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We have extended our previous work [A. Srivastav and S. Gangopadhyay, Phys. Rev. D 104, 126004
(2021)] on rotating holographic superfluids to include Lifshitz scaling. The presence of this scaling breaks
relativistic invariance of the boundary superfluid system and indicates the existence of a Lifshitz fixed point
[S. Kachru, X. Liu, and M. Mulligan, Phys. Rev. D 78, 106005 (2008)]. We have analytically shown that we
still get same vortex solutions as discovered earlier in [Phys. Rev. D 104, 126004 (2021)]. We have recovered
previous results for the case of z ¼ 1, which restores the relativistic invariance in the holographic superfluid
system. However, for z ≠ 1 this study indicate surprising results regarding dissipation in such a holographic
superfluid. We found that higher winding number vortices increase with higher values of imaginary chemical
potential for values of z in the open interval (1, 2). This result is remarkable because it asserts that dissipation
in the rotating holographic superfluid increases in the presence of Lifshitz scaling.

DOI: 10.1103/PhysRevD.107.086005

I. INTRODUCTION

Applied gauge/gravity duality has been a subject of
interest for the past two decades [1–4]. It has been
tremendously useful in understanding various strongly
coupled condensed matter systems where perturbative
techniques of standard quantum field theory have almost
no access [5]. Apart from condensed matter applications,
this duality has provided insights in QCD and cosmology as
well [1]. Holographic superconductor [6,7] and superfluid
models [8], which mimic the properties of unconventional
superconductors and superfluids, have been explored exten-
sively over the past few years [9–18]. In particular, vortex
structure and its dynamics in holographic superfluids and
superconductors were studied in various phenomenologi-
cal settings on the gravity side [19–28]. Existence of
vortices is one of the important properties of superfluids
under rotation and a variety of vortices have been observed
in experiments [29,30]. Recently, we have also analyzed
such a rotating holographic superfluid model where we
had built novel vortex solutions and showed that dissipa-
tion in this model increases with an increase in imaginary
chemical potential [31].

In condensed matter physics, however, there exists a class
of systems which do not have relativistic symmetry and thus
shows a dynamic scaling (z ≠ 1) near phase transition [32].
For such nonrelativistic theories, a gravity dual geometry
was constructed in [33] for z ¼ 2 and was subsequently
generalized for other values of z [34,35]. These gravity
geometries are known as Lifshitz geometries which admit
following scaling symmetry,

t → λzt; xi → λxi: ð1Þ

Gravity dual models constructed out of this geometry are
known as Lifshitz holographic models. Lifshitz holographic
models of unconventional superconductors have also been
analyzed in the past [36,37]. Our interest in this paper is to
generalize vortices built in [31] for Lifshitz holographic
model of rotating superfluids. It should be noted from Eq. (1)
that Lifshitz holographic model reduces to standard AdS
holographic model for z ¼ 1 where relativistic symmetry is
restored. In this paper we have considered a disc of radius R
at the spacetime boundary and allowed the superfluid to
rotate. As mentioned in [31], it gives an equivalent descrip-
tion for the static superfluid in a rotating disc. It is known
that rotating holographic superfluid admits a vortex state
above a critical value of the rotation. It has been numerically
shown in [19] that above this critical rotation, vortices get
excited in the rotating holographic superfluid system. Here
we have analytically studied such vortex structure near to
this critical rotation in rotating Lifshitz holographic super-
fluid. In this model also, we have found that chemical
potential needs to be purely imaginary for condensate to be
real. A holographic model of QCD has been explored with
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imaginary chemical potential in [38] in the past. The
dissipative nature of imaginary chemical potential in con-
densed matter system has also been suggested in a previous
study [39].
In this analysis we have found that vortices remain

