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We investigate multipartite entanglement for quantum states of 3D space geometry, described via
generalized random spin networks with fixed areas, in the context of background independent approaches
to quantum gravity. We focus on entanglement negativity as a well defined witness of quantum correlations
for mixed states, in our setting describing generic subregions of the boundary of a quantum 3D region of
space. In particular, we consider a generic tripartition of the boundary of an open spin network state and we
compute the typical Rényi negativity of two boundary subregions A and B immersed in the environment C,
explicitly for a set of simple open random spin network states. We use the random character of the spin
network to exploit replica and random average techniques to derive the typical Rényi negativty via a
classical generalized Ising model correspondence generally used for random tensor networks in the large
bond regime. For trivially correlated random spin network states, with only local entanglement between
spins located on the network edges, we find that typical log negativity displays a holographic character, in
agreement with the results for random tensor networks, in large spin limit. When nonlocal bulk
entanglement between intertwiners at the vertices is considered the negativity increases, while at the
same time the holographic scaling is generally perturbed by the bulk contribution.
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I. INTRODUCTION

In the last decade, exciting new insights toward the
problem of the emergence of classical spacetime geometry
in quantum gravity came from ideas and tools of quantum
information theory, under the radical perspective that
classical spacetime might emerge from the entanglement
of the degrees of freedom of a nonperturbative quantum
level of description [1–11]. The idea of entanglement as the
fabric of spacetime and its interplay with holography is
advanced in the framework of the AdS=CFT correspon-
dence [12], as a natural consequence of the holographic
entropy formula of Ryu and Takayanagi (the RT formula
hereafter) and Maldacena’s extended black hole pic-
ture [13–15], which together suggested the possibility of

reconstructing spacetime geometry in terms of a hierarchy
of correlations of the holographic dual CFT state.
In this context, quantitative studies of spacetime

reconstruction from entanglement have been carried on
for discretized toy models of holography, initially identify-
ing specific tensor network MERA [16] decompositions of
theCFT statewith bulkAdS-like discrete geometry [17–22].
Diverse classes of tensor network states satisfying the RT
formula, like the quantum error-correcting HaPPY code [23],
perfect tensors and their generalizations in terms of random
tensor networks [22,24] have raised a lot of interest toward a
generalization of the holographic scheme beyond the
AdS=CFT duality. However, in most cases, the very mean-
ing of assigning a geometry to a tensor network remains
unclear, while the very holographic reconstructing power of
such models is often undermined by flat entanglement
spectra (see, e.g., [25]), eventually providing an oversim-
plified modeling of the holographic duality.
More recently, the idea of a holographic geometry/

entanglement correspondence has drawn a lot of attention
in background independent approaches to quantum gravity,
including loop quantum gravity (LQG) and its covariant
generalizations, spin foams, simplicial models, and higher
rank random matrix models generalizations like group field
theory (GFT) [26–31]. In this framework, different
approaches share a kinematic description of quantum
(space) geometry in terms of spin network states, namely
symmetric tensor network states defined on graphs labeled
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by spin representations and intertwining operators [32–34].
On the one hand, spin networks realize networks of frame
transformations, which operationally encode the 3D space
manifold description into purely combinatorial and alge-
braic variables. On the other hand, such networks can be
described as quantum many-body-like collections of fun-
damental quanta of space. Such quanta are glued by
quantum correlations to constitute discrete spatial geom-
etries and dynamically interacting to give rise to spacetime
manifolds of arbitrary topology [35–41]. Geometric and
topological features of such spin tensor networks are
inherently related to their entanglement structure and can
be studied in terms of well-defined quantum geometry
operators.
While the very role of holography is still unclear and to

some extent little explored in background-independent
quantum gravity, also in this context one expects holo-
graphic entanglement to play a key role in characterizing
“physical” quantum geometry states [42–46], possibly
reflecting signatures of Einstein’s equations or invariance
for diffeomorphisms at the quantum level, as well as
constraining coarse-graining and effective emerging
dynamics in the continuum limit [47–51].
Recent results in this framework have focused on local

realizations of a generalized holographic duality [52–54],
also by looking at classes of open spin network states
modeling quantum regions of space with boundaries [55].
In this sense, much work has investigated the validity of the
RT formula as a signature of holography for bipartite
entanglement in pure boundary spin network states.
Examples of bulk-from-boundary reconstruction in the
light of holography have been proposed in [56], supporting
the possibility of direct mapping of the hierarchy of
correlations of the spin networks to a hierarchy of geo-
metrical observables on quantum geometry states.
Further, in GFT, a convenient dictionary between the

spin networks and the tensor networks formalism has been
proposed in [57] (see also [58] for a recent review),
providing a tentative bridge between the entanglement
geometry correspondence in AdS=CFT and background
independent quantum gravity.
In particular, building on the quantum many-body

analogy, recent work in GFT along the lines of [24] has
investigated the notion of random spin network state, with
randomness intended as the result of some coarse-graining
induced by quantum gravitational dynamics. The statistical
description of random spin networks has been then
exploited to investigate the holographic character of the
entanglement entropy in relation to quantum typicality, in
the regime of large spins dimension [59–63].
In this work, we extend previous results on bipartite

entanglement entropy for random spin networks to the
case of multipartite entanglement, by focusing on mixed
boundary spin network states. For such states, we shift
the focus from entanglement entropy to entanglement

negativity [64–70], an entanglement witness well-defined
for mixed states. Our motivation is twofold. On the one
hand, we are interested in investigating computable mea-
sures of the mutual entanglement between two subsystems
in a mixed state. Characterizing the correlations of mixed
quantum geometry states is of fundamental importance for
consistently dealing with entanglement under coarse-grain-
ing, with the hope to shed light on the role of entanglement
in open issues like the dynamical process of emergence of
classical spacetime geometry, as well as quantum black
hole physics and quantum chaotic dynamics in quantum
gravity. On the other hand, quantifying multipartite entan-
glement is necessary to better characterize nonlocal corre-
lations in quantum geometry, hence to start considering
hierarchies of correlations and its geometric interpretation
in the perspective of a spacetime reconstruction from
entanglement.
In particular, inspired by the recent work [71,72], we

study the mutual entanglement of a random boundary spin
network state over a tripartite boundary Hilbert space
corresponding to three boundary regions A, B, C. We
quantify the entanglement of two subregions ðA;BÞ by
measuring the typical logarithmic negativity of the reduced
mixed state ρAB. The calculation is given in explicit details
for a set of very simple states.
For trivially correlated states, we find that the entangle-

ment negativity of the two boundary regions is proportional
to the sum of the areas of the minimal surfaces homologous
to A and B, which extend in the spin network bulk,

log N̄ AB ∝ ðjγAj þ jγBjÞ − jγCj:

with a negative contribution given by the bulk surface area
jγCj testifying the presence of the environment C. This is a
natural generalization of the RT formula for the entangle-
ment entropy of a pure bipartite state ρAB.
The tripartite case, however, displays a richer entangle-

ment phases structure [73]. For states with nontrivial bulk
correlations, the presence of an environment reflects in the
appearance of new internal bulk domain, which we call
transition region T, corresponding to the so called quan-
tum islands in recent literature. When the bulk is
highly entangled, the minimal surfaces are prevented from
entering the graph and they end up coinciding with the
outer boundary surface. In this case, we have that
γC ¼ ðγA ∪ γBÞc ¼ γAB, and the log negativity

log N̄ AB ∝ ðjγAj þ jγBjÞ − jγABj:

can be interpreted as a holographic formula for the quantum
mutual information IA∶B of the two subsystems.
In the proposed derivation, we see how local entangle-

ment between spin states located on the network’s
edges and nonlocal, gauge-invariant entanglement between
intertwiners at the vertices play two different roles.
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Respectively, spin entanglement has a structural role in
defining the connectivity of the graph,which naturally affect
the definition of the minimal bulk surfaces. On the other
hand, intertwiner entanglement, which defines correlations
between actual geometry excitations in the bulk, generally
tends to raise the negativity of the boundary by favoring the
formation of transitory regions in the bulk, while at the same
time tends to break up the holographic behavior.
The paper is organized as follows. Section II provides a

set of preliminary notions. First, we introduce the notion of
spin network vertex state and its dual interpretation as a
quantum of 3D geometry. Within the GFT formalism, we
then focus on generalized open spin networks describing a
3D quantum geometry with boundary. Here, we briefly
recall the dictionary between spin networks and tensor
networks to introduce a class of tensor product spin
network states analogue to symmetric PEPs. We use this
class of states as locally entangled backgrounds from
which nontrivially correlated states are defined via bulk
to boundary mappings. Finally, we characterize the notion
of random spin network states and we define the measure of
negativity we are going to compute.
In Sec. III we define ourworking setting.We are interested

in quantifying the entanglement of two generic subregions of
a boundary random spin network state. We consider a
tripartition of the boundary in three subregions fA;B; Cg,
and define a reduced boundarymixed state ρAB by tracing out
the C system, intended as a generic environment. Due to the
random character of the states, k-th order Rényi log-neg-
ativity is computed in expected value. Expected momenta of
the reduced density matrix get mapped, via averaging, to
partition functions of a generalized Ising model [72,73],
where Ising spin variables are replaced by elements of the
permutation group attached to each vertex. This effectively
turns the random spin network ensemble into aCayley graph,
where elements of the permutation group at each vertex
interact pairwise throughout the graph according to the
tripartite boundary conditions. In the large spin (typical)
regime, computing the log-negativity of the boundary state
amounts to finding theminimal free energy configurations of
such dual statistical model.
In Sec. IV, we define a specially simple class of random

spin networks. We explicitly compute the negativity for two
simple examples given by open spin network states defined
on open tree graphs with two and three vertices. A brief
discussion of the results follows in Sec. V. We provide
further auxiliarymaterial in four appendices. In AppendixA
we recall the notion of geodesic for a Cayley metric on the
permutation group. Appendix B is dedicated to the technical
details of the statistical mapping to the generalized Ising
model. In Appendix C, we show how the third order
negativity can be mapped to an alternative Ising model by
decomposing the symmetric group S3 in terms of swap
operators. The result is the natural extension of the Ising
model one obtains for the 2nd Rényi entropy via statistical

mapping [61]. Finally, in Appendix D, we give the details of
the computation of the kth order Hamiltonians discussed
in Sec. IV.

