �tr½jð2Þρ Dσϵ�: ðA12Þ

This is enough to conclude that the variation of a
Lagrangian Lðx1; x2Þ is

δL¼ 2gμν
∂L
∂x1

tr½Dμϵj
ð2Þ
ν �þ4gμρgνσ

∂L
∂x2

tr½jð2Þμ jð2Þν �tr½Dρϵj
ð2Þ
σ �

ðA13Þ

and that the variation of the action S ¼ R
d2σL is

δS ¼ −
Z

d2σgμνtr½ϵ∂μJð2Þ
ν �; ðA14Þ

where

Jð2Þ
μ ¼ 2

∂L
∂x1

jð2Þμ þ 4gνρ
∂L
∂x2

tr½jð2Þμ ; jð2Þν �jð2Þρ ; ðA15Þ

as in Eq. (4.17) of the main text.

3. Deformed semisymmetric-space sigma model

The calculations in the case of the sSSSM follow closely
what was done above. In this case we want to rewrite

δjμ ¼ Dμϵþ ½jð1Þμ þ jð2Þμ þ jð3Þμ ; ϵ�: ðA16Þ

Now we take x1 and x2 as in (A10) above and compute the
variations

δx1 ¼ 2gμνstr½jð2Þμ Dνϵþ ϵ½jð2Þμ ; jð1Þν þ jð3Þν ��;
δx2 ¼ 4gμρgνσstr½jð2Þμ jð2Þν �str½jð2Þρ Dσϵþ ϵ½jð2Þρ ; jð1Þσ þ jð3Þσ ��:

ðA17Þ

The Lagrangian of the sSSSM can be written as the sum
LsSSSM ¼ Lg

sSSSM þ Lε
sSSSM where

Lg
sSSSM ¼ 1

2
str½gμνjð2Þμ jð2Þν �; Lε

sSSSM ¼ 1

2
str½εμνjð1Þμ jð3Þν �;

ðA18Þ

and after promoting Lg
sSSSM to Lg;γ

sSSSMðx1; x2Þ, one finds that

δSg;γsSSSM ¼ −
Z

d2σgμνstr½ϵð∂μJð2Þ
ν þ ½jð1Þμ þ jð3Þμ ;Jð2Þ

ν �Þ�;

ðA19Þ

where Jð2Þ
μ is still given by the same expression. Finally,

one also has

δSεsSSSM ¼ 1

2

Z
d2σεμνstr½ϵðDμðjð1Þν − jð3Þν Þ

þ ½jð1Þμ þ jð2Þμ þ jð3Þμ ; jð1Þν − jð3Þν �Þ�: ðA20Þ

We conclude by noting that the equations of motion for the
deformed sSSSM can be written in the form

0 ¼ DμΛμ þ ½jμ;Λμ�;

where Λμ ¼ gμνJð2Þ
ν −

1

2
εμνðjð1Þν − jð3Þν Þ: ðA21Þ

Projecting this expression over the four subspaces of g
gives

g1∶ εμνDμj
ð1Þ
ν ¼ ½ðεμνjð2Þμ − 2gμνJð2Þ

μ Þ; jð3Þν �;

g2∶gμνDμJ
ð2Þ
ν ¼ 1

2
εμνð½jð1Þμ ; jð1Þν � − ½jð3Þμ ; jð3Þν �Þ;

g3∶εμνDμj
ð3Þ
ν ¼ ½ðεμνjð2Þμ þ 2gμνJð2Þ

μ Þ; jð1Þν �; ðA22Þ

while the equation is automatically satisfied along g0.
Using the Maurer-Cartan equation (4.27), this reduces to
(4.36) and, in the undeformed case, to (4.30).

a. Adding a Wess-Zumino term

If we consider the action (4.47), we have an additional
contribution to the equations of motion, which is propor-
tional to k. In particular, let us define

SWZ ¼ k
Z
B
d3σ

1

3
εijkstrðjð2Þi ½jð2Þj ; jð2Þk � þ 3jð1Þi ½jð3Þj ; jð2Þk �Þ:

ðA23Þ

Now, to compute the variation of SWZ, we cannot use the
compatibility of the supertrace with the Z4 grading. One
finds that the variation of the integrand can be separated
into two contributions, namely, a total derivative and an
expression to be integrated in 3 dimensions,

δSWZ ¼ k
Z
B
d3σεijkstrð∂iBjk þ ZijkÞ; ðA24Þ

where

Bij ¼ ϵð2Þð½jð2Þi ; jð2Þj � þ ½jð1Þi ; jð3Þj �Þ þ ϵð1Þ½jð3Þi ; jð2Þj �
þ ϵð3Þ½jð1Þi ; jð2Þj �: ðA25Þ

Importantly, Zijk identically vanishes thanks to the Maurer-
Cartan identity and the Jacobi identity on the superalgebra.
This is crucial in order to have a well-defined WZ term,
yielding equations of motion that only depend on the
boundary (i.e., 2-dimensional) degrees of freedom. To
conclude, the equations of motion receive the additional
contribution of kεμνBμν, and they read as in (4.51).
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