unaffected by Lifshitz scaling z. This imply that we again
get the same vortex solutions at the boundary disc as the
ones obtained in [31] for any value of z. Also linear relation
between winding number of vortices and the angular
velocity of the rotating superfluid hold irrespective of the
value of dynamical exponent z. However, Lifshitz scaling
does change dissipative nature of vortex state in this model
strongly. For z ¼ 1, results in this model are in agreement
with [31]. That is increase in imaginary chemical potential
reduces higher winding number vortices and thereby
reduces dissipation in the system. We have obtained a
remarkably opposite behavior in case of z ≠ 1. It turns out
that for such a nonrelativistic situation, increase in imagi-
nary chemical potential increases higher winding number
vortices and hence dissipation in rotating Lifshitz holo-
graphic superfluids also increases. In other words, key
finding of this work is that presence of imaginary chemical
potential supports dissipation through vortex state for non-
relativistic holographic superfluids whereas for relativistic
holographic superfluids it opposes such a dissipation. It
should be noted that we have considered z to be in the
interval [1, 2), that is, our analysis does not capture the
behavior of rotating Lifshitz holographic superfluid with
the dynamic scaling exponent z ¼ 2. This is because for
z ¼ 2 there is logarithmic divergence in the gauge fields at
the spacetime boundary which needs separate attention. We
have left the analysis of this case for future works.
This paper has been organized in the following manner.

Section II introduces a holographic superfluid model in a
(3þ 1)-dimensional Lifshitz spacetime with a static black
hole. Near critical angular velocity for a rotating container,
we have built vortex solutions in Sec. III. In Sec. IV, Stürm-
Lioüville eigenvalue approach has been used to analyze this
model in bulk direction. This paper ends with Sec. V where
we have discussed our final observations in this study and
commented on the results. There are also Appendices
containing some plots of Ω vs μ for different values of z
lying between 1 and 2. Figures 4–9 are cited in Appendix.

II. SETTING UP HOLOGRAPHIC
SUPERFLUID MODEL

We consider the following matter action for a holo-
graphic superfluid,

S ¼ l2

16πGe2

Z
M

d4x

�
−
1

4
F2 − jDΨj2 −m2Ψ2

�
ð2Þ

where l is the radius of curvature of the spacetime
geometry, e is charge, G is Newton’s constant, m is mass
of the scalar field and F2 ≡ FμνFμν. Also Faraday tensor

and covariant derivative are given by Fμν ¼ ∂½μAν� and
Dμ ¼ ∇μ − ieAμ respectively. In this paper, we shall be
working in the probe limit. In this limit, matter sector is
assumed to be nonbackreacting with the black hole back-
ground. This can be achieved mathematically by rescaling

scalar and gauge fields with the charge e as Aμ →
Aμ

e and
Ψ → Ψ

e , and then taking limit e → ∞. It is equivalent to set
e ¼ 1 in this model.
We study this holographic superfluid model in a (3þ 1)-

dimensional black hole spacetimewith the scaling symmetry
given by Eq. (1), where z is known as the dynamical
exponent. Such a black hole spacetime is realized by the
following metric [32],

ds2 ¼ −
fðuÞ
u2z

dt2 þ du2

fðuÞu2 þ
1

u2
ðdr2 þ r2dθ2Þ: ð3Þ

The blackening factor is given by fðuÞ ¼ ð1 − uzþ2Þ. We
have set l and 16πG to be unity for convenience and the
bulk direction has been scaled in such a way that u ¼ 0 is
the spacetime boundary and u ¼ 1 represents the event
horizon of the black hole. The boundary coordinates ðr; θÞ
define a 2-dimensional flat disc. Notice that setting z ¼ 1
in the above metric restores AdSð3þ1Þ black hole spacetime
structure.
We now rewrite the metric in Eddington-Finkelstein (EF)

coordinates as below,

ds2 ¼ −
fðuÞ
u2z

dt2 −
2

uzþ1
dtduþ 1

u2
ðdr2 þ r2dθ2Þ: ð4Þ

We have redefined the EF-time label to t for notational
simplicity. Equations of motion for the matter and the
gauge fields are given by,

ðD2 −m2ÞΨ ¼ 0 ð5Þ

∇νFμ
ν ¼ jμ ≔ ifðDμΨÞ†Ψ −ΨðDμΨÞg: ð6Þ

We assume no explicit time dependency in this model so
that all the fields remain stationary. This assumption is
justified because we are interested in equilibrium analysis
of the rotating superfluid system. In addition to it, we shall
be working in the axial gauge, that is, Au ¼ 0. With these
conditions, Eq. (5) reduces to the following equation,