II. PRELIMINARIES

A. Quantum spin network states

Let us review how spin network states are constructed as
portions of 3D space quantized and glued together to form
extended quantum geometry states.
Consider an elementary region of 3D space defined by a

convex polyhedron geometry with d faces. This can be
parameterized by d vectors fN⃗igdi¼1 in R

3 with norms fjig,
satisfying the closure constraint

P
i N⃗i ¼ 0⃗. The space of

such vectors modulo rotations gives the phase space (or
space of shapes) of a convex polyhedron in three dimen-
sions with d faces with fixed areas [74–76]

Sp ¼
�
fjN⃗ij ¼ jigdi¼1j

X
i

N⃗i ¼ 0⃗

��
SOð3Þ; ð1Þ

which has the structure of a symplectic manifold. The
quantization of Sp consists in the quantum reduction of the
product of irreducible representations spaces Vji of SUð2Þ,
which quantize the 2-sphere S2ji of radius ji associated to

each element of fjN⃗ij ¼ jig. The result is the so called
intertwiner space

Ifjig ≡ InvSUð2Þ

�
⨂
d

i¼1

Vji

�
; ð2Þ

which can be intended as the space of a quantum poly-
hedron with fixed areas values. The symplectic volume of
the space tells us in how many ways we can recouple d
spins into a singlet state (of recoupled spin J ¼ 0) invariant
under SUð2Þ. A basis state on Ifjig is defined by jfjig; ιi,
labeled by the set of given recoupled spins fjig, j∈ N

2
, and

the intertwiner number ι. Hereafter, we use jιi to ease the
notation. The Hilbert space of the quantum polyhedron
(with all possible values of surface areas) is achieved by a
direct sum over the spins, that is

HI ≡ ⨁
fjig

Ifjig ¼ ⨁
fjig;ι

Cjfjig; ιi: ð3Þ

Collections of quantum polyhedra can be attached (or
glued) to form a network via edge maps realized by
bivalent intertwiners, consisting in SUð2Þ-invariant singlet
states of two spins

jei≡X
m

ð−1Þj−mffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p jj; mi ⊗ jj;−mi ∈ InvSUð2Þ½Vj ⊗ Vj�;

ð4Þ
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where jj; mi defines the usual spin basis in the representation
space Vj, with magnetic momentum m running by integer
step from −j to þj. It is convenient to represent a quantum
polyhedron state dually as a star graph with a single vertex of
valence d, where each face is dual to a spin. Given the tensor
product of two intertwiner spaces IAB ¼ IAfji;jg ⊗ IBfki;jg and
a basis state jιAi ⊗ jιBi ∈ IAB, the mapping

e∶jιAi ⊗ jιBi ∈ IAB ↦
X
m

ð−1Þj−mffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p hj; mjιAi

⊗ hj;−mjιBi ∈ ⨂
fi;lg

Vji ⊗ Vkl ð5Þ

realizes the gluing of two quantum polyhedra along a face
by projecting two spins from A and B into a singlet edge
state. The gluing results in the creation of a simple open
graph given by two vertices connected by an edge. More
generally, given V vertices and E edges, with E ⊂ V, a spin
network state is a closed graph γ ¼ ðV; EÞ, with edges e ∈
E labeled by irreducibile representations (irreps) of SUð2Þ,
and vertices v ∈ V labeled by SUð2Þ intertwiner states ιv,
i.e., SUð2Þ-invariant tensors recoupling the representations
carried by the edges attached to the vertex (Fig. 1).
In particular, a spin network state jψγi associated to a

closed graph γ can be obtained as a projection of a generic
state jψi in the tensor product space of V intertwiners,

IfJgV ≡ ⨂
V

v¼1

Ivfjigv ; ð6Þ

with fJg≡ ðfjig1;…; fkigVÞ, on a set of edge states
according to the given connectivity of the graph γ. We write

jψγi ¼
�
⨂
e∈E

hej
	
jψi ð7Þ

This notation will be particularly useful in the next sections.
Notice that one can further relate couples of spins shared

by two vertices by a SUð2Þ group element g ∈ SUð2Þ, by
dressing the edge state as follows

je½ge�i≡
X
a;b

ð−1Þje−bDje
a;bðgeÞjje; ai ⊗ jje; bi; ð8Þ

where DjðgÞ is a Wigner matrix representing the group
element g ∈ SUð2Þ. As DjðgÞ is a unitary matrix, this
corresponds to a local unitary transformation on one of the
two spins [77]. The resulting spin network becomes a
function of the edges group elements,

jψγ½J; fgeg�i ¼
X

fιvg;a;b
ϕ̂fιvg
fJg

Y
e

Dje
a;bðgeÞjje; ai

⊗ jje; bi
Y
v

jιvi ð9Þ

A further sum over the spin sectors leads to the full spin
network Hilbert space

Hγ ≡⨁
fJg

IfJgV ¼ ⨁
fje;ιvg

Cjfje; ιvgγi: ð10Þ

Remarkably, one can show that

Hγ ≅ L2ðSUð2Þ×E=SUð2Þ×VÞ;

wherein

X
a;b

Y
e

Dje
a;bðgeÞjje; ai ⊗ jje; bi

Y
v

jιvi ð11Þ

defines a spin network basis state.
In loop quantum gravity (LQG), quantum states of

geometry in Hγ are given by wave functions Ψγ ≡P
J jψγ½J; fgeg�i, by construction invariant under the

SUð2Þ-action at each vertex v of the graph,

Ψγ∶ SUð2Þ×E → C

fgege∈γ ↦ Ψðfgege∈γÞ ¼ ΨðfhtðeÞgehsðeÞ−1ge∈γÞ; ð12Þ

∀ hv ∈ SUð2Þ, with tðeÞ and sðeÞ respectively referring to
the target and source vertices of the edge e. With the
appropriate scalar product [26,27], Hγ gives the kinemati-
cal Hilbert space of quantum geometry in LQG, where the
SUð2Þ group elements fgeg represent SUð2Þ holonomies of
the Ashtekar-Barbero connection field along directed edges
linking the two nodes. In this context, spin network
(directed, embedded) graphs represent networks of frame

(a) (b)

(c) (d)

FIG. 1. Construction of a spin network. Panel (a) shows a single
spin network vertex and (b) is the dual description in terms of a
tetrahedron. Panel (c) shows the gluing of two such vertices and
panel (d) represents a spin network with multiple vertices.
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transformations, which partially encode the operational
content of the gravitational field reduced on 3D spacetime
slices [26,27,78].

B. Open graph states

Differently from LQG, in the next sections we will
consider quantum states of geometry with support on open
(undirected) graphs, namely graphs with sets of uncon-
tracted edges, modeling quantum regions of space with
boundaries. In this sense, a generalized description of the
spin network state requires enlarging the notion of Hilbert
space given in (10). Let us proceed as follows. Looking at
the form of the spin network state in (9), we see that by
breaking each entangled pair of spins forming an edge we
are left with a collection of single vertex open spin network
states (see Fig. 2),

jfvi ¼
X

ιv;fmig
ðfvÞfjigvfmigιv jfjig; ιvi ⊗ ⨂

d

i¼1

jji; mii ð13Þ

defined in the single vertex product space

Bv
fjigv ≡ InvSUð2Þ

�
⨂
d

i¼1

Vji

�
⊗ ⨂

d

i¼1

Vji : ð14Þ

One can think of such states as quantum polyhedron states
dressed with extra boundary edge modes, one per face.
In this case, the sum over the spins, carried on at each

vertex independently, leads to the full open vertex Hilbert
space

Hv ≡ ⨁
fjig

Bv
fjig ≅ L2ðSUð2Þd=SUð2ÞÞ; ð15Þ

where wave functions ϕvðg1;…; gdÞ can be intended as
group fields [79,80]. A collection of (distinguishable) V
open vertices is associated to the separable Hilbert space

HV ≡ ⨂
V

v¼1

Hv: ð16Þ

In particular, we have that the embedding Hγ ⊂ HV is
faithful, hence any closed spin network wave function in

Hγ is expressible in terms of functions in HV , modulo
gluing conditions realized, again, via the action of bivalent
intertwiners on each fixed spin sector [29].
Generally, in the case of open graphs the result of the

gluing procedure in (7) is a mapping of the bulk degrees of
freedom of jΨγi on the boundary space of unrecoupled
spins. We have

Ψγ∶ SUð2Þ×E → F ðSUð2Þfe∈∂γgÞ
fgege∈γ ↦ Ψðfgege∈γÞ ¼ ΨðfgehsðeÞ−1ge∈γÞ; ð17Þ

with jΨγi now defined in the boundary Hilbert space
H∂γ ¼ ⨂e∈∂γ⨁je∈N

2
Vje . Notice that in this case the gauge

invariant property of the wave function reduces to SUð2Þ-
covariance on the boundary.
The generalization allows us to describe the state of any

generic subregion of a closed spin network, by cutting out
the spin network along the subregion boundary edges. In
the following sections, we will limit our analysis to spaces
of fixed spins. Nevertheless, the open graph generalization
will be central in our analysis, as we will look at the
entanglement structure of a generalized open spin network
state through the correlations of its boundary edges modes.

C. Analogy with symmetric projected
entangled pairs tensor networks

Consider an open graph γ ¼ ðV; L; ∂γÞ, where we
separate the set of edges E into a set of internal edges L
and boundary edges ∂γ for future convenience. In the
following, we focus on a class of spin network states
defined via (7) from product states of individual vertex
states with fixed spins jψi ¼ ⨂vjfvi, glued according to
the connectivity pattern of γ. The resulting spin network
states read

jϕγi ¼
�
⨂
e∈L

hej
	
⨂
v
jfvi ∈ ⨂

e∈∂γ
Vje ð18Þ

(notice we are always setting the edge holonomies intro-
duced in (8) to the identity). As first advanced in [62,81],
states like jϕγi in (18) are analogue to peculiar symmetric
tensor networks, where single vertex states are identified
with tensor states: the d vertex edge spin numbers fmig
correspond then to tensor indices (virtual indices), while
the intertwiner number ι plays the role of the physical index
of the tensor. Now, the definition of edge states in jϕγi as
singlet states given by maximally entangled pairs of spins,
characterizes jϕγi as symmetric projected entangled pair
states (sPEPS) [82].
The analogy suggests to think of spin networks as

entanglement networks, providing a direct relation between
the connectivity (topology) of the quantum geometry state
and its local entanglement structure.

(a) (b)

FIG. 2. Construction of an open spin network by vertices gluing.
The white dots represent the boundary degrees of freedom.
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States with richer, nonlocal, structure of correlations can
be built from the tensor network analog in (18) as follows.
Given a generic state jζi in the tensor product space of V

intertwiners IfJgV , that is

jζi ¼
X

ι1;…;ιV

ζι1;…;ιV⨂
v
jfjigvιvi; ð19Þ

we can construct an open spin network state via the
projection (see Fig. 3)

jϕ∂γðζÞi≡ hζjϕγi

¼
�
hζj ⊗ ⨂

e∈L
hej

	
⨂
v
jfvi

¼
X

fme∈∂γg
ðϕ∂γðζÞÞfmeg⨂

e∈∂γ
jjemei; ð20Þ

with coefficients

ðϕ∂γðζÞÞfme∈∂γg ¼
X
fιg

X
fne∈Lg

X
fpg

ζ�ι1;…;ιV

Y
v

ðfvÞfjgvfngvιv

×
Y
e∈L

ð−1Þpvw
i −nivffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pvw
i þ 1

p δnivpvw
i
δniwpvw

i
: ð21Þ

In particular, one can think of the boundary state in (20) as
the output of a map defined between the intertwiner space

IfJgV and the boundary (fixed) spins Hilbert space, i.e.

M½ϕγ�∶IfJgV ≡⨂
v
Ifjgv → HfJ∂g

∂γ ≡ ⨂
e∈∂γ

Vje ; ð22Þ

such that

M½ϕγ�jζi ¼ hζjϕγi ¼ jϕ∂γðζÞi: ð23Þ

By feeding the bulk with an input state we set correlations
among the intertwiners, which are eventually encoded in
the boundary state [61].

States constructed as jϕ∂γðζÞi show that the entangle-
ment among spin magnetic indices is responsible for the
connectivity of the graph and plays a role in the definition
of the mapping. Differently, entanglement among inter-
twiners describes correlations between the geometry
(volumes, see [27,77]) of the 3D space quantum geometries
defined at each vertex.
In order to enhance the separation of roles between the

two levels of entanglement, in the next sections, we
consider spin network graph states jϕγi comprised by
random vertex states. On the one hand, building on the
tensor network analogy, we know that such random tensor
network states can be used to realize isometric bulk-to-
boundary mappings which display holographic entangle-
ment behavior. On the other, we know that such states are
characterized by a flat entanglement spectrum. Therefore,
we can use random jϕγi as convenient holographic entan-
glement background mappings on top of which nontrivial
correlations will be induced by the choice of the input bulk
state jζi.

D. Random spin networks as
entanglement background

Following [24], we assume that each single vertex state
jfvi in the boundary state (20) is chosen independently at
random from its single vertex space, with respect to the
uniform probability measure. This is equivalent to taking at
each vertex v of the graph γ an arbitrary reference state
j0i ∈ Bv

fjigv and define jfvi ¼ Uj0i with U a unitary

operator. Accordingly, the random average of any function
fðjfviÞ is equivalent to an integration over the unitary U
with respect to the Haar measure μ ¼ dU, with normali-
zation

R
dU ¼ 1.

