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Phase transitions with spontaneous symmetry breaking are expected for group field theories as a basic
feature of the geometogenesis scenario. The following paper aims to investigate the equilibrium phase for
group field theory by using the ergodic hypothesis on which the Gibbs-Boltzmann distributions must break
down. The breaking of the ergodicity can be considered dynamically by introducing a fictitious “time”
inducing a stochastic process described through a Langevin equation, from which the randomness of the
tensor field will be a consequence. This type of equation is considered particularly for complex just-
renormalizable Abelian model of rank d ¼ 5, and we study some of their properties by using a
renormalization group considering a “coarse graining” both in time and space.
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I. INTRODUCTION

For more than one decade, group field theories (GFTs)
are considered as a promising way to address the quantum
gravity conundrum. Mathematically, GFTs are fields the-
ories defined on d copies of a group manifold G, called
group structure, and distinguish themselves from standard
quantum field theories (QFTs) by the specific nonlocality
of their interactions [1–5]. In the point of view of
quantization, the particles (quanta) associated to group
fields are interpreted as elementary excitation of the
gravitational field, which, instead of being characterized
by concepts like energy, polarization, and so on, are
characterized by topological and geometrical data. The
quantized spacetime is of dimension d, and the elementary
excitation is interpreted as (d − 1) simplices with labeled
faces. The interactions between these fields dictate the way
the faces are “stuck” to each other according to these labels,
to give effective d simplices. Thus, the nonlocal structure of
the interaction tells us how dual (d − 1) simplices are built
and glued together. The structure group on the other hand
has to reflect the local symmetry group of the dual
spacetime. This interpretation can be motivated by the
relation between GFTs and covariant approaches of loop
quantum gravity (LQG) like spin foams [6]. Indeed, GFTs
have been historically introduced in the context of the LQG
[7–10] as a clever way to resume spin foam quantum
amplitudes. Hence, on one hand, GFTs can be approached
from the quantification of the classical general relativity
(GR), which naturally leads to quantum states encoding

discrete geometry as triangulation. It must be noticed that
alternatively, GFT can be viewed as a second quantized
version of LQG [11,12]. Finally, the choice of the group
structure is imposed by this connection with LQG, as the
local group of spacetime symmetries (SO(3,1) with the
Lorentz signature, SO(4) for Euclidean quantum gravity,
but other groups can be considered as toy models like
SU(2) for Euclidean 3D gravity, U(1) or R).
On the other hand, GFT can be approached directly

through the prism of discrete random geometry, the
continuum limit for quantum spacetime being recovered
as a phase transition in the model. For 2D, the most
popular approach in this direction is random matrix
models (RMM). In RMM, Feynman amplitudes provide
weights for discrete triangulation, the way the elementary
“triangles” are glued together being imposed by the
interactions between matrix fields. The main feature of
RMM is the existence of a topological 1=N expansion,
controlled by the genus gðΔÞ of the dual triangulation Δ,
and thus dominated by planar diagrams with g ¼ 0.
Critical properties and continuum limits of RMM are
essentially consequences of this basic property [13–15].
Random tensors models (RTM) [16–18] are an attempt to
extend the success of RMM to dimension higher than 2.
The decisive step in this direction was the discovery by
Gurau in 2009 of the existence of a power counting for
colored random tensors, which admits an 1=N expansion
analogous to RMM, controlled by a generalization (but
unfortunately not topological) of the genus and called
Gurau degree ϖ. It has been shown that the existence of
such a power count is related to an internal structure
group, typically UðNÞ (or OðNÞ, see [19–22]), leaving
the interactions invariant [18,23]. The leading-order
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diagrams, having vanishing Gurau degree, are called
melons, and critical properties of melonic sector, as well
as double scaling limits, have been investigated for RTMs
[24–26]. With this respect, GFTs can be viewed as
generalized RTM, with group-valued rather than discrete
indices. This leads to a restrictive class of RTM, called
tensorial group field theories (TGFTs), which are GFT
whose interactions have the same nonlocal structure as
RTMs, said tensorial interactions. Note that some addi-
tional symmetries like closure (Gauss) constraint or
Plebanski constraint have to be considered in the first
point of view [27–30]. The closure constraint, for in-
stance, is a specific kind of gauge symmetry, which
requires that physical fields solutions are invariant under
the global right translation of the group elements [31,32].
Imposing it at the quantum level, a Feynman amplitude
looks like a partition function for a gauge theory on a
random lattice fixed by the cellular complex defined by
the Feynman graph, with flat discrete connections.
The main challenging issue for GFTs remains how

a smooth spacetime structure corresponding to classical
GR can be recovered by summing a very large number
of quantum states having a very large number of
quanta [33–36], and to this aim, the renormalization group
(RG) is generally considered as the powerful tool to address
this issue. RG is a general concept in physics to tackle the
large-scale description of systems involving a very large
number of (microscopic) interacting degrees of freedom
[37,38]. There are many incarnations of this idea in physics,
and all of them aim to extract the large-scale regularities of
a system, replacing its full description with an approximate
but effective theory, keeping only relevant features of the
original quantum (or statistical) microscopic states. In the
Wilsonian point of view, RG is constructed from a partial
integration procedure, integrating out “rapid” modes to
construct an effective physics for “slow” modes, keeping
fixed the large distance physics. Two different strategies
have been considered for constructing RG flow for GFTs.
The first one is based on lattice renormalization, viewing
spin foams as a direct space regularization of quantum
gravity amplitudes [39]. The other approach is based on
local field theories and renormalization techniques. Indeed,
the existence of a power counting for TGFTs provides a
novel notion of a locality called traciality, reflecting the
way the divergences can be factorized out of some tensorial
interaction. Renormalization “à la Wilson” requires iden-
tifying “slow” (infrared) and “rapid” (ultraviolet) modes.
For TGFTs defined as enriched RTM with group valued
indices, no such distinction exist between UV and IR
modes. Indeed, usual GFT models or RTMs suggest that
theories have to be ultralocal, with propagator equals to the
identity matrix or suitable projectors, ensuring the global
UðNÞ [or OðNÞ] invariance of RTMs. The triviality of the
propagator is surely appropriate for simplicial quantum
gravity perspectives but does not allow for the definition of

a proper notion of scale. However, this poses a difficulty,
because, without such a suitable notion of scale, no
distinction exists between fluctuating degrees of freedom.
There are no “infrared” (IR) or “ultraviolet” (UV) degrees
of freedom, and any partial integration procedure “à la
Wilson” imposes to arbitrarily fix what are IR and UV.
This point of view has been considered in a series of papers
both using perturbative and nonperturbative RG technics
[40–42,42–45], but to date, there is no consensus about the
reliability of the resulting RG flow; see [46,47].
A solution considered in the literature consists in

modifying the propagator by adding a “Laplacian” type
term (defined on the considered structure group) to the
Gaussian kernel, whose nontrivial spectrum then provides a
nonambiguous notion of scale [48]. This Laplace type
propagators may be viewed as a regulation that affects only
UV degrees of freedom but disappears in the IR, leading to
an effective, dynamically generated ultralocal theory for the
RG flow. Moreover, the presence of such a Laplacian can
be motivated by the computation of radiative corrections to
GFTs, which require such a Laplacian as a counterterm
to be well-defined as the cutoff in large momenta is
removed [49]. There is vast literature and active research
on this topic, exploring both the perturbative and non-
perturbative aspects of the TGFTs [48,50–61]. These
investigations generally seek to reveal fixed point solutions
and phase transitions. Such solutions have been found for
some models, although very dependent on the approxima-
tion scheme used to solve the flow equations in the
nonperturbative regime. At first, it seemed that the exist-
ence of such fixed point solutions and second-order phase
transitions was a quasiuniversal feature for TGFTs [55,56].
However, our recent works based on methods outperform-
ing standard vertex expansion showed that it is not the
case [62–65]. These methods consider both Ward identities
and an effective vertex expansion (EVE) technique, which
takes into account the full momenta dependence of the
effective vertex and formally resumes branched sectors as
the melonic one [46,62–67]. The existence of second-order
phase transitions in the phase space of TGFTs is
expected to be a basic requirement for geometrogenesis-
type scenarios, where the semiclassical spacetime is
assumed to emerge as an “intertheoretical process” from
a Bose-Einstein condensation. It is worth mentioning that
the hypothesis of the existence of such condensates has
allowed the rapid development of a whole literature
exploring models of quantum cosmology [27,68–80].
In this paper, we address the problem of quantization of

GFTs through a first-order stochastic Langevin-type equa-
tion, such that equilibrium configurations match with
standard path integral quantization for pure gravity models.
The introduction of this equation can be considered a
purely mathematical exercise, but it can also have real
physical meaning. It can be seen as a way to dynamically
(i.e., out of equilibrium) address the phase transitions
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revealed by the RG for equilibrium theory. Indeed, in
general, although the phase transitions are discussed in
equilibrium, assuming the existence of an observer outside
the system and adjusting adiabatically the parameters of the
theory, a realistic description of the transition requires a
nonequilibrium approach to this phenomenon. However,
such a nonequilibrium treatment is generally a difficult task
[34,81]. In the quantum gravity context, an additional
question that one is entitled to ask concerns the choice
of the variable identified as a “time.” This question is
closely related to the issue of time in classical and quantum
gravity. Indeed, already at the classical level, general
relativity does not allow in general to isolate a physical
variable as a preferred time in the infinity of possible
choices of “coordinated time,” and experimentally, this is
always the evolution of a physical variable, for a given
problem, which defines a particular notion of the clock.
Notice that this point of view is in agreement with the
standard relational interpretation, where space and time are
understood as relative special configurations of some fields,
used as a “clock” and “rulers” [34]. An intriguing relation
between the choice of a physical time and the definition of
equilibrium states has been proposed in the series of works
[8,82–86]. For instance, it is shown that the statistical
properties of the cosmic radiation background reveal a
preferred time, which happens to be the “cosmic time”
considered in the literature. A discussion for quantum
theories is given in [87], where authors consider the one-
parameter group of automorphism underlying by von
Neumann algebra of quantum systems through Tomita-
Takesaki theorem, as a single-out time flow. Thermal
equilibrium states have been already considered for
GFTs, especially in the context of cosmology; see [88]
and references therein for an extended discussion about
relational functional dynamics. However, except for these
special configurations, no preferred time is expected at the
fundamental level for a background-independent quantum
theory of gravitation. Indeed, the structured spacetime
manifold is assumed to be entirely dissolved at the phase
transition points where collective states of gravity quantum
modes are not suitably described by Bose-Einstein con-
densates, and the concept of “direction” disappears as the
concept of a smooth manifold. Phase transition in the GFTs
is for this reason generally understood as a change of the
theoretical paradigm—i.e., as the identification of some
regions of the phase space where the collective behavior of
quantum gravity atoms can be approached with an effec-
tive, semiclassical theory, as a quantum gravity condensate
for current cosmological solutions discussed previously. A
way to recover a notion of temporality even approximates is
through the notion of relational (space)time, which is
already found in classical GR. The contiguity relations
between fields allow us to define spacetime properties, and,
in particular, the coupling with gravitation defines the
metric field. In that point of view, matter fields can be used

to construct material frames locally, one of them playing
the role of physical time. Let us recall how that works in the
classical setting. Consider a theory involving N fields
ϕiðx0; x⃗Þ, for i ¼ 1;…; N, and ðx0; x⃗Þ are arbitrary coor-
dinates for spacetime evens. In concrete experiments,
clocks and other reference frames are defined as specific
configurations of four of these fields, which are assumed to
behave as classically as to define such a reference frame,
and we denote them as ϕ0;…;ϕ3. To be a good reference
frame, we assume that locally spacetime coordinates xμ can
be expressed uniquely in terms of the four numbers ϕμ. In
particular, x0 ¼ F0ðϕ0;ϕ1;ϕ2;ϕ3Þ, and, we can express the
equations of motions for the remaining fields in terms of the
physical coordinates ðϕ0; ϕ⃗Þ [8,87]. This relational view-
point can be expected to survive when the gravitational
field is described in a quantum manner, at least in a certain
regime. An auxiliary (discretized) matter field could play
the role of a clock, as long as one can neglect the quantum
character of this field. One can expect that such a regime
would allow describing the (relational) dynamics of space-
time toward or from the emergence of classical spacetime,
but the transition point (geometrogenesis), where the
quantum nature of all fields cannot be neglected, breaks
the dynamical description. For more details on the concept
of emergence of time in quantum gravity, the reader may
consult for instance [34,35]. Recent application of rela-
tional time for TGFTs in the context of quantum cosmology
can be found in [36,77,89–91].
In the mathematical formalism presented in this paper,

the GFT is quantized by a stochastic equation. This
dynamics can be rewritten as a functional integral by
the method detailed in the Sec. II B, where time appears
formally as a scalar variable, and the corresponding field
theory is identified with a GFTs on the structure group
G×d ×R, considered, for instance, in [89,91] as describ-
ing a scalar field coupled to gravity. In this paper, intended
to be the first of a series, we provide the foundations of the
formalism. We consider an Abelian TGFTwithout closure
constraint, whose structure group will be U(1) and whose
equilibrium states will correspond to a GFT without
matter degree of freedom, just renormalizable in rank
d ¼ 5. This choice may seem a bit artificial since the
GFTs selected as physically realistic candidates for
quantum gravity are based on non-Abelian groups and
incorporate a certain number of constraints such as the
closure constraint or Plebanski’s constraint [29].
However, our goal in this paper is essential to show
how the RG methods we have developed can be adapted to
a new situation, such as a stochastic GFT, and to under-
stand what this new approach can bring compared to the
traditional point of view for a model where these tech-
niques can be more easily handled. Thus, this paper
should be seen as the first of a series of explorations,
and we will focus essentially on aspects related to the
combinatorics of interactions in the construction of
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the RG.1 Our approach in this paper is essentially based on
the nonperturbative RG (NPRG) formalism [92–96] and
construct approximate solutions of the exact Wetterich
equation using both effective vertex expansion (EVE)
recently introduced in the GFTs context [62–65,67,97,98]
and Ward’s identities to determine the derivative of the
effective vertices with respect to the external momentum,
involved in the computation of the anomalous dimension.
The resulting equations are then analyzed numerically.
The most relevant feature of this formalism is the
existence of an intrinsic scaling provided by time evolu-
tion, which allows for coarse-grain random degrees of
freedom in the frequency space. Besides, we focus on
TGFTs, and we expect the same formalism should be used
to investigate analogue regimes for theories with
trivial propagators (i.e., without intrinsic scaling), as
RMMs and RTMs, which will be the topic of forthcoming
work.
In the Sec. II, we define the model and provide the path

integral approach, allowing us to well define the functional
renormalization group applicable with the so-called
Wetterich equation. In Sec. III, we introduce the FRG
formalism and the time reflection symmetry and causality
that allows for coarse grain by modifying the original
Langevin equation. This also helps to add in the Langevin
equation a driving force that depends nonlocally on the
standard time on the classical trajectory and preserves
causality. We also provide the scaling dimension of the
model. In Sec. IV, we use standard local potential approxi-
mation to construct solutions of the exact RG equation. We
consider two approximations: The first is the crude trun-
cation, and the second comes from the effective vertex
expansion in the leading-order melonic approximation.
In Sec. V, we study the symmetry of our model given
by the Ward identities and provide the rigorous analysis
of compatibility with the flow equation and the optimal
choices of the regulators. Section VI is deserving
of the numerical analysis. We conclude our work in
Sec. VII.

II. STOCHASTIC GROUP FIELD THEORIES

In this section, we define the models and conventions
used in the rest of the paper. We also derive a path
integral representation and a few formal properties, which
we will exploit in the next section devoted to the renorm-
alization group. The reader may consult [37,38,81] for
more details about formal computations of the Langevin
equation.

