
Landscape of polymer quantum cosmology

Lautaro Amadei , Alejandro Perez , and Salvatore Ribisi
Aix Marseille University, Université de Toulon, CNRS, CPT, 13007 Marseille, France

(Received 15 March 2022; accepted 7 March 2023; published 18 April 2023)

We show that the quantization ambiguities of loop quantum cosmology, when considered in wider
generality, can be used to produce discretionary dynamical behavior. There is an infinite dimensional space
of ambiguities which parallels the infinite list of higher curvature corrections in perturbative quantum
gravity. There is, however, an ensemble of qualitative consequences which are generic in the sense that they
are independent of these ambiguities. Among these, one has well-defined fundamental dynamics across the
big bang, as well as extra microscopic quantum degrees of freedom that might be relevant in discussions
about unitarity in quantum gravity. We show that, in addition to the well-known bouncing solutions of the
effective equations, there are other generic types of solutions for sufficiently soft initial conditions in the
matter sector (tunneling solutions) where the scale factor goes through zero and the spacetime orientation is
inverted. We also show that, generically, a contracting semiclassical universe branches off at the big bang
into a quantum superposition of universes with different quantum numbers. Despite their lack of
quantitative predictive power, these models offer a fertile playground for the discussion of qualitative
and conceptual issues in quantum gravity.
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I. INTRODUCTION

Quantum field theories with local degrees of freedom
generically suffer from divergences due to uncontrolled UV
contributions to amplitudes. At the mathematical level the
latter can be traced to the fact that interactions involve
products of fields (operator valued distributions in quantum
field theory) at the same spacetime point and that such
products are ill defined if constructed naively. The standard
procedure of renormalization eliminates infinities from the
physical amplitudes at the price of introducing counter-
terms with free parameters to be fixed by a series of
renormalization conditions taken from physical inputs. In
certain simple situations one can instead take due care in
the definition of products of operator valued distributions
and thus completely avoid, from the very beginning, UV
divergences (see for instance [1]). However, such a pro-
cedure is not unique, and free parameters also arise in the
regularization procedure. These parameters must be fixed
(in order to produce physical amplitudes) by the same
number of renormalization conditions of standard textbook
treatments. In this way there is a formal link between the
number of counterterms necessary to eliminate UV diver-
gences and regularization ambiguities.
A key difficulty of canonical approaches to quantum

gravity is that such intrinsic ambiguity of standard quan-
tization recipes appears to be out of control. This is
associated with the nonrenormalizability of the gravita-
tional interaction, which in the case of general relativity in
metric variables, is illustrated by the fact that the family of
general covariant functionals of gab representing a possible

action principle describing the quantum effective action is
infinite dimensional and that the parameter controlling the
dimensionality of such free couplings is the quantum
gravity coupling itself. In other words,

S½gab� ¼
1

2κ

Z ffiffiffiffiffi
jgj

p
ðRþ Λþ α1l2

pR2 þ α2l4
pR3 þ � � �

þ β1l2
pRμνασRμνασ � � �Þdx4; ð1:1Þ

where only some representative terms have been written
with dimensionless couplings α1; α2; � � �, β1; β2; � � �, etc.
Generic radiative corrections produce divergences that need
to be cured by counterterms in correspondence with the
infinite number of elements in the previous general action,
requiring infinitely many renormalization conditions and
compromising the predictive power of the approach.1

However, from the previous formal discussion, an equiv-
alent concern threatens nonperturbative formulations where
UV divergences are avoided via clever choices of variables
and/or mathematical structures, as the problem of diver-
gences metamorphoses into the appearance of ambiguities.
As a complementary remark one must keep in mind that

the previous analysis sometimes strongly depends on the
“fundamental variables” chosen for quantization. An exam-
ple of this is the emblematic case of gravity in three

1It is possible, however, that these couplings would flow under
the renormalization group in a nontrivial way toward some
asymptotic fixed point characterized by a finite amount of
parameters. Such a perspective, known as the asymptotic safety
scenario [2], is the subject of active investigations [3].
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dimensions where a naive metric variable analysis would
lead to similar conclusions as in four dimensions. However,
when the most general action is written in terms of first
order variables, one discovers that there is only a finite
dimensional set of possibilities. Namely,

S½e;ω� ¼ 1

2κ

Z
eI ∧ FIJðωÞϵIJK þ ΛeI ∧ eJ ∧ eKϵIJK

þ αSCSðωÞ; ð1:2Þ

where eIa is a triad field, ωIJ
a is a Lorentz connection, and

SCSðωÞ is the Chern-Simons action. The theory is indeed
integrable; it has only global or topological degrees of
freedom, and its quantization is free of (infinite dimen-
sional) ambiguities [4,5]. Strikingly, a similar finite dimen-
sionality of the space of gravity actions is valid in first order
variables in four dimensions, where one has that the most
general gravitational action is given by

S½eAa ;ωAB
a � ¼ 1

2κ

Z
ϵIJKLeI ∧ eJ ∧ FKLðωÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Einstein

þ ΛϵIJKLeI ∧ eJ ∧ eK ∧ eL
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Cosmological Constant

þ α1eI ∧ eJ ∧ FIJðωÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Holst

þ α2ðdωeI ∧ dωeI − eI ∧ eJ ∧ FIJðωÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nieh−Yan

þ α3l2
pFðωÞIJ ∧ FIJðωÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pontrjagin

þ α4l2
pϵIJKLFðωÞIJ ∧ FKLðωÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Euler

; ð1:3Þ

where dωeI is the covariant exterior derivative of eI and
α1 � � � α4 are dimensionless coupling constants. For non-
degenerate tetrads, Einstein’s field equations follow from
the previous action independently of the values of the α’s:
the additional terms are called topological invariants,
describing global properties of the field configurations in
spacetime. The α1 term is called the Holst term [6], the α2
term is the Nieh-Yan invariant, the α3 term is the Pontryagin
invariant, and the α4 term is the Euler invariant. Despite not
changing the equation of motion, these terms can actually
be interpreted as producing canonical transformations in the
phase space of gravity.2

The previous facts motivate the idea of the pertinence of
such variables for the implementation of nonperturbative
quantization and thus can be viewed as the natural rationale
behind the approach of loop quantum gravity [12]
(although the history of the subject cannot be reduced to
such a perspective but rather to the discovery of Ashtekar’s
new variables [13]). However, not surprisingly, unlike the
simple 3D case (which has no local degrees of freedom) the
absence of ambiguities in quantum theory remains an open
question. Indeed, at early stages of the development of loop
quantum gravity, it was found that—thanks to the peculiar
Hilbert space of quantum gravity adapted to diffeomor-
phism invariance and the Ashtekar-Barbero connection
variables—the quantum gravitational dynamical equations
(embodied by the Hamiltonian constraint that encodes both
the gravity and matter interactions) were free of UV
divergences [14]. Nevertheless, the quantization of the
Hamiltonian constraint suffers from ambiguities of an

infinite dimensional nature, suggesting that the renormaliz-
ability issue is still present [15].
However, there is an unresolved consistency check

concerning the quantization of the constraints in loop
quantum gravity. This is the issue of anomalies. More
precisely, the quantum dynamical equations are represented
by a set of quantum operators that must satisfy a commu-
tation algebra inherited from the classical algebra of
generators of the surface deformation algebra. Checking
the absence of anomalies has shown to be a remarkably
difficult task, suggesting that such a consistency check
could reduce the ambiguities in the definition of the
quantum constraints [16–18]. However, one should recog-
nize that such a result is not clear from the general
perspective of our initial discussion, as the algebra of
surface deformations is a feature of any diffeomorphism
invariant formulation of gravity. More precisely, in the case
of metric variables, the canonical analysis of the general
action (1.3) would produce the same surface deformation
algebra independently of the values of the undetermined
couplings.
The nontriviality of this question has motivated recent

interest in the application of renormalization group meth-
ods to investigate (as in asymptotic safety scenarios) the
possibility that the nonperturbative techniques of loop
quantum gravity could help uncover a nontrivial UV
completion of the theory [19–24].
The perspective that we emphasize here is not new [15],

but its full implications in quantum cosmology have been
somewhat underestimated. The problem of quantization
ambiguities in the cosmological models inspired by the full
theory has been considered in various works [25]; however,
under certain restrictive assumptions that reduce the dis-
cussion to finite dimensional sectors of the space of
ambiguities [26–30], it has been argued not to represent
a threat to the predictability of the framework. Our present

2In such a context, the so-called Immirzi parameter [7]
corresponds to the combination γ ≡ 1

ðα1þ2α2Þ [8]. This parameter
plays a central role in the spectrum of quantum geometric
operators, and controls, in the presence of fermions, the strength
of an emergent four-fermion interaction [9–11].
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analysis shows that, as long as the question of ambiguities
remains open in the full theory, polymerized symmetry
reduced models cannot produce accurate quantitative pre-
dictions but only qualitative insights. We show here that the
ambiguities inherited from the full theory have an impor-
tant dynamical effect on these models that, naturally,
compromises their predictive power. Nevertheless, due to
their simplicity, our analysis does not reduce, in any way,
the great value of these models for illustrating qualitative
features of quantum gravity. Some of these features are, in
simple models at least, generic (i.e., independent of the
ambiguity issue), suggesting that they might represent
robust features possibly realized in nature.
The paper is organized as follows. In Sec. II we

reproduce the FLRW dynamical equations, and its corre-
sponding Hamiltonian version, in unimodular gravity. The
formalism is completely equivalent to general relativity but
offers the advantage of resolving the so-called problem of
time in quantum gravity: instead of a Hamiltonian con-
straint there is a nonvanishing Hamiltonian evolving in
unimodular time. This is an advantage that simplifies the
analysis in quantum theory. In particular, we show that
(when the matter sector is represented by a massless scalar
field) the dynamical equations are equivalent to those of a
nonrelativistic particle scattering in a potential well repre-
sented by the matter Hamiltonian. Such an analogy
simplifies the discussion of the impact of the regularization
ambiguities in the Hamiltonian, addressed in Sec. III. It
should be clear, however, that conclusions we draw are
expected to hold in the other formulations where instead of
a Hamiltonian one has to deal with a Hamiltonian con-
straint (but where the quantum dynamics remains difficult
to compute and most approaches simply deal with effective
evolution equations). In Sec. III we focus on two infinite
dimensional families of regularization ambiguities: in
Sec. III Awe introduce the notion of holonomy corrections,
while in Sec. III B we discuss inverse volume corrections.
Other ambiguities exist—like factor ordering ambiguities
or other ambiguities stemming from the details of the
translation of the quantization scheme proposed in the full
theory down to cosmology (e.g., μ0 vs. μ regularization,
etc.). However, the ones we discuss are the most repre-
sentative infinite dimensional families and thus the ones
that most clearly compromise the predictability of these
models. In Sec. IV we investigate the influence of the
ambiguities in the quantum dynamics. Remarkably, many
aspects of quantum theory are computable in the unim-
odular framework. This is again due to the simple trans-
lation of the cosmological problem to the scattering of a
nonrelativistic particle in a potential. In Sec. V we show
that it is possible to write the effective dynamical equations
for an arbitrary polymer regularization (the technical results
that lead to such equations are presented in Appendix). In
Sec. VI we investigate the solutions of the effective
equations for a general polymerization function and exhibit

the most salient properties in terms of generic features of
the regularizing function. The freedom in the polymeriza-
tion function can be tuned to obtain discretional dynamical
evolution. We present a few examples of this in Sec. VI D,
where, for instance, inflation (without an inflaton) is
induced by holonomy corrections. Concluding remarks
are given in Sec. VII.