�
DðuÞ þDðrÞ þ 1

r2
DðθÞ

�
Ψðu; r; θÞ ¼ 0: ð7Þ

The derivative operators are given by,
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DðuÞ≡uzþ1
∂u

�
fðuÞ
u2

∂u

�
þ iuzþ1

∂u

�
At

u2

�
þ iuz−1At∂u−

m2

u2

DðrÞ≡1

r
∂rðr∂rÞ−

i
r
∂rðrArÞ− iAr∂r−A2

r

DðθÞ≡∂
2
θ− ið∂θAθþAθ∂θÞ−Aθ

2:

We would like to point out here that the information about
dynamical exponent z is solely contained in the derivative
operator along bulk direction u. The other two derivative
operators (along boundary coordinates r and θ) remain
same as that were in previous study in AdS black hole
spacetime model [31].

III. THE HOLOGRAPHIC VORTEX

We are interested in the equilibrium state of this rotating
holographic system where vortices exist. As we know that
after a critical value of rotation parameter vortices are
expected to appear in the holographic superfluid system,
we define a deviation parameter, ϵ, from this critical value
of rotation, Ωc, by the following relation,

ϵ ≔
Ω −Ωc

Ωc
ð8Þ

whereΩ is considered to be the constant angular velocity of
the disc. It has been argued in [19] that the superfluid and
the boundary disc have a relative velocity and, hence, a
static superfluid in a rotating boundary disc could be
replaced by a rotating superfluid in a static disc. We have
pursued this latter scenario.
To study this system very near to critical rotation

velocity, we series expand all the fields and currents in
the following manner [21],

Ψðu; r; θÞ ¼ ffiffiffi
ϵ

p ðΨ1ðu; r; θÞ þ ϵΨ2ðu; r; θÞ þ � � �Þ ð9Þ

Aμðu; r; θÞ ¼ ðAð0Þ
μ ðu; r; θÞ þ ϵAð1Þ

μ ðu; r; θÞ þ � � �Þ ð10Þ

jμðu; r; θÞ ¼ ϵðjð0Þμ ðu; r; θÞ þ ϵjð1Þμ ðu; r; θÞ þ � � �Þ: ð11Þ

A. Lowest order solutions near spacetime boundary

In axial gauge, the lowest order solutions for gauge fields
that generate rotation field and the chemical potential are
given by following relations,

Að0Þ
t ðuÞ ¼ μð1 − u2−zÞ; ðz < 2Þ ð12Þ

Að0Þ
r ¼ 0; Að0Þ

θ ðrÞ ¼ Ωr2: ð13Þ

Að0Þ
r ¼ 0 restricts the superfluid flow in radial direction and

Að0Þ
θ introduces rotation into the superfluid. It should be

noted that z ¼ 2 case is nontrivial due to logarithmic

divergence in the Að0Þ
t ðuÞ near the spacetime boundary

and needs a separate investigation which is extremely
difficult to deal with analytically. Hence, we keep ourselves
restricted to values of z in the interval [1,2).
Considering these lowest order solutions for fields near

the spacetime boundary, we rewrite Eq. (7) for lowest order
in ϵ,

�
Dð0ÞðuÞ þDð0ÞðrÞ þ 1

r2
Dð0ÞðθÞ

�
Ψ1ðu; r; θÞ ¼ 0 ð14Þ

such that the derivative operators become,

Dð0ÞðuÞ≡ uzþ1
∂u

�
fðuÞ
u2

∂u

�
þ iuzþ1

∂u

�
Að0Þ
t

u2

�

þ iuz−1Að0Þ
t ∂u −

m2

u2

Dð0ÞðrÞ≡ 1

r
∂rðr∂rÞ

Dð0ÞðθÞ≡ ∂
2
θ − ið∂θAð0Þ

θ þ Að0Þ
θ ∂θÞ − Að0Þ2

θ :