A. The model

A group field φ is a field defined on d copies of a group
manifold G:

φ∶ðg1;…; gdÞ ∈ ðGÞ×d → φðg1;…; gdÞ ∈ K: ð2:1Þ

Usually, K ¼ C;R. In this paper, we focus on complex
group fields, K≡ C. To shorten the notations, we will
denote by g ≔ ðg1;…; gdÞ the elements of ðGÞ×d and by
φðgÞ the value taken by the field at the point g. We
generally assume φ to be a square-integrable function, and
the standard L2ððGÞ×dÞ inner product

ðφ;φ0Þ ≔
Z

dgφ̄ðgÞφ0ðgÞ ð2:2Þ

is assumed to be bounded: kφk ≔ ðφ;φÞ < ∞. In these
notations, φ̄ designates the standard complex conjugation
of φ, and

dg ≔ dg1dg2 � � �dgd; ð2:3Þ

where dgl is the Haar measure overG. Wewill suppose that
this field is moreover a dynamic variable, depending on a
parameter t ∈ R called the “time.” The evolution of the
field is postulate to satisfy the dissipative Langevin
equation, which is given by the following:

_φðg; tÞ ¼ −Ω
∂

∂φ̄ðg; tÞH½φ; φ̄� þ ηðg; tÞ ; ð2:4Þ

where ηðg; tÞ is a random group field, playing the role of
white noise, Ω > 0 is a timescale, the notation “dot”means
d=dt, and H, the Hamiltonian, defines the deterministic
parts of the equation.
Remark 1. Before continuing with the definition of the

model, let us make a small general remark about our point
of view in this paper. The so-called time here is not standard
as it is in the literature for GFTs, where relational time is
usually implemented via clock fields implying second
derivatives with respect to this time [91]. In this respect,
time evolution could be viewed as “nonrelativistic” at this
stage. However, we expect that such a point of view is
meaningless here. Indeed, general covariance is not sched-
uled in our construction and would probably require
additional degrees of freedom to be discussed, as is the
case in more complete and physical GFT models. One
could imagine that the Langevin equation derives from a
kind of “slow rolling” approximation, a bit like for
stochastic inflation, for an equation preserving a sort of
general covariance. However, such an approximation might
be a bit too hasty in the absence of more serious inves-
tigations, and we believe that talking about covariance or a
“nonrelativistic” regime does not (yet) make sense in the
present framework. We will thus simply say that our model

1However, let us also note that an Abelian GFT with trivial
propagator and Λ cutoff in moment is nothing more than a rank 5
random tensor model in disguise. In this respect, we can
abusively speak about “pure gravity model” for equilibrium
states, in reference to the fact that no degree of freedom for
matter field are included.
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is a simple model allowing us to study the fluctuations
around some equilibrium state with respect to which a
preferred time is defined [see equation (2.4)].
Without additional constraint on the random field φ, we

assume that the probability measure for ηðg; tÞ is

dρðηÞ ≔ 1

z0
exp

�
−
1

Ω

Z
dtdgη̄ðg; tÞηðg; tÞ

�
d½η�; ð2:5Þ

where d½η� ≔Q
g;t dηðg; tÞdη̄ðg; tÞ is the formal functional

measure defining path integral, and the normalization z0
being such that

hηðg; tÞη̄ðg0; t0Þiη ¼ Ωδðg0ðgÞ−1Þδðt − t0Þ; ð2:6Þ

the notation hXiη meaning average over η with probability
density dρðηÞ=d½η�, and

δðg0ðgÞ−1Þ ≔
Yd
l¼1

δðg0lg−1l Þ; ð2:7Þ

where δðglg−1l Þ denotes the standard Dirac delta over G,Z
dgδðg0ðgÞ−1ÞfðgÞ ¼ fðg0Þ; ð2:8Þ

for some function f. The Hamiltonian H will be designed
such that equilibrium configurations (see Sec. II B) repro-
duce the generalized Gibbs states used in standard defi-
nitions of GFTs. With the previous definition, longtime
equilibrium states (i.e., the probability density for a field
configuration) must behave like P½φ; φ̄� ∼ e−H½φ;φ̄�, accord-
ing to the usual definition provided that H is nothing but

the microscopic action for group field. Because we focus on
the TGFT formalism, we expect H is the sum of two
contributions:
(1) A kinetic part Hkin, involving a nontrivial kernel

depending on the Laplace-Beltrami operatorΔg over
the manifold ðGÞ×d:

Hkin½φ; φ̄� ≔
Z

dgφ̄ðgÞð−Δg þm2ÞφðgÞ; ð2:9Þ

for some coupling constant m2 defining a mass
scale.

(2) An interaction Hint, which expands in power of
fields. The terms involved in that expansion, as the
interaction Hamiltonian itself, are furthermore as-
sumed to be invariants under unitary transformations
U∶ L2ðGÞ → L2ðGÞ defined as:

φðgÞ → φ0ðgÞ ≔
Z

dg0
�Yd
l¼1

Ulðgl; g0lÞ
�
φðg0Þ:

ð2:10Þ

This defines a particular nonlocality for interactions,
called “tensoriality,” and terms involved in the
expansion of H are tensorial invariants.

These invariants admit an elegant representation in terms of
d-colored bipartite regular graphs. The receipt is the
following:
(1) To each field φ and φ̄, we assign a black and

white dot, respectively, with d half-colored edges
hooked to them, materializing the d group variables
g1;…; gd:

(2) Colored edges are then hooked together accordingly, with their respective colors, between black and white dots only.
In Fig. 1, we show some examples for d ¼ 3. To provide an explicit example, the first diagram reads explicitly as

ð2:11Þ

assuming that the red edge corresponds to color 1. As illustrated by the last example in Fig. 1, graphs can be connected or
not, and in this case, they are the product of connected graphs. We call a bubble such a connected graph, made of a single
piece. We moreover assume that Hint expands as
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Hint½φ; φ̄� ¼
Z

dt
X
b

λbTrb½φðtÞ; φ̄ðtÞ�; ð2:12Þ

the sum running over bubbles b involving more than two
fields, and Trb½φ; φ̄� denotes the corresponding tensorial
invariant. Longtime equilibrium states (i.e., the probability
density that a group field φ has a given value in the
“volume”2 D½φ� ≔Qg dφðgÞdφ̄ðgÞ, if it exists, must
behave like (see Sec. II B):

ρ½φ; φ̄� ¼ 1

Z½fλbg�
e−2H½φ;φ̄�; ð2:13Þ

and the partition function Z½fλbg� that normalizes the state
is given by the formal path integral over field configura-
tions:

Z½fλbg� ≔
Z

D½φ�e−2H½φ;φ̄�: ð2:14Þ

Hence, the time variable is related to the definition of
equilibrium states given by (2.13), accordingly with the
point of view of [82,83], and we are aiming to study small
perturbations with respect to it, described by the Langevin
equation (2.4). The perturbative expansion of the partition
function organizes as a sum over quantum amplitudes that
we denote as AðGÞ, labeled with vacuum Feynman graphs
G. An example of such a Feynman graph is provided by
Fig. 2, the dotted edges materializing Wick contractions
with free propagator Cðg; g0Þ,

Cðg; g0Þ ≔ 1

2

Z þ∞

1=Λ2

dαe−αm
2
Yd
l¼1

Kαðg0lðglÞ−1Þ; ð2:15Þ

for some UV cutoff Λ, and Kαðg0ðgÞ−1Þ denotes the heat
kernel, solution of the equation:

∂

∂α
KαðgÞ ¼ ΔgKαðgÞ; ð2:16Þ

with boundary conditions Kα→0ðg0ðgÞ−1Þ ¼ δðg0ðgÞ−1Þ.
Feynman graphs like the one pictured in Fig. 2 look like
bipartite regular (dþ 1)-colored graphs, attributing the

color “0” to the dotted edges. A very important notion for
such a graph is the faces, and we recall the definition here:
Definition 1. A face f is a bicolored cycle (including

color 0), indexed by a couple ðl;l0Þ;l ≠ l0. Such a cycle
may be open (open face) or closed (closed face). The
boundary of a face, ∂f is the set of colored edges along
the cycle.
In the rest of this article, we will focus on the compact

Abelian group G ¼ Uð1Þ, and we normalize the Haar
measure as

Z
dg ¼ 1: ð2:17Þ

The group is isomorphic to the unit circle, and each element
of the group can be represented by g ∈ Uð1Þ≡ eiθ ∈ S1,
where θ ∈ ½0; 2π�. Irreducible representations of the group
are therefore eipθ for p ∈ Z, and the standard Peter-Weyl
theorem allows decomposing functions over the group
manifold U(1) along this basis. For the heat kernel, for
instance, we have

KαðgÞjg≡eiθ ¼
X
p∈Z

e−αp
2

eipθ; ð2:18Þ

and the propagator in the Fourier representation reads,

Cðp; p0Þ ¼ 1

2

δpp0

p2 þm2
; ð2:19Þ

where p ∈ Zd, p2 ≔
P

d
l¼1 p

2
l, and δpp0 ≔

Q
d
l¼1 δplp0

l
.

This theory has the property to be power countable, and
we have the following statement [31,32,99,100]:
Proposition 1. Let AðGÞ the regularized Feynman

amplitude associated with a Feynman diagram G, with
LðGÞ dotted edges and FðGÞ closed faces of type ð0lÞ,
l ∈ ⟦1; d⟧. Its dependence on the UV cutoff Λ is given by

jAðGÞj ∼ ΛωðGÞ; ð2:20Þ

FIG. 1. Example of tensorial invariants for d ¼ 3.

FIG. 2. A typical Feynman graph for d ¼ 3, with three vertices
and nine propagator edges.

2We use the notation “d” for the functional measure of time-
dependent states, and the notation “D” for equilibrium, time-
independent configurations.
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where:

ωðGÞ ¼ −2LðGÞ þ FðGÞ: ð2:21Þ

Leading-order graphs are those for which ω is optimal. The
diagrams that make this counting optimal are called melons
and can be defined by a simple recursion; see [32,97] and
Sec. IV B. Melonic graphs are those for which the number
of faces is maximal as LðGÞ fixed. We can show that for
these diagrams the number VðGÞ of vertices is related to the
numbers FðGÞ and LðGÞ by [32,97]:

FðGÞ ¼ ðd − 1ÞðLðGÞ − VðGÞ þ 1Þ: ð2:22Þ

Hence, defining ρ ≔ ðd − 1ÞðLðGÞ − VðGÞ þ 1Þ − F, it
can be established that the power counting can be read as:

ωðGÞ ¼
X
k

ððd − 3Þk − ðd − 1ÞÞvkðGÞ þ ðd − 1Þ

−
NðGÞ
2

ðd − 3Þ − ρðGÞ: ð2:23Þ

In that equation, vkðGÞ denotes the number of bubbles with
valence 2k (with kwhite nodes), andNðGÞ is the number of
external edges.

Definition 2. For melonic diagrams ρðGÞ ¼ 0, and it
can be proved that ρðGÞ > 0 otherwise.

The theory will be power counting just renormalizable if
and only if ðd − 3Þk − ðd − 1Þ ¼ 0. In particular, the sixtic
model is just renormalizable for d ¼ 4. In this paper, we
will focus on the melonic quartic model, which is just
renormalizable for d ¼ 5, where power counting reads as:

ωmelon ¼ 4 − NðGÞ : ð2:24Þ

In particular, only two- and four-point diagrams are power
counting divergent and required to be renormalized. The
melonic diagrams have the property to be contractible. This
property invites the definition of a locality principle, and
tensorial invariants that are connected and contractible are
said to be local in that point of view. We will speak of
traciality to designate this specific notion of locality. This
principle of locality allows us to define counterterms, and
we can show the following theorem [99,100]:
Theorem 1. The quartic melonic model in d ¼ 5 is just

renormalizable, and divergences can be removed with
counterterms for mass, quartic couplings, and field strength
normalization.
Explicitly, the renormalizable Hamiltonian reads as

ð2:25Þ

where we attributed the same coupling constant for all the
quartic interactions.
Traciality allows us to think of locality in that context, as

related to tensorial invariance, and we adopt the following
definition in this paper:
Definition 3. Any tensorial invariant whose graph is a

bubble is said to be local. In the sameway, any function that
expands as a sum of terms labeled with bubbles only will
say to be local.

B. Dynamic action and path integral

We denote as qðtÞ ≔ fφðg; tÞ; φ̄ðg; tÞg a given position
for the random complex field in the functional space. Due
to the randomness of the white noise ηðg; tÞ, trajectories can
be suitably described through a probability distribution:

Pðq; t; q0; t0Þ ¼ hδðqðtÞ − qÞiη; ð2:26Þ

for t > t0, assuming the initial condition qðt0Þ ¼ q0. In the
rest of the paper, we will use the shortest notation Pðq; tÞ

for Pðq; t; q0; t0Þ, disregarding the initial state. The
Langevin equation (2.4) being local in time, Eq. (2.26)
defines a Markov process whose evolution follows a
Fokker-Planck equation [37]:

∂

∂t
Pðq; tÞ ¼ 2ΩĤPðq; tÞ; ð2:27Þ

with:

Ĥ ≔
Z

dg

�
δ2

δφðgÞ∂φ̄ðgÞ þ 4
δ2H

δφðgÞ∂φ̄ðgÞ þ 2
δH

δφðgÞ
δ

δφ̄ðgÞ

þ 2
δH

δφ̄ðgÞ
δ

δφðgÞ
�
: ð2:28Þ

This equation admits a longtime equilibrium solution; if it
exists, this solution is given by:

ρðqÞ ≔ lim
t→þ∞

Pðq; t; q0; t0Þ; ð2:29Þ
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which corresponds to stationary solutions of the Fokker-
Planck equation, and it is easy to check that ρðqÞ ∼ e−2H,
accordingly with Eq. (2.13). This equilibrium solution
exists provided that it is normalizable, i.e., that the integral
(2.14) exists. The transition probability Pðq; t; q0; t0Þ can be
represented as a path integral. We introduce it here with
some details—see [37,81] for a complement. The basic
ingredient is the following formal relation3:

1≡
Z

dq δð _φþ δφ̄H0 − ηÞδð _̄φþ δφH0 − η̄ÞðdetMÞ2;

ð2:30Þ

where H0 ≔ ΩH, M is the operator matrix with entries

Mðg0; t0; g; tÞ ≔ δðg0ðgÞ−1Þ d
dt

δðt − t0Þ þ δ2H0

δφ̄ðg; tÞδφðg0; t0Þ :

ð2:31Þ

We can then use this representation of the identity to
determine the classical action associated with the Markov
process by rewriting the generating function:

Z½J; J̄� ≔
�
exp

�Z
dtdgJðg; tÞφ̄ðg; tÞ

þ
Z

dtdgJ̄ðg; tÞφðg; tÞ
��

η

: ð2:32Þ

Note that, because of the normalization for the averaging
over η, we must have Z½J ¼ 0; J̄ ¼ 0� ¼ 1, fixing the
normalization; moreover, qðtÞ is assumed to be a solution
of the motion equation for some initial conditions. It can be
suitable to take the initial condition for t0 ¼ −∞ to ensure
that the distribution is in equilibrium (if it exists). We
introduce the shortest notation JðtÞ ¼ fJ̄ðg; tÞ; Jðg; tÞg,
and we define the dot product:

J · q ≔
Z

dtdgφ̄ðg; tÞJðg; tÞ þ
Z

dtdgJ̄ðg; tÞφðg; tÞ:

ð2:33Þ

Introducing the identity (2.30) in the previous equation, it
becomes:

Z½J; J̄� ¼
Z

dqdρðηÞeJ·qδð _φþ δφ̄H0 − ηÞδð _̄φþ δφH0 − η̄Þ

ðdetMÞ2: ð2:34Þ

The delta functions can be easily integrated out, and to
compute the determinant, we can use the well-known
formula detM ¼ expðTr lnðMÞÞ. One can easily check
that:

detM ∼ exp

�
θð0Þ

Z
dtdg

∂
2H0

∂φ̄ðg; tÞ∂φðg; tÞ
�
: ð2:35Þ

In this equation, the choice of this function as the inverse of
∂=∂t is required by causality (which is expected from the
Langevin equation). However, a problem arises because
θð0Þ is undefined. There are two allowed solutions, depend-
ing on if we use Îto or Stratonovich prescription for
computing the time discretized version of path integrals
[37,101,102]:
(1) In the Îto sense, we evaluate the integrand at the left

end point.
(2) In the Stratonovich sense, we evaluate the integrand

at the “middle” point.
Each of these choices corresponds to a different convention
for θð0Þ. Thus, θð0Þ ¼ 0 for Îto and θð0Þ ¼ 1=2 for
Stratonovich. In this paper, we will work within Îto
convention, and we set ðdetMÞ2 ¼ 1 in the calculations,
leading to

Z½J; J̄� ¼
Z

dqe−
1
Ω

R
dtdgð _φþδφ̄H0Þð _̄φþδφH0ÞþJ·q: ð2:36Þ

As a final step, we introduce a complex intermediate group
field, χ , called response field, such that Z½J; J̄� can be
rewritten as, using basic properties of Gaussian integration,

Z½J; J̄; |; |̄� ¼
Z

dqdχe−Ω
2S½q;χ �þJ·qþ|·χ ; ð2:37Þ

where we introduced a source | ¼ ð|; |̄Þ for the response
field, and where the complex classical action S½q; χ � is
given by

Ω2S½q; χ � ≔
Z

dtdg½Ωχ̄ðg; tÞχðg; tÞ

þ iχ̄ðg; tÞð _φþΩδφ̄HÞðg; tÞ
þ ið _̄φþ ΩδφHÞðg; tÞχðg; tÞ�: ð2:38Þ

It will be useful in the following to work in the Fourier
representation. We will note TpðωÞ [resp. T̄pðωÞ] the
Fourier components of φðg; tÞ [resp. φ̄ðg; tÞ], where
p ∈ Zd, such that:

φðg; tÞ ¼
Z þ∞

−∞

dωffiffiffiffiffiffi
2π

p e−iωt
X
p∈Zd

TpðωÞ
Yd
l¼1

eiplθl ; ð2:39Þ

where eiθl ≔ gl. In that way, the Hamiltonian reads,

3Note that the Langevin equation that we consider is a first-
order differential equation, admitting a single causal solution; see
[37]. This uniqueness can be challenged for some nonequilibrium
configurations, whose classical action admits a large number of
minima.
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H½T; T̄� ≔
X
p∈Z5

Z þ∞

−∞
dωT̄pðωÞðp2 þm2ÞTpðωÞ

þ λ

2π

X5
l¼1

X
fpig

Z Y4
i¼1

dωiδðω1 þ ω3 − ω2 − ω4Þ

×WðlÞ
p1;p2;p3;p4Tp1ðω1ÞT̄p2ðω2ÞTp3ðω3ÞT̄p4ðω4Þ;

ð2:40Þ

where we introduced the symbols WðlÞ
p1;p2;p3;p4 defined as

WðlÞ
p1;p2;p3;p4 ≔ δp1lp4l

δp2lp3l

Y
j≠i

δp1jp2j
δp3jp4j

: ð2:41Þ

Hence, S½q; χ � splits as

S≕ Skin þ Sint; ð2:42Þ

where

Skin¼
X
p∈Z5

Z þ∞

−∞
dω̂

�
χ̄pðω̂Þχpðω̂Þþ iχ̄pðω̂Þ

×ð−iω̂þp2þm2ÞTpðω̂Þ

þ iT̄pðω̂Þðiω̂þp2þm2Þχpðω̂Þ
�
; ð2:43Þ

and

ð2:44Þ

where, in the previous equation, we introduced the graphi-
cal rule according to which response fields χ and χ̄ will be
materialized by black and white square nodes, respectively,
and where we introduced the dimensionless frequency
ω≡Ωω̂.
The free propagator C takes the form of a 2 × 2 matrix,

with components Cχχ̄ , CTχ̄ , CχT̄ , and CTT̄ . It is easy to
check that the response field does not propagate; i.e.,

Cχχ̄ðω̂; p2Þ ¼ 0: ð2:45Þ

Other components are given by

Cχ̄Tðω̂; p2Þ ¼
1

Ω2

ω̂ − iðp2 þm2Þ
ω̂2 þ ðp2 þm2Þ2 ;

CT̄χðω̂; p2Þ ¼ −
1

Ω2

ω̂þ iðp2 þm2Þ
ω̂2 þ ðp2 þm2Þ2 ; ð2:46Þ

and

CTT̄ðω̂; p2Þ ¼
1

Ω2

1

ω̂2 þ ðp2 þm2Þ2 : ð2:47Þ

The result (2.45) valid at order zero in the perturbative
expansion survives to all orders, and is in fact an exact,
nonperturbative relation [103], meaning that component χχ̄
of the exact propagator G (or equivalently the component
T̄T of the mass matrix Γð2Þ) vanishes:

Gχχ̄ðω̂; p2Þ ¼ 0 : ð2:48Þ

The origin of this relation can be traced as follows. Let us
consider Z½J; J̄; |; |̄�, the generating functional (2.37). Let
us add a linear driving force 1

Ω

R
dt
P

p k̄pðtÞTpðtÞ þ c:c to
the HamiltonianH. This is equivalent to translating sources
| and |̄ as

|p → |p − ikp; |̄p → |̄p þ ik̄p: ð2:49Þ

Hence, from the normalization conditions of the partition
function, we must have Z½0; 0;−ik; ik̄� ¼ 1, and therefore,

Gχχ̄ ¼ −
δ2

δkpδk̄p0
Z½0; 0;−ik; ik̄�≡ −

δ21

δkpδk̄p0
¼ 0: ð2:50Þ

In the rest of this paper, we fix the original timescale such
that Ω ¼ 1, keeping the dependency over Ω explicit only
for technical points.Such a choice simplifies all the
expressions before.