The random density operator,

ρ∂γðζÞ ¼ jϕγðζÞihϕγðζÞj

¼
�
jζihζj ⊗

Y
e∈L

jeihej
	�Y

v

jfvihfvj
	
; ð24Þ

can be read as a partial trace carried over the bulk
intertwiner numbers and internal edges magnetic numbers,
that is a sum over all but the boundary spins (dangling legs
of the graph). In compact form, we write the boundary
density matrix

ρ∂γðζÞ ¼ Trb

�
ρbðζÞ

Y
v

jfvihfvj
	
; ð25Þ

with a bulk graph density matrix ρb defined by

ρbðζÞ≡
�
jζihζj ⊗

Y
e∈L

jeihej
	

¼ ρζ ⊗
Y
e∈L

ρe: ð26ÞFIG. 3. Bulk to boundary mapping of an open spin network
state jϕγi via a projection on a bulk state jζi.
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The state ρ∂γ is a linear function of the independent pure
states of each intertwiner jfvihfvj. It defines an open
random spin network state describing a 3D quantum
geometry with a boundary.
We are interested in characterizing the entanglement of

generic subregions of the boundary. To this aim, we
consider a multi-partition of the boundary in three sub-
regions fA; B;Cg, and focus on a reduced state obtained by
tracing out C as a generic environment. Thereby, we look at
the quantum correlation of the mixed state for fA;Bg via a
measure of log-negativity.

E. Entanglement negativity

Quantum negativity is a good measure of mutual entan-
glement between two subsystems in a mixed state [64–70].
As such, it allows to generalize von Neumann entanglement
entropy measures to the case of multipartite systems.
Let us then recall the definition of quantum negativity as

follows. Consider a bipartite system, with total Hilbert
space H ¼ HA ⊗ HB, described by the generic density
operator ρAB. Given an orthonormal basis jiiA in HA and
similarly jjiB in HB, the partial transpose of ρAB with
respect to one of the subsystems, say B, is defined as

ðρiAjB;kAlBÞTB ¼ ρiAlB;kAjB : ð27Þ

The eigenvalues of the partially transposed reduced density
matrix ρTB

AB are real since the partial transposition is an
Hermitian and trace-preserving map. Yet ρTB

AB is not
completely positive, i.e. it may have negative eigenvalues.
If ρAB is not entangled (separable), it is easy to see that ρTB

AB
remains a positive semidefinite operator. Thereby, the
presence of negative eigenvalues in the partial transpose
is an indicator of quantum correlations in ρAB. The measure
is designed to distinguish quantum correlated mixed states
from classically correlated ones [73].
In particular, one can quantify the amount of entanglement

of a state according to the number of negative eigenvalues of
the partial transpose in terms of the measures of negativity
and logarithmic negativity [69], respectively defined as

NðρABÞ≡ kρTB
ABk1 − 1

2
¼

X
i∶λi<0

jλij; ð28Þ

where k·k1 is the trace norm, and

ENðρABÞ≡ log kρTB
ABk1: ð29Þ

Both quantities are entanglement monotone under general
positive partial transpose (PPT) preserving operations [64].
In this sense, we are considering the negativity as a faithful
measure of quantum entanglement for our states.
Nevertheless, we shall remark here that the PPT condition
is not generally a necessary and sufficient separability

criterion. There are generally entangled PPT states which
belong to the class of bound entangled states that have a
non-negative partial transpose [83,84].
In the next sections, we shall focus on logarithmic

negativity (or log negativity) in particular.
Analogously to the Rényi generalization of von

Neumann entropy, the latter can be computed in the limit
k → 1 of a k-the Rényi negativity measure [72], defined by

NkðρABÞ ¼ Tr½ðρTB
ABÞk�: ð30Þ

Notice that, since ρTB
AB has negative eigenvalues, even and

odd moments should be treated separately

NðoddÞ
k ðρABÞ ¼

X
i

sgnðλiÞjλijk

NðevenÞ
k ðρABÞ ¼

X
i

jλigk ð31Þ

The logarithmic negativity only depends on the absolute
values of eigenvalues, hence it can be recovered in the
k → 1 limit of the logarithm of the analytic continuation of
the momenta for even k. If we set k ¼ 2n, we have then

ENðρABÞ ¼ lim
n→1

2

logN2nðρABÞ ð32Þ

In the next sections, we focus on the even k-th Rényi
negativity. We compute the averaged logarithmic negativity
of the random mixed boundary state ρAB, that is

ENðρABÞ≡ Eμ½ENðρABÞ�; ð33Þ

where we use the bar hereafter to denote the random
average with respect to the Haar probability measure μ. In
the following sections, we assume that quantum typicality
is reached for our spin network system, such that the
approximation

ENðρABÞ ≃ lim
n→1

2

logN2nðρABÞ; ð34Þ

holds in the large spin limit. Therefore, getting ENðρABÞ
amounts to compute the expected value of the even
momenta of the partial transposed matrix ρTB

AB. As shown
in [72], such computation is mapped to the evaluation of
partition functions of classical generalized Ising models,
with a Symn permutation group element at each vertex and
cyclic, anticyclic and identity permutations as boundary
pinning fields.

III. TRIPARTITE BOUNDARY SPIN
NETWORK STATE

Let us define the tripartition of the boundary into three
regions A, B, and C by dividing the set of boundary edges
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∂γ into three subsets ∂A, ∂B, and ∂C (see Fig. 4).
Accordingly, within the fixed spins setting, the boundary
Hilbert space factorizes as follows

HfJ∂g
∂γ ¼ ⨂

e∈∂A
Vje ⊗ ⨂

e∈∂B
Vje ⊗ ⨂

e∈∂C
Vje : ð35Þ

Starting from the boundary density matrix in (24), via a
trace over the spin numbers in C we get the reduced
(mixed) boundary state

ρABðζÞ≡ TrC½ρ∂γðζÞ�: ð36Þ

We want to measure the quantum correlation between the
subregions A and B via a measure of kth Rényi negativity of
the reduced state, that is

NkðρABðζÞÞ ¼ Tr½ðρABðζÞTBÞk=ðTr½ρABðζÞ�Þk�; ð37Þ

where the denominator in (37) ensures the normalization of
ρABðζÞ. Note that the traces above are over boundary
indices.
For ρABðζÞ is now a random density matrix, the neg-

ativity measure must be computed in expected value with
respect to the uniform Haar measure μ. In the large spin
regime, as the trace concentrates, we can approximate the
negativity by its typical value, which we eventually assume
being expressed as a ratio of expected values of the kth
moment and the kth power of the partition function of
ρTB
ABðζÞ. We have

NkðρABðζÞÞ ≃
Tr½ðρTB

ABðζÞÞk�
ðTr½ðρABðζÞÞ�Þk

≡ ZðkÞ
1

ZðkÞ
0

: ð38Þ

Before dealing with the expectation value, via replica trick
we can linearize the partial transpose matrix as follows:

Tr½ðρTB
ABðζÞÞk� ¼ Tr½ρABðζÞ⊗kPAðXÞ ⊗ PBðX−1Þ�

¼ Tr½ρ∂γðζÞ⊗kPAðXÞ ⊗ PBðX−1Þ ⊗ PCð1Þ�;
ð39Þ

where PIðσÞ denotes a unitary representation of the
permutation σ, I ¼ A, B, C and X, X−1 and 1 are the
cyclic, anticyclic, and identity permutations. Specifically,
PCð1Þ and PBðX−1Þ respectively implement the partial
trace and the partial transpose, while PAðXÞ realizes the
replica trick, namely it allows us to linearize under the
trace. We give in Appendix A a thorough discussion of
the permutation group and all the notions that will be
relevant in the following.
For the linearity of the trace, the average over the random

tensors can be carried out before taking the partial trace.
Then, by (25), we get

ZðkÞ
1 ¼ Tr

�
ρ⊗k
ζ ⊗ ρ⊗k

L

�
⨂
v
ðjfvihfvjÞ⊗k

	

⋅ PAðXÞ ⊗ PBðX−1Þ ⊗ PCð1Þ
�
;

ZðkÞ
0 ¼ Tr

�
ρ⊗k
ζ ⊗ ρ⊗k

L

�
⨂
v
ðjfvihfvjÞ⊗k

	�
; ð40Þ

where the trace here runs over both bulk and boundary
indices and ρL ¼ ⨂e∈Ljeihej.
The average of the k copies of the vertex state in (40) by

integration over the Haar measure, results (Schur’s lemma,
see [85]) into the sum over unitary representations of the
permutation group gv acting on the k copies of the single
vertex Hilbert space Bv

fjigv ,

ðjfvihfvjÞ⊗k ¼ ðDv − 1Þ!
ðDv þ k − 1Þ!

X
gv∈Sk

PvðgvÞ; ð41Þ

with dimension dimðBv
fjigvÞ≡Dv ¼

Q
i djvi Dj⃗v

.
By performing the average individually on each inde-

pendent random vertex state, eventually we obtain

ZðkÞ
1 ¼ CTr

�
ρ⊗k
ζ ⊗ ρ⊗k

L

�
⨂
v

X
gv∈Sk

PvðgvÞ
	

· PAðXÞ ⊗ PBðX−1Þ ⊗ PCð1Þ
�
; ð42Þ

where the trace factorizes over the Hilbert spaces of
(a) internal edges, (b) boundary spins, and (c) bulk inter-

twiners, while C ¼ Q
v½ ðDv−1Þ!
ðDvþk−1Þ!�. ZðkÞ

0 has the same form

with X and X−1 replaced by 1.

FIG. 4. fA; B; Cg tripartition of an open spin network state. The
boundary edges are dual to the surface of the quantum 3D region.
The boundary spin are attached to virtual vertices, whose color
indicates the different boundary set. Hereafter, we indicate as
C (gray) the environment over which we compute the partial
trace; B (red) the region over which we take the partial transpose;
A (blue) the remaining part of the boundary.
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Now, to compute the action of the permutation operators
on the different degrees of freedom at each vertex, we
factorize PvðgvÞ into three different sets of operators,

PvðgvÞ ¼ Pv;0ðgvÞ ⊗ ⨂
eivw∈L

Pv;iðgvÞ ⊗ ⨂
eivv̄∈∂γ

Pv;iðgvÞ; ð43Þ

where Pv;0ðgvÞ acts on k copies of the intertwiner space,
⨂eivw∈LPv;iðgvÞ acts on k copies of the internal links and
⨂eivv̄∈∂γ

Pv;iðgvÞ acts on the boundary semiedges, with v̄
representing a virtual vertex which is connected to v by the
boundary edge eivv̄. We have indicated with eivw ∈ L an
internal link which connects the vertex v to the vertex w
along the ith edge.
As a consequence of this factorization, the whole

computation of the trace can be decomposed in three
contributions, respectively for the (a) internal edges,
(b) boundary spins, and (c) bulk intertwiners. The three
contributions are explicitly computed in Appendix B.