Using method of variable separation to solve Eq. (14) and
writing Ψ1ðu; r; θÞ as a function of u and ðr; θÞ separately
as below,

Ψ1ðu; r; θÞ ¼ ΦðuÞξðr; θÞ ð15Þ

Eq. (14) provides the following separated equations,

Dð0ÞðuÞΦðuÞ ¼ λΦðuÞ ð16Þ
�
Dð0ÞðrÞ þ 1

r2
Dð0ÞðθÞ

�
ξðr; θÞ ¼ −λξðr; θÞ ð17Þ

where λ is some unknown separation constant.
Equations (16) and (17) are eigenvalue equations with
eigenvalue λ. It has been pointed out earlier that the
information about dynamical exponent is only in the
equation of motion along bulk direction, that is Eq. (16).
However, the equation on the boundary disc, that is Eq. (17),
remains same as in [31] and hence, needs no separate
investigation.

B. Vortex solution

In this subsection we shall write the vortex solutions
obtained in [31] and list important properties associated
with these solutions. The vortex solutions are given as,

ξðr; θÞ ¼ ηp;nðrÞeipθ ¼ a0e−Ωr
2=2Fp;nðrÞeipθ ð18Þ

where p ∈ Z for single valuedness of the solution and
λ ¼ 2Ωðnþ 1Þ and,
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Fp;nðrÞ ¼ rp
�
1þ a2

a0
r2 þ a4

a0
r4 þ � � � þ an

a0
rn
�
:

The coefficients ai can be determined from a recurrence
relation given by Eq. (26) of [31]. We make following
observations regarding these vortices.
(1) These solutions are rotationally symmetric and are

subject to Neumann boundary conditions given by,

∂rηpjr¼0 ¼ 0 ¼ ∂rηpjr¼R ð19Þ

where R is the radius of the disc boundary.
(2) For the case of n ¼ 0, these boundary conditions

imply the quantization of the angular velocity via
Ω ¼ p

R2 for all the values of p > 1.
(3) For the case of n ¼ 2, boundary conditions again

restrict p > 1. However, a linear relation between Ω
and p is obtained for large values of p.

Figure 1, taken from [31], shows some of these vortex
solutions for n ¼ 0.

IV. STÜRM-LIOÜVILLE EIGENVALUE ANALYSIS

We shall now solve Eq. (16) using Stürm-Lioüville
eigenvalue approach for the eigenvalue λ ¼ 2Ω corre-
sponding to the vortex solutions with n ¼ 0. Near the
critical chemical potential (μ ∼ μc), we may take the ansatz
for the lowest order gauge fields,

Að0Þ
t ðuÞ ¼ μ; Að0Þ

r ¼ 0; Að0Þ
θ ðrÞ ¼ Ωr2: ð20Þ

For simplicity, we shall consider m2 ¼ −2z and Δ ¼ z.
With these considerations, we get,

uzþ1
∂u

�
1 − uzþ2

u2
∂uΦðuÞ

�
þ iuzþ1

∂u

�
μ

u2
ΦðuÞ

�

þ iuz−1μ∂uΦðuÞ þ 2z
u2

ϕ ¼ 2ΩΦðuÞ: ð21Þ

Further we simplify Eq. (21) as,

uz−1ð1 − uzþ2Þ∂2uΦ − ðzu2z þ 2uz−2 − 2iμuz−1Þ∂uΦ

−
�
2Ω −

2z
u2

þ 2iμuz−2
�
Φ ¼ 0: ð22Þ

We may now write ΦðuÞ near AdS boundary (u → 0),

ΦðuÞ ≃ hOiuzΛðuÞ

such that ΛðuÞ is subjected to the following boundary
conditions,

Λð0Þ ¼ 1; ∂uΛð0Þ ¼ 0: ð23Þ

Substituting this form of ΦðuÞ in Eq. (22), we get an
equation for ΛðuÞ,

ð1− uzþ2ÞΛ00 þ
�
2ðz− 1Þ

u
− 3zuzþ1 þ 2iμ

�
Λ0

þ
�
zðz− 3Þ

u2
þ 2iμðz− 1Þ

u
þ 2z
uzþ1

−
2Ω
uz−1

− z2uz
�
Λ ¼ 0:

ð24Þ

Here 0 denotes derivative with respect to u in above
equation. Equation (24) implies that μ must be purely
imaginary for Λ to be real. Hence, we set ReðμÞ ¼ 0 and
ImðμÞ ¼ μI in above equation. For notational simplicity
we shall still denote μI with μ in the following discussion.
With this imaginary chemical potential, Eq. (24) takes the
following form,

ð1− uzþ2ÞΛ00 þ
�
2ðz− 1Þ

u
− 3zuzþ1 − 2μ

�
Λ0

þ
�
zðz− 3Þ

u2
−
2μðz− 1Þ

u
þ 2z
uzþ1

−
2Ω
uz−1

− z2uz
�
Λ ¼ 0:

ð25Þ

To put Eq. (25) in Stürm-Lioüville form, we use the
integrating factor,

RðuÞ ¼ uz−1 exp

�
−2μ

Z
du

ð1 − uzþ2Þ
�

ð26Þ

We may now cast Eq. (25) in the Stürm-Lioüville form,

ðPðuÞΛ0ðuÞÞ0 þQðuÞΛðuÞ þ ΓSðuÞΛðuÞ ¼ 0 ð27Þ

2 4 6 8 10
r
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2,0

2 4 6 8 10
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2 4 6 8 10
r

200
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r

2000

4000

6000

8000

3,0
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FIG. 1. Unnormalized lowest order (n ¼ 0) vortex solutions
for different winding numbers. (The value of R is set to be equal
to 10).
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where eigenvalue Γ ¼ Ω could be obtained using follow-
ing integral,

Ω ¼
R
1
0 duðPðuÞðΛ0ðuÞÞ2 −QðuÞΛ2ðuÞÞR

1
0 duSðuÞΛ2ðuÞ : ð28Þ

Also, the Stürm-Lioüville coefficient functions PðuÞ,
QðuÞ, and SðuÞ are given as,

PðuÞ ¼ uz−1ð1 − uzþ2ÞRðuÞ

QðuÞ ¼ uz−1
�
zðz − 3Þ

u2
−
2μðz − 1Þ

u
þ 2z
uzþ1

− z2uz
�
RðuÞ

SðuÞ ¼ −2RðuÞ: ð29Þ

Note that the integral in Eq. (26) can be performed exactly
to obtain,

RðuÞ¼ uz−1 exp

�
−2μu2F1

�
1;

1

zþ2
;
zþ3

zþ2
;uzþ2

��
: ð30Þ

2F1ða; b; c; xÞ is the hypergeometric function given by,

2F1ða; b; c; xÞ ¼
X∞
n¼0

ðaÞnðbÞn
ðcÞn

xn

n!
ð31Þ

where ðmÞn ≡mðmþ 1Þ…ðmþ n − 1Þ.
We now consider a trial function for ΛðuÞ of the form,

ΛαðuÞ ¼ ð1 − αu2Þ

which satisfies the given boundary conditions, that is,
Λð0Þ ¼ 1, ∂uΛð0Þ ¼ 0. With this trial function, we have
to extremize Ωα with respect to α,

Ωα ¼
R
1
0 duðPðuÞðΛ0

αðuÞÞ2 −QðuÞΛ2
αðuÞÞR

1
0 duSðuÞΛ2

αðuÞ
: ð32Þ

A. Analysis for z= 1

Let us first consider the case for dynamical exponent
z ¼ 1. In this case, Eq. (3) shows that bulk spacetime
becomes AdSð3þ1Þ black hole spacetime, which is exactly
the one that we have analyzed in [31]. Near AdS boundary
(u → 0) we know that ΦðuÞ ≃ hOiuΛðuÞ, which is the
same as in this case with z ¼ 1. So we get the following
Stürm-Lioüville form to solve for,