II. UNIMODULAR QUANTUM COSMOLOGY
AS A SIMPLE TESTING GROUND

In order to show the influence of the regularization
ambiguities on physical quantities, one first needs to be
able to perform explicit calculations within the framework
where these ambiguities appear. Even when quantum
cosmology models correspond to classical systems with
finitely many degrees of freedom, the nonstandard repre-
sentation theory used in the construction of quantum theory
makes these models sufficiently complicated (in some
versions) to prevent explicit calculations. For example,
different choices of time variables (realized by different
choices of lapse functions) produce different quantum
constraints, which can present supplementary challenges
when it comes to analyzing the quantum dynamics.
This is, in part, the reason why the technique of the so-

called effective dynamics has been developed [31], where
the quantum evolution is approximated by modified
classical equations of motion. These effective equations
are affected by the ambiguities in the definition of the
quantum dynamics. In fact, these modifications are sup-
posed to encode the quantum corrections to general
relativity coming from quantum gravity. In this sense the
quantization ambiguities on which we focus here are
expected to affect these quantum corrections. However,
explicitly showing the form of the effective equations can
be challenging or (unnecessarily) more involved when
different time variables are chosen. In order to simplify
our presentation, we analyze cosmology in the unimodular
version of general relativity. Unimodular gravity is simply
equivalent to standard general relativity if the matter
coupling is diffeomorphism invariant [32]. When applied
to cosmology, it has the advantage of resolving the problem
of time as the lapse function is fixed by the unimodular
constraint. In the literature of quantum cosmology, it is
customary to modify the scalar constraint by assuming
different choices of the lapse function (a choice that it is
often referred to as a “gauge choice”). Even when unim-
odular gravity is not a gauge fixing of standard general
relativity, from the previous perspective unimodular cos-
mology could be characterized at the technical level by a
choice of lapse. We see that such a choice makes the
Hamiltonian evolution particularly simple in the gravity
sector and thus allows for the most transparent and simple
derivation and resolution of the quantum as well as the
effective dynamical equations. It should be clear that the
main point of this work will not change if one uses a
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different notion of lapse. The choice we make has a very
natural geometric interpretation that we describe in the
following paragraph.
There is no preferred notion of time in general relativity.

This implies that the dynamics is dictated by constraint
equations and leads to the so-called problem of time in
quantum gravity: instead of Schrödinger-like evolution
equations, one has a timeless dynamics defined by the
quantum constraints. This very complicated technical and
conceptual problem can be circumvented in quantum
cosmology by the use of tools that have become customary.
The commonly accepted prescription is the use of some
(partial) observable as a clock that allows for the depar-
ametrization of the dynamics that leads to a Schrödinger-
like evolution equation and the definition of the so-called
physical Hilbert space of quantum cosmology. Even when
such a procedure is not unique and thus might lead to
unitarily inequivalent theories, this additional source of
potential ambiguity does not concern us here. The reason
why the problem of time is not as serious in quantum
cosmology is the fact that, for the study of dynamical
questions (sufficiently far form the Planckian regime), an
effective classical description is available. Such a classical
description allows us to deal with the problem of time in the
usual way that is familiar to us in cosmology: via gauge
fixing, i.e., particular choices with some clear interpretation
ranging from comoving time, harmonic time, conformal
time, and (our choice here) unimodular time.
Unimodular time is the time variable that naturally

emerges from the description of cosmology in unimodular
gravity [33]. Instead of a gauge fixing, unimodular gravity
can be thought of as a genuine modified theory of gravity
that is (apart from a subtlety in the cosmological constant
sector) completely equivalent to general relativity. We use
unimodular quantum cosmology [34,35] in what follows
because, in this formulation, the gravitational part of the
Hamiltonian takes a particularly simple form; indeed, the
geometry degrees of freedom can be mapped uniquely to
those of a nonrelativistic free particle. This feature allows
for a very intuitive interpretation of both the effective
classical evolution equations and the quantum gravity
equations. In most situations of interest, the problem of
quantum or classical evolution of geometry coupled with
simple forms of matter can be seen as a regular scattering
problem of a nonrelativistic particle in an external potential.
This makes the setting of the dynamical system particularly
appealing for its simplicity; however, it should be clear
from our treatment that the implications drawn are of
general validity and should apply (qualitatively speaking)
to any of the customary parametrizations of loop quantum
cosmology (LQC).
When specializing to (spatially flat) homogeneous and

isotropic cosmologies with the metric

ds2 ¼ −N2dt2 þ aðtÞ2dx⃗2; ð2:1Þ

the Einstein-Hilbert action supplemented with the unim-
odular constraint becomes

S ¼ −κ−1
Z � ffiffiffiffiffi

jgj
p

Rþ λð
ffiffiffiffiffi
jgj

p
− 1Þ

�
dx4 ð2:2Þ

where κ ¼ 16πG, and λ is a Lagrange multiplier imposing
the unimodular constraint

ffiffiffiffiffijgjp
− 1 ¼ 0; we have put an

overall minus sign in front of the action for later conven-
ience. Specializing to the FLRW metric (2.1) one gets

S ¼ κ−1V0

Z �
6
a _a2

N
− λðNjaj3 − 1Þ

�
dt; ð2:3Þ

where total derivative terms have been eliminated, and the
3-volume V0 of a fiducial cell has been introduced.
Resolving the unimodular constraint fixes N ¼ jaj−3 and
defines a preferred notion of time; from now on, we denote
this new time variable as s and call it unimodular time. The
action becomes

S ¼ κ−1V0

Z
6a4 _a2ds: ð2:4Þ

For further reference it is important to relate unimodular
time with the standard comoving time τ, namely,

ds ¼ −jaj3dτ: ð2:5Þ

At this point we change variables to more convenient ones
that make the action similar to that of a nonrelativistic free
particle. The new configuration variable is given by the
3-volume density

x ¼ a3; ð2:6Þ

from which it follows that _x ¼ 3a2 _a, and the action is then

S ¼
Z

1

2
m_x2ds ; ð2:7Þ

with

m≡ 4V0

3κ
; ð2:8Þ

where the dot denotes the derivative with respect to the
unimodular time s. Note that the minus sign in front of (2.3)
was chosen so that the kinetic term of the particle analog
has the usual sign. Additionally, if we use the comoving
time dτ ¼ −ds=jaj3, we have

p ¼ m

�
dx
ds

�
¼ −3m

1

jaj
da
dτ

¼ −3m signðaÞH: ð2:9Þ
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We see that the momentum variable in our parametrization
is proportional to the Hubble rate H in the usual comoving
variables. Let us introduce a scalar field as a matter model.
Then, the matter action (with the same overall minus sign
convention that we adopt) is

SM ¼ 1

2

Z ffiffiffiffiffi
jgj

p
ð∇aϕ∇aϕþUðϕÞÞd4x

¼ −
1

2
V0

Z
Na3

�
1

N2

�
dϕ
ds

�
2

−UðϕÞ
�
ds

¼ −
1

2
V0

Z �
a6
�
dϕ
ds

�
2

− UðϕÞ
�
ds: ð2:10Þ

Therefore, the action including our simple matter model is

Sðx;ϕÞ ¼
Z �

1

2
m

�
dx
ds

�
2

−
1

2
V0x2

�
dϕ
ds

�
2

− V0UðϕÞ
�
ds:

ð2:11Þ

The previous action can be written in Hamiltonian form as

Sðx;ϕÞ¼
Z

p
dx
ds

þpϕ
dϕ
ds

−
�
p2

2m
−

p2
ϕ

2V0x2
−V0UðϕÞ

�
ds ;

ð2:12Þ

where

pϕ ¼ −V0x2
dϕ
ds

: ð2:13Þ

A. Changing variables to match the standard setup

The previous ðx; pÞ variables in the gravity sector were
chosen to emphasize the simple link between unimodular
gravity in the FLRW context and the dynamics of a point
particle. A simple rescaling of these variables leads to the
standard parametrization of the phase space in loop
quantum cosmology in the so-called μ̄ scheme. The
variables customarily used are ðb; vÞ, defined as

b≡ −
γ

3m
p ¼ −

γ

3

dx
ds

¼ −γa2
da
ds

ð2:14Þ

and

v≡ 3m
γ

x ¼ V0a3

4πGγ
: ð2:15Þ

Thus, one has

fb; vg ¼ 1: ð2:16Þ

With these variables, the Hamiltonian is

H ¼ V0

2πGγ2

�
3

4
b2 −

p2
ϕ

16πGv2
− 2πGγ2UðϕÞ

�
; ð2:17Þ

which is proportional to the scalar constraint C as written in
Ref. [36] [Eq. (2.19)] simply rescaled by the use of
the unimodular time lapse, namely, H ¼ V0C=ðπGjvjÞ.
The advantage of using unimodular variables resides in the
remarkable fact that the gravity part of the Hamiltonian
depends only on the variable b (like a free particle in
classical mechanics). This simple fact simplifies several
technical as well as conceptual discussions of the classical
and quantum features of the model.

III. REGULARIZATION AMBIGUITIES
OF THE HAMILTONIAN

There are two aspects of the Hamiltonian that call for a
modification of its classical expression in order to promote
it to a well-defined self-adjoint operator in the special
Hilbert space of loop quantum cosmology. One of them is
that only quasiperiodic functions of b but not b itself can be
quantized. The second is that inverse volume contributions
to the Hamiltonian (entering through the matter coupling)
are also modified by means of the use of classical
expressions that eliminate their unboundedness at small
volumes. Both modifications are ambiguous by nature and
lead to dynamical effects that we analyze in what follows.
Interest in this issue from the observational perspective has
resurfaced recently in [37]; here we concentrate on further
theoretical implications. There are other approaches for the
definition of the quantum dynamics for cosmology where
one starts from a more fundamental perspective at the
quantum level and infers from it the symmetry reduced
model [38–40]; we note that similar ambiguities are present
in these perspectives as well. For simplicity, we concentrate
on the loop quantum cosmology formulation where the
problem is embodied in the notion of regularization.