The result is that ZðkÞ
1=0 can be written as

ZðkÞ
1=0 ¼

X
fgvg

e−A
ðkÞ
1=0½fgvg�; ð44Þ

where

AðkÞ
1 ½fgvg� ¼

X
eivw∈L

Δðgv; gwÞ logdjivw þ
X

eivv̄∈∂A

Δðgv;XÞ logdjiv

þ
X

eivv̄∈∂B

Δðgv;X−1Þ logdjiv

þ
X

eivv̄∈∂C

Δðgv;1Þ logdjiv þAðζÞ þ ξ ð45Þ

and

AðkÞ
0 ½fgvg� ¼

X
eivw∈L

Δðgv; gwÞ log djivw

þ
X
eivv̄∈∂γ

Δðgv; 1Þ logdjiv þ AðζÞ þ ξ; ð46Þ

ξ being a constant term and

AðζÞ ¼ − log

�
TrV

�
jζihζj⊗k

�
⨂
v
Pv;0ðgvÞ

	��
ð47Þ

is the bulk state contribution. This is obtained from (B16)
by setting Ω≡ V. In (45) and (46), Δðg; hÞ indicates the
Cayley distance on the permutation group between the
permutations g and h, see Appendix A.
Remarkably, for the random character of the network, the

computation of the typical kth Rényi negativity is mapped
to the evaluation of the partition functions of a generalized

Ising Model defined by the action AðkÞ
1 . The latter describes

a two-body interaction between permutation elements,
which therefore act as generalized spins, attached to the
spin network vertices. These interactions are described by
the Cayley distance on the permutation group and the
pinning fields X, X−1, and 1 are permutations attached to
virtual vertices playing the role of boundary conditions.
The strength of the interactions is given by logd, d being
the dimension of the link, semilink or intertwiner space
according to the term we consider. This action prefers
neighboring “spins” to be parallel. This means that in the
large dimension limit, namely the strong coupling or “low
temperature” regime, the dominant configurations that
minimize the action contain large domains separated by
domain walls, which in turn give the energy cost of the
configuration.
Differently from [72], the actions (45) and (46) contain

new terms due to the internal degrees of freedom, i.e., the
intertwiners, that characterize the spin network structure of
the graph. Inserting a bulk state we end up with an
additional contribution to the actions deriving from the
bulk correlations. In turn, these give a relevant contribution
to the analysis of the minimal surfaces.

IV. kth ORDER RÉNYI NEGATIVITY

We shall now explicitly calculate the kth order Rényi
negativity for boundary spin network states defined by the
mapping

M½ϕγ�jζi ¼ hζjϕγi ¼ jϕ∂γðζÞi; ð48Þ

for a specially simple class of ϕγ and jζi.
Let us first define the bulk state. We divide the set of the

bulk vertices in a region Ω ⊆ V and its complement Ω̄. We
shall consider a state jζΩiwhere intertwiners are entangled,
while considering a direct product state for the intertwiners
in the region Ω̄. Accordingly, we define the bulk state as the
product state over the two regions

jζi ¼ jζΩi ⊗
�
⨂
v∈Ω̄

jζvi
	

∈ HV: ð49Þ

It is easy to see that noncorrelated intertwiners give no
contribution to the Ising partition function, as shown in
Appendix B. The partition functions read

ZðkÞ
1 ¼ Tr

�
ρ⊗k
ζΩ

⊗ ρ⊗k
L

�
⨂
v∈Ω

ðjfvihfvjÞ⊗k

⊗ ⨂
v∈Ω̄

ðjfvðζÞihfvðζÞjÞ⊗k

	
PAðXÞ

⊗ PBðX−1Þ ⊗ PCð1Þ
�
; ð50Þ
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ZðkÞ
0 ¼ Tr

�
ρ⊗k
ζΩ

⊗ ρ⊗k
L

�
⨂
v∈Ω

ðjfvihfvjÞ⊗k

⊗ ⨂
v∈Ω̄

ðjfvðζÞihfvðζÞjÞ⊗k

	�
; ð51Þ

where jfvðζÞi denotes the contraction of the random single
vertex state with an individual intertwiner state in Ω̄,

jfvðζÞi ¼ hζvjfvi ¼
X
fmig

fvðζÞfjvgfmig⨂i
jji; mii; ð52Þ

where fvðζÞ fjvgfmg ¼
P

ι fv
fjvg
fmgι ðζvι Þ� are the coefficients of

the boundary state.
In the regionΩ, we construct jζΩi in terms of products of

maximally entangled pairs of intertwiner states connecting
disjoint couples of vertices v and w with identical sets of
spins fjgvw in the bulk. Since each vertex has one
intertwiner index, we cannot have a common vertex
between more pairs, differently from what occurs for the
internal links. Besides this restriction, the choice of the
vertices is arbitrary, depending on the bulk correlation that
one wants to implement. We write

jζΩi ¼ ⨂
hvwi∈Ω

jeιvwi; ð53Þ

with

jeιvwi≡ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Dfjgvw

p X
ι

jfjgvw; ιvi ⊗ jfjgvw; ιwi: ð54Þ

With the choice of Bell-like pairs of intertwiner (see [86]
for a similar description), the bulk entropy contribution
reduces to

AðΩÞ ¼
X

hvwi∈Ω
Δðgv; gwÞ logDfjgvw ; ð55Þ

namely the equivalent of an extra edge contribution to the
action, with two main differences: the bond weight, which
is now given by the logarithm of the minimal intertwiner
space dimension, Dfjgvw , for each pair hvwi ∈ Ω, and the
nonlocal nature of the bond, which can now connect
nonadjacent vertices.
Concerning the spin network state jϕγi, we restrict our

analysis to open regular graphs, where all vertices have the
same valence and homogeneous spin coloring, with all
spins fixed to the same value j. Homogeneity in spins
makes all intertwiner spaces maximally symmetric, with
maximal dimension Dfjgvw ¼ d. This implies that edges
and intertwiner Hilbert spaces have equal dimension, that is

djivw ¼ djiv ¼ Dfjgvw ¼ d: ð56Þ

In the generalized Ising model description, this allows us to
introduce a unique temperature parameter β ¼ log d for

the whole system and write the action AðkÞ
1 as

AðkÞ
1 ½fgvg� ¼ βHk½fgvg�; ð57Þ

where Hk½fgvg� is the Ising-like Hamiltonian. We will
denote with Hk½fgvg� and Hc

k½fgvg� the Hamiltonians
corresponding respectively to a tensor product bulk state
(no correlations) and to a bulk state exhibiting link-wise
intertwiner correlations in the region Ω. With this notation,
we have respectively

Hk ¼
X
eivw∈L

Δðgv; gwÞ þ
X
∂A

Δðgv; XÞ

þ
X
∂B

Δðgv; X−1Þ þ
X
∂C

Δðgv; 1Þ ð58Þ

and

Hc
k ¼

X
eivw∈L

Δðgv; gwÞ þ
X
∂A

Δðgv; XÞ þ
X
∂B

Δðgv; X−1Þ

þ
X
∂C

Δðgv; 1Þ þ
X

hvwi∈Ω
Δðgv; gwÞ: ð59Þ

We see that, for large β, the leading contribution in (44) are
the ones associated to the configuration of permutations on
the graph that minimizes the Hamiltonian.
In the following sections we compute the minimal value

of the Hamiltonians Hk and Hc
k for k ¼ 3, 4 for two

examples of open spin network states defined on open tree
graphs with two and three vertices.

A. Open tree-graph with 2 vertices

Consider an open graph γ composed by two 4-valent
vertices, v and w, glued by an edge, and a generic
tripartition of its boundary as follows (see Fig. 5).
The vertex v has two boundary legs in A and one in C

and similarly w has two boundary legs in B and one in C;
hence, the corresponding kth Hamiltonian can be written as

Hk ¼ Δðgv; gwÞ þ 2Δðgv; XÞ
þ 2Δðgw; X−1Þ þ Δðgv; 1Þ þ Δðgw; 1Þ ð60Þ

If we consider a bulk with entangled vertices in this simple
case, the contribution of AðΩÞ to the Hamiltonian consists
in an additional Δðgv; gwÞ local internal edge contribution
(see Fig. 6). The kth Hamiltonian for the correlated case
reads
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Hc
k ¼ 2Δðgv; gwÞ þ 2Δðgv; XÞ þ 2Δðgw; X−1Þ

þ Δðgv; 1Þ þ Δðgw; 1Þ ð61Þ

In the following we discuss the values of Hk and Hc
k for

k ¼ 3 and k ¼ 4.

1. Order k = 3 minimal Hamiltonians

In order to determine the minimal value ofH3, we study
the energy cost of each configuration of generalized spins,
for given graph and boundary conditions. Generally, we
expect dominant configurations minimizing the action to
correspond to a tripartition of the spin domains, with
boundary condition percolating in the bulk up to a shared
domain wall.
In the tripartite case, however, interesting new equilib-

rium configurations are associated to the emergence of an
extra spin domain, corresponding to set of vertices labeled
by permutation elements that are simultaneous geodesics for
the Cayleymetric between any pair of the permutations 1; X,
andX−1 (seeAppendixA; a detailed discussion can be found
in [72]). Being geodesics, the permutations in T naturally
minimizes the energy cost given by the Cayley distance
whenever the 1, X, and X−1 elements meet, creating an
energetically favorable bubble. Such domain is absent in the
case of pure bipartite states previously studied in [24].
For the simple graph under study, with k ¼ 3, we can

have three geodesic configurations given by the three swap
operators S12, S23 and S13 (corresponding to the non-
crossing partitions of S3, see Appendix A). We denote by τ
the generic geodesic element. Using the results in (A14),
we then compute the value of the Hamiltonian of the
configuration with swap operators in the bulk vertices v and
w. From (A14), we get

Δð1; τÞ ¼ 1

ΔðX; τÞ ¼ ΔðX−1; τÞ ¼ 1

These permutations define the new geodesic transition
domain, that we label by T. Hence, we have that gv ¼
gw ¼ τ → v; w ∈ T and

H3 ¼ 2Δðτ; XÞ þ 2Δðτ; X−1Þ þ 2Δðτ; 1Þ ¼ 6 ð62Þ

For the simple graph under study, the T domain fills the
whole bulk, preventing the A, B, C domain walls to enter
the graph (see Fig. 7).
For the same graph, we can repeat the analysis with the

insertion of a bulk intertwiner correlations. Again, we
report the numerical results in Appendix D.
In this case, due to the edgelike form of the bulk

correlations, the effect of the bulk is an increase of the value
of the Hamiltonian for configurations with different permu-
tations on correlated intertwiner pairs. Because of the spin
homogeneity assumption, the pairwise intertwiner correla-
tions contributes to the Hamiltonian as additional domain
wall crossing edges (dashed line in Fig. 6) inside the graph. If
the samepermutation is inserted on the two adjacent vertices,
their interaction gives no contribution. Both the edge and the
bulk terms of the Hamiltonian in (59) in facts vanish.
Further, bulk correlations remove the degeneracy of the

minimal Hamiltonian. For instance, we see that if the bulk
entropy vanishes (i.e., there is no correlations between
intertwiners) the minimal value of Hamiltonian (6 in the
example above) is shared by the configurations in (D8)
and (62): in this sense we have a degenerate minimum value
of H3. The degeneracy is removed once we insert the bulk
correlations as the second configuration has an higher
energy cost because of the additional edge, crossing the
domain walls between A and B. Similar behavior was
already discussed in [61].
Finally, when the transition domain T extends over the

two vertices and the domain wall is pushed out of the bulk
region, the additional link does not cross any domain wall.
The Hamiltonian is left unchanged and it has a unique
minimum.

FIG. 5. Tripartion of a tree graph with two vertices. FIG. 6. Tree graph with two vertices and a pairwise correlation
between the intertwiners.

FIG. 7. Transition domain on a tree graph with two vertices.
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2. Order k = 4 minimal Hamiltonians

All the considerations aboutH3 hold for the case of H4:
(i) the bulk correlations increase the value of the

Hamiltonian for configurations with vertices in
different domains;

(ii) the degeneracy of the minimal Hamiltonian is
reduced by such correlations; and

(iii) the lowest energy configuration is characterized by a
transition domain filling the whole bulk: in this
configuration, the domain walls are pushed out of
the bulk. In the large spin limit, such configuration
gives the dominant contribution of the Ising action.