ðPðuÞΛ0ðuÞÞ0 þQðuÞΛðuÞ þ ΓSðuÞΛðuÞ ¼ 0 ð33Þ

where eigenvalue Γ ¼ Ω and,

PðuÞ ¼ ð1 − u3ÞRðuÞ
QðuÞ ¼ −uRðuÞ
SðuÞ ¼ −2RðuÞ: ð34Þ

The integrating factor in this case is given as,

RðuÞ ¼ exp

�
−2μ u2F1

�
1;
1

3
;
4

3
; u3

��
: ð35Þ

We solve this problem by considering the trial function
as discussed above. Also, near AdS boundary u → 0, we
further approximate integrating factor RðuÞ in the following
manner,

RðuÞ ≃
�
1 − 2μ u2F1

�
1;
1

3
;
4

3
; u3

��
: ð36Þ

Figure 2 shows the variation of extremizedΩ≡Ωα¼α� with
the increasing value of imaginary chemical potential, μ.
Note that three color plots in the figure represent three
different orders up to which we have approximated the
hypergeometric function in Eq. (36) for calculations.
Orange plot is obtained with lowest order approximation
while blue and green plots result from next consecutive
orders of approximation. We shall follow this color scheme
throughout this paper. A few observations are in order
regarding this graph which we enumerate below.
(1) This graph between Ω and μ shows the same

decreasing pattern as in [31].
(2) Viewed in conjunction with Ω ¼ p

R2, this analysis
shows that for AdSð3þ1Þ holographic superfluid
model analyzed near equilibrium, presence of μ
opposes the formation of higher winding number
vortices.

(3) As is well known in gauge/gravity duality that
vortices in holographic superfluid provide mecha-
nism for external perturbations to decay through
black hole horizon and hence represent dissipation
in such gravity dual systems, this graph suggests that

FIG. 2. Ω vs μ for z ¼ 1.
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for z ¼ 1 case, as Ω decreases with increase in μ,
hence μ supports less dissipation in the system.

B. Analysis for z ≠ 1

In this case, the Stürm-Lioüville form of the equation is
given by Eq. (27) and the value of z lies in the interval
(1, 2). Notice that z ≠ 2 because of logarithmic divergence
of the fields at the boundary u → 0. With the assumed trial
function ΛαðuÞ ¼ ð1 − αu2Þ, we need to extremize the
following eigenvalue integral,

Ωα ¼
R
1
0 duðPðuÞðΛ0

αðuÞÞ2 −QðuÞΛ2
αðuÞÞR

1
0 duSðuÞΛ2

αðuÞ
: ð37Þ

where

PðuÞ ¼ uz−1ð1 − uzþ2ÞRðuÞ

QðuÞ ¼ uz−1
�
zðz − 3Þ

u2
−
2μðz − 1Þ

u
þ 2z
uzþ1

− z2uz
�
RðuÞ

SðuÞ ¼ −2RðuÞ: ð38Þ

Here we shall use the following approximated form of
Eq. (30),

RðuÞ ¼ uz−1
�
1− 2μu2F1

�
1;

1

zþ 2
;
zþ 3

zþ 2
;uzþ2

��
: ð39Þ

In Fig. 3, we have shown the variation of extremized
values of Ω against imaginary chemical potential μ for
z ¼ 3

2
by considering three orders of approximation of

2F1ð1; 1
zþ2

; zþ3
zþ2

; uzþ2Þ. As we have mentioned, color codes
remain same. Let us summarize the key observations from
this graph.
(1) For z ¼ 3

2
, Ω shows an increasing pattern with μ

unlike in the previous case for z ¼ 1.

(2) This behavior implies that for a holographic super-
fluid with Lifshitz geometry and dynamical expo-
nent z ¼ 3

2
, higher winding number solutions are

more favorable with increasing value of μ.
(3) In terms of dissipation in such a rotating holographic

superfluid, we conclude from this result that higher
values of μ introduce more dissipation in the
presence of Lifshitz fixed points (in gauge/gravity
duality Lifshitz geometry of the bulk theory is dual
to a boundary theory with Lifshitz fixed point.).