A. Holonomy corrections

Due to the peculiar choice of representation in the
quantization of the model (inspired by the structure of
loop quantum gravity), there is no b operator in the Hilbert
space of loop quantum cosmology but only operators
corresponding to finite v translations [36,41], from here
on referred to as shift operators,

expðiλbÞ ⊳ ΨðvÞ ¼ Ψðv − λÞ; ð3:1Þ

where λ is some arbitrary length scale. As the classical
Hamiltonian explicitly depends on b, it needs regulariza-
tion in order to be promoted to a self-adjoint operator in the
Hilbert space of loop quantum cosmology. Consequently,
we replace (2.17) by
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H ¼ V0

2πGγ2

�
3fðλbÞ2
4λ2

−
p2
ϕ

16πGv2
− 2πGγ2UðϕÞ

�
; ð3:2Þ

where

fðλbÞ ¼
X
n∈Z

fneinλb: ð3:3Þ

To be explicit about the regularization choice, we write the
substitution rule as

b2 →
fðλbÞ2
λ2

: ð3:4Þ

This operation is called polymerization in the loop quan-
tum cosmology literature. Consistency with the classical
dynamics imposes the following conditions: on the one
hand, that fðxÞ ¼ f̄ðxÞ, which translates into the condition

fn ¼ f̄−n: ð3:5Þ

On the other hand, one needs that

hfðλbÞi ¼ λb0 þO½ðλb0Þ2� ð3:6Þ

for λb0 ≪ 1 when expectation values are computed in
suitable semiclassical states peaked at the classical momen-
tum b0. This second condition is necessary to recover the
semiclassical dynamics of standard cosmology at low
Hubble rates or the low density regime, leaving an infinite
dimensional freedom in the choice of the regularized
Hamiltonian to be promoted to an operator in the
Hilbert space of our system. The standard choice in the
loop quantum cosmology literature is fn ¼ iδ1n=2, namely,

b2 →
sin2ðλbÞ

λ2
: ð3:7Þ

A possible justification for this choice is that of simplicity.
The link between such a choice in relation to the lowest
nonvanishing eigenstate of the area operator in loop
quantum gravity, and the special status given to the
fundamental representation of the gauge group, is some-
times given as a further reason to use (3.7) (see [36]). This
argument connects the regularization of a certain quantum
operator in loop quantum cosmology to the features of a
particular state (the state with minimal area eigenvalue) in
loop quantum gravity. Even when accepting such a pos-
sibility, it is unclear how the lowest area eigenstate should
play such a central role. Indeed, in quantum theory the
principle of superposition rather suggests that states would
typically be made of arbitrary superpositions of different
area eigenvalues. Consideration of such aspects in full
generality brings us back to the infinite dimensional land-
scape of polymerizations in (3.4).

When expressed in terms of the v basis, the evolution
equation (related to the Hamiltonian constraint) contains a
finite difference term, which, with the so-called traditional
choice (3.7), becomes a discrete version of a second
derivative in v. For an arbitrary choice (3.4) the finite
difference term can be put in correspondence with a linear
combination of the discretization of higher derivative terms
in v. If one were looking for eigenstates of the Hamiltonian
(3.2), onewould be confrontedwith a growingmultiplicity of
formal solutions of the eigenvalue equation as the order of the
corresponding difference equation grows when considering
general functions fðbÞ with arbitrarily high Fourier compo-
nents. This question can be studied in the simpler context of
the pure gravity case, which, in analogy with the point
particle system, corresponds to the asymptotic, large universe
regime,where standardmatter contributions canbeneglected
using logic analogous to that of scattering theory. In such a
simpler setting, most of these extra solutions related to the
higher order character of the difference equation for arbitrary
fðbÞ are not normalizable and hence not part of the spectrum.
In the Wheeler-DeWitt standard representation of quan-

tum cosmology, eigenstates of the Hamiltonian are doubly
degenerate in correspondence with the two possible equal
“energy” classical solutions corresponding to an expanding
and/or contracting universe for a given cosmological con-
stant: the two are related to the discrete symmetry _x → −_x
involving the initial conditions of the theory written in the
variables (2.11). Therefore, any additional degeneracy of
energy eigenvalueswould haveno classical correspondence,
and its associated conserved quantity would reveal the
existence of new (microscopic) degrees of freedom. We
postpone this discussion until Sec. IV.
The formal similarities with higher curvature corrections

of the Einstein-Hilbert action due to quantum effects is
manifest even when a rigorous statement is made difficult
by the breaking of explicit covariance by the Hamiltonian
formulation (in the first place) and by the further (possibly
explicit) breaking of covariance introduced by the polym-
erization itself (see [42]). In perturbative quantum gravity,
higher derivative terms arise from higher curvature correc-
tions, and this changes the number of degrees of freedom as
seen from a classical perspective. As higher curvature
(higher derivative) terms appear multiplied by increasing
powers of l2

p, all these corrections are taken to be negligible
at energy scales well below the Planck scale. We believe
that this analogy is interesting, thus making polymer
models a nice simplified arena where difficult questions
related to renormalization and the definition of the con-
tinuum limit can be explored in the highly simplified
context of a model that (at least classically) starts with a
finite number of degrees of freedom.
Finally, it is possible to exhibit the direct relation

between the function fðλbÞ and the cosmological constant
as follows. Standard considerations in unimodular gravity
imply that [43,44]
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Λ ¼ 8πG
E
V0

; ð3:8Þ

where E is the eigenvalue of (2.17) or (3.2). The discussion
is simplified if we assume that we are in the massless scalar
field case UðϕÞ ¼ 0. If a nontrivial self-interaction is
present, then a more careful analysis is needed. We restrict
ourselves to initial conditions given at v ¼ �∞ (large
universes) where the contribution of the scalar field to the
Hamiltonian (3.2) vanishes. In this limit the system is the
analog of a nonrelativistic free particle where eigenvalues
of the energy can be labeled by eigenvalues of momenta.3

Therefore, from (3.2) one obtains the relation

Λ ¼ 3f2ðb∞Þ
γ2λ2

; ð3:9Þ

where b∞ is the asymptotic value of b for v ¼ �∞.

B. Inverse volume corrections

Inverse volume terms in the Hamiltonian introduce poten-
tial singularities in quantum theory. Such potential divergen-
cies are present as well in the full theory of loop quantum
gravity and need regularization when constructing a well-
defined quantum scalar constraint operator. Thiemann intro-
duced [45] a natural regularization of such potential UV
divergences by realizing that inverse volume terms can be
obtained from the Poisson algebra between well-defined
geometric operators and the holonomy of the connection. In
the case of cosmology the idea can be illustrated, for
example, by the following simple classical identity,4

1ffiffiffiffiffiffijvjp ¼ 2i
λ
sgnðvÞ exp ðiλbÞfexp ð−iλbÞ;

ffiffiffiffiffiffi
jvj

p
g; ð3:10Þ

which suggests a natural regularization of quantities
depending on the inverse volume using “holonomies”
and commutators in the quantum theory. We use a
symmetrized factor ordering, for instance,

d1ffiffiffiffiffiffijvjp →
1

ℏλ
sgnðvÞ

�
expðiλbÞ½expð−iλbÞ; dffiffiffiffiffiffijvj

p
�

þ ½expð−iλbÞ; dffiffiffiffiffiffijvj
p

� expðiλbÞ
�
: ð3:11Þ

This choice regularizes the singular behavior of the inverse
volume at v ¼ 0—where the previous expression vanishes
by construction—and produces a well-defined operator in

the Hilbert space of loop quantum cosmology. However,
the choice is by no means unique. In fact [in addition to
factor ordering and other sources of ambiguities, such as
the choice of the power of v inside the Poisson brackets in
(3.10)] one has an infinite dimensional space of regulari-
zations that is similar in spirit to the one identified for the
regularization of curvature in (3.2) given by

d1ffiffiffiffiffiffijvjp →
sgnðvÞ

2ℏ
P

m∈Zcm

X
n∈Z

cn
λn

�
expðiλnbÞ½expð−iλnbÞ; dffiffiffiffiffiffijvj

p
�

þ ½expð−iλnbÞ; dffiffiffiffiffiffijvj
p

�expðiλnbÞ
�
; ð3:12Þ

for arbitrary coefficients cn. This implies that in addition to
the infinite dimensional family of curvature regularizations,
one has an (at least) equally large family of inverse volume
regularizations, which would generically enter in the
construction of the matter coupling when defining the
quantum Hamiltonian. One can show that the action of
the previous operator is simply given by (see [36])

d1ffiffiffiffiffiffijvjp ΨðvÞ ¼ ΨðvÞ
ℏ
P

m∈Zcm

X
n∈Z

cn
λn

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvþ λnj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv − λnj

p
Þ

≡ ΨðvÞP
m∈Zcm

X
n∈Z

cn

�
1ffiffiffiffiffiffijvjp 	

n

; ð3:13Þ

where we have introduced the definition�
1ffiffiffiffiffiffijvjp 	

n

≡ 1

ℏλn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvþ λnj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv − λnj

p �
: ð3:14Þ

One obtains

ffiffiffiffiffiffi
jvj

p �
1ffiffiffiffiffiffijvjp 	

n

¼ 1þ 1

16

n2λ2

v2
þ 7

128

n4λ4

v4

þ O

�
n6λ6

v6

�
; ð3:15Þ

which shows that, for a sufficiently large volume, one
recovers the classical expected limit. Notice that the
regularization (3.13) vanishes at v ¼ 0. One can use the
previous series expansion and choose the coefficients cn in
order to improve the convergence to the classical value. For
example, with the choice

c1 → 9.42267; c2 → −13.1273;

c3 → 6.31659; c4 → −1.93791;

c5 → 0.355751; c6 → −0.0297957 ð3:16Þ

one gets the regularization to coincide with 1=
ffiffiffiffiffiffijvjp

up to
order Oðn10λ10=v10Þ (plotted in blue in Fig. 1). One can

3More precisely, in our context these correspond to the
eigenvalues of the shift operators (4.2), yet the key point is that
they are still labeled by a value of b.

4This is a particular case of a more general identity leading to
additional ambiguities [46]. For simplicity, we concentrate on the
one given in [36].
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continue improving the convergence by eliminating higher
order deviations from 1=

ffiffiffi
v

p
; it simply boils down to

solving a linear system of equations with increasing
dimension. One might think that such a process would
produce a sequence of cn converging pointwise to the
Wilson-Ewing regularization [46,47] of the inverse volume,
which is given by 1=

ffiffiffiffiffiffijvjp
for all v ≠ 0, while it vanishes at

v ¼ 0. By plotting a few members of the above approxi-
mating sequence, we see that this will not be the case. In
fact, the previous sequence, while it gets increasingly better
at approximating 1=

ffiffiffi
v

p
for large v, it differs more and more

from the function 1=
ffiffiffi
v

p
at around v ¼ �λ (see Fig. 1).

There are two important features that we would like to
emphasize here. The first one is that the regularization of
the inverse volume operator would lead to a function of v
that is not differentiable everywhere due to the presence of
the absolute value in the formulas. This is, of course, not a
problem from the perspective of quantum theory where (for
the quantum dynamics) only the evaluation of the regu-
larization on a discrete lattice plays a role. However, at the
nondifferentiable points the effective equations can simply
not be trusted. The second important feature is that the
regularization is a continuous function and thus bounded.
We insist on the point that (even when some choices might
seem natural given some subjective criteria) there is no
well-defined rule that would actually eliminate the vast set
of possibilities here either. We discuss some further
consequences of inverse volume corrections later; in
particular, in Sec. VI C, we see their role in the violation
of the null energy condition near the big bang.