III. FUNCTIONAL RENORMALIZATION GROUP

In this section, we introduce the formalism of the
nonperturbative renormalization group as originally for-
mulated by Wetterich and Morris [92–94,96]. This formal-
ism is particularly well suited to deal with discrete models
of quantum gravity, such as GFTs or random tensors. We
will introduce this formalism for the dynamic GFT model
introduced above. In this study, we limit ourselves to the
equilibrium dynamics.

A. Regularization and flow equation

The RG as conceived by Wilson and Kadanoff aims to
interpolate between a microscopic model and a macro-
scopic, effective description. The effective description is
constructed by integrating out quantum or thermodynamic
fluctuation scale by scale, integrating out firstly the modes
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having a small wavelength and ending with the ones having
a large wavelength. This paradigm generally focuses on
equilibrium physics. For nonequilibrium systems, temporal
fluctuations can no longer be ignored. There are then two
possible attitudes:

(i) Consider a coarse graining only on the group
variables (i.e., on the spectrum of the Laplacian Δg).

(ii) Or include the time to the notion of scale and
integrate partially on both the spectrum of the
operators −i∂=∂t and Δg.

We can still imagine partially integrating only on the ω
frequencies by integrating on the whole spectrum ofΔg, but
we will not consider this possibility in the following. The
possibility of a coarse graining in frequency has been
considered in [104] through the Wetterich framework,
about nonequilibrium systems, and in [105] about a
disordered Langevin type equation. Other approaches
considering a frequency coarse graining have been con-
sidered, notably for quantum mechanical problems
[106,107], inflation theory [108], Brownian motion
[109,110], dissipative (open) quantum system [111–113],
and references therein. The reader can also consult the
recent review [96]. In this paper, we follow the same
strategy, and we focus on a coarse graining both in
frequency ω and momenta p that interpolates between
two regimes:
(1) The UV regime, where fluctuations are frozen and

fields configurations are determined by stationary
points of the classical action S.

(2) The IR regime, where fluctuations are all integrated
out, and field configurations are described through
the effective action Γ, the Legendre transform of the
Gibbs free energy.

The standard procedure is to add a regulator to the classical
action S, which has generally the form:

ΔSk ¼
X
p∈Zd

X
a;b

Z þ∞

−∞
dωΞ̄aðp;ωÞRab;kðp;ωÞΞbðp;ωÞ;

ð3:1Þ

whereΞðp;ωÞ ¼ ðχpðωÞ; TpðωÞÞ. The regulatorRab;kðp;ωÞ
is assumed to be a differentiable function of k, p, and ω. It
behaves as a scale-dependent mass and is designed such that
high energy modes concerning the scale k (i.e., such that
ω̂=k2; p2=k2 ≪ 1) receive a small mass, whereas low energy
modes are essentially frozen, decoupling them from long
range physics. In such away, we are expecting to construct a
smooth interpolation Γk between microscopic physics
described by classical action Ω2S for k ¼ Λ and macro-
scopic physics described by effective action Γ—the
Legendre transform of the Gibbs free energy–for k ¼ 0.
We introduce the mathematical definition of the effective
average action Γk:

Γk½M; σ� þ ΔSk½M; σ� ¼ M · J þ σ · | −Wk½J; |�; ð3:2Þ

where M ≔ ðM̄;MÞ and σ ≔ ðσ̄; σÞ denote the classical
fields; i.e.,

M ≔
δWk

δJ̄
; σ ≔

δWk

δj̄
: ð3:3Þ

The microscopic scaleΛ is assumed to be large enough, and
wewill take the continuum limitΛ → ∞ in the computation
of the β function. For the equilibrium distributions, this limit
makes sense because the model that we consider is just
renormalizable and asymptotically free [100,114]. In the
deep IR regime, for k ∼ 0, one expects that regulator Rab;k

almost vanishes, ensuring that symmetries, in particular,
should be ultimately restored, at least formally, for the exact
RG equation [95]:

∂

∂k
Γk ¼ Tr

∂Rk

∂k
ðΓð2Þ

k þ RkÞ−1; ð3:4Þ

where capital bold letters designate 2 × 2 matrix-valued
functions, and the trace runs over all the fields indices. Note
that the expression assumes implicitly that Ω ¼ 1, and we
define the effective propagator Gk as

Gk ≔ ðΓð2Þ
k þ RkÞ−1: ð3:5Þ

The situation is, however, not so easy, because Eq. (3.4)
cannot be solved exactly, even for very simple models,
and approximations currently considered solving it intro-
duce a spurious dependency on the regulator for IR
quantities [115,116]. In this paper, we will consider the
minimal sensitivity prescription (MSP) as a reliability
criterion to quantify the dependency on the regulator;
see [104,117,118]. Methods usually considered for solving
flow equations are called truncation and project them along
a finite-dimensional subspace. The choice of this finite-
dimensional subspace depends on physical constraints
and symmetries expected to be unbroken along the flow,
up to IR scales. This can be achieved by demanding that the
regulator preserve the original symmetries of the classical
action, i.e., that Ward-Takahashi (WT) identities remain
unchanged along the flow [119]. This condition, however, is
usually too restrictive, and in many situations, symmetries
are only restored in the deep IR, making the dependency on
the regulator difficult to avoid. This is especially the case for
gauge theories [120], another unconventional example
being provided by RMMs and RTMs [46,47]. In that paper,
we only consider regulator compatibles with time-reversal
symmetry preserved along the flow, but not only asymp-
totically. Time-reversal symmetry is expected because we
assume to consider only equilibrium dynamics, startingwith
a generalized Gibbs state ρðqÞ and relaxing toward equi-
librium [37].
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B. Time reflection symmetry and causality

A way to construct coarse graining is to modify the
original Langevin equation (2.4), adding to it a nonlocal
driving force (see [104] for more detail):

_TpðtÞ ¼ −Ω
∂H

∂T̄pðtÞ
− fpðt; ½qðtÞ�Þ þ ηpðtÞ; ð3:6Þ

where the driving force f is nonlocal in time and takes the
form,

fpðt; ½qðtÞ�Þ ≔
Z

dt0Rð1Þ
k ðp; t − t0ÞTpðt0Þ; ð3:7Þ

where Rð1Þ
k is assumed to be a real kernel. The effect of this

force is to “freeze” IR contributions. In addition, we modify
the noise correlation function, adding to it a nonlocal
contribution introducing a short memory in the system:

hηðg; tÞη̄ðg0; t0Þi ¼ Ωδðg0ðgÞ−1Þ
�
δðt − t0Þ þ 1

Ω
Rð2Þ
k ðt − t0Þ

�
:

ð3:8Þ

Following the same steps as for the deduction of the
generating functional (2.37), we find

Zk½J; J̄; |; |̄� ≔
Z

dqdχe−Ω
2S½q;χ �−ΔSk½q;χ �þJ·qþ|·χ ; ð3:9Þ

where

ΔSk½q; χ � ¼
X
p∈Zd

Z
dω

�
χ̄pðωÞRð2Þ

k ðp;ωÞχpðωÞ

þ iRð1Þ
k ðp;ωÞχ̄pðωÞTpðωÞ

þ iRð1Þ
k ðp;−ωÞT̄pðωÞχpðωÞ

�
; ð3:10Þ

which define the components of the bold matrix Rk:

Rkðp;ωÞ ≔
 

Rð2Þ
k ðp;ωÞ þiRð1Þ

k ðp;ωÞ
iRð1Þ

k ðp;−ωÞ 0

!
; ð3:11Þ

and where Fourier components of Rkðp;ωÞ are defined as

Rkðp; tÞ ≔
1

2π

Z
dωe−iωtRkðp;ωÞ: ð3:12Þ

The partition function has the expected form. There are,
however, two physical constraints to take into account.
Causality and time-reversal symmetry, are closely related to
the fluctuation-dissipation theorem (FDT) [103,121,122].
Note that the Langevin equation (2.4), being of the first

order, admits only one causal solution. We will describe the
constraints on the regulator so that these physical con-
ditions are preserved by the regularized theory, i.e. so that
the effective models along the RG flow still describe an
equilibrium dynamics compatible with causality. Note that
this construction ensures that the component χ̄χ of propa-
gator (3.5) vanishes, Gk;χ̄χ ¼ 0.
Time-reversal symmetry and FDT. The time-reflection

symmetry is a direct consequence of this equilibrium
dynamics, to which we will limit ourselves in this paper.
It is realized by the following transformations on the fields
Ξ → Ξ0 for the nonregularized theory (Rk ¼ 0) as

T 0
pðtÞ ¼ Tpð−tÞ; χ0pðtÞ ¼ χpð−tÞ −

2i
Ω

_Tpð−tÞ; ð3:13Þ

and for complex conjugates:

T̄ 0
pðtÞ ¼ T̄pð−tÞ; χ̄0pðtÞ ¼ χ̄pð−tÞ þ

2i
Ω

_̄Tpð−tÞ: ð3:14Þ

It is easy to see that these transformations leave the
nonregularized classical action S½q; χ � invariant, within
total derivatives. Moreover, the Jacobian of the trans-
formation being equaled to 1, the path integral defining
the partition function is invariant as well for zero external
sources. The transformations of the source terms into
counterparts give a certain number of relations between
observable, from which the classical FDT follows. Let us
derive it from the expected invariance of the functional
integral. The source term—J · qþ | · χ—in (2.37) trans-
forms as

J · qþ | · χ → J̃ · qþ |̃ · χ

−
2i
Ω

X
p

Z
dt

�
¯̃|pðtÞ _TpðtÞ − |̃pðtÞ _̄TpðtÞ

�
; ð3:15Þ

up to total derivative contributions. We moreover intro-
duced the notation X̃ðtÞ ≔ Xð−tÞ. We introduce the follow-
ing definitions:

Rpðt; t0Þ ≔ hχ̄pðtÞTpðt0Þi; Dpðt; t0Þ ≔ hT̄pðtÞTpðt0Þi;
ð3:16Þ

and the transformation (3.15) leads to the FDT:

Rpðt; t0Þ − Rpð−t;−t0Þ ¼
2i
Ω

d
dt

Dpðt; t0Þ : ð3:17Þ

Since Dpðt; t0Þ is symmetric, and assuming translation
invariance, i.e. Rpðt; t0Þ≡ Rpðt − t0Þ, this relation be
rewritten as
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RpðtÞ ¼
2i
Ω
θðtÞ d

dt
DpðtÞ: ð3:18Þ

These relations can be converted to the Fourier represen-
tation as

Gχ̄Tðω̂; p2Þ − Gχ̄Tð−ω̂; p2Þ ¼ 2ω̂GT̄Tðω̂; p2Þ : ð3:19Þ

It is easy to check that this relation is satisfied, at zero order,
by free propagators (2.46) and (2.47). Let us show how the
regulator can be compatible with these physical constraints.
We would like to construct a regulator ΔSk that is
compatible with the time reversal, i.e., which is invariant
under the transformations (3.13) and (3.14). A calculation
detailed in Appendix B shows the we must have

Rð1Þ
k ðp; t0 − tÞ − Rð1Þ

k ðp; t − t0Þ − 2

Ω
_Rð2Þ
k ðp; t0 − tÞ ¼ 0 :

ð3:20Þ

In terms of Fourier components, this relation reads,

Rð1Þ
k ðp;ωÞ − Rð1Þ

k ðp;−ωÞ ¼ −2iω̂Rð2Þ
k ðp;ωÞ: ð3:21Þ

For such a time-reversal symmetric regulator, FDT (3.19)
holds for all k.
Causality. The driving force fpðt; ½qðtÞ�Þ added to the

Langevin equation depending nonlocally (in time) on the
trajectory qðtÞ, we must have to preserve causality:

Rð1Þ
k ðp; t − t0Þ ∝ θðt − t0Þ : ð3:22Þ

For the theory without a regulator, the free propagators
satisfy nontrivial causality conditions, which can be inves-
tigated from the explicit expressions (2.46) and (2.47). For
instance, the component Cχ̄T reads as

Cχ̄Tðω; p2Þ ¼
1

ωþ iðp2 þm2Þ ; ð3:23Þ

which has a single pole ω ¼ −iðp2 þm2Þ, in the lower half
part of the complex part (see Fig. 3). Hence, the free two-
point function,

hχ̄pðtÞTpðt0Þi ¼
Z

dωffiffiffiffiffiffi
2π

p eiωðt−t0Þ

ωþ iðp2 þm2Þ ; ð3:24Þ

which vanishes for t − t0 > 0 from residue theorem. Hence,

hχ̄pðtÞTpðt0Þi ∝ θðt0 − tÞ: ð3:25Þ

Note also that at zero moments, it is the mass that removes
the ambiguity on the position of the poles.4 This causality
will be an important condition to respect in the construction
of the nonperturbative RG, and we will impose the effective
two-point functions to satisfy them, asking that the poles of
the functions Gk;T̄χ and Gk;χ̄T are, respectively, located in
the half lower part and the half upper part of the complex
plane, as in Fig. 3. This condition allows us to understand
an important point. In the following sections, we will
construct an approximation for the Γk functional through a
truncation. Causality allows us to understand that this
functional cannot contain independent contributions from
the response fields χ and χ̄. In other words, it must
necessarily have

Γkjχ¼χ̄¼0 ¼ 0; ∀ k; ð3:26Þ

a property that we call heteroclicity. We already know that
this condition is realized initially for the action S;
see (2.38). To show that this contribution is zero, it is
therefore sufficient to show that its flow is zero, in other
words, that:

FIG. 3. Poles of the components CT̄χ and Cχ̄T of the free propagator.

4For a zero mass, we should have to regularize with a
parameter ϵ → 0þ to guarantee causality.
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d
dk

Γkjχ¼χ̄¼0 ¼ 0; ∀ k: ð3:27Þ

This is easy from (3.4). The flow equation involves three
contributions. The first one involves the product

d
dk

Rð2Þ
k ðp; t − t0Þhχ̄pðtÞχpðt0Þi;

which vanishes due to the condition (2.48). The second
contribution has the form

d
dk

Rð1Þ
k ðp; t − t0Þhχ̄pðtÞTpðt0Þi;

and vanishes because Rð1Þ
k ðt − t0Þ ∝ θðt − t0Þ and

hχ̄ðtÞTðt0Þi ∝ θðt0 − tÞ. The third contribution vanishes
for the same reason.
Remark 2. It is important to note that the condition

(3.27) is easy to check in the case of coarse graining in
time, as is the case in this paper. It is more subtle in the case
where we practice coarse graining only on moments and
not on frequencies. In this case, one must return to the
discrete version of the equations in the Îto prescription;
see, for instance, [101]. In this case, we show that the
coincident time correlations must be replaced by regular-
ized versions:

hχ̄pðtÞTp0 ðt0Þiϵ ≡ hχ̄pðtþ ϵÞTp0 ðt0Þi; ð3:28Þ

which introduces a factor eiωϵ in the Fourier integrals. This
factor ensures convergence of integrals in the upper or
lower part of the complex integrals, and the previous
condition (3.27) follows from the expected position of
poles in the integrals, once again as a consequence of
causality. Note moreover that the last condition is obvious
in the supersymmetric formalism, quite natural in the
Stratonovich sense. Supersymmetry, which is ensured by
Ward-Takahashi identities for the quantum theory, implies
that the constant term flows vanish due to the cancellation
of bosonic and fermionic loops [105].
Remark 3. The condition (3.27) can be checked from

perturbation theory as follows. Let us focus on the quartic
melonic model. Figure 4 lists the expected boundaries for
effective vertex functions, which can be generated in

leading order from melonic diagrams. Note that all the
allowed configurations are not pictured in the figure.
For instance, there exist the same configuration as (a),
obtained by reversing the black and white colors
of the nodes. We will denote as (ā) this configuration.
Note that some edges are their own deputy. Thus, d ¼ d̄.
Note, moreover, that only boundaries of type a and ā are
involved in the classical action. At one loop, the boundary
diagram d, which does not contain the response field,
comes from the diagram pictured in Fig. 5. For zero
external momenta p, the corresponding Feynman amplitude
reads as

A ∼ −
X
q∈Z4

Z
dωffiffiffiffiffiffi
2π

p eiωϵ

ωþ iðq2 þm2Þ
eiðω−ω̃Þϵ

ðω − ω̃Þ þ iðq2 þm2Þ ;

ð3:29Þ

where, according to the remark (2), we introduced a factor
eiωϵ, ϵ → 0þ [equation (3.28) of remark (2)] and where ω̃
denote the total external frequency. Introducing Feynman
parameters [123], the integrand reads

eiωϵ

ωþ iðq2 þm2Þ
eiðω−ω̃Þϵ

ðω − ω̃Þ þ iðq2 þm2Þ

¼
Z

1

0

dx
eið2ω−ω̃Þϵ

½ωþ iðq2 þm2Þ − xω̃�2

¼ eiω̃ϵ
Z

1

0

dx
e2iωϵ

½ωþ iðq2 þm2Þ − xω̃�2

¼ eiω̃ϵ
d
dω̃

Z
1

0

dx
x

e2iωϵ

ωþ iðq2 þm2Þ − xω̃
:

The unique pole is in the half lower part of the complex
plane, and the integral over ω vanishes identically, in
agreement with (3.27).