(4) Same increasing trend for Ω with μ is obtained for
other values of z in the interval (1, 2). Cases with
z ¼ f1.1; 5

4
; 7
4
g are shown in Figs. 4–6 inAppendixA.

V. CONCLUSION AND REMARKS

In this work we have studied the properties of Lifshitz
scaling in the holographic superfluid model under rota-
tion. We have explicitly shown that for z ¼ 1 our results
match with [31]. Although vortex structure at the boun-
dary disc remains same for all the values of z, Lifshitz
holographic system differs significantly from the holo-
graphic superfluid model in AdS black hole spacetime. In
fact, for 1 < z < 2 we get remarkably different trend
between Ω and μ. Our analysis shows that presence of
Lifshitz scaling in holographic superfluids does allow
vortex formation if we put it under rotation. However, high
values of the chemical potential μ support the formation of
higher winding number vortices. This implies that for
holographic superfluids with Lifshitz scaling, μ increases
dissipation in the system unlike in the case for AdS black
hole model where it has been shown in [31] that μ
suppresses dissipation by disfavoring the formation of
high winding number vortices. Because presence of
Lifshitz scaling breaks the relativistic invariance, gravity
model built using Lifshitz geometry is dual to nonrela-
tivistic boundary superfluid system. In this context we
may conclude from this analysis that μ favors the
dissipative vortex state for the nonrelativistic superfluids
having Lifshitz scaling symmetry whereas for relativistic
boundary superfluid systems, presence of imaginary
chemical potential opposes the dissipation as Ω decreases
with increase in μ [31]. We have also checked the
robustness of our results for a different choice of trial
function as well. Results obtained in that analysis are
shown in Figs. 7–9 in Appendix B which show that the
qualitative difference between relativistic and nonrelativ-
istic cases remain same.
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APPENDIX A: SOME MORE PLOTS OF Ω vs μ
FOR VALUES OF z LYING BETWEEN 1 AND 2

APPENDIX B: Ω vs μ PLOTS FOR TRIAL
FUNCTION ΛαðuÞ= ð1−αuz + 1Þ

We have considered another trial function, which is also
well behaved with the given boundary conditions for ΛαðuÞ
given in Eq. (23). In this case also, we have followed the
same analysis as given in Sec. IV and obtained the plots
between Ω and μ for different values of z. We have found

FIG. 4. Ω vs μ for z ¼ 1.1.

FIG. 5. Ω vs μ for z ¼ 5
4
.

FIG. 6. Ω vs μ for z ¼ 7
4
.

FIG. 7. Ω vs μ for z ¼ 1.

FIG. 8. Ω vs μ for z ¼ 1.1.

FIG. 9. Ω vs μ for z ¼ 3
2
.
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that the qualitative behavior of these plots does not change
implying that even with this trial function we get drastically
different behavior for the relativistic (z ¼ 1) and non-
relativistic (z ≠ 1) holographic superfluids. Below we have

provided plots for z ¼ f1; 1.1; 3=2g for this choice of trial
function where color codes have same meaning as before
and show different orders of approximation for hyper-
geometric function in Eq. (39).
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Rev. D 106, L081902 (2022).

[29] O. V. Lounasmaa and E. Thuneberg, Proc. Natl. Acad. Sci.
U.S.A. 96, 7760 (1999).

[30] G. E. Volovik, Phys. Usp. 58, 897 (2015).
[31] A. Srivastav and S. Gangopadhyay, Phys. Rev. D 104,

126004 (2021).
[32] Y. Bu, Phys. Rev. D 86, 046007 (2012).
[33] S. Kachru, X. Liu, and M. Mulligan, Phys. Rev. D 78,

106005 (2008).
[34] G. Bertoldi, B. A. Burrington, and A. Peet, Phys. Rev. D 80,

126003 (2009).
[35] M. Taylor, arXiv:0812.0530v1.
[36] M. Natsuume and T. Okamura, Phys. Rev. D 97, 066016

(2018).
[37] A. Lala, Phys. Lett. B 735, 396 (2014).
[38] K. Ghoroku, K. Kashiwa, Y. Nakano, M. Tachibana, and

F. Toyoda, Phys. Rev. D 102, 046003 (2020).
[39] G. E. Cragg and A. K. Kerman, Phys. Rev. Lett. 94, 190402

(2005).