Looking at our results for k ¼ 3; 4, we see how the values
of the Hamiltonian scale both with the number of links
crossing the domain walls and with the order k. In fact, the
same configuration assumes larger and larger values of Hk
as the order of the replicas increases. The Hamiltonian of
our generalized Ising model can be written in terms of the
number of edges crossing each domain wall, respectively
denoted as jγAj, jγBj, and jγCj. Notice that these quantities
include both the graph and entanglement edges. If we
look at the values of Hk for each configuration (see
Appendix D), it is possible to verify that (notice hereafter
we focus on k even only)

Hk ¼
�
k
2
− 1

	
ðjγAj þ jγBjÞ þ

k
2
jγCj; k even ð63Þ

The partition function Zk is dominated by the lowest energy
configuration term

ZðkÞ
1 ¼

X
fgvg

e−βHk ≃ e−βH
ðminÞ
k ; ð64Þ

which is unique when we have bulk correlations. We write
the Rényi log negativity as

log N̄k ¼ log Z̄ðkÞ
1 − log Z̄ðkÞ

0 ð65Þ
Looking atH0 ¼

P
L Δðgv; gwÞ þ

P
∂γ Δð1; gvÞ, we notice

that its minimal value is 0, corresponding to the configu-
ration with all vertices labeled by the identity permutation.
Then

log N̄k ¼ logZðkÞ
1 ¼ −βHðminÞ

k ð66Þ
Eventually, the log negativity is given by the analytic
continuation of the logarithm of the even momenta. We get

log N̄ ¼ lim
k→1

2

logN 2k ¼ −β lim
k→1

2

H2k

¼ β

�
1

2
ðjγAj þ jγBjÞ −

1

2
jγCj

�
ð67Þ

The entanglement of the boundary random spin network
mixed state ρAB scales with the areas of the domain walls of
the dual generalized Ising model, corresponding to minimal

energy configurations. The measure of log negativity
depends on the local correlation structure only in relation
to the connectivity of the graph, which necessarily plays a
role in defining the minimal energy configurations. On the
other hand, the area scaling is directly affected by the bulk
correlations between intertwiners. A similar behavior has
been pointed out in recent works [58,61] regarding 2nd
Rényi entropy for a pure bipartite random spin network.
Note that since we are dealing with the trivial case of a
homogeneous spin network with edgewise intertwiner
correlations, the extra contributions to the area law (63)
are hidden in the increased values of the domains, while the
correlations become effective additional connectivity.
The form of our results is consistent with the behavior

obtained for random tensor network in [72], where the
right-hand term of the (67) is interpreted as the quantum
mutual information IA∶B of the two subsystems. In our case,
the domain of the third region is γC ¼ ðγA ∪ γBÞc ¼ γAB
and we have the equality βjγCj ¼ SAB. The effect of
inserting quantum correlations among intertwiners is the
removal of the degeneracies of HðminÞ and the appearance
of the intermediate region (the transition region T) filling
the bulk. Since γC is the complement of the two remaining
boundary regions, the log negativity can be written as the
mutual information between A and B. In this terms, the
typical value of the log negativity is given by

log N̄ AB ¼ 1

2
½SA þ SB − SAB�: ð68Þ

B. Open tree-graph with 3 vertices

We now move to the slightly more articulate case of an
open tree-graph with one extra vertex. This setting allows
us to consider the effect of nonlocal edgelike correlations in
the bulk.
Consider a graph γ composed by three 4-valent vertices

x, y, and z, with tripartite boundary conditions as pictured
in Fig. 8.
The uncorrelated Hamiltonian is

Hk ¼Δðgx;gyÞþΔðgy;gzÞþ2Δðgx;XÞþΔðgy;XÞ
þΔðgx;1ÞþΔðgy;1ÞþΔðgz;1Þþ2Δðgz;X−1Þ ð69Þ

If we insert local correlations between adjacent vertices
(xy and yz equivalently, see Figs. 9 and 10) the two
Hamiltonians become

HðxyÞ
k ¼ 2Δðgx; gyÞ þ Δðgy; gzÞ þ 2Δðgx; XÞ þ Δðgy; XÞ

þ Δðgx; 1Þ þ Δðgy; 1Þ þ Δðgz; 1Þ þ 2Δðgz; X−1Þ:
ð70Þ

HðyzÞ
k ¼ Δðgx; gyÞ þ 2Δðgy; gzÞ þ 2Δðgx; XÞ þ Δðgy; XÞ

þ Δðgx; 1Þ þ Δðgy; 1Þ þ Δðgz; 1Þ þ 2Δðgz; X−1Þ:
ð71Þ
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The neat result is an increase of the local connectivity of
the graph, while the Hamiltonians do not get new terms.
Differently, by inserting nonlocal correlation between the
intertwiner in x and z, the Hamiltonian is modified by the
new term Δðgx; gzÞ (see Fig. 11).
We get

HðxzÞ
k ¼ Δðgx; gyÞ þ Δðgy; gzÞ þ Δðgx; gzÞ

þ 2Δðgx; XÞ þ Δðgy; XÞ þ Δðgx; 1Þ
þ Δðgy; 1Þ þ Δðgz; 1Þ þ 2Δðgz; X−1Þ: ð72Þ

Despite the minimal change made to the graph with respect
to the previous case, we now find many more spin
configurations of interest. In Appendix D we report the
examples of the low energy configurations which are very
close to the minimal value of the Hamiltonian and the
degenerate configurations of the latter. Using the relations
on distances in (D6), the value of the Hamiltonian is easily
calculated. Once again, as an explicit example, let us look
at the case of Hk for k ¼ 3 and k ¼ 4.

1. Order k = 3 minimal Hamiltonians

It easy to see that if we insert a local bulk correlation
between adjacent vertices (xy or yz), only some degener-
acies are removed. In fact, consider the case with a bulk
correlation between x and y: the Hamiltonian has an addi-
tional term that increases its value only if the vertices x and y
belong to different domains, i.e., the distance between
the permutations gx and gy is not vanishing. The minimal
energy configurations [reported in (D19)–(D21)] are left
untouched, since the two spin variables in x and y are the
same. The Hamiltonians of (D22) and (D23) must be

discussed. As we pointed out, (D22) actually corresponds
to three different degenerate configurations with H3 ¼ 8:
the ones with the transition region filling only a couple of
vertices of the bulk, e.g., xy, yz, and xz. The first of these
configurations will have a vanishing contribution from the
bulk link insertion, so one of these degeneracies will not be
eliminated. The same result holds for (D23), since we have
the three cases with the transition region only filling one
vertex in the bulk; it is now clear that the configuration with
z ∈ T and x; y ∈ A will still have H3 ¼ 8.
Consider now the other possibile of local correlation, i.e.,

the couple yz. TheHamiltonians of the configurations (D19)
and (D21) remain the same. The Hamiltonian (D20)
becomes

H3 ¼ 8þ ΔðX;X−1Þ ¼ 10 ð73Þ

Similarly to the previous case, the degenerate configura-
tions with pair of vertices in the transition regions are
partially removed: the Hamiltonians of the configura-
tions with x and y or x and z in the T region increase
their value by one, while the other is unchanged. The same
result (degeneracy partially removed) is obtained for the
configurations with the transition region filling only one
vertex.
We insert now a nonlocal correlation in the bulk, that is

an edge between x and z and study the effect of such
correlation on the different configurations:

(i) gx ¼ gy ¼ gz ¼ 1 → x; y; z ∈ C (Fig. 12)

H3¼2Δðgx;XÞþΔðgy;XÞþ2Δðgz;X−1Þ¼10: ð74Þ

FIG. 8. Tripartition of a tree graph with three vertices.

FIG. 9. Tree graph with three vertices and a pairwise local
correlation between the intertwiners in x and y.

FIG. 10. Tree graph with three vertices and a pairwise local
correlation between the intertwiners in y and z.

FIG. 11. Tree graph with three vertices and a pairwise nonlocal
correlation between the intertwiners in x and z.
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(ii) gx ¼ gy ¼ X, gz ¼ X−1 → x; y ∈ A, z ∈ B (Fig. 13)

H3 ¼ Δðgy; gzÞ þ Δðgx; gzÞ þ Δð1; XÞ
þ Δð1; XÞ þ Δð1; X−1Þ ¼ 10. ð75Þ

(iii) gx ¼ gy ¼ gz ¼ τ → x; y; z ∈ T (Fig. 14)

H3 ¼ 2Δðτ; XÞ þ Δðτ; XÞ þ 3Δð1; τÞ
þ 2Δðτ; X−1Þ ¼ 8: ð76Þ

The configuration with the transition region filling
the whole bulk is unchanged.

(iv) gx ¼ X, gy ¼ gz ¼ τ → x ∈ A, y; z ∈ T (Fig. 15)

H3 ¼ 2Δðτ; XÞ þ Δð1; XÞ
þ 2Δð1; τÞ þ 2Δðτ; XÞ þ ΔðX; τÞ ¼ 9: ð77Þ

(v) gx ¼ gy ¼ X, gz ¼ τ → x; y ∈ A, z ∈ T (Fig. 16)

H3 ¼ Δðτ; XÞ þ Δðτ; X−1Þ þ ΔðX; τÞ þ Δð1; XÞ
þ Δðτ; XÞ þ ΔðX−1; 1Þ þ ΔðX; τÞ ¼ 9: ð78Þ

The lowest energy configuration is given in (76). Once
again the dominant term is given by the configuration with
the transition region filling the whole bulk and domain
walls pushed out of the latter.
The same arguments hold for the fourth order

Hamiltonian and give exactly the same results: local
correlations partially remove degeneracies of the lowest
energy configuration while nonlocal correlations tend to
favor equilibrium configurations where the boundary spins
domains are prevented to enter the correlated bulk. As a

consequence, there is one nondegenerate configuration
with minimal surface area jγT j, which correspond to the
whole spin network boundary surface. In the above results,
we see that nonlocality completely removes all the degen-
eracies between minimal configurations. This is due to the
simplicity of the considered graphs. In more complex
graphs, nonlocality might not have the same effect: by
looking at such nonlocal correlations as additional links
(beside their different nature), the connectivity of the three-
vertices graph we analyzed is such that the additional link
between vertices x and z spreads throughout all the graph,
intersecting the domain walls of both A and B. If we
consider a graph with more vertices, or if we choose a
different tripartition of the boundary, even nonlocal corre-
lations might not be strong enough to push the domain
walls out of the bulk. In these cases, not all the degeneracy
would be eliminated and the minimal energy configurations
could still be found via direct computation of Hamiltonians,
with the foresight of taking into account the number of
degenerate contributions in the statistical model.
In this sense, nonlocal correlations must be further

investigated in graphs with an arbitrary number of vertices
in order to provide a deeper understanding of their role in
the statistical model and their physical interpretation.

V. DISCUSSION

In this paper, we study the entanglement structure of a
class of spin network states describing a quantum patch of
3D space with boundary. We consider a tripartition of such
boundary, and focus on the mixed state description of two
patches A and B, generically disconnected and immersed
in an environment C. We investigate the entanglement
between A and B via a measure of logarithmic negativity

FIG. 12. Three vertices configuration with x; y; z ∈ C.

FIG. 13. Three vertices configuration with x; y ∈ A and z ∈ B.

FIG. 14. Three vertices configuration with x; y; z ∈ T.