C. Renormalization and scaling dimension

1. Renormalized theory

According to the theorem 2.1, the equilibrium distribu-
tion of the quartic melonic model is just renormalizable for
d ¼ 5. Thus, it must be possible to make the perturbation

(a) (b) (c) (d)

FIG. 4. List of boundaries which can be generated from initial
conditions by Feynman diagrams.

FIG. 5. The one-loop Feynman graph contributing to the 1PI
effective vertex function corresponding to boundary (d).
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theory for the equilibrium distribution ρðqÞ ∼ e−H½q� finite
at any order,5 using a finite number of counterterms. There
are three of such a counterterms Zm, Zλ, and Z∞, and we
renormalize, respectively, the mass m2 → Zmm2

r , the cou-
pling λ → Zλλ, and the field φ → Z1=2

∞ φ [37]. We will
assume that these counterterms are adjusted so that the
continuous limit exists (the theory being asymptotically
free, [114]). To simplify the notations, we will simply call
λ and m2 the coupling and mass parameters, including
counterterms, and we will note λr and m2

r the renormalized

(finite) versions of these parameters. Moreover, we will fix
the finite part of Z∞ so that the effective propagator of the
equilibrium theory behaves as6

Geqðp2Þ ∼
1

p2 þm2
r
; ð3:30Þ

as k → 0 and for p small enough. The regularized kinetic
Lagrangian then reads as

Skin ¼
X
p∈Z5

Z þ∞

−∞
dω̂

�
χ̄pðω̂Þχpðω̂Þ þ iχ̄pðω̂Þð−iω̂þ Z∞p2 þm2ÞTpðω̂Þ − iT̄pðω̂Þðiω̂þ Z∞p2 þm2Þχpðω̂Þ

�
; ð3:31Þ

disregarding the renormalization of the response field that
we will consider later. The quartic interaction receives
counterterms as well, and in (2.44), we must replace
λ → Z2

∞Zλλr. For this model, the counterterms Z∞ and
Zλ can be formally computed, as the authors in [65]
showed. We recall their conclusions here for self-
consistency:
Proposition 2. With the normalization condition (3.30)

and the renormalized coupling, λr providing the correct
four-point function at zero momenta, the countersterms
Z∞ and Zλ are equal to all orders of the perturbation theory.
Moreover,

Z−1
∞ ≔ 1 − 2λrA∞; ð3:32Þ

with A∞ given by

A∞ ≔
X

p∈SΛ⊂Z4

�
1

Z∞p2 þ Zmm2
r − Σ∞ðpÞ

�
2

; ð3:33Þ

where the sum is assumed to have some UV cutoff Λ
(limΛ→∞ SΛ ¼ Z4) and Σ∞ðpÞ has quartic and logarithmic
divergences with respect to Λ.
The counterterms in (3.33) cancels all the divergences in

Σ∞ðpÞ, except the global one of the sum, which corre-
sponds to the last subtraction in the Zimmerman forest.
Hence, A∞ behaves as lnðΛÞ. More details can be found in
Appendix A 1.

2. Scaling dimension

In quantum theory in ordinary fields, the scaling
dimension is closely related to renormalizability. An
analogous notion can be defined for TGFTs (see the

references [59,97], or [61]), which accommodates the
nonlocal nature of the interactions and the background
independent definition of the theory. We have the following
definition:
Definition 4. Let b a bubble having nðbÞ white

vertices and G the set of two-point diagrams made of a
single vertex of type b. The scaling dimension dimðbÞ is
defined as

dimðbÞ ¼ 2 −max
r∈G

ωðrÞ: ð3:34Þ

This definition in particular implies that two-point bubbles
have dimension 2, and in particular, the mass must have
dimension 2: ½m2� ¼ 2. In the same way, from (2.23), the
leading-order two-point functions built with a single quartic
melonic vertex are such that ωðrÞ ¼ 2, and the canonical
dimension vanish ½λ� ¼ 0, in agreement with the just
renormalizability of the quartic model.

IV. MELONIC APPROXOMIATION

A. Truncation and regulation

Solving the exact RG equation (3.4) is a difficult task,
even for simple problems, and requires approximations.
Usually, these approximations take the form of truncation
in the full theory space, which is the functional space of
infinite dimension spanned by all allowed classical actions
defined by the condition that the classical Hamiltonian
H½φ; φ̄� is a sum of connected invariants. The truncation
will allow for the restriction of the phase space to a smaller
domain where the equations will be easily solvable. The
method that we propose, the EVE, nevertheless allows
capturing entire sectors, containing an infinite number of
interactions, as well as the dependence of the effective
vertices on the external momenta.5Note that to agree with the convention in the literature and in

Appendix A 1, we canceled the global factor 2 by a suitable
redefinition of fields and couplings in this section. 6Avoiding IR fixed points; see [97] for more details.
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We will choose the following ansatz for the effective average action Γk:

Γk½M; M̄; σ; σ̄� ¼ Ω2
X
p∈Z5

Z þ∞

−∞
dω̂

�
YðkÞσ̄pðω̂Þσpðω̂Þ þ iσ̄pðω̂Þð−iYðkÞω̂þ ZðkÞp2 þm2ðkÞÞMpðω̂Þ

þ iM̄pðω̂ÞðiYðkÞω̂þ ZðkÞp2 þm2ðkÞÞσpðω̂Þ þ i

�
σ̄pðω̂Þ

δĤint;k

δM̄pðω̂Þ
þ σpðω̂Þ

δĤint;k

δMpðω̂Þ
��

; ð4:1Þ

where YðkÞ as ZðkÞ and mðkÞ look like a kinetic coupling,
and this parameter ensures the time reversal symmetry with
respect to the transformation (3.13) and (3.14), and

Ĥint;k½M; M̄� ¼
Z

dt̂
X
b

kdimðbÞZnðbÞðkÞλ̄bTrb½φðt̂Þ; φ̄ðt̂Þ�;

ð4:2Þ

provided thatHint is given by (2.12), and the dimensionless
time t̂ is t̂ ≔ Ωt. The sum runs over connected tensorial
invariants, dimðbÞ is the scaling dimension of the bubble b
[see (3.34)], and nðbÞ the number of fields φðg; tÞ involved
in the interaction b. One can justify the truncation (4.1) as
follows. First, the time-reversal symmetry (3.13) implies
that the quadratic term in σ̄pðω̂Þσpðω̂Þ renormalizes as the
linear terms iω̂σ̄pðω̂ÞMpðω̂Þ and −iω̂M̄pðω̂Þσpðω̂Þ.
Remark 4. The truncation (4.1) is compatible with a

symmetric phase approximation, i.e., with an expansion
around zero vacuum field. In the symmetric phase, it is easy
to check that two-point functions are diagonals in their
momenta indices. Moreover, odd vertex function vanishes
identically—see [97] for an extended discussion.
Let us move on to the choice of the regulator. For all our

investigations, we chose regulators Rð1Þ
k and Rð2Þ

k as a
product of a pure frequency regulator with a momentum
regulator. For the frequency regulator, we choose7

Rð1Þ
k ðp;ωÞ ¼ Ωk2ZðkÞρkðωÞrkðp2Þ; ð4:3Þ

and for the momentum regulator rkðp2Þ, we choose the
usual Litim regulator:

rkðp2Þ ≔ α

�
1 −

p2

k2

�
θðk2 − p2Þ: ð4:4Þ

For the frequency regulator, we chose

ρkðωÞ ≔
k2

k2 − iβω=Ω
: ð4:5Þ

This choice has been considered in [104,105]. It is causal
(with a single pole in the lower part of the complex plane),

and its Fourier transform behaves like ∼e−k2Ωt=βθðtÞ.
Numerical coefficients α, β should be numerically tuned
from the MSP, which assumes that an optimized flow
induces a minimal dependence on the choice of the
regulator [101,104,124]. Thus, by numerically computing
the critical exponents and varying the parameters α and β,
the MSP will fix their values at the points where the
derivatives of the exponents concerning these parameters
will vanish. In particular, for β ¼ 0, the coarse graining is
about momenta only, and we recover the standard RG
without time regularization. In the rest of this paper, we will
introduce dimensionless momenta x and frequencies y,
defined as

p2 ¼ k2x; ω ¼ ΩZðkÞk2Y−1ðkÞy: ð4:6Þ

We furthermore define the renormalized β as

β ¼ Z−1ðkÞYðkÞβ̂; ð4:7Þ

such that ρkðωÞ transforms as

ρkðωÞ → ρ̂ðyÞ ¼ 1

1 − iβ̂y
; ð4:8Þ

and

Rð1Þ
k ðp;ωÞ → R̂ð1Þðx; yÞ ≔ ZðkÞρ̂ðyÞrðxÞ; ð4:9Þ

where rðxÞ ≔ αð1 − xÞθð1 − xÞ. The equation for Rð2Þ
k can

be derived from (3.21), and we have

Rð2Þ
k ðp;ωÞ ¼ Ω2k2

2iω
ZðkÞðρkð−ωÞ − ρkðωÞÞrkðp2Þ; ð4:10Þ

and we get

Rð2Þ
k ðp;ωÞ≕ΩYðkÞτ̂ðyÞrkðp2Þ; ð4:11Þ

where

τ̂ðyÞ ¼ −
β̂

1þ β̂2y2
; ð4:12Þ

which defines a dimensionless function R̂ð2Þðx; yÞ as:
7Although we chose Ω ¼ 1 above, we reintroduce Ω here to

clarify the conventions.
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R̂ð2Þðx; yÞ ≔ YðkÞτ̂ðyÞrðxÞ: ð4:13Þ

Derivatives with respect to k can be easily computed, and

we get for Rð1Þ
k ðp;ωÞ:

k
d
dk

Rð1Þ
k ðp;ωÞ ¼ ð2þ ηÞRð1Þ

k ðp;ωÞ

− ZðkÞΩk2 2 − iβ̂yðηY − ηÞ
ð1 − iβ̂yÞ2 rðxÞ

þ 2αΩk2ZðkÞ 1

1 − iβ̂y
θð1 − xÞ; ð4:14Þ

and for Rð2Þ
k ðp;ωÞ:

k
d
dk

Rð2Þ
k ðp;ωÞ ¼ ð2þ ηYÞRð2Þ

k ðp;ωÞ

þ 2ΩYðkÞβ̂ 2þ β̂2y2ðηY − ηÞ
ð1þ β̂2y2Þ2 rðxÞ

− 2αΩYðkÞ β̂x2

1þ β̂2y2
θð1 − xÞ: ð4:15Þ

For future calculations, we will define two dimensionless
quantities:

μ1ðx; yÞ ≔ ð2þ ηÞρðyÞrðxÞ − 2 − iβ̂yðηY − ηÞ
ð1 − iβ̂yÞ2 rðxÞ

þ 2α
1

1 − iβ̂y
θð1 − xÞ; ð4:16Þ

and

μ2ðx; yÞ ≔ ηY τ̂ðyÞrðxÞ þ 2β̂
2þ β̂2y2ðηY − ηÞ

ð1þ β̂2y2Þ2 rðxÞ

−
2αβ̂x2

1þ β̂2y2
θð1 − xÞ; ð4:17Þ

where

η ≔
1

ZðkÞ k
d
dk

ZðkÞ; ηY ≔
1

YðkÞ k
d
dk

YðkÞ : ð4:18Þ

B. Melonic equations in the nonbranching sector

In this section, we will focus on a restricted sector of the
theory, the nonbranching melonic sector. We will finally
derive the flow equations in this approximation. This sector
is stable (at leading order) along the RG and has shown its
interest in the past [97,100,125–127]. Note that in this
section and in the following, Ω ¼ 1 everywhere.

1. Nonbranching melons

As we recalled in the first part, the most divergent
diagrams are said melonics. Strictly, melons are connected
graphs and are then bubbles as well. For d-colored graphs,
melons can be defined recursively as follows:
Definition 5. Any melonic bubble bκ of valence κ may

be deduced from the elementary melon b1:

ð4:19Þ

replacing successively κ − 1 colored edges (including
maybe color “0”) by (d − 1)-dipole, the (d − 1)-dipole
insertion operator Ri being defined as

ð4:20Þ

In formula: bκ ≔ ðQκ−1
α¼1RiαÞb1.

For instance, the first bubble on Fig. 1 is a melon. For our
nonperturbative investigations, we especially focus on a
subsector of the melons, said nonbranching.
Definition 6. A nonbranching melonic bubble of

valence κ, bðlÞκ is labeled with a single index l ∈ ⟦1; 5⟧
and defined such that:

bðlÞκ ≔ ðRlÞκ−1b1: ð4:21Þ

Figure 6 provides the generic structure of melonic non-
branching bubbles in rank 3. Note that the definition holds
for diagrams involving square nodes. Another important
concept is that of the boundary diagram. It concerns
Feynman diagrams, such as the one shown in the Fig. 2.
We have the following definition:
Definition 7. Let G be a regular (dþ 1)-colored

Feynman diagram with 2N external dotted edges. They
are hooked to 2N black and white nodes, say externals, and
the boundary diagram ∂G of G is the regular d-colored
graph, discarding edges with color 0 and such that:

FIG. 6. Structure of the nonbranching melons, from the smallest one b2.
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(1) Nodes of ∂G are external nodes of G
(2) Edges with color ≠ 0 linking two external nodes are

conserved.
(3) Any open cycle made of colors 0 and i between two

external nodes n and n̄ is replaced by a link of color i
in ∂G.

Figure 7 illustrates the mapping for a Feynman diagram in
rank 3. Note that the boundary diagram is melonic, but
branched in that example.
In the rest of this paper, we will work in the subspace of

the theory space, generated by the nonbranched melons.
Thus, all 1PI functions will be assumed to admit a Feynman
series whose boundary diagrams are nonbranched melons,
and we will index each effective vertex by a bubble of this
type. Because nonbranching bubbles are labeled with a
single color, the corresponding 2n-point vertex functions
decompose along d components,

Γð2nÞ
k ¼

Xd
l¼1

Γð2nÞ;ðlÞ
k ; ð4:22Þ

each component Γð2nÞ;ðlÞ
k being assumed to be labeled

with nonbranching melons of valence 2n. We will now
move on to the derivation of the flow equations in the
nonbranching sector. We only derive flow equations for
two- and four-point functions with zero external momenta
and use melonic equations to close the hierarchy,
expressing six-point functions in terms of four- and two-
point ones.