IV. QUANTUM THEORY: EVOLUTION ACROSS
THE SINGULARITY

Let us discuss the main features of the quantum dynamics
before discussing the validity of the effective dynamical

approach that we use later for further interpretation—where
the quantum dynamics is approximated by looking at the
evolution of semiclassical states. One great advantage of the
unimodular gravity formulation is that (at least in the FLRW
context) the theory has a well-identified time evolution [in
unimodular time (2.5)], and the kinematical Hilbert space of
loop quantum cosmology is the physical Hilbert space. In
other words, the problem of time is trivialized, and the
physical interpretation of quantum theory becomes closer to
that of standard quantum mechanics.5 However, an impor-
tant differencewith standard quantummechanics is the use of
an unconventional representation of the basic phase space
variables, which brings to the system a central property of the
full theory of loop quantum gravity: fundamental discrete-
ness. Concretely, instead of the standard Schrödinger rep-
resentation on a gravitational Hilbert space of square
integrable wave functions where v acts by multiplication
and b ¼ −i∂v, one introduces a Hilbert spacewhere only the
exponentiated version of b, the shift (or holonomy) operators
exp iλb (for arbitrary λ ∈ R), are well defined. This is
sometimes called the polymer representation, and the pro-
cedure of using this exotic representation (well motivated
from the full theory) is called polymerization.
Consequently, there is no operator corresponding to b in

the loop quantum cosmology polymer representation but
only the operators corresponding to finite v transla-
tions [41], from here on referred to as shift operators
defined as

expðiλbÞ ⊳ ΨðvÞ ¼ Ψðv − λÞ: ð4:1Þ

States diagonalizing the shift operators are denoted
jb0;Γϵ

λi and labeled by a real value b0, where Γϵ
λ is a 1D

lattice of points, a graph, in the real line of the form
v ¼ nλþ ϵ with ϵ ∈ ½0; λÞ and n ∈ N. The corresponding
wave function of these eigenstates is given by Ψb0ðvÞ≡
hvjb0;Γϵ

λi ¼ exp ð−ib0vÞδΓϵ
λ
, where the symbol δΓϵ

λ
eval-

uates to one when v ∈ Γϵ
λ and vanishes otherwise.

Assuming that k ¼ mλ, it follows from (4.1) that

expðikbÞ ⊳ jb0;Γϵ
λi ¼ exp ðikb0Þjb0;Γϵ

λi: ð4:2Þ

The states jb;Γϵ
λi are eigenstates of the shift operators

which preserve the lattice Γϵ
λ. The fact that these states are

supported on discrete lattices (polymerlike excitations) is
what motivated the name of the representation. Notice that
the eigenvalues are independent of the parameter ϵ; i.e.,

FIG. 1. Inverse volume corrections of the classical function
1=

ffiffiffiffiffiffijvjp
(shown in black). The blue curve represents the best

approximation for large volumes, which coincides with the
classical expression up to order ðλ=vÞ10. However, as the
approximations get better for larger volumes, they get worse
at Planckian volumes, as the plotted sequence illustrates, with
deviations becoming the largest at low integer values times λ.

5Closer but not exactly the same. Here, we are making
reference to the uncomfortable questions related to the meaning
of a quantum theory of the universe as a whole. These questions
are indeed very important and remain open to a large extent. In
order to concentrate on the main point of this paper, we have to
ignore them altogether.
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they are infinitely degenerate and span a nonseparable
subspace of the quantum cosmology Hilbert space H lqc.
As the operator b does not exist in the Hilbert space, one

has to construct approximations in terms of combinations of
shift operators which behave like b in a suitable sense. This
procedure is (as discussed in Sec. III A) intrinsically
ambiguous. We would like to understand the influence of
deviating from the standard regularization (3.7) to quantum
dynamics. In order to do this we concentrate on the pure
gravity case first. Indeed, the ambiguity (3.4) only affects the
gravitational part of the Hamiltonian, and thus this simple
case completely characterizes the dynamical influence of the
choice of different regularization functions fðλbÞ in the
quantum dynamics in the large volume asymptotic regime
where matter dilutes until becoming negligible. Thus, we
deal with the special case where, before quantization, the
classical Hamiltonian is regularized as

H ¼ b2

2m
→

fðλbÞ2
2mλ2

: ð4:3Þ

Note that this case is nontrivial because it admits a nonzero
cosmological constant that is given by the value of the
energy in the unimodular framework [recall (3.8)]. In
quantum theory, we are interested in the eigenstates of
the Hamiltonian (the analog of the time-independent
Schrödinger equation). Let us first analyze the spectrum
of the Hamiltonian in the traditional polymerization;
namely, we would like to solve the equation

�
sinðλbÞ2
2mλ2

− E

�
jΨEi ¼ 0; ð4:4Þ

which in the v basis becomes [due to (4.1)] the difference
equation

ΨEðv−2λÞþΨEðvþ2λÞþð8mλ2E−2ÞΨEðvÞ¼ 0; ð4:5Þ

where the order of the difference equation is directly related
to the polymerization choice. This seems to raise a potential
difficulty: if instead of the traditional choice we take an
arbitrary fðλbÞ, the order of the difference equation will
grow arbitrarily. Would this lead to an uncontrollable
proliferation of spurious solutions? We will see that this
is not the case. For the moment we continue the analysis of
the present scenario. As the Hamiltonian is a combination of
shift operators (4.1) of the kind for which one knows the
eigenstates, one can simply express the energy eigenstates in
terms of jb0;Γϵ

2λi (the eigenstates of the shift operators) and
calculate the relationship between b0 and the energy
eigenvalues. We call these the polymerized dispersion
relations. For the standard choice, energy eigenstates and
dispersion relations are

jΨEðb0Þi ¼ jb0;Γϵ
2λi; Eðb0Þ ¼

sinðλb0Þ2
2mλ2

: ð4:6Þ

A. The ϵ sectors

The previous energy eigenstates (eigenstates of the
cosmological constant) are infinitely degenerate due to
the ϵ degeneracy of the shift operators (4.1). This over-
abundance of solutions of the Schrödinger equation is
controlled, in standard treatments, by fixing the volume
lattice and choosing one ϵ sector. This choice is dynamically
consistent because the Hamiltonian preserves the given
lattice; however, in the presence of matter, the choice
represents an additional dynamical ambiguity as the
dynamical features depend on ϵ. This is particularly clear
whenwe look at the inverse volume corrections of Sec. III B.
Each different choice of ϵ gives a lattice that probes the
volume regularization at different discrete points. As the
inverse volume regularization enters the coupling of gravity
with matter [see, for instance, Eq. (3.2)], the details of the
dynamics will depend on this choice. Because the
Hamiltonian preserves ϵ sectors, they are sometimes called
superselection sectors. However, as there are other (Dirac)
observables that do not preserve the lattice, these sectors are
not superselected in any usual sense.
More precisely, in the case of pure gravity, observables

commuting with the Hamiltonian and mapping between
different values of ϵ (graph-changing observables) are
simply the shift operators introduced in Sec. (4.1). In the
case of a nontrivial matter coupling, other Dirac observ-
ables exist; they are technically hard to characterize
explicitly in their full generality because of the usual
difficulty associated with the construction of such con-
served quantities. However, notice that if the matter
coupling is such that matter dilutes as v → ∞ (as expected
for regular matter degrees of freedom), then shift operators
remain Dirac asymptotic observables where the universe
becomes large and the Hamiltonian tends to the pure
geometry Hamiltonian in the usual sense of scattering
theory. In this manner, the shift observables (4.1) define a
complete set of commuting observables fully characterizing
the positive energy (positive cosmological constant6) states.
These asymptotic observables are like those regularly
employed in standard situations involving scattering theory.
Their existence shows that ϵ sectors are not superselected.
Hence, there is no clear reason to restrict to a single

lattice, and superpositions of different lattices can be
considered. Some of the implications of this possibility
have been investigated in [43,44], where it is shown that
these additional degrees of freedom, which are microscopic

6Negative Λ solutions exist in the presence of matter, and they
correspond to bound states (in the analogous nonrelativistic
particle system). These solutions do not reach the jvj → ∞
asymptotic region and admit no scattering theory interpretation
(as in the usual cases).
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or Planckian, can be key in understanding the fate of
information in situations where evolution across would-be
singularities is relevant, like in cosmology and (most
importantly) in the context of black hole formation and
evaporation. In order to simplify the following discussion,
we restrict our analysis to the case of states supported by a
single lattice.

B. Degeneracy of the energy (cosmological constant)
eigenstates in the pure gravity case

In the Schrödinger representation the dispersion relation
is the familiar nonrelativistic particle relation Eðb0Þ ¼
b20=ð2mÞ, which is doubly degenerate, corresponding to
the momentum eigenstates with b ¼ �b0. Translating this
to unimodular cosmology, these two eigenstates would
correspond to a de Sitter state with a cosmological constant
Λ ¼ 8πGEðb0Þ=V0 that is either contracting or expanding
in the FLRW slicing. With the standard polymerization
(3.7), we first observe that a new degeneracy appears, as
there are four different shift-operator eigenstates that
produce the same energy, namely, those labeled by the
four roots of the equation on the right of (4.6) depicted on
the left of Fig. 2. We study the role of these additional
solutions below after we describe this type of degeneracy
for an arbitrary regularization.
For an arbitrary polymerization (3.4) the situation is

quite similar. Eigenstates are again given by

jΨEðb0Þi ¼ jb0;Γϵ
2λi with Eðb0Þ ¼

fðλb0Þ2
2mλ2

: ð4:7Þ

However, the degeneracy of the energy eigenvalues is now
dependent on the choice of the function fðλbÞ. An example
with six different eigenstates is depicted on the right panel
of Fig. 4. In this example, one can distinguish two different

situations. In the first case, the energy is E1, and the eight
solutions correspond to eigenstates of the form (4.7). In the
other case, for the energy E2, the number of solutions for
the eigenvalue equation seen as a difference equation
remains eight; however, only the four values of b0 explicitly
seen in the figure correspond to “plane-wave” eigenstates
of the form (4.2). It is easy to show7 that the other four
solutions of the difference equation are diverging in either
the v → �∞ limit and thus are not part of the Hilbert
space (this is the analog of non-normalizable solutions of,
for example, the time-independent Schrödinger equation
for the harmonic oscillator). These additional solutions
are most interesting when matter couplings that break
v-translational invariance of the Hamiltonian are included.

C. Dynamical consequences when matter
couplings are included

Here we show how the inclusion of matter couplings has
the generic effect of producing “diffusion” in the various
energy eigensectors, which would not be present in the
Schrödinger quantization. The additional energy eigenval-
ues of the pure gravity model introduced by the choice of
polymerization play an important dynamical role. We see
that a universe starting in the large volume limit in one
asymptotically de Sitter state—with a given cosmological
constant (energy) and a given Hubble rate b0—will
“scatter” through the big bang into a superposition of
the various eigenstates of the same asymptotic energy. In
this way, the quantum dynamics of the bounce is much
more complicated than hinted at by the effective equation
approach, which will be discussed later. This is a simple
instance of the physical expectation embodied in the
statement that “anything that can happen happens in

FIG. 2. Polymerization fðxÞ2 ¼ −2ðcosðxÞ − 1Þ matching the degeneracy of eigenstates of the Schrödinger representation. On the
right panel we show the different scattering channels in a matter coupling with a massless scalar that produces (for a given pϕ eigenstate)
an effective potential regularized by inverse volume corrections (shown in black). The universe bounces into a superposition of
transmitted and reflected modes with the same asymptotic (large v) Hubble rates. If we factor by the symmetry v → −v, then we only
have a bounce and the superposition disappears. The results of an analytically solvable model are shown in (4.10).

7See, for instance, Sec. 2.3 of [48].
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quantum mechanics.” In a background-independent
approach, the most likely result is that an initially semi-
classical state (with a clear spacetime interpretation) will
evolve into a superposition that might not always admit a
single spacetime representation. Forgetting this simple fact
about quantum mechanics is one of the current errors in
setting up important questions such as the ones concerning
the fate of information in black hole evaporation. Here, we
again see how the present models of quantum cosmology
represent a rich and valuable testing ground for conceptual
ideas in spite of their limited quantitative predictive power,
as far as observable effects are concerned.