ANKUR SRIVASTAV and SUNANDAN GANGOPADHYAY PHYS. REV. D 107, 086005 (2023)

086005-8

https://doi.org/10.1007/978-4-431-55441-7
https://doi.org/10.1007/978-4-431-55441-7
https://doi.org/10.1007/s11433-015-5676-5
https://doi.org/10.1007/s11433-015-5676-5
https://doi.org/10.1088/0264-9381/26/22/224002
https://doi.org/10.1088/0264-9381/26/22/224002
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1088/1126-6708/2008/12/015
https://doi.org/10.1088/1126-6708/2008/12/015
https://doi.org/10.1088/1751-8113/42/34/343001
https://doi.org/10.1007/JHEP05(2012)002
https://doi.org/10.1007/JHEP05(2012)002
https://doi.org/10.1007/JHEP05(2012)156
https://doi.org/10.1007/JHEP05(2012)156
https://doi.org/10.1016/j.physletb.2013.06.027
https://doi.org/10.1140/epjc/s10052-016-4005-0
https://doi.org/10.1140/epjc/s10052-016-4005-0
https://doi.org/10.1103/PhysRevD.80.084031
https://doi.org/10.1140/epjc/s10052-019-6834-0
https://doi.org/10.1140/epjc/s10052-019-6834-0
https://doi.org/10.1140/epjc/s10052-020-7769-1
https://doi.org/10.1140/epjc/s10052-020-7769-1
https://doi.org/10.1103/PhysRevD.87.104001
https://doi.org/10.1140/epjc/s10052-016-4005-0
https://doi.org/10.1140/epjc/s10052-016-4005-0
https://doi.org/10.1209/0295-5075/118/31001
https://doi.org/10.1209/0295-5075/118/31001
https://doi.org/10.1103/PhysRevD.100.061901
https://doi.org/10.1103/PhysRevD.100.061901
https://doi.org/10.1126/science.1233529
https://doi.org/10.1126/science.1233529
https://doi.org/10.1103/PhysRevD.81.026002
https://doi.org/10.1103/PhysRevD.81.026002
https://doi.org/10.1103/PhysRevLett.103.091601
https://doi.org/10.1103/PhysRevLett.103.091601
https://doi.org/10.1088/1126-6708/2008/09/121
https://doi.org/10.1088/1126-6708/2008/09/121
https://doi.org/10.1103/PhysRevD.80.126009
https://doi.org/10.1103/PhysRevD.80.126009
https://arXiv.org/abs/0906.0519v1
https://doi.org/10.1007/JHEP02(2020)104
https://doi.org/10.1007/JHEP02(2020)104
https://doi.org/10.1103/PhysRevD.105.L021901
https://doi.org/10.1103/PhysRevD.106.L081902
https://doi.org/10.1103/PhysRevD.106.L081902
https://doi.org/10.1073/pnas.96.14.7760
https://doi.org/10.1073/pnas.96.14.7760
https://doi.org/10.3367/UFNe.0185.201509h.0970
https://doi.org/10.1103/PhysRevD.104.126004
https://doi.org/10.1103/PhysRevD.104.126004
https://doi.org/10.1103/PhysRevD.86.046007
https://doi.org/10.1103/PhysRevD.78.106005
https://doi.org/10.1103/PhysRevD.78.106005
https://doi.org/10.1103/PhysRevD.80.126003
https://doi.org/10.1103/PhysRevD.80.126003
https://arXiv.org/abs/0812.0530v1
https://doi.org/10.1103/PhysRevD.97.066016
https://doi.org/10.1103/PhysRevD.97.066016
https://doi.org/10.1016/j.physletb.2014.06.081
https://doi.org/10.1103/PhysRevD.102.046003
https://doi.org/10.1103/PhysRevLett.94.190402
https://doi.org/10.1103/PhysRevLett.94.190402