2. Flow equations

Flow equations for different couplings can be obtained
from the flow equation (3.4), taking successive derivative
with respect to classical fieldsM; M̄; σ; σ̄. We introduce the
notations Ξ ¼ fM; σg, Ξ̄ ¼ fM̄; σ̄g, and

Γð2PÞ
k;Ξ̄a1 ���Ξ̄aP ���Ξb1ΞbP

¼ δ2PΓk

δΞ̄a1
p1 ðω̂1Þ � � � δΞ̄aP

pP ðω̂PÞ � � � δΞbP
p0P
ðω̂0

PÞ
;

ð4:23Þ

for ai; bi ¼ 0, 1, Ξ0 ¼ M, Ξ1 ¼ σ. From truncation (4.1),
we have

Γð2Þ
k;σ̄σ ¼ YðkÞδp1p2δðω̂1 − ω̂2Þ; ð4:24Þ

and

Γð4Þ;ðlÞ
k;σ̄MM̄M ¼ i

π
πð2Þk ðp2

1l; p
2
3lÞðWðlÞ

p1;p2;p3;p4 þ p2 ↔ p4Þ
× δðω̂1 − ω̂2 þ ω̂3 − ω̂4Þ; ð4:25Þ

where the function πð2Þk ðp2
1l; p

2
3lÞ (depending on the square

of external momenta) gives the momentum dependence of
the vertex, with normalization condition:

πð2Þk ð0; 0Þ≕ λðkÞ; ð4:26Þ

defining the effective quartic coupling at scale k. Note that

we disregarded any dependence of πð2Þk on the frequency.
Our truncation is then ultralocal for the time parameter. We
moreover introduce the notation:

Γð2Þ
k;Ξ̄a1Ξa2

≕ γð2Þk;Ξ̄a1Ξa2
ðp1; ω̂1Þδp1p2δðω̂1 − ω̂2Þ; ð4:27Þ

and we have

γð2Þk;σ̄Mðp ¼ 0; ω̂1 ¼ 0Þ ¼ im2ðkÞ; ð4:28Þ

and

FIG. 7. Illustration of the mapping G → ∂G for a six-point Feynman diagram in rank 3.
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d
dω̂1

γð2Þk;σ̄Mðp ¼ 0; ω̂1 ¼ 0Þ ≔ YðkÞ;
d

dp2
i
γð2Þk;σ̄Mðp ¼ 0; ω̂1 ¼ 0Þ ≔ iZðkÞ; ð4:29Þ

the last equation being valid for all i ¼ 1;…; d, agrees with

the isotropic assumption. The flow equation for γð2Þk;σ̄M can
be deduced from (3.4), taking derivatives with respect to σ̄
and M. We obtain

_γð2Þk;σ̄Mðp1; ω̂1Þδp1p2δðω̂1 − ω̂2Þ ¼ −Tr _RkGkΓ
ð4Þ
kσ̄M••Gk; ð4:30Þ

where we omitted momenta and frequencies to simplify the
expression and the trace Tr runs both over momenta,
frequencies, and fields. The dots in the four-point functions

Γð4Þ
kσ̄M•• designates allowed fields in the trace, and we

introduced the notation

_X ≔ k
dX
dk

: ð4:31Þ

Equation (4.30) can be pictured as in Fig. 8, where dotted
edges with gray circles materialize propagators, cross-circle

materializes regulator contribution _Rk, and we pictured the
four-point function in order to make the index structure
explicit. On the figure, arrows are oriented from barred to
nonbarred fields, and gray half edges materialize response
fields. Because Gkχ̄χ ¼ 0 and RkM̄M ¼ 0 [see (3.11)], and
that from truncation (4.1) the only nonvanishing field

configuration for bullets in Γð4Þ
kσ̄M•• is Γð4Þ

kσ̄MM̄M, there are
only two contributions allowed for internal fields. Hence,
we get

ð4:32Þ

The two last contributions create only one face, accordingly
to definition II A and are therefore less relevant than the two
first ones, which are melonics following definition 5.
Because we focus in this paper on the ultraviolet (UV)
regime,

Λ ≫ k ≫ 1; ð4:33Þ

for some UV cutoff Λ, and the two last configurations in
(4.32) can then be discarded at the leading order. Note that
we do not include some numerical factors counting the
number of corresponding configurations. For instance, the

first configurations have to be multiplied by a factor 2,
counting the two allowed configurations for the internal
(black or gray) solid edges:

ð4:34Þ

the arrows being oriented from “barred” to “nonbarred”
fields. Diagrams of Eq. (4.32) can be easily translated in a
formula; for instance (we count the diagram twice),

FIG. 8. Representation of the single-loop flow equation for γð2Þk;σ̄M.
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ð4:35Þ

In that equation, the components Gk;M̄M and Gk;σ̄M of the
two-point function can be computed explicitly as

Gk;σ̄Mðp2; ω̂Þ ¼ −
1

k2
i

ZðkÞ
1

f̂ðx;−yÞ ; ð4:36Þ

and

Gk;M̄Mðp2; ω̂Þ ¼
1

k4
YðkÞ
Z2ðkÞ

1þ τ̂ðyÞrðxÞ
f̂ðx; yÞf̂ðx;−yÞ ; ð4:37Þ

where rðxÞ ≔ αð1 − xÞθð1 − xÞ, and for the truncation that
we consider,

f̂ðx; yÞ ¼ iyþ xþ m̄2 þ ρ̂ð−yÞrðxÞ; ð4:38Þ

the dimensionless and renormalized mass and vertex

function m̄2 and π̄ð2Þk being defined as [see (4.2)]

m2 ≕ZðkÞk2m̄2; πð2Þk ¼ Z2ðkÞπ̄ð2Þk : ð4:39Þ

Using these definitions, a straightforward calculation leads
to the expression,

where x1 ≔ p1=k, and assuming k large enough sums can be replaced by integrals. Hence, we define

L21ðx1Þ ≔
2

π

Z
Rd

dx0dyδðx01 − x1Þμ1ðx0; yÞ
1þ τ̂ðyÞrðx0Þ

f̂ðx0; yÞf̂2ðx0;−yÞ ; ð4:40Þ

having introduced the notation x ∈ Rd, with components xi and square length x≡Pi x
2
i . In the same way, we get the

second diagram:

ð4:41Þ
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with

L22ðx1Þ ¼
2

π

Z
Rd

dx0dyδðx01 − x1Þ
μ2ðx0; yÞ

f̂ðx0; yÞf̂ðx0;−yÞ : ð4:42Þ

The flow equation for mass can be obtained by setting
p1 ¼ 0. From the normalization condition (4.26), we get

βm2 ¼ −ð2þ ηÞm2 − dλ̄ðL21ð0Þ − L22ð0ÞÞ ; ð4:43Þ

using the conventional notation in field theory βX ≔ _X.
In the symmetric phase moreover, where, in particular,

Γð3Þ
k ¼ 0, the anomalous dimension ηY vanishes identically,

as it can be easily checked fromdefinitions (4.18) and (4.29):

ηY ¼ 0 ðin the symmetric phaseÞ : ð4:44Þ

Let us detail the derivation of the flow equation for η.
We will not be able to complete the derivation in this
section, the end of the derivation being given in Sec. V.

From definition (4.29), we have the self-consistency
equation:

η¼−λ̄0ðL21ð0Þ−L22ð0ÞÞ− λ̄
d
dx21

ðL21ðx1Þ−L22ðx1ÞÞ
			
x1¼0

;

ð4:45Þ

where we defined

d
dp2

1

πð2Þk ðp2
1; p

2
1Þ
				
p1¼0

≕Z2ðkÞk−2λ̄0: ð4:46Þ

The equation for the four-point coupling λ can be deduced
from the renormalization condition (4.25), setting external
momenta and frequencies to zero. Deriving Eq. (3.4)
one time for σ̄, one time for M̄ and two times concerning
M and setting external momenta and frequencies to zero,
we get, using the same graphical representation as before,

ð4:47Þ

This equation requires defining the six-point functions, as we defined the four-point ones [Eq. (4.25)]. We need only the
zero momenta function, which reads as follows:

Γð6Þ;ðlÞ
k;σ̄MM̄MM̄M

			
0
¼ 9i

π2
κδðω̂1 − ω̂2 þ ω̂3 − ω̂4 þ ω̂5 − ω̂6Þ; ð4:48Þ
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where κ denotes the sixtic coupling constant. For the two first diagrams, we get

ð4:49Þ

where, from (3.34),

κ≕ k−2Z3ðkÞκ̄: ð4:50Þ

Indeed, the maximally divergent two-point diagram that we can build from a melonic six-point interaction has a divergent
degree (see proposition 1):

ωðrÞ ¼ −2Lþ F ¼ −2 × 2þ 2 × ðd − 1Þ ¼ 4; ð4:51Þ

then dimðbÞ ¼ −2. The computation of diagrams involving four-point vertices requires being more careful. Let us compute
the first one. Explicitly, we have

ð4:52Þ

which, after some algebra, can be rewritten as follows:

ð4:53Þ

with

L31 ¼
Z
R4

dxdy
μ1ðx; yÞ
f2ðx; yÞ

1þ τðyÞrðxÞ
fðx; yÞfðx;−yÞ : ð4:54Þ

Each diagram can be computed in the same way. One can
check, for instance, that the contribution of the first diagram
equals one of the fifth diagrams, and after a tedious

computation, we get for βλ ≔ _̄λ

βλ¼−2ηλ̄− 3
2
κ̄ðL21ð0Þ−L22ð0ÞÞ

þ 16λ̄2

π

�
L31þ 1

2
L32−L33

�
; ð4:55Þ

where

L32 ≔
Z
R4

dxdyμ1ðx; yÞ
1þ τðyÞrðxÞ

f2ðx; yÞf2ðx;−yÞ ; ð4:56Þ

L33 ≔
Z
R4

dxdy
μ2ðx; yÞ

f2ðx; yÞfðx;−yÞ : ð4:57Þ

Note that to derive these equations, we used the relation:

Gk;σ̄Mðω̂Þ ¼ Gk;M̄σð−ω̂Þ ; ð4:58Þ

which are also true for the bare propagators given by
Eq. (2.46).
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3. Structure equations

The flow equation (4.55) for the quartic coupling λ
involves the sixtic coupling κ. Hence, in principle, we are
obliged to consider the flow equation for κ, which involves
the octic couplings and so on. The infinite hierarchical
structure does not stop, even if:
(1) We stop it abruptly, imposing Γð2nÞ

k ¼ 0 up to some n
(crude truncation).

(2) We are able to express Γð2nÞ
k , up to a given n, in terms

of Γð2ðn−1ÞÞ
k , Γð2ðn−2ÞÞ

k and so on.
The first option has been widely considered for TGFTs
[53,55,56,59,60,128], but some instability effects and
incompatibilities with symmetry constraints have been
noticed in our previous works [62,65,66], and the reliability
of its predictions is still debated. The second option is more
difficult to implement in general. It happens that we can
close the hierarchy in this way by exploiting some con-
straints coming from the symmetries of the theory and
which imply exact relations between effective vertices,
such as the Ward identities (see, for instance, [118]). In this
paper, we follow the strategy developed in our previous
work [97], where authors present a method exploiting the
tree structure of leading-order graphs, as melonic graphs, to
get nontrivial relations between nonbranching observable.
Because melonic diagrams dominate the RG flow in the
deep UV, this strategy is expected to outperform the
standard vertex expansion. Indeed, this method, called
EVE, allows one to close the hierarchy and capture the
full momenta dependence of effective vertices. Wewill now
detail it here.
If we consider the quartic model given by (2.25), there

are two kinds of quartic vertices, corresponding to vertices
of type a and type ā. Hence, a general Feynman graph for
the model takes the form given by Fig. 9 (on left), involving
type a and type ā vertices. Note that we have no dotted
edges liking square nodes because Gkχ̄χ ¼ 0. We denote as
G the set of Feynman graphs corresponding to this model.
We moreover define F as the surjective map F∶G → Ḡ,
which send any Feynman graph G to a Feynman graph

Ḡ ∈ Ḡ of the equilibrium theory (2.14). We denote as Ḡ the
set of Feynman graphs for the equilibrium theory. To be
more precise, F acts on a given graph G by replacing all
square nodes with disk nodes, without changing their color.
A white square becomes a white disk and a black square
becomes a black disk, as illustrated on 9. Moreover,
propagators (2.46) and (2.47) for the dynamical theory
are replaced by the propagator (2.19) of the equilibrium
theory, a rank 5 Abelian GFT for U(1) structure group.
Obviously, the inverse map F−1 is not one to one in
general: F−1ðḠÞ ¼ ðG1; G2 � � � ; GKÞ, and we denote as K
themultiplicity of the graph Ḡ. In our previous works, EVE
has been considered for the field theory corresponding to
the equilibrium state (2.13) in [65,66,97]. The authors
showed that melonic nonbranched six-point function

Γð6Þ;ðlÞ
k , corresponding to sixtic melonic boundaries with

color l [accordingly with the definition (4.22)], can be
expressed in terms of the four-point and two-point func-
tions, and for zero external momenta (which is what we
need to close the hierarchy), this relation reads

Γð6Þ;ðlÞ
k;eq j0 ¼ ð3!Þ2 ×AḠ0

; ð4:59Þ

where ð3!Þ2 counts the number of different configurations
for external momenta, and the graph Ḡ0 is pictured in
Fig. 10. Note that Ḡ0 is not truly a Feynman graph but an
effective graph, where external four-points vertices are
effective four-point functions materialized by their boun-
dary graphs and resuming an arbitrary number of graphs
and where the interior two-point functions have been
resumed as well [see Eq. (2.19)]:

ð4:60Þ

where p ∈ Z5 and ΣR means that divergences of the self-
energy have been canceled by counterterms Z∞ and Zm,
accordingly with the renormalization condition (3.30). If

FIG. 9. A typical Feynman graph G (on left) and the corresponding normal graph Ḡ ¼ F ðGÞ (on right).
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we apply the inverse map F−1 to Ḡ0, we obtain a family of
graphs ðG1;…; GKÞ but having different boundaries (see
definition 7). Hence, if we restrict ourselves to the graphs

having the same boundary ∂G0 of Γ
ð6Þ;ðlÞ
k;σM̄MM̄MM̄j0, we focus

on the set S ¼ fF−1½Ḡ0�j∂Gi ¼ ∂G0 ∀ Gi ∈ F−1½Ḡ0�g,
where explicitly:

ð4:61Þ

and the zero momenta effective vertex function

Γð6Þ;ðlÞ
k;σ̄MM̄MM̄Mj0 decomposes as

Γð6Þ;ðlÞ
k;σM̄MM̄MM̄j0 ¼ 12 ×

X
G∈S

AG; ð4:62Þ

where we used the same notationA to denote the amplitude
of the stochastic model, where 12 ¼ 3! × 2! counts the
number of external momenta arrangements as before. It is
easy to see that jSj ¼ 2, and graphically:

ð4:63Þ

disregarding external momenta and frequencies for sim-
plicity. Note, moreover, that, as before, external four-point
vertices are effective four-point functions materialized by
their boundaries. Explicitly, we get

Γð6Þ;ðlÞ
k;σM̄MM̄MM̄j0 ¼ 12Z3ðkÞk−2i

�
λ̄

π

�
3

× ðAI1 þ BI2Þδð0Þ;

ð4:64Þ

where A and B are numerical constants that we can
determine by perturbation theory. It is easy to check that

the loop integrals I1 and I2 are equals, and, using the
integral approximation introduced before,

I1 ≔
Z
R4

dx
Z

dy
1þ τðyÞrðxÞ

f3ðx; yÞfðx;−yÞ : ð4:65Þ

The perturbation theory leads to A ¼ B ¼ 1, and we get
from (4.48) and (4.50),

κ̄ ¼ 4λ̄3

3π

Z
R4

dx
Z

dy
1þ τðyÞrðxÞ

f3ðx; yÞfðx;−yÞ : ð4:66Þ

FIG. 10. The effective six-point graph Ḡ0. The external four-point vertex are indeed effective four-point functions, which we denote by
their boundary graph.
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We are now in a position to derive the last piece of the
puzzle, namely, the derivative of the effective vertex at zero
external momenta (4.46), required to compute the anoma-
lous dimension.
Remark 5. It can be noticed that we used truncation to

define the loop integral (4.65). The truncation is in principle
expected to be valid only in a small region around k,
namely on the support of _Rk. In [97], we showed that using
truncation outside this support for divergent integral leads
to dramatically wrong conclusions. In the same reference
and [65], we showed that it can be a good approximation
for convergent integral and, in particular, that this does not
introduce Ward identity violations. We use this approxi-
mation scheme to compute our convergent integrals in this
paper, as I1 is.
To conclude, not that in our truncation, the integral in

(4.65) can be computed analytically. For instance, without
coarse graining in frequency (β̂ ¼ 0) and setting α ¼ 1,
we have

κ̄jβ̂¼0 ¼
π4λ̄3ðm̄2ðm̄2 þ 3Þ þ 3Þ

6ð1þ m̄2Þ3 : ð4:67Þ

In the opposite limit, for α ¼ 0 but β̂ ¼ 1, we get

κ̄jα¼0 ¼
π4λ̄3

6m̄2
: ð4:68Þ

Both have an obvious infrared singularity for m̄2 ¼ 0.
Finally, for α ¼ β̂ ¼ 1, we get

κ̄jα¼1;β̂¼1 ¼
π4λ3

6ð1þ m̄2Þ3 ðm̄
2ðm̄2 þ 7Þ

þ 2ðm̄2 þ 1Þð2m̄2 þ 3Þ logð1þ m̄2Þ
− 2ð1þ m̄2Þð2m̄2 þ 3Þ logð2þ m̄2Þ þ 7Þ:

ð4:69Þ

V. ANOMALOUS DIMENSION AND WT
IDENTITIES

The aim of this section is to use Ward-Takahashi (WT)
identities to compute the last ingredients in the expression
of anomalous dimension λ0, defined in (4.46). Since the
interactions are invariants by construction under unitary
transformations of the type (2.10), there must exist non-
trivial WT identities between effective vertex functions.
These identities provide nontrivial relations that constrain
the RG flow and allow us to compute the derivative of the
effective vertices for their external momenta, which is
exactly what we need to compute the anomalous dimen-
sion. These WT identities have been extensively discussed
in the literature in the last years with this aim; see, for

instance [97], where authors investigate the equilibrium
model (2.13).