FIG. 15. Three vertices configuration with x ∈ A and y; z ∈ T.
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and its Rényi generalization. Negativity is a measure of
entanglement well defined for both pure and mixed states,
hence suitable for generalizing most recent results on spin
network entanglement entropy from a bipartite to a simple
tripartite system. The introduction of the notion of neg-
ativity from the recent literature on multipartite random
tensor networks (see, e.g., [72]) to the quantum gravity
setting is a first element of novelty of the work.
We provide an explicit calculation of the negativity by

restricting to a class of extremely simple quantum spin
network states. First of all, we limit our analysis to fixed area
and fixed graphs spin networks, corresponding at most to a
truncation of a quantum 3D geometry state, hence disre-
garding all possible quantum correlations involving sums
over the spins, as well as the effect of any graph super-
position. Further, we use the generalized notion of random
spin network and bulk to boundary mapping to engineer a
very transparent structure of bulk correlations for our states.
In facts, we construct the spin networks in two ideal steps.
First, we build what we call a random entanglement back-
ground state, defined by a collection of single random vertex
tensors—dual to randomized states of quantum tetrahedra
with extra boundary spin information—glued together via
maximal entangled edgelike pairs of spins. By taking the
rank of the vertex tensors regular (four) and the value of the
spin homogeneous throughout the graph, the resulting spin
network is a gauge symmetric analogue of a projected
entangled pairs tensor network state (s-PEP TN) with
random nodes. Second, we plug non random bulk correla-
tions on such background via a projection, which realizes a
bulk to boundary mapping procedure. This eventually turns
our random spin networks into the analog of an error-
correcting code, incorporating bulk degrees of freedom in
the boundary and adding the desired bulk entanglement.
Such two levels of construction correspond to two

different entanglement structures of the spin network state
we want to make apparent. The first layer of local
entanglement between spin states located on the network’s
edges involves non-gauge invariant degrees of freedom.
Despite playing a key role in the definition of the spin
network graph connectivity, such entanglement cannot be
measured in a proper gauge invariant setting involving
quantum geometry operators. In this sense, most recent
literature considers this layer of entanglement unphysi-
cal and irrelevant for the entanglement/geometry

correspondence. Here, we shall understand such entangle-
ment layer by considering the edge spins as higher energy
degrees of freedom, coexisting with the single vertex
quanta description of GFTand disappearing once the gauge
invariance has been established and the spin network graph
has formed at some lower energy scale. In this sense, the
ultra-local entanglement layer do contribute to any measure
of entanglement in a spin network as long as it is interpreted
as a resource for generating the connectivity of the spin
network graph in the first place. This is not the usual
interpretation of spin network states, which pertains to a
speculated context beyond the present-day formulation of
LQG or GFT.
The second layer of entanglement consists of the

nonlocal, gauge-invariant quantum correlations between
intertwiners, intended as genuine correlations of excitations
of quantum geometry in the bulk. To keep the bulk
entanglement structure of our states under control, we
define the bulk correlations in terms of pairs of maximally
entangled intertwiner states. This choice eventually allows
us to avoid departures from the holographic scaling of the
entanglement negativity, while making the effect of a
nonlocally correlated bulk apparent.
Concretely, we first compute the typical kth Rényi

negativity for a generic open random spin networks.
Thanks to the random character of the states, the compu-
tation of the averaged kth Rényi negativity is mapped to the
evaluation of the partition functions of a generalized Ising
model, defined by a two-body interaction model between
permutation elements, which act as generalized spins
attached to the spin network vertices. The tripartite boun-
dary conditions are set by the permutations fields X, X−1,
and 1 attached to virtual pinning vertices comprising the A,
B, C boundary subregions. For k ¼ 3, we can write the
generalized Ising model for triples of spins, given by swaps
operators at each vertex, by which we parameterize the
symmetric group S3 (in Appendix C). The use of spin
variables for the model allows for a direct comparison of
the similar model for the bipartite boundary entanglement
entropy studied in [62]. For the generic k, we rederive the
approach of [72] which effectively describes the two-body
interaction via the Cayley distance on the permutation
group. This action prefers neighboring generalized spins to
be parallel. This means that in the large spin dimension
limit, namely the strong coupling or low temperature
regime, the dominant configurations that minimize the
action contain large domains separated by domain walls,
which in turn give the energy cost of the configuration.
Differently from [72], the models we define contain new
terms deriving from the bulk correlations between inter-
twiners degrees of freedom. Such correlations give new
relevant contributions to the analysis of the minimal
surfaces. Also, our model is characterized by a priori
different interactions strengths, given by the logarithm of
the dimension of the link, semi-link or intertwiner space

FIG. 16. Three vertices configuration with x; y ∈ A and z ∈ T.
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according to the term we consider. Nevertheless, under the
homogeneity assumption, we end up dealing with a single
(inverse) temperature logd.
For a restricted class of spin network states with support

on two-vertices and three-vertices tree-graphs, we compute
the logarithmic negativity as the analytic continuation of
the kth Rényi negativity, for even k ¼ 4. We find that the
logarithmic negativity is nontrivial whenever the entangle-
ment wedge of A and B are connected in the bulk.
Differently from the bipartite case, where the two entan-
glement wedges always share a unique extremal surface in
the bulk, in the tripartite case, the appearance of a transition
domain depends on the degree of nonlocality of the bulk
correlations and generically on the effect of the environ-
ment C. Whenever such environment is not too big, for any
(even) k, the negativity is nontrivial and it displays a
holographic scaling given by the formula,

log N̄ ¼ β

�
1

2
ðjγAj þ jγBjÞ −

1

2
jγCj

�
. ð79Þ

This is a natural generalization of the RT formula for the
entanglement entropy of a pure bipartite state ρAB.
In particular, we see that the bulk intertwiner entangle-

ment generally increases the negativity of the boundary by
favoring the formation of transitory regions in the bulk,
while at the same time tends to break up the holographic
behavior. In our setting, we do not see the deviation from
the area scaling, just due to the special form of bulk
correlations considered, defined by Bell-like pairs of
intertwiner states. In this case the effect of the bulk is
limited to an increase of the value of the minimal domain
wall surfaces in the bulk.
Further, in the cases of two and three-vertices tree-graphs,

we find that the dominant configurations always correspond
to the appearance of transition domains T, which englobes
thewhole bulk, hencepreventing theA andBdomainwalls to
enter the network. For such configurations, we identify the
domain C as the complementary boundary region to the
union ofA andB, thereby identifying typical log negativity as
half of the quantum mutual information between the two
subsystems A and B. In particular, such configurations are
unique, while in general the expression of the negativity is
corrected by a degeneracy factor.
Despite the very simple spin network states considered,

the obtained results open a series of new instances which
deserve further investigation. First of all, the richer entan-
glement wedge structure which appears in the case of a
tripartite state. By using the dual simplicial description of
our spin networks, we have a first geometric interpretation
of the domain walls emerging in the statistical model as
extremal surfaces, with areas measured by the value of the
spins of the crossing edges. However, we see that max-
imally entangled intertwiner correlations in the bulk can
mimic the same result, while now relating the value of the

extremal surface areas to some effective dimension of the
correlated intertwiner spaces. The latter does not have a
clear geometric understanding yet. The very simplicial
(dual) interpretation of the entanglement wedges involved
in the definition of the mutual information is open.
Nevertheless, we expect the quantum volume of such
wedges to play a role from an information theoretic
viewpoint, for instance in relation to a possible measure
of quantum complexity (see, e.g., [87,88]) for quantum
geometry described via spin network states.
Already a straightforward generalization to more generic

graphs, with a higher number of vertices and some degree
of inhomogeneity in the spins, would allow to investigate
the richer entanglement phase diagram appearing in the
tripartite setting, as a function of the ratios of the dimen-
sions of the three subregions A, B, and C, along the lines
of [73]. For a bipartite random open spin network system,
the entanglement entropy follows the Page curve [61]. In
the tripartite case, the Page curve is modified due to the
presence of a third subsystem C. Typically, one finds that
the Page curve admits a plateau in the intermediate regime
where the log negativity depends only on the size of the
system but not on how the system is partitioned [73]. In our
setting, the result in (68) can be interpreted as a con-
firmation of such a plateau regime for the spin network
framework. Having larger graphs with bigger environment
C degrees of freedom would further allow to study the
vanishing of the entanglement of the two A, B patches due
to the large dimensionality of the region C. Moreover, a
different factorization of the spin network Hilbert space, for
instance with bulk curvature degrees of freedom playing the
role of the C environment, would allow us to describe the
degree of thermalization of the boundary system (the AB
reduced state) as a function of the dimension of the bulk
environment. In this sense, the tripartite setting seems to
provide a natural minimal framework to further investigate
the very notion of quantum black hole in nonperturbative
quantum gravity from an information theoretic viewpoint
(see, e.g., [89–93] for a diverse set of ideas in this sense).

ACKNOWLEDGMENTS

The authors are grateful to the members of the Quantum
Space and Quantum Information Group of the Department
of Physics E.Pancini at the University of Naples Federico
II, for the useful discussions on the preliminary results of
the work.

APPENDIX A: PERMUTATION APPROACH

The permutation group plays a crucial role in the
computation of the kth Rényi negativity via statistical
mapping. We briefly recall some useful definitions and
tools regarding this group that have been used in the
derivation of our results.

CEPOLLARO, CHIRCO, CUFFARO, and D’ESPOSITO PHYS. REV. D 107, 086003 (2023)

086003-16



1. Permutation group

The permutation group of order n, Sn, is a finite group of
cardinality n!. Each element σ ∈ Sn is defined to be a
bijection of a given set M to itself, i.e.,

σðiÞ ¼ j ∀ i; j ∈ M: ðA1Þ

There are different notations to represent a permutation.
We use two of them: the first one is Cauchy’s two lines
notation, which is very practical in the calculation of the
composition of two group element; the second one is
the cyclic form, which turns out to be very useful in the
calculation of the cycles and of the Cayley metric that we
define later. In particular, Cauchy’s two lines notation
consists in writing two rows. Say σ ∈ Sn is a permutation
acting on a given set of n element fx1;…; xng. In the first
row we list all the element of the set. In the second row we
write the image under the permutation below each number,
that is

σ ¼
�

x1 x2 … xn
σðx1Þ σðx2Þ … σðxnÞ

	
: ðA2Þ

For instance a particular permutation of the set f1; 2; 3; 4g
can be written as

σ ¼
�
1 2 3 4

2 4 3 1

	
: ðA3Þ

In the cyclic notation, we write in round brackets the chains
of numbers such that the second one is the image of the first
one, the third element is the image of the second on and so
on. For example the previous permutation is written as
(124)(3) where (3) is a trivial cycle because it is left
unchanged by the permutation.

2. Geodesics on permutation group

Permutation group is equipped with a natural metric that
plays a key role in the generalized Ising model described in
Sec. III. In the computation of the negativity, the mini-
mization of the action of the statistical model requires to
study geodesics on permutation group. In particular, we
focus on the class of permutations that are geodesics
between the identity, the cyclic permutation and its
inverse [72].
Consider a permutation g ∈ Sk, we can define the length

of g as the minimum number of swaps to get g starting from
the identity. For example in S3 the permutations (12)(3) and
(123) have respectively length 1 and 2. Similarly we can
define the number of disjoint cycles of a permutation as
χðgÞ ¼ #ðcyclesÞ. The permutation (12)(3) and (123) have
respectively 2 and 1 cycles. By this example it is easy to
see that

lðgÞ þ χðgÞ ¼ k: ðA4Þ

We can thus introduce a natural metric, given by

Δðg; hÞ ¼ lðg−1hÞ ¼ k − χðg−1hÞ: ðA5Þ

As mentioned before, we will be interested in studying the
distance between 3 particular permutations of Sk:

1 ¼ ð1Þð2Þ…ðkÞ;
X ¼ ð12…kÞ;

X−1 ¼ ðk…21Þ: ðA6Þ

Since both lengths and cycles are easy to calculate for these
permutations, we can immediately obtain the distances
between them:

Δð1; XÞ ¼ k − 1; ðA7Þ

Δð1; X−1Þ ¼ k − 1; ðA8Þ

ΔðX;X−1Þ ¼
�
k − 1 k odd;

k − 2 k even.
ðA9Þ

A set of permutation ðg1; g2;…gnÞ is a geodesic on the
permutation group if

Δðg1; g2Þ þ Δðg2; g3Þ þ � � � þ Δðgn−1; gnÞ ¼ Δðg1; gnÞ:
ðA10Þ

The set of permutations that are on a geodesic between
1 and X, i.e., Δð1; gÞ þ Δðg; XÞ ¼ Δð1; XÞ ¼ k − 1, is
known to be in bijection with the set of noncrossing
partitions of the set ½k� ¼ f1; 2;…kg. A NCP is a set of
nonempty pairwise disjoint subsets called “blocks,” such
that no two blocks cross each other: consider the following
permutations in S5

g ¼ ð1Þð25Þð34Þ; h ¼ ð1Þð24Þð35Þ: ðA11Þ

These permutations can be diagrammatically drawn
as We can see that only (1)(25)(34) is a noncrossing
pairing. These permutations can be diagrammatically
drawn as shown in Figs. 17 and 18. The number of
NCP of Sk is given by the Catalan number:

Ck ¼ jNCðkÞj ¼ 1

kþ 1

�
2k

k

	
: ðA12Þ

We will use this information to obtain the set of permu-
tations that are simultaneously geodesics for the three
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distances (A9). Namely we are looking for the permuta-
tions such that:

8>>><
>>>:

Δð1; τÞ þ Δðτ; XÞ ¼ k − 1

Δð1; τÞ þ Δðτ; X−1Þ ¼ k − 1

ΔðX; τÞ þ Δðτ; X−1Þ ¼
�
k − 1 k odd

k − 2 k even.