One of the simplest models of matter coupling is that of a
massless scalar field [i.e., UðϕÞ ¼ 0 in Eq. (2.10)]. In that
case the momentum of the scalar field is conserved, and the
gravitational dynamics is equivalent to that of a point
particle (with kinetic energy ∝ b2) moving in an “external
attractive potential” that goes as ∝ 1=v2 [see Eq. (2.17)].
The divergence in the potential is regularized in loop
quantum cosmology using the Thiemann construction,
which modifies the inverse volume dependence near the
big bang at v ¼ 0. Such a modification is illustrated in
Figs. 2–4. Such a model is already complicated enough to
make analytic calculations.

FIG. 3. New solutions in the traditional polymerization f2ðxÞ ¼ ðsinðxÞÞ2 (dispersion relations on the left). On the right panel we show
the different scattering channels in a matter coupling with a massless scalar that produces (for a given pϕ eigenstate) an effective
potential regularized by inverse volume corrections (shown in black). The universe bounces and tunnels in new channels with different
asymptotic Hubble rates for a given cosmological constant. If the v → −v symmetry is imposed (as is customary in the specialized
literature) the degeneracy remains, and the universe only bounces into the quantum superposition of two semiclassical solutions. The
results of an analytically solvable model are shown in (4.10).

FIG. 4. Generic polymerization, where fðxÞ2 ¼ 2=13ð2 − ðcos½2x� þ cos½3x�ÞÞ. On the right panel we show the different scattering
channels in a matter coupling with a massless scalar that produces (for a given pϕ eigenstate) an effective potential regularized by inverse
volume corrections (shown in black). New channels for the bounce appear and a given universe evolves through the singularity into a
quantum superposition of universes with the same cosmological constant (or expectation value of the cosmological constant for wave
packets) but different Hubble rates. The results of an analytically solvable model are shown in (4.10).
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However, the qualitative behavior that we illustrate does
not depend on the details of the potential and only on the
fact that the coupling with matter breaks the conservation of
the variable b. This is simply due to the fact that matter
couplings break translational invariance in the v axes,
producing a nontrivial dynamics of the Hubble rate (a
quite obvious fact from the standard classical perspective
based on the Friedmann equations where the Hubble rate
remains constant in the FLRW slicing only in pure de Sitter
spacetime). Thus, the phenomenon we want to emphasize
can be illustrated in a much simpler model where analytic
calculations are trivial. An example of such a model is one
in which the regularized 1=v2 potential produced by the
corresponding contribution to the Hamiltonian (3.2) of
the massless scalar field is replaced by the sum of two
Kronecker deltas at v ¼ 0 and v ¼ λ, in some way
mimicking the two choices in the regularized potential
seen in the previous figures. Notice, however, that this
example is not meant to approximate the massless scalar
field case in any precise sense. We only use it because we
can solve it explicitly and because it produces the phe-
nomenology that will be common (at the qualitative level)
to any matter coupling. The only essential feature here is
the breaking of translational invariance in the v axes.

Concretely, we concentrate on the difference equation

Ψeðv−2λÞþΨeðvþ2λÞþ ðe−2ÞΨeðvÞ−αδ

�
v
λ
;1

�
ΨeðvÞ

−αδ

�
v
λ
;0

�
ΨeðvÞ ¼ 0; ð4:8Þ

where e≡ 8mλ2E and the delta functions are Kronecker
deltas on the lattice v ¼ λnwith n ∈ Z, and α is a coupling
constant. This is a simple scattering problem, which is
resolved via the ansatz

ΨeðvÞ¼


e−ib1ðeÞvþR1ðeÞeib1ðeÞvþR2ðeÞeib2ðeÞv ðv≥ 0Þ
T1ðeÞe−ib1ðeÞvþT2ðeÞe−ib2ðeÞv ðv≤ 0Þ;

ð4:9Þ

where b1ðeÞ > b2ðeÞ > 0 are the two positive solutions of
the dispersion relation—plotted in Fig. 3—for the given
value of e. The previous, discrete Schrödinger equation
boils down to four independent linear equations from
which one determines the reflection and transmission
amplitudes. They are given by

R1ðeÞ ¼
α
�
iα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðe − 1Þep þ αð1 − eÞ − ð1 − eÞ

�
e − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðe − 1Þep ��

ðe − 1Þðα2 þ eÞ R2ðeÞ ¼
iα2

ffiffiffi
e

pffiffiffiffiffiffiffiffiffiffiffi
1 − e

p ðα2 þ eÞ

T1ðeÞ ¼
e

α2 þ e
−

iα
ffiffiffi
e

pffiffiffiffiffiffiffiffiffiffiffi
1 − e

p ðα2 þ eÞ T2ðeÞ ¼
α
�
1þ i

ffiffi
e

pffiffiffiffiffiffi
1−e

p
�
e

α2 þ e
: ð4:10Þ

There are two interesting limits of the previous result that
will be relevant for the discussion in Sec. VI B: the
reflection amplitudes vanish in the limit α → 0 where
the bounce is completely suppressed, while the trans-
mission amplitudes vanish in the hard-scattering limit
α → ∞. Here, we use a simplistic model where we can
make explicit calculations. As mentioned before, the
qualitative features present in this model remain in the
realistic case (this is confirmed by numerical simulations,
which we have omitted for simplicity).
The results shown in Figs. 2–4 can be understood in a

simple, intuitive way as follows. The left panel of each of
these figures shows the regularization of the “kinetic”
energy part of the Hamiltonian (in the framework given
in analogy to the nonrelativistic point particle). Instead of a
quadratic dependence in b (shown by the dotted curve), the
kinetic energy is represented by a more general periodic
function depending on the regularization choice. This
implies that, for a given total energy (see the horizontal
dotted line on the left panels of the three figures), there is a
multiplicity of possible classical solutions—more than the

usual pair of solutions for the quadratic kinetic energy. In
the scattering process, due to the interaction with the
potential, a particular incident wave (corresponding to
one with the wave numbers bwhose kinetic energy matches
the total energy) will scatter into a superposition of all the
others. When the kinetic energy is quadratic, one gets the
usual superposition of reflected and transmitted solutions.
In the general regularization case more channels are opened
and generically excited by any potential breaking transla-
tional invariance (so that b is no longer conserved). This
qualitatively explains the results illustrated in the figures.
Computing the actual amplitudes requires solving the
quantum dynamical equations as we have done in our
simplified model.

V. MODIFIED COSMOLOGICAL
EFFECTIVE EQUATIONS

Let us start from the unimodular Hamiltonian constraint
where (3.2) is equated to some energy value that plays the
role of the cosmological constant, namely,
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C≡H − V0

Λ
8πG

¼ V0

2πGγ2

�
3fðλbÞ2
4λ2

−
p2
ϕ

16πGv2
− 2πGγ2UðϕÞ − 1

4
γ2Λ
�

≈ 0: ð5:1Þ

We study the evolution of the volume variable

v ¼ V0a3

4πGγ
; ð5:2Þ

dhvi
ds

¼ −ih½v;H�i ≈ −
∂hHi
∂b

¼ −
3V0

4πGγ2λ
f0ðλbÞfðλbÞ ð5:3Þ

where we have used the results of Appendix in the
derivation of the effective equations, the prime denotes
derivatives with respect to λb, and s denotes unimodular
time given in terms of comoving (cosmic) time τ by

ds ¼ −jaj3dτ ¼ −
4πGγ
V0

jvjdτ: ð5:4Þ

Indeed, the previous equation gives us an expression for
_a=a, namely,

_a
a
¼ 1

γλ
f0ðλbÞfðλbÞ: ð5:5Þ

From now on, we denote hvi simply by v. Using the
standard definition of the Hubble rate H ≡ _a=a, we can
write

H2 ¼ 1

γ2λ2
f0ðλbÞ2fðλbÞ2: ð5:6Þ

The constraint (5.1) can be rewritten as

C ¼ 3V0

8πGγ2λ2

�
fðλbÞ2 − ρϕ þ ρΛ

ρ̄

�
≈ 0 ð5:7Þ

where ρΛ ≡ Λ=ð8πGÞ, ρϕ is the scalar field contribution to
the energy density,

ρ̄ ¼ 3

8πGγ2λ2
; ð5:8Þ

and

ρ ¼ ρϕ þ ρΛ ¼ p2
ϕ

32π2G2γ2v2
þUðϕÞ þ Λ

8πG

¼
_ϕ2

2
þUðϕÞ þ Λ

8πG
ð5:9Þ

is the standard energy density. This implies

fðλbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðρ=ρ̄Þ

p
: ð5:10Þ

It is also convenient to introduce the pressure

P ¼ p2
ϕ

32π2G2γ2v2
− UðϕÞ − Λ

8πG

¼
_ϕ2

2
−UðϕÞ − Λ

8πG
: ð5:11Þ

Thus, we arrive at the modified Friedmann equation

H2 ¼ 8πGρ
3

h
f0
�
f−1
� ffiffiffiffiffiffiffiffi

ρ=ρ̄
p ��i

2
: ð5:12Þ

We now look at the evolution equation of the energy
density (5.9),

dhρi
ds

¼ −ih½ρ;H�i

¼ −i
3V0

8πGγ2λ2
h½ρ; fðλbÞ2�i

¼ 3

8πGγ2λ2
dhfðλbÞ2i

ds
ð5:13Þ

where the Hamiltonian is H ¼ 3V0fðλbÞ2=ð8πGγ2λ2Þ−
V0ρ. Now, using Remark 4 from the Appendix we obtain

dhρi
ds

¼ 3

16πGγ2λ2
V0hp2

ϕi
ð4π2G2γ2Þv3 4λf

0ðλbÞfðλbÞ

¼ 3V0hp2
ϕi

16π3G3γ3v3
H: ð5:14Þ

An important corollary of the previous algebra (or simply
from Remark 4) is that

_b ¼ −4πGγðρþ PÞ jvj
v
; ð5:15Þ

which follows directly fromRemark 4, the definition of ρ and
P; the sign comes from the relationship (5.4) between
comoving time τ and unimodular time s. Now, using (5.4)
we get the continuity equation

_ρþ 3Hðρþ PÞ ¼ 0 ð5:16Þ
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where the quantities in the equation are expectation values. It
is now a simple exercise to show that from (5.16) and (5.12),
the modified Raychaudhuri equation is as follows:

_H ¼ −4πGðρþ PÞ
h
f0
�
f−1
� ffiffiffiffiffiffiffiffi

ρ=ρ̄
p ��

2

þ f00
�
f−1
� ffiffiffiffiffiffiffiffi

ρ=ρ̄
p ��

f
�
f−1
� ffiffiffiffiffiffiffiffi

ρ=ρ̄
p ��i

: ð5:17Þ

This concludes the derivation of the effective cosmological
equations for arbitrary regularizations of the Hamiltonian
encoded in the arbitrary function fðλbÞ. We see that in
regions where the latter behaves linearly as in (3.6), one
recovers the standard classical Einstein equations in the
cosmological context. However, and this is the key point of
our paper, deviations from the Einstein equations can be
introduced by “tuning” the function fðλbÞ. Such modifica-
tions, as we will see, have important physical consequences
and thus make the large number of Fourier coefficients in
fðλbÞ relevant ambiguity parameters, compromising the use
of these models for physical predictions.