A. WT identities for unitary symmetry

Working in the Peter-Weyl basis, the unitary trans-
formations (2.10) act formally on fields components as

Tp → T 0
p ¼

X
qi∈Z

UpiqiTq

			
qj¼pj ∀ j≠i

; ð5:1Þ

where X
q∈Z

U†
pqUqp0 ¼

X
q∈Z

UpqU
†
qp0 ¼ δpp0 : ð5:2Þ

The interaction part of the HamiltonianH is invariant under
such a transformation. Indeed, invariance is only broken by
the Laplacian term in the kinetic action. Let us consider
now the classical action S given by (2.38) and the
generating functional Z½J; J̄; |; |̄�, equation (2.37). The
interacting part Sint of the classical action is invariant if
we transform both fields φ and χ:

Tp → T 0
p ¼

X
q∈Zd

�Yd
i¼1

UðiÞ
piqi

�
Tq;

χp → χ0p ¼
X
q∈Zd

�Yd
i¼1

UðiÞ
piqi

�
χq; ð5:3Þ

where fUðiÞg are d-independent unitary transformations.
We consider infinitesimal transformations,

U ¼ Iþ ϵþOðϵ2Þ; ð5:4Þ

where I is the identity matrix (with elements δpq), and
ϵ ¼ −ϵ† is along the trivial representation of the Lie algebra
of the unitary group. We furthermore define the operator ϵ̂i,
acting on the ith component of fields as:

ϵ̂i½T�p ≔
X
qi

ϵpiqiTqjqj¼pj;j≠i: ð5:5Þ

The global reparametrization invariance of the path integral
defining the generating functional Z½J; J̄; |; |̄� means that:

ϵ̂i½Z½J; J̄; |; |̄�� ¼ 0; ð5:6Þ

for all i ∈ ⟦1; d⟧. We can expand this relation to first order
in ϵ:

0≡
Z

dqdχ ½ϵ̂i½S½q; χ �� þ ϵ̂i½ΔSk½q; χ ��

− ϵ̂i½J · qþ | · χ ��e−S½q;χ �−ΔSk½q;χ �þJ·qþ|·χ : ð5:7Þ

VINCENT LAHOCHE and DINE OUSMANE SAMARY PHYS. REV. D 107, 086009 (2023)

086009-24



We will compute each term of the variation separately,
starting with the source terms:
Computation of ϵ̂i½J · qþ | · χ �. The operator ϵ̂i acts

linearly on each field, and after some arrangements we get

ϵ̂i½J · qþ | · χ �

¼
Z

dω
X
p;p0

Y
j≠i

δpjp0
j
½J̄pðωÞTp0 ðωÞ − T̄pðωÞJp0 ðωÞ

þ |̄pðωÞχp0 ðωÞ − χ̄pðωÞ|p0 ðωÞ�ϵpip0
i
: ð5:8Þ

Computation of ϵ̂i½S½q; χ ��. The variation splits in two
contributions, for kinetic part and interactions:

ϵ̂i½S½q; χ �� ¼ ϵ̂i½Skin½q; χ �� þ ϵ̂i½Sint½q; χ ��: ð5:9Þ

The second contribution to interaction vanishes by con-
struction. The kinetic action for the response field

P
p χ̄pχp

is invariant as well, and the corresponding variation
vanishes. This is also the case for contributions like
ω̂
P

p T̄pχp and m2
P

p T̄pχp. Finally, only the Laplacian
contributes nontrivially to the variation, and we get

ϵ̂i½S½q; χ �� ¼ iZ∞

Z
dω
X
p;p0

Y
j≠i

δpjp0
j
½p2

i −p02
i �ðχ̄pðωÞTp0 ðωÞ

þ T̄pðωÞχp0 ðωÞÞϵpip0
i
: ð5:10Þ

Computation of ϵ̂i½ΔSk½q; χ ��. The computation of the
variation of the regulator follows the same strategy as for
the kinetic action:

ϵ̂i½ΔSk½q; χ �� ¼
Z

dω
X
p;p0

Y
j≠i

δpjp0
j
ði½Rð1Þ

k ðp;ωÞ − Rð1Þ
k ðp0;ωÞ�χ̄pðωÞTp0 ðωÞ þ i½Rð1Þ

k ðp;−ωÞ − Rð1Þ
k ðp0;−ωÞ�T̄pðωÞχp0 ðωÞ

þ ½Rð2Þ
k ðp;ωÞ − Rð2Þ

k ðp0;ωÞ�χ̄pðωÞχp0 ðωÞÞϵpip0
i
: ð5:11Þ

Taking into account all these contributions, the variation (5.7) implies the relation:

0 ¼
Z

dω
X
p;p0

Y
j≠i

δpjp0
j

�
ðiZ∞½p2

i − p02
i � þ i½Rð1Þ

k ðp;ωÞ − Rð1Þ
k ðp0;ωÞ�Þ

×
∂

∂|pðωÞ
∂

∂J̄p0 ðωÞ
þ ðiZ∞½p2

i − p02
i � þ i½Rð1Þ

k ðp;−ωÞ − Rð1Þ
k ðp0;−ωÞ�Þ

×
∂

∂|̄p0 ðωÞ
∂

∂JpðωÞ
þ ½Rð2Þ

k ðp;ωÞ − Rð2Þ
k ðp0;ωÞ� ∂

∂|pðωÞ
∂

∂|̄p0 ðωÞ

−
�
J̄pðωÞ

∂

∂J̄p0 ðωÞ
− Jp0 ðωÞ

∂

∂JpðωÞ
þ |̄pðωÞ

∂

∂|̄p0 ðωÞ
− |p0 ðωÞ

∂

∂|pðωÞ
��

eWk½J;J̄;|;|̄�; ð5:12Þ

where we introduced the free energy:

Wk½J; J̄; |; |̄� ≔ lnZk½J; J̄; |; |̄�: ð5:13Þ

We also introduce the following notation:

Gðnþn̄;MþM̄Þ
p1���pn;p̄1���p̄n̄;pI ���pM;p̄1���p̄M̄

≔
Yn
i¼1

∂

∂J̄pi

Ȳn
ī¼1

∂

∂Jp̄ī

YM
I¼1

∂

∂|̄pI

YM̄
Ī¼1

∂

∂|p̄Ī

Wk; ð5:14Þ

where the notation pi means pi ¼ ðpi; ω̂iÞ. We furthermore introduce the following notations for classical fields:

Mp ≔
∂Wk

∂J̄p
; M̄p ≔

∂Wk

∂Jp
; σp ≔

∂Wk

∂|̄p
; σ̄p ≔

∂Wk

∂|p
: ð5:15Þ

The equation (5.16) then simplifies, and we deduce the following statement:
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Proposition 3. Observable of the equilibrium dynamical model satisfy the following Ward-Takahashi identity:

0 ¼
Z

dω
X
p;p0

Y
j≠i

δpjp0
j
½ðiZ∞½p2

i − p02
i � þ i½Rð1Þ

k ðp;ωÞ − Rð1Þ
k ðp0;ωÞ�ÞðGð1;1̄Þ

k;σ̄Mðp0;ω; p;ωÞ þ σ̄pðωÞMp0 ðωÞÞ

þ ðiZ∞½p2
i − p02

i � þ i½Rð1Þ
k ðp;−ωÞ − Rð1Þ

k ðp0;−ωÞ�ÞðGð1̄;1Þ
k;M̄σ

ðp;ω; p0;ωÞ þ σp0 ðωÞM̄pðωÞÞ
þ ½Rð2Þ

k ðp;ωÞ − Rð2Þ
k ðp0;ωÞ�ðGð0;1þ1̄Þ

k;σ̄σ ðp0;ω; p;ωÞ þ σp0 ðωÞσ̄pðωÞÞ
− J̄pðωÞMp0 ðωÞ þ Jp0 ðωÞM̄pðωÞ − |̄pðωÞσp0 ðωÞ þ |p0 ðωÞσ̄pðωÞ�δpipδp0

ip
0 : ð5:16Þ

Wewill exploit these identities in the melonic approximation, focusing on the nonbranching sector of the theory, to compute
λ0. A technical complement is given in Appendix C.

B. Computation of λ0 defined in (4.46)

We now move to the last Ward identity that we need to achieve our RG program. Applying the fourth derivative
∂
4=∂Mqðω1Þ∂σ̄q̄ðω̄1Þ∂Mq0 ðω0

1Þ∂M̄q̄0 ðω̄0
1Þ. As the previous Ward identities provided a relation between the difference of two-

point functions at different momenta and the four-point function, the Ward identities that we will derive in this section will

provide nontrivial relations between four- and six-point functions and the difference between four-point kernels πð2Þk ðp2
1; p

2
2Þ

with different momenta. As for previous relations, we have to note that Ward identities enjoy the same structure as flow
equations considered in the previous section and indeed play a symmetric role: Ward identities say how we escape to the
purely local sector, i.e., how to move inside the theory space as momentum change, and RG equations say how the theory
moves as the cutoff changes. Obviously, theWard generators do not commute with the flow because flow equations describe
the flow of derivative coupling as well (as the anomalous dimension, for instance).
Using the same graphical representation as before, we obtain the equality:

ð5:17Þ
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where permutations of external fieldsMq0 ðω0
1Þ andMqðω1Þ

are assumed when they are required. Moreover, we
assumed p0 ≠ q0 to cancel the last term involving two
four-point diagrams, proportional to δp0q0 . This relation can

be translated as a differential equation for πð2Þk as follows.
We set pj ¼ p0

j ¼ qj ¼ q̄j ¼ 0 ∀ j ≠ i, pi ¼ p0
i þ 1,

q0 ¼ q̄0 ¼ 0, pi ¼ q̄i, and p0
i ¼ qi. With this configuration

for the external momenta, the two last parentheses involve
the difference:

πð2Þk ð0;p2
i Þ−πð2Þk ð0;ðp0

iÞ2Þ¼ πð2Þk ð0;p2
i Þ−πð2Þk ð0;ðpi−1Þ2Þ;

ð5:18Þ

which can be approached in the deep UV regime (Λ ≫ 1)
by a derivative [see the discussion before equation (C20) in
Appendix C]. Hence, setting pi ¼ 0, we have

h
πð2Þk ð0; p2

i Þ − πð2Þk ð0; ðpi − 1Þ2Þ
i				

pi¼0

≈
d

dp2
i
πð2Þk ð0; p2

i Þ
				
pi¼0

δp2; ð5:19Þ

which can be rewritten as

d
dp2

i
πð2Þk ð0; p2

i Þ
				
pi¼0

¼ 1

2

d
dp2

i
πð2Þk ðp2

i ; p
2
i Þ
				
pi¼0

; ð5:20Þ

assuming πð2Þk to be a symmetric function, and the Ward
identity reads explicitly,

−
1

2

i
π

d
dp2

i
πð2Þk ðp2

i ; p
2
i Þ
			
pi¼0

¼ −
12iκ
22π2

Lk;1 − 4i

�
λ

π

�
2

ðLð1Þ
k;2 þ Lð2Þ

k;2Þ; ð5:21Þ

where we defined

Lk;1 ≔
Z

dω
X
p∈Z4

�
2

�
iZ∞ þ i

d
dp2

1

Rð1Þ
k ðp;ωÞ

�
Gk;M̄Mðp;ωÞGk;σ̄Mðp;ωÞ −

d
dp2

1

Rð2Þ
k ðp;ωÞGk;σ̄Mðp;−ωÞGk;σ̄Mðp;ωÞ

�					
pi¼0

;

ð5:22Þ

Lð1Þ
k;2 ≔ −i

Z
dω
X
p∈Z4

�
iZ∞ þ i

d
dp2

1

Rð1Þ
k ðp;ωÞ

�
Gk;M̄Mðp;ωÞGk;σ̄Mðp;ωÞð2Gk;σ̄Mðp;ωÞ þ Gk;σ̄Mðp;−ωÞÞ

			
pi¼0

; ð5:23Þ

and

Lð2Þ
k;2 ≔ −i

Z
dω
X
p∈Z4

d
dp2

1

Rð2Þ
k ðp;ωÞGk;σ̄Mðp;−ωÞG2

k;σ̄Mðp;ωÞ
			
pi¼0

: ð5:24Þ

Using dimensionless quantities and the definition (4.46),

λ̄0 ¼ 6κ̄

π
L̄k;1 þ 8λ̄2ðL̄ð1Þ

k;2 þ L̄ð2Þ
k;2Þ ; ð5:25Þ

where κ̄ is given by equation (4.66) and, explicitly,

L̄k;1 ≔ 2

Z
dy
Z
R4

dx

�
ðZ∞Z−1ðkÞ − αρ̂ðyÞθð1 − xÞÞ 1þ τ̂ðyÞrðxÞ

f̂ðx; yÞf̂2ðx;−yÞ −
1

2
ατ̂ðyÞ θð1 − xÞ

f̂ðx; yÞf̂ðx;−yÞ

�
; ð5:26Þ

L̄ð1Þ
k;2 ≔ −

Z
dy
Z
R4

dx

�
ðZ∞Z−1ðkÞ − αρ̂ðyÞθð1 − xÞÞ 1þ τ̂ðyÞrðxÞ

f̂ðx; yÞf̂2ðx;−yÞ

�
2

f̂ðx;−yÞ þ
1

f̂ðx; yÞ

��
; ð5:27Þ

and
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L̄ð2Þ
k;2 ≔ −α

Z
dy
Z
R4

dxτ̂ðyÞ θð1 − xÞ
f̂ðx; yÞf̂2ðx;−yÞ : ð5:28Þ

The previous expression can be simplified again. Indeed, as
discussed in Appendix C, Eq. (C.25) allows one to replace
L̄k;1 by L̄k;1 ≈ −π=2λ̄. Moreover, repeating the argument

given in our previous work [97], the sums involved in L̄ð1Þ
k;2

and L̄ð2Þ
k;2 being superficially convergent, the terms involving

Z∞ have to be canceled in the continuum limit. Indeed,
because we focus on the UV regime but so far to the IR
scale, Z∞=ZðkÞ → 0 as 1= lnðΛÞ. Finally, using (4.66),

λ̄0 ¼ 2λ̄2

3

R
R4 dx

R
dy 1þτðyÞrðxÞ

f3ðx;yÞfðx;−yÞ

þ 8λ̄2ðL̄ð1Þ
k;2jZ∞¼0 þ L̄ð2Þ

k;2jZ∞¼0Þ
: ð5:29Þ

We have then computed the last piece of the flow equation
for the anomalous dimension, Eq. (4.45), and we move on
to the numerical investigations.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide some numerical results about
the flow equations described in the previous section. For
the first time, we focus on the limit β̂ → 0 (i.e., no coarse
graining in frequency space), and we provide a description
of the global phase space structure, investigate the existence
of nontrivial fixed points, and address the optimization
issue regarding the computation of critical exponents. A
second time, we remove the condition β̂ ¼ 0 and consider a
coarse graining both in frequency and moment.8

A. Phase portrait, properties, and optimization for β̂= 0

In that first section, we set β̂ ¼ 0. In this limit, integra-
tions over y in flow equations are performed from −∞ to
þ∞ without a cutoff function. First of all, we are interested
to look for fixed point solutions and their vicinity. The
Gaussian point λ̄ ¼ m̄2 ¼ 0 is a fixed point, and the β
functions read, at first orders:

βλ ¼ a0ðαÞλ̄2 þOðm̄2λ̄2Þ;
βm ¼ −2m̄2 þ b0ðαÞλ̄þOðm̄2λ̄2Þ: ð6:1Þ

It can be checked for a reasonable range of values for α that
a0ðαÞ > 0, meaning that the theory is not asymptotically
free. In other words, the theory is not perturbative in the
deep UV regime: The coupling constant grows toward UV
scales. This contrasts with the standard result about the
perturbative regime of the field theory defined by the
equilibrium state (2.13), which is asymptotically free
(a0 < 0), see [65] and Appendix A 2. For α ¼ 1, we have,
for instance,

a0ð1Þ ≈ 32.90; b0ð1Þ ¼ −16.45: ð6:2Þ

Note that b0ð1Þ ¼ −a0ð1Þ=2 is true only for α ¼ 1. The fact
that b0 is negative suggests the existence of a large river or
“mainstream” effect, dragging the flow. This is illustrated
on Fig. 11 for α ¼ 1 (on left) and for α ¼ 4 (on right), the
blue region on the figures corresponding to the phase space
domain where the denominator of η is negative. Note that
the existence of the fixed point and its properties are highly
sensitive to the choice for α as soon as α≲ 3. Furthermore,
for some small values for α, the anomalous dimension η at
the fixed point is below the regulator bounds: η > ηc ¼ −2;
see Fig. 12. Then at the boundary, the denominator
vanishes, and the flow is ill defined. This singularity

FIG. 11. Numerical picture of the RG flow in the vicinity of the Gaussian fixed point (black dot) for α ¼ 1 (on left) and α ¼ 4 (on
right). Arrows are oriented toward UV scales. The blue region seems to blind the fixed point for the diagram on the left.

8An extended discussion about the physical meaning of such a
procedure in that context is given in the conclusion.
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moreover is expected to be a pathology of the symmetric
phase expansion (i.e., expansion around zero vacuum), and
only the region where the denominator is positive, con-
nected with the Gaussian fixed point λ̄ ¼ m̄2 ¼ 0 is
physical. In both cases, we show the existence of a purely
attractive UV fixed point, with complex critical exponents
θ, θ ¼ θ1 � iθ2, θ1 > 0.9 Trajectories are then separated by
the critical line joining the interacting fixed point and the
Gaussian fixed point. Some trajectories come from positive
mass (red curve for example) and someone’s come from
negative mass (green curve). This is reminiscent of the
physics of second-order phase transition, controlled by a
nontrivial fixed point [37] in the deep IR. The parametri-
zation for the regulator reveals a strong dependency for
α≲ 3, but increasing α reveals a region where stability is
improved. Because the theory is not asymptotically free,
the existence of this fixed point ensures the safety of the
theory in the deep UV. For α ¼ 4, we get

θ ¼ 1.57� 4.11i; ð6:3Þ

and for the anomalous dimension, η ≈ 1.06. Figures 12 and
13 show the dependency on α of critical exponent and
anomalous dimension at the fixed point. Figure 12 shows
that the real part θ1 ¼ ℜðθÞ depends weakly on the
parameter α as soon as α > 3. Furthermore, the imaginary
part θ2 ¼ ℑðθÞ has some stationary points, for α ≈ 3.7, 4.3,
and 5.9. These points, on the other hand, correspond to
nothing from the point of view of the anomalous dimen-
sion, which shows no stationary points. For, α > 6.4,
however, θ2 is almost stationary. In this range of values,
moreover, the anomalous dimension remains small enough,
which is expected to be a good indicator for the con-
vergence of the derivative expansion [129], even if the
resulting value for η is large regarding the values consid-
ered in the literature, for the Ising model, for instance.10

Figure 14 shows the behavior of the flow for α ¼ 7, the
arrow being oriented toward IR scales. The anomalous
dimension has value η� ¼ 0.4, and the critical exponents
are

θ� ¼ 1.28� 1.98i: ð6:4Þ

FIG. 13. Dependency of the anomalous dimension on the parameter α for the fixed point solution.

FIG. 12. Dependency of the real and imaginary components for critical exponent on the parameter α. On the left for α ≥ 3 and on the
right for α < 3.

9We define the critical exponent as the opposite of the
eigenvalues of the stability matrix M with entries Mij ≔ ∂iβj,
i.e., with the opposite sign regarding the ordinary definition.

10A relation between the convergence of the derivative
expansion and the minimal sensitivity to the choice of the
regulator is stressed in [124].
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B. Fixed-point analysis for β̂ ≠ 0

In this section, we consider coarse graining in both
frequency and momentum, with β̂ ≠ 0. Once again, we
confirm the existence of a UVattractor separating the phase
space into two regions, an ergodic phase with positive
mass, and an expected nonergodic phase, with negative
mass in the IR. The fact that this transition is controlled by
an interactive fixed point makes this phase transition a
second-order transition [130]. If the β parameter seems to
aggravate the dependence on the regulator of the results for
a large range of values, and to reduce considerably the
portion of the phase space connected to the Gaussian point,

it appears that in a regime where β̂ is small enough,
β̂ < 0.5, a valley of stability exists for the critical exponents
and the anomalous dimension, contrary to what it was for
the β̂ ¼ 0 case.
These conclusions are summarized in Figs. 15 and 16.