ðA13Þ

These conditions are equivalent to

Δð1; τÞ ¼


k
2

�
;

ΔðX; τÞ ¼ ΔðX−1; τÞ ¼ ⌈ k
2
⌉ − 1; ðA14Þ

where bk
2
c and ⌈ k

2
⌉ represent respectively the floor and

ceiling functions. By solving these conditions, it is possible
to prove that τ is on the geodesic only if it is a permutation
corresponding to a noncrossing partition of the set [k]
containing only blocks of length 2 plus a single block of
length 1 if k is odd. We call this set noncrossing pairings
NC2ðkÞ and its cardinality is denoted by ak. For even k
there exists a bijection NC2ðkÞ ↔ NCðk

2
Þ, and for odd k we

have ak ¼ kak−1. Thus we can calculate cardinality in the
two different cases

ak ¼
� kCk−1

2
odd

Ck
2

even
; ðA15Þ

whose limit for k → 1 is given by

lim
k→1

ak ¼
�
1 odd
8
3π even

: ðA16Þ

This detailed discussion of permutations properties pro-
vides a quick recap of all the mathematics we need to
develop a statistical model for Rényi negativity. Indeed,
there exists an alternative way to describe this class of
states. Following the previous works on random spin

network [61,62], we can consider a reference state j0i ∈
H and consider all the states that can be obtained acting
with a unitary operator. Negativity exhibits a natural
internal symmetry related to the permutation group. So it
is natural to consider the unitary operator acting on the
reference state as a unitary representation of the group Sn.
Since we are interested in ensemble averaging for induced
mixed states, we can consider a preliminary example to see
how permutations arise in the calculation [85]. Consider a
bipartite system

H ¼ HA ⊗ HB; ðA17Þ

described by a density matrix ρ. Tracing over B we have an
induced mixed state. If we calculate the average over α
copies of ρA, since trace and averaging are commuting
operations, we get

ρ⊗α
A ¼ TrB½jψihψ j⊗α�: ðA18Þ

Group averaging is given by the sum over all the possible
permutations acting on α copies of the system, so:

ρ⊗α
A ¼

P
τ∈SαgτATr½gτB �P

τ∈SαTr½gτ�
; ðA19Þ

where τA and τB are permutation acting only on the
subsystems A and B. The trace of a permutation is easy
to calculate since it is equal to the dimension of the Hilbert
space (dA or dB) to the number of the cycles χðτÞ. So the
denominator becomes:

X
τ

Tr½gτ� ¼
X
τ

ðdAdBÞχðτÞ ðA20Þ

This quantity can be summed exactly: the number of
permutation of α element with k cycles is given by the
well-known Stirling number of first kind ½nk�. Since we are
interested in the regime of large dimensions, only the
permutation that maximizes χðτÞ will contribute at lead-
ing order. This permutation is the Identity, i.e., the only
permutation of Sα with α cycles. Thus the denominator can
be approximated to ðdAdBÞα.

APPENDIX B: MAPPING RÉNYI kTH
NEGATIVITY TO GENERALIZED

ISING MODEL

In this appendix we show the detailed calculations for the

partition function ZðkÞ
1 in (42). We will derive the explicit

form of the actions with a particular bulk state jζi which
however is easily generalized to a generic state. We will
write the state jζi as

FIG. 17. Diagrammatic representation of permutation (1)(25)(34).

FIG. 18. Diagrammatic representation of permutation (1)(24)(35).
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jζi ¼ jζΩi ⊗
�
⨂
v∈Ω̄

jζvi
	

ðB1Þ

Ω ⊂ V and Ω̄ ∪ Ω≡ V. The intertwiner degrees of freedom
in Ω̄ will not enter in the trace computation. To see this
observe that

jζvi ¼
X
ι

ζðvÞι jfjgv; ιi ðB2Þ

gives

jfvðζÞi ¼ hζvjfvi
¼

X
ι1

X
fmg;ι2

ffjgfmgι2ðζ
ðvÞ
ι1 Þ�⨂

i
jji; miihι1; fjgvfjgv; ι2i

¼
X
fmg

fðζÞfjgfmg⨂
i
jji; mii; ðB3Þ

where fðζÞfjgfmg ¼
P

ι f
fjg
fmgιðζðvÞι Þ�. Now jfvðζÞi are random

states and with the randomization we get

E½ðjfvðζÞihfvðζÞjÞ⊗k� ¼ ðD∂v−1Þ!
ðD∂vþk−1Þ!

X
gv∈Sk

P∂vðgvÞ; ðB4Þ

where

P∂vðgvÞ ¼ ⨂
eivw∈L

Pv;iðgvÞ ⊗ ⨂
eivv̄∈∂γ

Pv;iðgvÞ ðB5Þ

and D∂v ¼
Q

i djvi ¼
Dv

Dfjgv
. Therefore we see that the bulk

intertwiners that get contracted with a state jζvi ∈ Ω̄ do not
contribute to the trace.
Keeping this in mind, the partition function ZðkÞ

1 can be
written as

ZðkÞ
1 ¼ CTr

�
ρ⊗k
ζΩ

⊗ ρ⊗k
L

�
⨂
v∈Ω

ðjfvihfvjÞ⊗k

⊗ ⨂
v∈Ω̄

ðjfvðζÞihfvðζÞjÞ⊗k

	
PAðXÞ

⊗ PBðX−1Þ ⊗ PCð1Þ
�
; ðB6Þ

where C ¼ ðQv∈Ω
ðDv−1Þ!

ðDvþk−1Þ!Þð
Q

v∈Ω̄
ðD∂v−1Þ!

ðD∂vþk−1Þ!Þ. This trace

factorizes over (a) internal edges, (b) boundary spins,
and (c) bulk intertwiners degrees of freedom. At each
vertex, the sum over the permutation operators factorizes
according to the product structure of the single vertex
Hilbert space. Thus, the computation of the trace defining

the averaged partition function can be decomposed in three
contributions, following [72], as follows

(i) Edges contribution

TrL

�
ρ⊗k
L ⊗⨂

v

X
gv∈Sk

PvðgvÞ
�

¼
X
fgvg

Tr½ðjeivwiheivwjÞ⊗k ⊗ ðPv;iðgvÞ⊗ Pw;iðgvÞÞ�

¼
X
fgvg

Y
eivw∈L

d−kþχðg−1v gwÞ
jivw

¼
X
fgvg

Y
eivw∈L

d−Δðgv;gwÞjivw
; ðB7Þ

where the term d−kjivw comes from the normalization of
the link states jeivwi.

(ii) Boundary contributions
We can rewrite the constant C as C ¼

½Qv∈ΩD
−k
v ð1þOðD−1

v ÞÞ�½Qv∈Ω̄D
−k
∂v ð1þOðD−1

∂v ÞÞ�.
Taking the term d−kjiv out of D−k

v and D∂v for the

boundary contributions, for ∂A we get

�Y
v∈A

d−kjiv

	
Tr∂A

�
⨂

eivv̄∈∂A

�X
gv∈Sk

PvðgvÞ
	

⊗ PAðXÞ
�

¼
�Y

v∈A
d−kjiv

	 Y
eivv̄∈∂A

X
gv∈Sk

Tr∂A½Pv;iðgvÞ ⊗ PAðXÞ�

¼
X
fgvg

Y
eivv̄∈∂A

d−kþχðg−1v XÞ
jiv

¼
X
fgvg

Y
∂A

d−Δðgv;XÞjiv
: ðB8Þ

Similarly, for ∂B and ∂C, we have

�Y
v∈B

d−kjiv

	
Tr∂B

�
⨂

eivv̄∈∂B

�X
gv∈Sk

PvðgvÞ
	

⊗ PBðX−1Þ
�

¼
X
fgvg

Y
∂B

d−Δðgv;X
−1Þ

jiv
ðB9Þ

�Y
v∈C

d−kjiv

	
Tr∂C

�
⨂

eivv̄∈∂C

�X
gv∈Sk

PvðgvÞ
	

⊗ PCð1Þ
�

¼
X
fgvg

Y
∂C

d−Δðgv;1Þjiv
: ðB10Þ

(iii) Bulk contribution
The contribution of the bulk to the partition

function is
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X
fgvg

TrΩ

�
jζΩihζΩj⊗k

�
⨂
v∈Ω

Pv;0ðgvÞ
	�

; ðB11Þ

which depends on the form chosen for the bulk
state jζΩi.

Putting these terms all together, we can write ZðkÞ
1 as

ZðkÞ
1 ¼ C0

X
fgvg

�� Y
eivw∈L

d−Δðgv;gwÞjivw

	� Y
eivv̄∈∂A

d−Δðgv;XÞjvi

	

·

� Y
eivv̄∈∂B

d−Δðgv;X
−1Þ

jvi

	� Y
eivv̄∈∂C

dΔðgv;1Þjvi

	

· TrΩ

�
jζΩihζΩj⊗k

�
⨂
v∈Ω

Pv;0ðgvÞ
	��

; ðB12Þ

where C0 is another constant whose value is not relevant

since it will be simplified. Indeed, ZðkÞ
0 will have the same

form of (B12) but with X and X−1 replaced by 1.
Finally, we can write these partition functions as

ZðkÞ
1=0 ¼

X
fgvg

e−A
ðkÞ
1=0½fgvg�; ðB13Þ

where

AðkÞ
1 ½fgvg�¼

X
eivw∈L

Δðgv;gwÞlogdjivw

þ
X

eivv̄∈∂A

Δðgv;XÞlogdjivþ
X

eivv̄∈∂B

Δðgv;X−1Þlogdjiv

þ
X

eivv̄∈∂C

Δðgv;1ÞlogdjivþAðζΩÞþξ ðB14Þ

and

AðkÞ
0 ½fgvg� ¼

X
eivw∈L

Δðgv; gwÞ log djivw

þ
X
eivv̄∈∂γ

Δðgv; 1Þ log djiv þ AðζΩÞ þ ξ; ðB15Þ

ξ being a constant term and

AðζΩÞ¼− log

�
TrΩ

�
jζΩihζΩj⊗k

�
⨂
v∈Ω

Pv;0ðgvÞ
	��

ðB16Þ

is the bulk state contribution.