VI. LANDSCAPE OF POLYMERIZED MODELS
OF QUANTUM COSMOLOGY

In this section we analyze the generic implications of the
effective dynamical equations. We assume their validity
through the region corresponding to the would-be singu-
larity of classical cosmology where the scale factor a
approaches zero. For certain, suitable, initial, semiclassical
states for contracting universes, this approximation might
hold true in some cases (for instance, for suitable bouncing
solutions); however, we know from our analysis in Sec. IV
that the state of the universe branches off into other
solutions that go through the a ¼ 0 regime. In these other
branches the effective dynamical equations break down
unless one considers a rather artificial regularization of the
inverse volume corrections. Thus, such solutions can only
be understood in full generality using quantum theory. Due
to this behavior we call these solutions tunneling solutions.

A. Bouncing branches

We first study the bouncing solutions of the effective
equations, which are usually described in the LQC liter-
ature, analyzing the generic effect of the choice of polym-
erization function fðλbÞ. We recall equation (5.5),

_a
a
¼ 1

λγ
f0ðλbÞfðλbÞ; ð6:1Þ

where f0ðλbÞ denotes the derivative with respect to λb. We
also need the modified Raychaudhuri equation (5.17),
which can be written in the form

3
ä
a
¼ −4πGððρþ 3PÞf02 þ 3ðρþ PÞf00fÞ: ð6:2Þ

From (5.15) and assuming the validity of the null energy
condition (NEC), ρþ P ≥ 0, we can determine the direction
of change of b depending on the sign of the volume of the
universe. This greatly simplifies the analysis of the landscape
dynamics. NEC are violated due to quantum gravity effects
when inverse volume corrections in the matter coupling are
taken into account. However, this is not relevant for the
bouncing branches for states such that the effective equations
are valid, as the bounce prevents v from reaching the regions
where NEC are violated (see Sec. VI C).
Critical points in the function fðλbÞ correspond to two

possibilities: bounces (minimum volume configurations
where the universe stops contracting and starts expanding)
and turning points (maximum volume configurations where
the volume of the universe stops increasing and starts
decreasing). Such situations are identified by the condition
_a ¼ 0, which, from (6.1), arises when f ¼ 0 or f0 ¼ 0. We
first study the case f0 ¼ 0. In order to understand if we are
at the bounce or turning point, we have to study the sign of
the second derivative of the volume (a bounce occurs for
v̈ > 0, a turning point for v̈ < 0). Evaluating (6.2) at points
where f0 ¼ 0, we obtain

ä
a

����
f0¼0

¼ −4πGðρþ PÞf00f: ð6:3Þ

Assuming that the NEC is valid, local maxima of the
function f represent a bounce when f > 0 as well as for
local minima of f when f < 0. Conversely, we have
turning points at local minima of f for f > 0 and at local
maxima of f for f < 0. What about the points where
f ¼ 0? If the cosmological constant is positive, then the
form of the Hamiltonian imposes that

f2ðλbÞ ≥
ffiffiffiffiffi
ρΛ
ρc

r
: ð6:4Þ

Thus, these points are inside a “classically forbidden”
region, but they can be reached by setting Λ ¼ 0. In this
case they become a special case of points where
fðλbÞ2ρc ¼ ρΛ. In general, in de Sitter asymptotic con-
figurations (Minkowski being a limiting case), the con-
tributions of other forms of matter to ρ and P vanish. This is
illustrated in Fig. 5. Assuming that the universe is in the
v > 0 branch, Eq. (5.15) implies that _b ≤ 0 as long as the
NEC holds with _b ¼ 0 in the de Sitter configurations where
ρþ P ¼ 0. These configurations are fixed points of the
flow of b (recall that b is simply related to the Hubble rate
according to the classical analysis from where we started).
With all this information, we can qualitatively interpret

the situation described in Fig. 5 by observing that it
represents two distinct possible histories for the universe.
The first starts in the classically allowed region on the right
in an (asymptotically) de Sitter state defined by the furthest
intersection of fðλbÞwith ffiffiffiffiffiffiffiffiffiffiffiffi

ρΛ=ρc
p

to the right. The universe
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contracts and exits the purely de Sitter state, entering a phase
where other forms ofmatter start to play a dynamical role. At
the first minimum the universe bounces for the first time and
starts expanding. The expansion continues until the universe
reaches the first maximum (from right to left), where it starts
contracting again until the second minimum is reached, and
a last bounce leads to an expanding universe that expands
forever towards a final asymptotic de Sitter state. A second
sequence of events can be described in a similar fashion for
the evolution along the classically allowed region on the left
of Fig. 5.
Note that the initial and final asymptotic de Sitter phases

are described by different Hubble rates, and the former are
modulated by the value of f02 at the asymptotic points
according to (5.12). One could introduce an effective
cosmological constant at such de Sitter fixed points,

Λds−fp ≡ Λf02: ð6:5Þ

Notice that these fixed points correspond to low energy
regions where the density of matter (other than the
cosmological constant) goes to zero. More generally, one
can expand the modified Friedmann equation (5.12) around
an arbitrary density ρ0 and write

_a2

a2
¼ 8πGeff

3
ρþ Λeff

3
þ O

�ðρ − ρ0Þ2
ρ2c

�
: ð6:6Þ

A simple calculation gives

Geff ¼ Gðf02 þ f00fÞ ð6:7Þ

and

Λeff ¼ ðf02 þ f00fÞΛ − 8πGρ0ff00: ð6:8Þ

For ρ0 ¼ Λ=ð8πGÞ we recover the de Sitter fixed point
value (6.5). Notice that as we approach a bouncing point,
Geff becomes negative, making gravity repulsive. The same
functional dependence of Geff is responsible for the effect
interpreted as a change of signature in [49].
Finally, in the case of Λ < 0 there is a nontrivial lower

bound for ρ given by ρmin ¼ −ρΛ corresponding to points
where f ¼ 0. In the point particle analogy these are turning
points of a bound state where the kinetic energy vanishes;
here, fðλbÞ ¼ 0. For the universe these are turning points
where the universe achieves minimal regular matter density
before recollapsing into a denser regime. The other quali-
tative features at critical points remain the same as in the
previous discussion.

B. Tunneling branches (in the case of a massless
scalar field)

In Sec. IV, we have shown that the quantum theory
predicts that, in addition to the traditional bounce evoked in
the previous discussion and advocated in the LQC liter-
ature, the universe can also tunnel across the singularity
into an expanding phase. The bounce is clearly captured by
the effective equations. Can tunneling also become appar-
ent from these equations? It is possible to see this if one
considers inverse volume corrections in the matter coupling
described in Sec. III B. It is possible to see this if one
considers inverse volume corrections in the matter coupling
which are nontrivial for macroscopic universes. However,
for generic inverse volume corrections whose effects
happen in the UV, no semiclassical description is available
and the phenomenon of tunneling can only be understood
quantum mechanically.
For simplicity, we concentrate on the case of a massless

scalar field. Assuming that we are in an eigenstate of the
momentum πϕ (conserved in this case), we have already
observed that its contribution to the Hamiltonian (3.2) can
be seen as an effective potential in analogy to a non-
relativistic particle parametrization of Sec. II. However, this
contribution is now finite everywhere, as the 1=v2 classical
behavior is regularized by the Thiemann trick. This means
that there must exist solutions of the effective equations
where the universe evolves through v ¼ 0 (or the scale
factor a ¼ 0) into v < 0 without experiencing the bounce
produced by the kinetic term when the variable b reaches
the suitable critical points of fðλbÞ described above. For
this to happen the universe must scatter through the big
bang singularity “softly” in the sense that the variable b

FIG. 5. Illustration of the dynamical features from a generic
fðλbÞ when assuming Λ ≥ 0. If we require ρ ≥ 0, we have
a bound on f given by f2 ≥ ρΛ=ρ̄. Close to λb0 with
f2ðλb0Þ ¼ ρΛ=ρ̄, the function must be well approximated by
fðλbÞ ≈�λðb − b0Þ in order to recover general relativity at low
regular matter densities. We denote bounce points by B, turning
points by t.p., and fixed points where the universe becomes
asymptotically de Sitter by d.s. Note that the difference between
the two branches [given by positive and negative values of fðλbÞ]
is only apparent as the constraint (5.7) depends on f2ðλbÞ. The
effective equations do not allow the universe to go from one
branch to the other (however, in the quantum regime there could
be tunneling as discussed in Sec. IV).
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must not reach one of the critical points of fðλbÞ. This
occurs when the universe—interpreted as the point particle
—rolls down the potential

VðvÞ≡ −p2
ϕ

�
1

v2

	
reg

ð6:9Þ

in such a way that its “kinetic energy” does not grow
beyond the bound

p2
ϕ

4πGγ2
max

�
1

v2

	
reg

≤
3

γ2λ2
f2ðλbcÞ − Λ

¼ 3

γ2λ2
ðf2ðλbcÞ − f2ðλb∞ÞÞ: ð6:10Þ

We observe that, as the regularized potential is bounded, for
jpϕj sufficiently low the universe experiences (according to
the effective equations) a soft transition from v > 0 to v < 0
in finite unimodular time Δs instead of a bounce. The scale
factor crosses a ¼ 0; however, there is no singularity as one
can easily check from the effective equations (6.1) and (6.2)
and the fact that both P and ρ vanish there. Indeed, the
universe goes through a de Sitter phase where Λ dominates.
Even when a ¼ 0 is reached in finite unimodular time s, the
would-be singularity a ¼ 0 is reached at infinite comoving
time τ. If valid, the effective equations predict an infinite
number of e-folds of inflation around the soft transmission
from v > 0 to v < 0. Even when there is only one such
transition, in spirit the scenario resembles the eon transition
of conformal cyclic cosmology proposed by Penrose [50].
However, these conclusions are not accurate for inverse
volume regularizations that modify the matter coupling from
the expected classical behavior around the Planck scale only.
Concretely, if we take the standard inverse volume

correction based on ½1= ffiffiffi
v

p �1 [recall Eq. (3.14)], we obtain

max

�
1

v2

	
reg

¼ 4

λ2ℏ
; ð6:11Þ

p2
ϕ ≤ 3πl2

pðf2ðλbcÞ − f2ðλb∞ÞÞ: ð6:12Þ

However, we see that in order for the previous conclusions
to hold, the effective equations would have to be valid in the
description of the universe from v ¼ λ to v ¼ −λ. If λ is of
the order of the Planck scale, then it is clear that the details
of the dynamics evoked above (de Sitter inflation for an
unlimited number of e-folds) do not survive in the
fundamental description where the variable v jumps to
discrete values of the order of λ. However, the conclusion
that the transmission channel exists, in addition to the well-
known bouncing channel, remains. A precise analysis of
such transitions would require using a fully quantum
treatment, which is of course possible.
In this respect it is interesting to revisit the results of Sec. IV

in light of the present discussion. Notice that, qualitatively

speaking, the parameter α regulating the strength of the toy-
model potential in (4.10) is the analog ofp2