These figures represent the dependence of the anomalous
dimension and the critical exponents on the parameters α
and β̂. We notice the existence of a global minimum
sensitivity point for β̂ ≈ 0.28 and α ≈ 3.2, where the
sensitivity of the regulator is minimal. Figure 17 shows
the behavior of the RG flow in the vicinity of the interacting
fixed point at the minimal sensitivity point, and the
resulting critical exponents are complex,

θ ≈ 4.45þ 5.46i; ð6:5Þ

with small enough anomalous dimension η ≈ −0.05. Note
that, although the predictions are in qualitative agreement
with the previous section, the values obtained for the
critical exponents are very different from what we obtained
for β̂ ¼ 0. Because we were able to find a global stability
point for critical exponents and anomalous dimensions, we
expect the result of this section to be more reliable than the
result of the previous one, but in absence of additional
theoretical expectations, we cannot conclude about the
absolute reliability of a method with respect to the
other one.

VII. CONCLUDING REMARKS

In this paper, we introduced the basics of a stochastic
formalism for GFTs in equilibrium dynamics. In that
regime, we were able to construct a nonperturbative RG
formalism that takes into account time-reversal symmetry
and causality of solutions of the stochastic equation (2.4).
We focused on a model that describes an Abelian stochastic

FIG. 14. Numerical plot of the RG flow for α ¼ 7. On this
figure, the arrows are oriented from UV to IR scales.

FIG. 15. Dependency of the anomalous dimension at the fixed point with respect to α and β̂.
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complex field with rank 5 and group structure U(1), whose
equilibrium state is a just renormalizable GFT for a pure
gravity model. For this model, restricting ourselves to the
melonic nonbranching sector of the theory in the symmetric

phase, we were able to construct an exact RG solution of
the flow equation, closing the infinite hierarchy of the
equation around just renormalizable interactions. This
strategy, mixing melonic equations and WT identities,
allows one to express vertex functions Γð2nÞ

k for n ≥ 3 in

terms of Γð4Þ
k and Γð2Þ

k , keeping by this way the full
momenta dependence of the vertex, and to compute the
derivative of the vertex for an external moment that plays an
important role in the derivation of the anomalous dimen-
sion. Hence, the resulting equations describe the full
nonbranching sector and can be easily investigated
numerically.
Our numerical investigations have revealed the existence

of a nontrivial fixed point, possessing the characteristics of
an ultraviolet attractor, in a physically relevant regime
where the dependence on the parameters defining the
controller is minimal. The choice of this parameterization
considerably restricts the space of physical controllers, and
this optimization would deserve to be further investigated.
On this point, our results also show that coarse graining in
both frequency and momentum (i.e., using the degrees of
freedom of the background scalar field as an external notion
of scale) seems to improve the stability (and thus, the
reliability) of the results. Thus, we predict the existence of a
second-order phase transition associated with an ergodicity
break in the IR, controlled by a nontrivial UV fixed point.
The scenario is reminiscent of the asymptotic safety

FIG. 16. Dependency of the real and imaginary parts of the critical exponent θ.

FIG. 17. Behavior of the RG flow in the vicinity of the UV
attractor for α and β̂ in the minimal sensitivity domain.
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scenario encountered, for instance, for fðRÞ-gravity models
[130–133], and provides a strong evidence in favor of UV
completion of our model [37]. Note that our construction
focus on the deep UV regime and UV completion issue,
and due to the compactness of the structure group
Uð1Þ ∼ S1, symmetry restoration is expected in the deep
IR due to the survival of zero modes. A way to solve this
limitation should be to construct a kind of thermodynamic
limit, sending the radius of the compact space S1 to infinity,
or to consider a noncompact group; see, for instance,
[30,56,134–136] and references therein. Finally, the reader
could be confused about the fact that the continuum limits
Λ → ∞ seem to be in contradiction with the observation
that the theory is not asymptotically free, and three remarks
about these observations are in order. (1) The flow
equations receive contributions only for a small window
of momenta around the IR cutoff k, and the Wetterich
equation is then well-defined in the limit k ≪ Λ. (2) The
counterterms for the theory are designed such that the
equilibrium distribution, which defines an asymptotically
free theory (see Appendix A 2), is perturbatively renorma-
lizable. (3) Despite the fact that the out-of-equilibrium
theory is not asymptotically free, it seems to be protected
from Landau Pole and triviality by the existence of a UV
attractive fixed point for the complete cyclic melonic sector.
This fixed point is reminiscent of an asymptotic safety
scenario ensuring UV completeness of the theory, and one
expects that it guarantees that the theory is consistent for all
momenta scales (it is at least a necessary condition; see, for
instance, [37].
Although we focused on a toy model, disregarding

some physical inputs in TGFTs, especially following the
group structure that is not Abelian for realistic quantum
gravity models, and in regard to some gauge symmetry
like Gauss or Plebanski constraints, we expect that the
general framework detailed in this paper could be suitable
to investigate stochastic aspects of the best candidates for
quantum gravity. Finally, even if the “time” has been
interpreted as a relational time, as the configurations of
some matter fields, other matter fields could be added to
the group fields, such that equilibrium states describe
quantum gravity interacting with matter rather than a pure
gravity regime. Another way of investigation concerns
another current discrete approach to quantum gravity, for
instance, RTM. One can imagine a RTM described a
dynamical tensorial variable Ti1;…;idðtÞ, by the same kind
of equation like (2.4). Such an equation will describe a
stochastic tensor, and one may imagine many ways to
approach its dynamics. A renormalization group study,
similar to what we did in this paper, is, for instance,
expected, with the difference that RTM does not enjoy
an intrinsic scaling law as for TGFTs. Hence, more
sophisticated approaches are required to construct

reliable truncations, which we will discuss in a forth-
coming work.

ACKNOWLEDGMENTS

The authors thank the anonymous referee for his com-
ments that contributed to improve the presentation of
this paper.

APPENDIX A: EQUILIBRIUM STATE’S RG

In this section, we review shortly the main results about
RG for the equilibrium state (2.13), which describes a pure
gravity TGFT, for a complex group field with rank d. We
focus on d ¼ 5, for an Abelian model with group structure
U(1) and quartic melonic interactions (2.25). This model
has been largely investigated in the literature; see
[65,97,99,114,137] and references therein. In this section,
we sketch the main lines of the reference [65] that the
reader may consult for more details. In Sec. A 1, we provide
a derivation of the relation between counterterms for the
wave function and coupling and a formal expression for
them. Note that for this derivation, we make use of the
standard Schwinger-Dyson equation, considered in full
detail in [126,127], in contrast with the discussion given
in [65] based on the existence of a finite radius of
convergence for the renormalized series (see also [100]).
Note that in this section, we define equilibrium state as
ρ ∼ e−H, without the factor 2 that can be canceled by a
global redefinition of fields.

1. Melonic Schwinger-Dyson equation
and counterterms

Schwinger-Dyson equations in quantum field theory are
relations between observable, generally taking the form of
self-consistency equations for 1PI functions. For the TFGT
that we considered in this paper, two of them are especially
relevant in the melonic sector, for two- and four-point
functions and have the structure pictured in Fig. 18 (see
[127] for more details). Note that we focus on two- and
four-point functions because the quartic model is just
renormalizable, and both these relations are sufficient to
constrain the counterterms.
Note that, in the second figure, we assumed that the 1PI

four-point function has the connected quartic melonic for
boundary, and πðlÞmelo is defined by

Γð4Þ;ðlÞ
M̄MM̄M ¼ 2πðlÞmeloðp2

1l; p
2
3lÞðWðlÞ

p1;p2;p3;p4 þ p2 ↔ p4Þ:
ðA1Þ

Moreover, Σmelo designates the self-energy, related to the
full two-point function Gmelo and the bare propagator C by
the Dyson equation:
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Gmelo ¼
1

C−1 − Σmelo
; ðA2Þ

where following the definitions of Sec. III C 1,

C−1ðpÞ ¼ Z−∞p2 þm2: ðA3Þ

Translated in equations, the first closed relations pictured in
Fig. 18 reads,

ΣmeloðpÞ ¼ −2Zλλr
Xd
l¼1

X
q∈Zd

δplql

1

Z∞q2 þm2 − ΣmeloðqÞ
:

ðA4Þ

This relation means that ΣmeloðpÞ≕
P

l σðp2
lÞ, with

σðp2Þ ¼ −2Zλλr
X
q∈Zd

δpq1
1

Z∞q2 þm2 − ΣmeloðqÞ
: ðA5Þ

Accordingly with the renormalization condition (3.30),
Zinfty and Zm are such that (see [97] and references therein)

Z∞ − σ0ð0Þ ¼ 1; Zmm2
r − d × σð0Þ ¼ m2

r : ðA6Þ

Hence,

1

Z∞q2 þm2 − ΣmeloðqÞ
¼ 1

q2 þm2
r þ

P
d
l¼1 σrðq2lÞ

; ðA7Þ

where σrðq2lÞ ¼ Oðq4lÞ, with zero and first derivative equal
to zero. Differentiating relation (A5) with respect to p2, and
setting p ¼ 0, we get

−σ0ð0Þ≡ 1 − Z∞ ¼ −2ZλλrA∞; ðA8Þ

where A∞ has been defined in (3.33). Now, let us consider
the second relation, pictured in Fig. 18. In the equation,
this relation reads, setting all the external momenta
to zero,

4πðlÞmeloð0; 0Þ ¼ 4Zλλr − 8Zλλrπ
ðlÞ
meloð0; 0ÞA∞: ðA9Þ

If we use the standard renormalization condition (see
[37,123]),

πðlÞmeloð0; 0Þ≕ λr; ðA10Þ

and the previous relation simplifies as

Z−1
λ ¼ 1 − 2λrA∞ : ðA11Þ

Moreover, from (A8),

Z−1
λ −

Z∞

Zλ
¼ −2ZλλrA∞; ðA12Þ

and using (A11), we obtain, finally,

Z∞ ¼ Zλ : ðA13Þ

FIG. 18. Closed relations between the two- and four-point functions obtained from the Schwinger-Dyson equations in the melonic
sector, as the “melo” index recalls.
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2. Nonperturbative RG in the nonbranching sector

In this section, we summarize some aspects of the
nonperturbative RG in the symmetric phase for the melonic
nonbranching sector using EVE. All details can be found in
[65], as recalled at the beginning of this section. The
derivation of the equation follows essentially the same

strategy as explained in Sec. IV B 2. Hence, in the deep UV
regime 1 ≪ k ≪ Λ, and using the Litim regulator,

rkðpÞ ¼ ZðkÞðk2 − p2Þθðk2 − p2Þ; ðA14Þ

the resulting β functions read,

8<
:

βm ¼ −ð2þ ηÞm̄2 − 10λ̄ π2

ð1þm̄2Þ2 ð1þ η
6
Þ;

βλ ¼ −2ηλ̄þ 4λ̄2 π2

ð1þm̄2Þ3 ð1þ η
6
Þ
h
1 − 6π2λ̄



1

ð1þm̄2Þ2 þ


1þ 1

1þm̄2

��i
;

ðA15Þ

where the anomalous dimension η is given by

η ¼ 4λ̄π2
ð1þ m̄2Þ2 − λ̄π2ð2þ m̄2Þ

ð1þ m̄2Þ2Ωðλ̄; m̄2Þ þ 2
ð2þm̄2Þ

3
λ̄2π4

; ðA16Þ

and

Ωðm̄2; λ̄Þ ≔ ðm̄2 þ 1Þ2 − π2λ̄: ðA17Þ
To obtain these equations, we closed the hierarchy using
the same method as discussed in the Sec. IV B 3, by

expressing Γð6Þ
k in the expression of βλ in terms of λ̄ and

m̄2. Moreover, we used the Ward identities to compute the

derivative of the four-point vertex Γð4Þ
k with respect to

external momenta, which plays a role in the computation of
the anomalous dimension η. This additional contribution,
of order λ̄2, is not a small correction for a pure local
potential approximation disregarding such a contribution.
Indeed, taking into account this term pushes forward the
singularity of the denominator of η down the singularity
m̄2 ¼ −1, coming from our restriction to the symmetric
phase, and thus maximally extends the investigated portion
of the full phase space. In the computation of loops

involved both in the expression for Γð6Þ
k and the derivative

of Γð4Þ
k , we used the derivative expansion for two-point

function, the same approximation used for the computation
of flow equations. In [65] and reference therein, it has been
pointed out that such an approximation makes sense for the
computation of superficially convergent integrals and
remains in agreement with Ward identities. Hence, the
RG flow described by Eq. (A15) satisfies the Ward
identities. Moreover, the computer program Mathematica
is not able to find any physically relevant fixed point for
that system, and the Gaussian fixed point is the only
UV-relevant fixed point, at least in this regime.
The quartic model (considered as an initial condition for

the RG flow) is endowed with an additional amazing
specificity. Indeed, the Ward identities impose a constraint
between four- and two-point functions that can be trans-
lated locally along the RG flow as a nontrivial relation
between β functions for relevant couplings:

βλ þ ηλ̄
Ωðm̄2; λ̄Þ
ð1þ m̄2Þ2 −

2π2λ̄2

ð1þ m̄2Þ3 βm ¼ 0 : ðA18Þ

The flow equation for m̄2 given by (A15) is exact in the
melonic sector, as we restrict ourselves to the connected
interactions. Hence, Eq. (A18) defines the function βλ. On

the other hand, the flow equation for λ involves Γð6Þ
k .

Therefore, equalizing the two expressions for βλ provides a

nontrivial expression for Γð6Þ
k (with zero external momenta).

Note that this contribution may involve, in principle,
nonconnected contributions, but we discard them from
our analysis. Hence, we can use the resulting expression for

Γð6Þ
k in the Ward identity expressing the derivative of four-

point functions for external momenta, as discussed in
section V B. Finally, this expression allows computing
the anomalous dimension:

η ¼
4π2λ̄



π2 λ̄

5ð1þm̄2Þ3 þ 1
�

ð1þ m̄2Þ2 −Ω1ðm̄2; λ̄Þ ; ðA19Þ

where

Ω1ðm̄2; λ̄Þ ≔ 6π2λ̄

5
−

4π4λ̄2

ð1þ m̄2Þ3 −
12π2λ̄m̄2

5ð1þ m̄2Þ −
4π2λ̄

5ð1þ m̄2Þ :

ðA20Þ
This strategy is expected to provide a nontrivial improve-
ment for the previous system (A15) because no additional
approximations are required to compute loops involved in
the structure equations, as we had to do in Sec. IV B 3.
However, the conclusions are essentially the same: The
theory is asymptotically free in the UV, and no physically
relevant additional fixed point in found.11 Near the
Gaussian fixed point,

η ≈ 4π2λ̄; βλ ≈ −ηλ̄ : ðA21Þ

11Indeed, the constraint (A18) imposes η ¼ 0 for any nontrivial
fixed point, but the solution (A19) shows that λ̄ ¼ 0 is the only
non-negative solution for m̄2 > −1.
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APPENDIX B: PROOF OF RELATION (3.20)

From time reversal symmetry, ΔSk transforms as

ΔSk½q; χ � →
X
p∈Zd

Z
dtdt0

�
χ̄pðtÞRð2Þ

k ðp; t0 − tÞχpðt0Þ þ iχ̄pðtÞRð1Þ
k ðp; t0 − tÞTpðt0Þ − iT̄pðt0ÞRð1Þ

k ðp; t0 − tÞχpðtÞ

−
2

Ω
_̄TpðtÞRð1Þ

k ðp; t0 − tÞTpðt0Þ −
2

Ω
T̄pðt0ÞRð1Þ

k ðp; t0 − tÞ _TpðtÞ þ
2i
Ω
Rð2Þ
k ðp; t0 − tÞð _̄TpðtÞχpðt0Þ − χ̄pðtÞ _Tpðt0ÞÞ

þ 4

Ω2
_̄TpðtÞRð2Þ

k ðp; t0 − tÞ _Tpðt0Þ
�
: ðB1Þ

Because Rð2Þ
k is symmetric in its arguments, we have again

ΔSk½q; χ � →
X
p∈Zd

Z
dtdt0

�
χ̄pðtÞRð2Þ

k ðp; t0 − tÞχpðt0Þ þ iχ̄pðtÞRð1Þ
k ðp; t0 − tÞTpðt0Þ − iT̄pðt0ÞRð1Þ

k ðp; t0 − tÞχpðtÞ

−
2

Ω
_̄TpðtÞRð1Þ

k ðp; t0 − tÞTpðt0Þ −
2

Ω
T̄pðt0ÞRð1Þ

k ðp; t0 − tÞ _TpðtÞ þ
2i
Ω
Rð2Þ
k ðp; t0 − tÞð _̄TpðtÞχpðt0Þ − χ̄pðtÞ _Tpðt0ÞÞ

þ 2

Ω2
_̄TpðtÞðRð2Þ

k ðp; t0 − tÞ þ Rð2Þ
k ðp; t − t0ÞÞ _Tpðt0Þ

�
: ðB2Þ

Integrating by part, we find that the invariance condition of ΔSk by time reversal is written, up to a total derivative:

0≡ X
p∈Zd

Z
dtdt0

�
iχ̄pðtÞ

�
Rð1Þ
k ðp; t0 − tÞ − Rð1Þ

k ðp; t − t0Þ þ 2

Ω
_Rð2Þ
k ðp; t − t0Þ

�
Tpðt0Þ

− iT̄pðt0Þ
�
Rð1Þ
k ðp; t0 − tÞ − Rð1Þ

k ðp; t − t0Þ þ 2

Ω
_Rð2Þ
k ðp; t0 − tÞ

�
χpðtÞ

−
2

Ω
_̄TpðtÞ

�
Rð1Þ
k ðp; t0 − tÞ − 1

Ω
_Rð2Þ
k ðp; t0 − tÞ

�
Tpðt0Þ −

2

Ω
T̄pðt0Þ

�
Rð1Þ
k ðp; t0 − tÞ − 1

Ω
_Rð2Þ
k ðp; t0 − tÞ

�
_TpðtÞ

�
: ðB3Þ

Finally, exploiting the fact that Rð2Þ
k is a symmetric function, the two last terms can be rewritten as follows:

0≡ X
p∈Zd

Z
dtdt0

�
iχ̄pðtÞ

�
Rð1Þ
k ðp; t0 − tÞ − Rð1Þ

k ðp; t − t0Þ þ 2

Ω
_Rð2Þ
k ðp; t − t0Þ

�
Tpðt0Þ

− iT̄pðt0Þ
�
Rð1Þ
k ðp; t0 − tÞ − Rð1Þ

k ðp; t − t0Þ − 2

Ω
_Rð2Þ
k ðp; t0 − tÞ

�
χpðtÞ

−
2

Ω
_̄TpðtÞ

�
Rð1Þ
k ðp; t0 − tÞ − Rð1Þ

k ðp; t − t0Þ − 2

Ω
_Rð2Þ
k ðp; t0 − tÞ

�
Tpðt0Þ

�
: ðB4Þ

These relations show that a sufficient condition to avoid breaking the time reflection symmetry along the RG flow is to
impose (3.20).

APPENDIX C: MELONICS WT IDENTICIES FOR
TWO- AND FOUR-POINT VERTICES

We give in this appendix a technical complement on
Ward identities, focusing on the relation between four-point
and two-point functions. Relations between 1PI functions
can be obtained by taking successive derivatives for the
sources but vanishing them at the end of the computation.

Alternatively, one can derive with respect to the classical
fields, and this is what we do in the following sections.
Another proof of heteroclicity. Let us start by consid-

ering the second functional derivative on both sides of the
equation (5.16) with respect to the classical fields MpðωÞ
and M̄pðωÞ. We apply the operator ∂2=∂Mqðω1Þ∂M̄q̄ðω̄1Þ
on Eq. (5.16), and because of definition (3.2), we have
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∂MpðωÞ
∂Jp0 ðω0Þ ¼

∂
2Wk

∂J̄pðωÞ∂Jp0 ðω0Þ ; ðC1Þ

and

∂Γk

∂MpðωÞ
¼ J̄pðωÞ − iRð1Þ

k ðp;ωÞσ̄pðωÞ; ðC2Þ

∂Γk

∂σpðωÞ
¼ |̄pðωÞ − ½σ̄pðωÞRð2Þ

k ðp;ωÞ þ iRð1Þ
k ðp;−ωÞM̄pðωÞ�:

ðC3Þ

We introduce the notations:

δp2 ≔ p2 − ðp0Þ2;
RðIÞ
k ðp;ωÞ − RðIÞ

k ðp0;ωÞ ≔ δRðIÞ
k ðp;ωÞ; ðC4Þ

and we get

0¼
Z

dω
X

p; p0

Y
j≠i

δpjp0
j

�
ðiZ∞δp2 þ iδRð1Þ

k ðp;ωÞÞ∂
2Gð1;1̄Þ

k;σ̄Mðp0;ω;p;ωÞ
∂Mqðω1Þ∂M̄q̄ðω̄1Þ

þ ðiZ∞δp2 þ iδRð1Þ
k ðp;−ωÞÞ∂

2Gð1̄;1Þ
k;M̄σ

ðp;ω;p0;ωÞ
∂Mqðω1Þ∂M̄q̄ðω̄1Þ

þ δRð2Þ
k ðp;ωÞ× ∂

2Gð0;1þ1̄Þ
k;σ̄σ ðp0;ω;p;ωÞ

∂Mqðω1Þ∂M̄q̄ðω̄1Þ
−

∂J̄pðωÞ
∂M̄q̄ðω̄1Þ

δp0qδðω−ω1Þ þ
∂Jp0 ðωÞ
∂Mqðω1Þ

δpq̄δðω− ω̄1Þ
�
δpipδp0

ip
0 : ðC5Þ

Derivatives to sources can be easily computed, leading to

∂J̄pðωÞ
∂M̄q̄ðω̄1Þ

¼ ∂
2Γk

∂M̄q̄ðω̄1Þ∂MpðωÞ
;

∂Jp0 ðωÞ
∂Mqðω1Þ

¼ ∂
2Γk

∂Mqðω1Þ∂M̄p0 ðωÞ
: ðC6Þ

In the same way,

∂|̄pðωÞ
∂M̄q̄ðω̄1Þ

¼ ∂
2Γk

∂M̄q̄ðω̄1Þ∂σpðωÞ
þ iRð1Þ

k ðq̄;−ωÞδpq̄δðω − ω̄1Þ;

ðC7Þ

and

∂|p0 ðωÞ
∂Mqðω1Þ

¼ ∂
2Γk

∂Mqðω1Þ∂σ̄p0 ðωÞ
þ iRð1Þ

k ðq;ωÞδp0qδðω − ω1Þ:

ðC8Þ

The derivatives of the two-point functions can be rewritten
as follows. Note that because ∂J̄pðωÞ=∂M̄q̄ðω̄Þ ¼ 0, we
must have [using the short notation p≡ ðp;ωÞ],

X
p1

∂|p1

∂Mq

∂σp
∂|p1

¼
X
p1

∂|p1

∂Mq
hχ̄p1

χpi ¼ 0; ðC9Þ

because Gk;χ̄χ ¼ 0 [Eq. (2.48)]. We made use of (C9) to
obtain (C5). The functional derivatives can be easily
computed following the method described in the previous
section to obtain the flow equations. Because we focus on
the symmetric phase and assume that effective vertices
must have only one component along the response field and
that Gk;σ̄σ ¼ 0, we have

∂
2Gð1;1̄Þ

k;σ̄Mðp0;ω; p;ωÞ
∂Mqðω1Þ∂M̄q̄ðω̄1Þ

¼ −
X
p1;p0

1

Gk;σ̄Mðp0; p0
1ÞΓð4Þ

k;MM̄Mσ̄
ðq; q0; p0

1; p1ÞGk;σ̄Mðp1; pÞ: ðC10Þ

In the same way,

∂
2Gð1̄;1Þ

k;M̄σ
ðp;ω; p0;ωÞ

∂Mqðω1Þ∂M̄q̄ðω̄1Þ
¼ −

X
p1;p0

1

Gk;M̄σðp; p1ÞΓð4Þ
k;MM̄σM̄ðq; q0; p0

1; p1ÞGk;M̄σðp0
1; p

0Þ; ðC11Þ

and
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∂
2Gð0;1þ1̄Þ

k;σ̄σ ðp0;ω; p;ωÞ
∂Mqðω1Þ∂M̄q̄ðω̄1Þ

¼ −
X
p1;p0

1

Gk;σ̄Mðp; p1ÞΓð4Þ
k;MM̄MM̄ðq; q0; p0

1; p1ÞGk;M̄σðp0
1; p

0Þ: ðC12Þ

Following the definition (4.25), we introduce Γð4Þ
k;MM̄MM̄ ≕

P
l Γ

ð4Þ;ðlÞ
k;MM̄MM̄, and the decomposition:

Γð4Þ;ðlÞ
k;MM̄MM̄ðp1; p2; p3; p4Þ≕

i
π
ϖð2Þ

k ðp2
1l; p

2
3lÞðWðlÞ

p1;p2;p3;p4 þ p2 ↔ p4Þδðω̂1 − ω̂2 þ ω̂3 − ω̂4Þ; ðC13Þ

such that Ward identity (C5) reads as follows:

ðC14Þ

where we introduced the kernels [following the convention of (3.11)]:

Δkðp;ωÞ≡
0
B@ 0 iZ∞δp2 þ iδRð1Þ

k ðp;ωÞ
iZ∞δp2 þ iδRð1Þ

k ðp;−ωÞ 0

1
CAδpipδp0

ip
0 ≕Δ0

kðp;ωÞδp2; ðC15Þ

and

δkðp;ωÞ≡ δRð2Þ
k ðp;ωÞδp2δpipδp0

ip
0 ≕ δ0kðp;ωÞδp2: ðC16Þ

Equation (C14) involves two kinds of diagrams. The first
ones, corresponding to the first, third, and fifth contribu-
tions to the left-hand side of (C14) create (d − 2) or (d − 1)
faces, respectively, for l ≠ i and l ¼ i.

(i) For l ≠ i, the contribution vanishes because Kro-

necker deltas in WðlÞ
p1;p̄2;p3;p̄4 impose p ¼ p0.

(ii) For l ¼ i, the contribution does not vanish and is
melonic following definition 2: F ¼ d − 1ð¼ 4Þ,
L ¼ V ¼ 1, and ρ ¼ 0.

The second kind of diagram corresponds to the second,
fourth, and sixth contributions to the right-hand side of
(C14). They create no more than 0 or 1 face, respectively,
for l ≠ i and l ¼ i.

(i) For l ≠ i, the contribution vanishes because Kro-
necker deltas impose p ¼ p0.

(ii) For l ¼ i, the contribution does not vanish, but it is
not melonic (ρ ¼ 3).

We restrict ourselves to the melonic sector, which, as
recalled in Sec. II is the most divergent one, and thus, the
most relevant for RG. From these observations, the
leading-order (melonics) contribution to identities (C14)
reads as
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ðC17Þ

There are many options to interpret this equation. We
know, from condition (2.48), that the two last terms must
vanish exactly. Hence, we have essentially two kinds of
integrals. The two first contributions involve loop
integrals

R
dωG2

k;σ̄MðωÞ and
R
dωG2

k;M̄σ
ðωÞ. If we

assume causality, these integrals have to vanish for the
same reason as we discussed in Remark 3 [Eq. (3.29)].

Moreover, terms like
R
dωδRð1Þ

k ðωÞG2
k;σ̄MðωÞ vanish for the

same reason as the left-hand side of equation (3.27) van-
ishes. With this argument, the last integral, which readsR
dωδRð2Þ

k ðωÞGk;σ̄MðωÞGk;M̄σðωÞ, does not vanish, and the

Ward identity imposes ϖð2Þ
k ¼ 0, meaning that Γð2þ2̄;Þ

k ¼ 0.
This is expected because of the discussion of Sec. III B,
where causality was assumed as well, but the fact that this
condition comes from a constraint imposed by an internal
symmetry is a nontrivial result. The origin of this phenome-
non can be traced from the arguments discussed in [65],

where authors pointed out a parallel between renormaliza-
tion group equations andWard identities. Indeed, if the flow
equations dictate how the interactions changewith the scale,
theWard identities dictate how the interactions deviate from
ultralocality (i.e., from exact unit invariance). Thus, if in
Sec. III B, we were able to demonstrate the absence of
response field independent interaction terms by an argument
from the renormalization group, Ward’s identities show that
a local theory whose initial conditions correspond to the
model (2.38) cannot deviate from locality by response field
independent contributions.
Relation between ZðkÞ and λðkÞ. In the same vein, but

applying the operator ∂
2=∂Mqðω1Þ∂σ̄q̄ðω̄1Þ on the Ward

identity (5.16), we obtain a relation between Γð4Þ
k;σM̄MM̄ and

Γð2Þ
k;σ̄M. Using the same graphical representation as previ-

ously, we get (we introduce all the Kronecker and Dirac δ to
be more clear)

ðC18Þ

where we dropped out the nonmelonic contributions and assumed them to be in the symmetric phase, using definition
(4.27). Because of the definition of Δk, the second and fourth contributions simplify. We set q⊥ ¼ q0⊥, p0 ¼ qi, p ¼ q̄i, and
p ¼ p0 þ 1. In the deep UV regime, it is suitable to use a continuous approximation to compute finite differences. We
introduce the nearly continuous variable x ≔ p=Λ, where Λ denotes some UV cutoff, such that, for any function fðp2Þ that
can be expressed in terms of dimensionless quantities as fðp2Þ ¼ Λrf̃ðx2Þ, and (x0 ¼ xþ 1=Λ):
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fððp0Þ2Þ − fðp2Þ ¼ Λrðf̃ððx0Þ2Þ − f̃ðx2ÞÞ ¼ Λr−2
�
df̃
dx2

þOð1=Λ2Þ
�
: ðC19Þ

Hence, from the definition (4.29), we have

½γð2Þk;σ̄Mðp; 0Þ − γð2Þk;σ̄Mðp0; 0Þ�jpi¼0 ≈ iZδp2 þOðδp2Þ; ðC20Þ

in agreement with Eq. (4.29), accordingly with our choice Ω ¼ 1. Finally, setting external momenta to zero, the Ward
identity reads,

ðC21Þ

or explicitly,

2λðkÞ
π

Z
dω

X
p∈Zd−1

�
2

�
iZ∞ þ i

d
dp2

1

Rð1Þ
k ðp;ωÞ

�
Gk;M̄Mðp;ωÞGk;σ̄Mðp;ωÞ

þ d
dp2

1

Rð2Þ
k ðp;ωÞGk;M̄σðp;ωÞGk;σ̄Mðp;ωÞ

�				
pi¼0

¼ −ðZ − Z∞Þ: ðC22Þ

This equation can be rewritten using dimensionless quantities as follows:

4λ̄ðkÞ
π

Z
dy
Z
R4

dx

�
ð1 − Z̄ðkÞαρ̂ðyÞθð1 − xÞÞ 1þ τ̂ðyÞrðxÞ

f̂ðx; yÞf̂2ðx;−yÞ −
1

2
αZ̄ðkÞτ̂ðyÞ θð1 − xÞ

f̂ðx; yÞf̂ðx;−yÞ

�
¼ 1 − Z̄ðkÞ; ðC23Þ

where:

Z̄ðkÞ ≔ ZðkÞ
Z∞

: ðC24Þ

Note that, in these equations, f̂ðx; yÞ is not expected to be of the form given by Eq. (4.38), except maybe for the terms
involving the regulator. Indeed, for these terms, the selected windows of momenta are the same as for the flow equations.
Hence, assuming the truncation (4.38) for this contribution is not an additional assumption than assuming its validity for the
computation of the flow equation themselves. Following the arguments given in [97], Z−1

∞ ∼ lnðΛÞ, and in the continuum
limit, the previous Ward identity becomes

4λ̄ðkÞ
π

Z
dy
Z
R4

dx

�
ðZ∞Z−1ðkÞ − αρ̂ðyÞθð1 − xÞÞ 1þ τ̂ðyÞrðxÞ

f̂ðx; yÞf̂2ðx;−yÞ −
1

2
ατ̂ðyÞ θð1 − xÞ

f̂ðx; yÞf̂ðx;−yÞ

�
≈ −1; ðC25Þ
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[129] I. Balog, H. Chaté, B. Delamotte, M. Marohnic, and N.
Wschebor, Convergence of Nonperturbative Approxima-
tions to the Renormalization Group, Phys. Rev. Lett. 123,
240604 (2019).

[130] S. Nagy, Lectures on renormalization and asymptotic
safety, Ann. Phys. (Amsterdam) 350, 310 (2014).

[131] M. Reuter and F. Saueressig, Quantum Gravity and the
Functional Renormalization Group: The Road toward
Asymptotic Safety (Cambridge University Press,
Cambridge, England, 2019).

[132] A. Eichhorn, An asymptotically safe guide to quantum
gravity and matter, Front. Astron. Space Sci. 5, 47 (2019).

[133] K. G. Falls, D. F. Litim, and J. Schröder, Aspects of
asymptotic safety for quantum gravity, Phys. Rev. D 99,
126015 (2019).

[134] D. Benedetti, Critical behavior in spherical and hyperbolic
spaces, J. Stat. Mech. (2015) P01002.

[135] A. G. Pithis and J. Thürigen, Phase transitions in TGFT:
Functional renormalization group in the cyclic-melonic
potential approximation and equivalence to O(N) models,
J. High Energy Phys. 12 (2020) 159.

[136] A. G. Pithis and J. Thürigen, (No) phase transition in
tensorial group field theory, Phys. Lett. B 816, 136215
(2021).

[137] V. Lahoche and D. Ousmane Samary, Ward identity
violation for melonic T4-truncation, Nucl. Phys. B940,
190 (2019).

STOCHASTIC DYNAMICS FOR GROUP FIELD THEORIES PHYS. REV. D 107, 086009 (2023)

086009-43

https://doi.org/10.1103/PhysRevE.84.061128
https://doi.org/10.1007/3-540-07160-1
https://doi.org/10.1007/3-540-07160-1
https://doi.org/10.1007/978-3-642-27320-9
https://doi.org/10.1016/j.physrep.2008.02.002
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1201/9780429503559
https://doi.org/10.1103/PhysRevE.106.024111
https://doi.org/10.1063/1.5080306
https://doi.org/10.1063/1.5080306
https://doi.org/10.1088/0264-9381/32/17/175012
https://doi.org/10.1088/0264-9381/32/17/175012
https://doi.org/10.1088/0264-9381/31/18/185005
https://doi.org/10.1088/0264-9381/31/18/185005
https://doi.org/10.1209/0295-5075/112/31001
https://doi.org/10.1103/PhysRevLett.123.240604
https://doi.org/10.1103/PhysRevLett.123.240604
https://doi.org/10.1016/j.aop.2014.07.027
https://doi.org/10.3389/fspas.2018.00047
https://doi.org/10.1103/PhysRevD.99.126015
https://doi.org/10.1103/PhysRevD.99.126015
https://doi.org/10.1088/1742-5468/2015/01/P01002
https://doi.org/10.1007/JHEP12(2020)159
https://doi.org/10.1016/j.physletb.2021.136215
https://doi.org/10.1016/j.physletb.2021.136215
https://doi.org/10.1016/j.nuclphysb.2019.01.005
https://doi.org/10.1016/j.nuclphysb.2019.01.005