ϕ here. Even when
nonvanishing, the transmission amplitudes go to zero in the
limit α → ∞, and only the bouncing channels remain.
Consideration of the quantum theory uncovers a feature that
we evoked previously. Indeed, the criterion for soft bounce
(6.10) loses its quantitative relevance, andwe realize that even
if one considers unbounded regularizations such as the one
proposed in [46,47], therewill be awave function component
in the transmission sector in addition to the bouncing sector
for suitable initial states that probe the potential on suffi-
ciently soft points of the potential. More precisely, consider
the regularization where�

1

v2

	
reg

¼ 1

v2
∀ v ≠ 0; while

�
1

02

	
reg

¼ 0: ð6:13Þ

We study a semiclassical state defined on a lattice of v ¼ nλ
with n ∈ Z, i.e., a superposition of volume eigenstates that
will evolve on this lattice in such a way that the potential will
be probed only on such lattice points. In this case the criterion
(6.10) can be written as

p2
ϕ ≤ p2

C ≡ 12πl2
pðf2ðλbcÞ − f2ðλb∞ÞÞ; ð6:14Þ

which cannot be a sharp bound because its construction relies
on the effective dynamics. However, it remains an order-of-
magnitude criterion in the sense that as p2

ϕ becomes smaller
and p2

ϕ ≪ p2
C, the transmission probability is expected to

dominate while the bouncing probability becomes smaller
and vice versa. Indeed, a more direct dimensional analysis
argument is perhaps clearer. Assuming the change in the
functionfðλbÞ in the regionof interest is order unity [which is
approximately correct for a continuous function unless one
dramatically tunes fðλbÞ], then the criterion of softness is
very simple and boils down to the condition that8

p2
ϕ ≲ l2

p: ð6:16Þ

8It is interesting to notice that if we assume that the universe is
described by a massless scalar field before the onset of inflation,
one can estimate pϕ as follows. Using Eq. (5.9) we have

ρ ∼
p2
ϕ

V2
0a

6
: ð6:15Þ

If we assume that the density of the onset of inflation is
∼10−5m4

p—as is the case, for instance, in the power-law infla-
tionary model [51]—and we take the physical volume of the
fiducial set at the onset of inflation to be ∼102m−3

p , we obtain
p2
ϕ ∼ 10−1m−2

p ∼ 10−1l2
p. Note that a fiducial cell with a physical

volume of 102 Planck will inflate to a size much larger than the
observable universe today. For a discussion of the role of V0 in
quantum fluctuations, see [52]. This of course adds an additional
dimension to the ambiguity discussion.
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C. Violation of the NEC due to inverse
volume corrections

The NEC requires that Tabkakb ≥ 0 for any future
directed null vector. In our cosmological setting any matter
coupling can be considered a perfect fluid as demanded by
isotropy, and thus the NEC reduces to the statement that
ρþ P ≥ 0. For a scalar field model of the type considered
here (and independently of the self-interaction potential),
this condition is classically given by

ρþ P ¼ p2
ϕ

16π2G2γ2v2
; ð6:17Þ

which satisfies the NEC trivially. In the quantum theory the
NEC can be violated by the inverse volume corrections
introduced by a regularization, for instance, of the class
(3.14). As an example we plot the regularization�

1

v2

	
reg

¼
�
2

�
1ffiffiffi
v

p
	
20

−
�
1ffiffiffi
v

p
	
2

���
1ffiffiffi
v

p
	
2

�
3

ð6:18Þ

in Fig. 6, where one observes that the NECs are violated
near the big bang. Such a possibility (which is again
directly related to the ambiguities of the polymer quantiza-
tion) has a strong dynamical effect. In the special case of a
massless scalar field, the previous effect also implies a
violation of the weak and strong energy conditions in the
matter sector. When translated into the nonrelativistic
particle analogy of Sec. II, one observes that the effective
potential in the Hamiltonian (3.2) is no longer negative
definite. This implies that for a sufficiently low cosmo-
logical constant—and under suitable conditions where the
function fðλbÞ plays a role—the universe might bounce
through yet another channel due to the repulsive potential
produced by the negative energy brought about by the
regularization before reaching one of the critical points of

f0 ¼ 0. Once again, this is possible if the initial conditions
for the matter fields are sufficiently soft so that the
probability of this new channel is activated before the
standard kinetic bounce described in Sec. VI A takes place.
A simple analysis that evaluates the amount of “kinetic”
energy acquired by the universe (in the nonrelativistic
particle analogy) as it evolves towards the would-be
singularity shows that the condition is����pϕ

lp

����≲���� vcλ
����; ð6:19Þ

where vc is the value of v that maximizes the regularization
v−2jreg before the NECs are violated (explicitly seen around
v ¼ 20 in Fig. 6 in this particular example). As vc can be
made large by tuning the inverse volume regularization, the
present criterion of softness is weaker than the one for
tunneling (6.16).

D. Illustrating examples

1. Inflation induced by ambiguity parameters

In order to illustrate how the ambiguities of loop
quantum cosmology can actually affect the physics in a
nontrivial manner, in this section we show that the
modifications introduced by the function fðλbÞ can, for
instance, drive inflation for a large number of e-folds in a
way that is weakly dependent on the matter content and
dynamics and basically due to the dynamical modifications
brought about by the “holonomy corrections” in fðλbÞ. We
illustrate this with two simple models: first with a model of
a universe filled with thermal radiation and second with a
model of inflation with a scalar field with potential
UðϕÞ ¼ λϕ4=2. The first example shows that one can
get many e-folds of inflation without an inflaton. The
second contains a scalar field, but the inflation will be

FIG. 6. Regularization of the function 1=v2. The classical function corresponds to the dotted line. The regularization shown here
violates the positivity in a range around v ¼ 0 and coincides, in the IR, with the classical function, as the plot on the right illustrates. This
leads from Eq. (6.17) to violations of the NEC that, when considered in the Hamiltonian, produce a different type of bounce for suitable
initial conditions. The plot represents the regularization given in (6.18).
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driven by the effects of fðλbÞ. As a consequence, the
phenomenology observable in the CMB fluctuations can be
tuned, as we will show, by judiciously choosing the latter
function. Thus, let us consider a function fðλbÞ such that

f0ðλbÞ2 ¼

 1 b < bc

3H2
0

8πG
1

ρ½λb� b > bc;
ð6:20Þ

where from (5.1) we have

ρ½λb� ¼ ρ̄fðλbÞ2; ð6:21Þ

and continuity of fðλbÞ requires

ρ½λbc� ¼
8πG
3H2

0

≡ ρc; ð6:22Þ

with ρc a critical density depending on the choice of H0.
A solution of the differential equation (6.20) is given by

fðλbÞ ¼


λb b < bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γλ2H0ðb − bcÞ þ λ2b2c

p
b > bc:

ð6:23Þ

This choice of fðλbÞ produces the standard Friedmann
equation for ρ ≤ ρc, while it produces a Friedmann equa-
tion with a constant Hubble rate H0 (de Sitter inflation) for
ρ ≥ ρc regardless of the equations of state of matter. The
matter equations of state only control [via (5.16)] how long
the universe will remain in the inflationary phase. We
construct two explicit examples in what follows.

2. Pure radiation inflationary model

The first model consists of a universe filled with
radiation ρ ¼ 3P. In this case, from (5.16) one has that

ρ ¼ ρin
a4in
a4

: ð6:24Þ

Assuming the initial value of ρin ¼ m4
p (Planck density)

and setting ρc ¼ 10−68ρin in (6.22) to the electroweak
transition density,9 we see that inflation can be sustained
as long as

a4in
a4

≥ 10−68; ð6:25Þ

in other words, for a number of e-folds of about

N rad ¼ 17 logð10Þ ≈ 39: ð6:26Þ

Using a massless scalar field (which is an often-used
example) with the equation of state P ¼ ρ, one has

ρ ¼ ρin
a6in
a6

; ð6:27Þ

and for ρc we get N ϕ ¼ log½10�68=6 ≈ 26, which is still a
considerable number.

E. Inflation with a scalar field

It is also possible to design a model without an inflaton
using only the matter content of the standard model of
particle physics where inflation is driven by polymer
corrections. The model is consistent with the observed
fluctuations in the CMB if the usual paradigm, where
quantum fluctuations of the Higgs [with potential
UðϕÞ ¼ α

2
ϕ4] are responsible for the generation of inho-

mogeneities, is used. More precisely, starting from the
Klein-Gordon equation for the Higgs zero mode,

ϕ̈þ 3H _ϕþ 2αϕ3 ¼ 0; ð6:28Þ

and using the standard terminal velocity approximation

( ϕ̈
H _ϕ

≪ 1), the solution of (6.28) is given by

ϕðtÞ ¼ ϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

3
α

ϕ2
0

H2
0

H0t

r or ϕðN Þ ¼ ϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

3
α

ϕ2
0

H2
0

N

r ;

ð6:29Þ

where we introduced the number of e-folds N ¼
logðaÞ ≈H0t. Now, using ρ ¼ _ϕ2

2
þ α

2
ϕ4 and Eq. (6.29)

we obtain

ρðN Þ ¼ α

2

ϕ4
0h

1þ 4
3
α

ϕ2
0

H2
0

N
i
2

0B@2α

3

ϕ2
0

H2
0h

1þ 4
3
α

ϕ2
0

H2
0

N
iþ 1

1CA;

ð6:30Þ

where ϕ0 is the initial value of the scalar field. Let us
assume that we want

N ¼ 50: ð6:31Þ

Then, the previous expression must satisfy the condi-
tion (6.22). Introducing the variables y≡mp=ϕ0 and
x≡ ϕ0=H0, we can write it as

3y2

8π
¼ α

2

x2h
1þ 200α

3
x2
i
2

 
2α

3

x2h
1þ 200α

3
x2
iþ 1

!
; ð6:32Þ9The electroweak transition energy scale is Eew ≈ 100 GeV,

which corresponds to Eew ≈ 10−17mp.
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which imposes some algebraic restrictions on the initial
value ϕ0 and the Hubble rate H0. We can solve this
numerically. For instance, we find the solutions ϕ0 ≈
10mp and H0 ≈mp if we choose α ¼ 10−3 (for such a
small coupling we could solve the previous constraint
analytically, neglecting the subleading corrections in α, but
this is not really important here as we only want to give an
example). At the end of inflation ϕend ≈ 9.7mp, and the
reheating phase could start as in the usual approaches such
as those of chaotic inflation. This example is perhaps more
suitable for our point, as here the densities remain
Planckian during the inflationary phase; thus, our devia-
tions from general relativity can be more safely attributed to
“quantum gravity” effects. This is in contrast to the
previous example where densities decreased to almost
standard particle physics densities during the anomalous
expansion era. One could investigate the mechanism of
structure formation. The point of our example is to show
the intrinsic discretional nature of these models, which
precludes the possibility to actually use them for such
predictions.

VII. CONCLUSIONS

We have investigated regularization ambiguities associ-
ated with the so-called polymerization process imposed
when quantizing cosmological models using the loop
quantum cosmology framework. We showed that quanti-
tative predictability is compromised by the strong depend-
ence on free parameters. As evoked in the Introduction,
such ambiguities are expected on general grounds due to
the perturbative nonrenormalizable character of general
relativity. Nonperturbative and background-independent
methods might pave the way towards a UV completion
of quantum gravity. Yet it seems clear that these methods
can only be reliable if field theoretical degrees of freedom
are suitably taken into account. It is too naive to expect that
a simple model with finitely many degrees of freedom
could shed nontrivial light on such a central issue in
quantum gravity.
Minisuperspace models are still interesting as toy models,

where different scenarios can be put to the test in a calculable
framework. We have seen that these models offer some
qualitative features that are robust and independent of the
polymerization choice. Among these, one finds the well-
defined quantum evolution across of the big bang, which can
also be recovered at the level of effective dynamical
equations valid for suitable semiclassical states. Thanks to
the fact that our quantum dynamics could be explicitly
solved, wewere able to exhibit the existence of new channels
(tunneling) for the transition across the big bang, which are
not apparent at the level of the effective dynamical equations.
This was possible due to the use of unimodular quantum
cosmology; however, it is easy to understand that these
features hold true in the standard formulation.

An important feature of the quantum dynamics is that it
allows for the evolution of a semiclassical state represent-
ing (say) a contracting universe into a superposition of
expanding universes after the big bang. Such states (as
those represented in Fig. 2–4)—which are clearly non-
semiclassical—make apparent an old challenge that cannot
be ignored in quantum cosmology and quantum gravity
altogether: namely, how to interpret the quantum theory in a
genuinely closed system without exterior observers.
Perhaps the simplicity of the model can offer an arena
where possible interpretations can be discussed.
The richness of these models should be relevant for the

discussion of conceptual and qualitative issues in quantum
gravity: for instance, in the discussion of unitarity in the
context of the black hole information puzzle (where some
initial studies have been performed [43,44]) or in the
context of gravitational collapse where the new tunneling
modes discussed here could be simplified toy models
relevant to investigate the black to white hole transition
paradigm of [53–57]. The landscape of models is certainly
larger than the one we have explored here. In addition to the
holonomy corrections where we mostly focused our dis-
cussion, we have mentioned the inverse volume correc-
tions. There are also factor ordering ambiguities and
dynamical ambiguities related to the way in which the
passage from the so-called μ0 to μ̄ is performed. All of these
factors have an impact on the dynamical predictions of
these models. We focused on holonomy corrections
because they form an easily identifiable and manageable
infinite dimensional subclass.
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APPENDIX: SOME PROPERTIES OF GAUSSIAN
STATES IN LQC

The work of Willis and Taveras [31,59] shows that one
can approximate the quantum dynamics of loop quantum
cosmology by effective classical equations when using
suitable semiclassical states defined in terms of Gaussian
states. However, their analysis does not include the type of
generalized regularizations studied in this paper. In this
section we show that the effective dynamics approximation
continues to make sense for arbitrary regularizations of the
quantum Hamiltonian as defined in (3.2).

LANDSCAPE OF POLYMER QUANTUM COSMOLOGY PHYS. REV. D 107, 086007 (2023)

086007-19



Let us specialize to a natural choice of semiclassical
states (customarily used in the literature when studying the
issues involved here [31,59]). We choose a state jΨi ∈
H lqc ⊗ H ϕ as a Gaussian state given by

jΨi ¼
X
vn∈Γλ

Z
R
dpΨv0;b0ðvnÞΦp0;ϕ0

ðpÞjvn; pi ðA1Þ

where one uses the basis eigenstates of v and p, respec-
tively, with the (physical) inner product

hvm; p0jvn; pi ¼ δn;mδðp; p0Þ: ðA2Þ

Here, the wave function

Ψv0;b0ðvÞ ¼
ffiffiffiffiffiffiffi
λσbffiffiffi
π

p
s

e−
σ2
b
2
ðv−v0Þ2eib0ðv−v0Þ ðA3Þ

is peaked at the geometry phase space point ðv0; b0Þ, and
the wave function

Φp0;ϕ0
ðpÞ ¼

ffiffiffiffiffiffiffi
σϕffiffiffi
π

p
r

e−
σ2
ϕ
2
ðp−p0Þ2eiϕ0ðp−p0Þ ðA4Þ

represents a semiclassical state peaked at the point ðϕ0; p0Þ
of the scalar field phase space. In the previous expressions
Γλ denotes a regular lattice with lattice spacing λ that
identifies the so-called superselected sectors of the quan-
tum geometry Hilbert space (for a discussion of the nature
of such choices, see [43,44] and references therein).

1. Equivalence between calculations using
the discrete or continuum inner products

The following remark gives the means to translate
expressions involving discrete sums in the loop quantum
cosmology inner product to the more familiar continuous
integrals of the Schrödinger representation.
Remark 1. For any operatorOðb; pÞ ¼Pk okðpÞeibλk

and Gaussian semiclassical states as in (A1), one has that

hOðb; pÞi≡ hΨjOðb; pÞjΨi: ðA5Þ

Proof.—By linearity, it is enough to prove the previous
statement for the operator eikbλ for arbitrary k. One has

hΨjeikbλjΨi ¼ λσbffiffiffi
π

p
X
n;m

e−
σ2
b
2
ðλn−v0Þ2e−ib0ðλn−v0Þe−

σ2
b
2
ðλm−v0Þ2eib0ðλm−v0Þhnjm − ki

¼ λσbei2b0λkffiffiffi
π

p
X
m

e−
σ2
b
2
ðλm−λk−v0Þ2e−

σ2
b
2
ðλm−v0Þ2

¼ λσbeib0λkffiffiffi
π

p e−
1
4
σ2bλ

2k2
X
m

e−σ
2
bðλm−v0−λk2Þ2 ¼ σbeib0λkffiffiffi

π
p e−

1
4
σ2bλ

2k2ϑ3

�
−
π

2

�
kþ 2

v0
λ

�
; e

− π2

λ2σ2
b

	
¼ eib0λke−

1
4
σ2bλ

2k2
�
1þ O

�
e
− π2

λ2σ2
b

��
; ðA6Þ

where

ϑ3½u; q�≡ 1þ 2
X∞
n¼1

qn
2

cos½2nu�: ðA7Þ

In the first line we used the definition of the states, (A1) and
(4.1), and then we rearranged the sums, completing squares
to arrive at the final result.
Corollary 1. For any operator Oðλb; pÞ ¼P
k okðpÞeikbλ and Gaussian semiclassical states as in

(A1), one has

dhΨjOðλb; pÞΨi
dðλb0Þ

¼
�
dOðλb; pÞ
dðλbÞ



: ðA8Þ

The proof of the previous statement follows directly
from (A6). ▪
Corollary 2. For any operator fðλbÞ ¼Pk fke

ikbλ

and Gaussian semiclassical states as in (A1), one has

hfðbÞ2i − hfðbÞi2 ¼ 2f0ðλb0Þ2λ2σ2b þ Oðλ4σ4bÞ: ðA9Þ

Proof.—From Remark 1, we have

hfðλbÞi ¼ fðλb0Þ þ
1

4
f00ðλb0Þλ2σ2b þOðλ4σ4bÞ: ðA10Þ

The present statement follows from the previous equation
when applied to OðbÞ ¼ f2ðbÞ and OðbÞ ¼ fðbÞ,
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respectively, and by replacing the result in the expression of
the fluctuation. ▪
Corollary 3. The previous two results imply that

dhfðλbÞ2i
db0

¼ 2
dhfðλbÞi

db0
hfðλbÞi þ Oðλ2σ2Þ: ðA11Þ

2. Generating function and the expectation value
of operators depending on the volume

Remark 2. For any operatorOðb; pÞ ¼Pk okðpÞeibλk
and Gaussian semiclassical states as in (A1), one has the
generating function on the left,

hΨjejðv−v0ÞOðb; pÞjΨi
hΨjΨi ¼

X
k

okðpÞeib0ke
−1
4
σ2bλ

2k2þj2

4σ2
b

−jλk
2 þ
�
1þ O

�
e
− π2

λ2σ2
b

��
; ðA12Þ

and the generating function on the right,

hΨjOðb; pÞejðv−v0ÞjΨi
hΨjΨi ¼

X
k

okðpÞeib0ke
−1
4
σ2bλ

2k2þj2

4σ2
b

þjλk
2 þ
�
1þ O

�
e
− π2

λ2σ2
b

��
: ðA13Þ

Proof.—Consider

hΨjeikbλejðv−v0ÞjΨi ¼ λσbffiffiffi
π

p
X
n;m

e−
σ2
b
2
ðλn−v0Þ2e−ib0ðλn−v0Þe−

σ2
b
2
ðλm−v0Þ2eib0ðλm−v0Þejðλm−v0Þhnjm − ki

¼ eib0ke
−1
4
σ2bλ

2k2þj2

4σ2
b

þjλk
2

�
1þ O

�
e
− π2

λ2σ2
b

��
; ðA14Þ

where in the second line we completed the square and
performed the Gaussian integration. Equation (A13)
follows from the last line. A similar manipulation
gives (A12). ▪

3. Some statements about the truncation
of the Fourier expansion

Given a bounded square integrable function fðλbÞ of
period 2π, we can write

fðλbÞ ¼
X
n∈Z

aneinλb; ðA15Þ

with the coefficients an given by

an ¼
1

2π

Z
2π

0

fðλbÞe−inλbdðλbÞ; ðA16Þ

which can be bounded by

janj ≤ fmax; ðA17Þ

where fmax ≡max jfðλbÞj. Let us define the truncated
function as

fNðλbÞ ¼
XþN

n¼−N
an einλb: ðA18Þ

Remark 3. When evaluated on Gaussian states (A1),
one has that

jhfðλbÞi − hfNðλbÞij
≤ 2fmaxe

−σ2bλ
2N2ð1þOðe−σ2bλ2ÞÞ: ðA19Þ

Therefore, the expectation value of the full series and
the truncation agree extremely well as N grows. We can
say the difference between the two will be negligible as
long as

λ2σ2bN
2 > 1 : ðA20Þ
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Proof.—It follows from Remark 2 that

jhfðλbÞi − hfNðλbÞij ¼
����X
jnj>N

aneinλb0e
−σ2bλ

2n2
���� ≤ 2

Xþ∞

n¼Nþ1

janje−σ2bλ2n2 ¼ 2e−σ
2
bλ

2N2
Xþ∞

n¼Nþ1

janje−σ2bλ2ðn2−N2Þ

≤ 2e−σ
2
bλ

2N2
Xþ∞

n¼Nþ1

janje−σ2bλ2ðn−NÞ2 ¼ 2e−σ
2
bλ

2N2
Xþ∞

m¼1

jamþN je−σ2bλ2m2

≤ 2fmaxe−σ
2
bλ

2N2ð1þ Oðe−σ2bλ2ÞÞ: ðA21Þ

▪

Corollary 4. For a given function fðλbÞ and Gaussian
states (A1), we have

hfNðλbÞi ≈ fðλb0Þ ðA22Þ

as long as

1

N2
< λ2σ2b <

���� 4fðλb0Þf00ðλb0Þ
���� ðA23Þ

which can be achieved for sufficiently large N. We there-
fore arrive at the conclusion that for any arbitrary function
fðλbÞ we can find N and σp such that the Gaussian

expectation value agrees to the desired accuracy with the
function of our choice satisfying the minimal require-
ment (3.3).
Remark 4. remyy For arbitrary operators OðβbÞ, the

following time evolution rule holds:

dhOðβbÞi
ds

≡ −ih½OðβbÞ;H�i

¼ V0

4πGγ

hp2
ϕi

πGγv30

dhOðβbÞi
db0

þO

�
β2

v40

�
; ðA24Þ

where one needs to assume that v0 ≫ σb and v0 ≫ N.
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