APPENDIX C: STATISTICAL MODELING
OF N 3 USING SPINS

1. Setup

We here show an alternative way of dealing with the
computation problem for the third order negativity which is
more similar to what some of the authors have previously
done [62]. To do so, we will parametrize the symmetric
group S3 using swaps operator, namely

S3 ¼ f1; S12; S13; S23; S12S13; S12S23g: ðC1Þ

Here, the combination S12S13 is the cyclic permutation X
while S12S23 ≡ X−1. The boundary of the graph will always
be divided in three regions: C will be traced to obtain a
mixed state and we will compute the correlations between
A and B (over the latter we perform the partial transpose).
We want to compute the third negativity momentum of
ρABðζÞ ¼ TrCfρ∂γðζÞg, namely

m3 ¼ TrA;BfE½ðρABðζÞTBÞ3�g: ðC2Þ

The bulk state ζ is written in the same way as before

jζi ¼ jζΩi ⊗
�
⨂
v∈Ω̄

jζvi
	
; ðC3Þ

thus the intertwiner degrees of freedom that are contracted
with a product state will not give a contribution as before.
Dividing the vertices into the two regions Ω and Ω̄ we have
from Schur’s lemma

E½ðjfvihfvjÞ⊗3� ¼ 1

DvðDv þ 1ÞðDv þ 2Þ
X
π∈S3

Svπ;

E½ðjfvihfvjÞ⊗3� ¼ 1

D∂vðD∂v þ 1ÞðD∂v þ 2Þ
X
π∈S3

S∂vπ : ðC4Þ

For v ∈ Ω and v ∈ Ω̄ respectively. In the above Dv ¼Q
i djvi Dj⃗v

and D∂v ¼
Q

i djvi are the dimensions of the

vertices Hilbert spaces inΩ and Ω̄ respectively. Svπ (S∂vπ ) is a
swap operator acting on the tensor product of three copies
of the Hilbert space of the vertex v ∈ Ω (v ∈ Ω̄). The third
momentum can therefore be written as

m3 ¼
Z1

Z0

; ðC5Þ

with
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Z1 ¼ CTr
�
ρ⊗3
ζΩ

⊗ ρ⊗3
L

�
⨂
v∈Ω

X
π∈S3

Svπ

	

·

�
⨂
v∈Ω̄

X
π∈S3

S∂vπ

	
SA12S

A
13S

B
12S

B
23

�
ðC6Þ

and Z0 ¼ TrfE½ρ⊗3�g. In the above, ρζ gives the contri-
bution from the bulk insertions and, for bulk states of the
form (54), it will give the same contribution of the ρL term,
just computed, in general, on a different set of vertices,
ρζΩ ¼⊗hvwi jeιvwiheιvwj. Clearly, for the swap operators on
the vertices we have a factorization over the degrees of
freedom

Svπ ¼ Sv;0π ⊗ ⨂
eivw∈L

Sv;iπ ⊗ ⨂
eivv̄∈∂γ

Sv;iπ ðC7Þ

and

S∂vπ ¼ ⨂
eivw∈L

Sv;iπ ⊗ ⨂
eivv̄∈∂γ

Sv;iπ : ðC8Þ

2. Explicit computations

We now assign a spin variable to each of the three swap
operators, namely σ1 to S12, σ2 to S13, and σ3 to S23, so that
we can rewrite the trace in (C6) as

Z1 ¼ C
X
fσ⃗0g

Tr

�
ρ⊗3
ζΩ

⊗ ρ⊗3
L

�
⨂

v∈Ω∶σv
1
¼−1

Sv12

	�
⨂

v∈Ω∶σv
2
¼−1

Sv13

	

·

�
⨂

v∈Ω∶σv
3
¼−1

Sv23

	
·

�
⨂

v∈Ω̄∶σv
1
¼−1

Sv12

	�
⨂

v∈Ω̄∶σv
2
¼−1

Sv13

	

·

�
⨂

v∈Ω̄∶σv
3
¼−1

Sv23

	
SA12S

A
13S

B
12S

B
23

�
; ðC9Þ

where

C ¼
�Y
v∈Ω

D−3
v

1

ð1þD−1
v Þð1þ 2D−1

v Þ
�

×

�Y
v∈Ω

D−3
∂v

1

ð1þD−1
∂v Þð1þ 2D−1

∂v Þ
�

ðC10Þ

and fσ⃗0g≡ fσ⃗1; σ⃗2; σ⃗3g stands for all the configurations of
the three spins attached to each vertex, without ð1;−1;−1Þ
and ð−1;−1;−1Þ corresponding to S13S23 ≡ S12S13 and
S12S13S23 ≡ S13 that are not to be considered in (C6). This
trace can be factorized with respect to the different degrees
of freedom, therefore

m3 ¼ C
X
fσ⃗g0

�
TrL

�
ρ⊗3
L

�
⨂

eivw∈L∶σv1¼−1
Sv;i12

	�
⨂

eivw∈L∶σv2¼−1
Sv;i13

	
·

�
⨂

eivw∈L∶σv3¼−1
Sv;i23

	�

· TrΩ

�
ρ⊗3
ζΩ

�
⨂

hvwi∶σv
1
¼−1

Sv;012

	�
⨂

hvwi∶σv
2
¼−1

Sv;013

	
·

�
⨂

hvwi∶σv
3
¼−1

Sv;023

	�

· Tr∂γ

�
SA12S

A
13S

B
12S

B
23 ⊗

�
⨂

ei∈∂γ∶σv
1
¼−1

Sv;i12

	�
⨂

ei∈∂γ∶σv
2
¼−1

Sv;i13

	
·

�
⨂

ei∈∂γ∶σv
3
¼−1

Sv;i23

	��
: ðC11Þ

Moreover, the three traces above factorize over all the degrees of freedom, therefore

TrL ¼
Y
eivw∈L

Treivw ; TrΩ ¼
Y
hvwi

Treιvw ; Tr∂γ ¼
Y

eivv̄∈∂γ

Treivv̄ : ðC12Þ

a. Bulk links and intertwiners

For the trace over L we have to compute

Y
eivw∈L

TrfðjeivwiheivwjÞ⊗3
Y

ij¼12;13;23

�
1

2
ð1þ σvijÞ1þ 1

2
ð1 − σvijÞSv;iij

�
⊗

Y
hk¼12;13;23

�
1

2
ð1þ σwhkÞ1þ 1

2
ð1 − σwhkÞSw;ihk

��
:

By computing this trace over all the possible configurations fσ⃗g0 we get that there are three possible results, namely dnjivw
with n ¼ 1; 2; 3.
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To model this trace in terms of a spin action we write the

result as dKðσ⃗
v;σ⃗wÞ

jivw
with Kðσ⃗v; σ⃗wÞ being the most general

interaction term between the six spins involved in the trace.
This will be made up by a constant term, linear terms in all
the spins, pairwise interactions and so on up to six order
interaction terms. If we enforce the symmetry between the

exchange of the two vertices, we have 64 parameters in this
unknown function that can be determined by enforcing that
this function takes on the values (1,2,3) we computed
before on the configurations fσ⃗g0 and that it is 0 on all the
other configurations (64 equations in total). Doing so
we get

Kðσ⃗v; σ⃗wÞ ¼ 1

32
f−63þ σv1σ

w
1 ð5þ 3σw2 Þ þ σw3 ½σv1σw1 ð3þ σw2 − 11σw2 Þ� þ 11ðσw2 þ σw3 Þ þ σv3½11þ σw2 þ 9σw3

þ −σw2 σw3 þ σv1σ
w
1 ð3þ 5σw3 − 3σw2 − σw2 σ

w
3 Þ� þ σv2½11þ 9σw2 þ σw3 − σw2 σ

w
3 þ σv1σ

w
1 ð3þ 5σw2 − 3σw3

þ −σw2 σw3 Þ� − σv3ð11þ σw2 þ σw3 − 9σw2 σ
w
3 þ σv1σ

w
1 ðσw2 − σw3 þ 3σw2 σ

w
3 − 1ÞÞ�g; ðC13Þ

therefore the trace over the bulk links gives

Y
eivw∈L

dKðσ⃗
v;σ⃗wÞ

jivw
: ðC14Þ

A similar result holds for the bulk contribution from the
intertwiners. Indeed the trace that should be computed is
the same, the only difference being the set over which the
links are considered. Thus for the intertwiners we have

Y
hvwi∈Ω

DKðσ⃗v;σ⃗wÞ
j⃗vw

: ðC15Þ

b. Boundary edges

The other trace is given by

Y
eivv̄∈∂γ

Tr

�
SA;i12 S

A;i
13 S

B;i
12 S

B;i
23 ⊗

�
⨂

ei∈∂γ∶σv
1
¼−1

Sv;i12

	

·

�
⨂

ei∈∂γ∶σv
2
¼−1

Sv;i13

	�
⨂

ei∈∂γ∶σv
2
¼−1

Sv;i23

	�
; ðC16Þ

where the operators SA;i and Sb;i act on the Hilbert space of
the virtual vertex v̄. We can model this trace in terms of spin

actions by introducing a pinning field μ⃗ which model the
presence or absence of the additional swap operators
coming from the replica trick. In particular, we have

μ⃗v ¼

8>><
>>:

ð1; 1; 1Þ; v ∈ C

ð−1;−1; 1Þ; v ∈ A

ð−1; 1−; 1Þ; v ∈ B

: ðC17Þ

To compute the action for the boundary edges, we follow
the same steps as before. Indeed, we can imagine that the
boundary edges link the boundary vertices to virtual
vertices on which the pinning fields are assigned, propa-
gating on the link. Therefore the conceptual framework is
the same of the bulk links calculation in which the
interaction occurs between two vertices. Thus, we compute
the trace over all possible configurations of the spins σ⃗ and
the pinning fields μ⃗, obtaining as results dnjvi with

n ¼ 1; 2; 3; then, we write the most general interaction
termGðσ⃗; μ⃗Þ and we enforce that this function vanish on the
spin configurations σ⃗ ¼ ð1;−1;−1Þ; ð−1;−1;−1Þ and on
the pinning fields configurations that are not in (C17) and
that it gives the results 1,2,3 that we obtain on the other
configurations. Subtracting the constant 3 coming from
(C10) we get

Gðσ⃗v; μ⃗vÞ ¼ 1

64
f−159þ 11ðμv3 þ σv2 þ σv3Þ þ σv1 þ 3μv3σ

v
1 þ μv3σ

v
2 − σv1σ

v
2 þ 5μv3σ

v
1σ

v
2 − σv3½σv1 þ 11σv2þ

þ 3σv1σ
v
2 þ μv3ð−9þ σv2 þ 3σv1 þ σv1σ

v
2Þ� þ μv2½11þ 9σv2 þ σv3 − σv2σ

v
3 þ σv1ð3þ 5σv3 − 3σv2 − σv2σ

v
3Þ þ μv3ð−11þ

− σv2 − σv3 þ 9σv2σ
v
3 þ σv1ð5þ 3σv2 þ 3σv3 þ σv2σ

v
3ÞÞ� − μv1½−11þ 5σv1 − σv2 þ 3σv1σ

v
2 þ σv3ð−1þ 9σv2 þ 3σv1þ

þ σv1σ
v
2Þ þ μv3ð11þ 9σv2 þ σv3 − σv2σ

v
3Þ þ σv1ð3þ 5σv3 − 3σv2 − σv2σ

v
3ÞÞ þ μv2ð11þ 3σv1 þ σv2 þ 5σv1σ

v
2þ

− σv3ð−9þ σv2 þ 3σv1 þ σv1σ
v
2ÞÞ þ μv3ð11ð3þ σv2 þ σv3 − σv2σ

v
3ÞÞ − σv1ð−1þ σv2Þ þ σv3 þ 3σv2σ

v
3�g: ðC18Þ

To simplify this cumbersome formula, we write it as the sum over the three regions A, B, and C and in which our boundary
graph is divided. In particular we have μ⃗ ¼ ð−1;−1; 1Þ, μ⃗ ¼ ð−1; 1;−1Þ, and μ⃗ ¼ ð1; 1; 1Þ respectively for the three
regions. Doing so we obtain
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Gðσ⃗v; μ⃗vÞ ¼ GAðσ⃗vÞ þGBðσ⃗vÞ þGCðσ⃗vÞ; ðC19Þ

where

GAðσ⃗vÞ ¼
1

8
f−13þ σv2 þ 5σv3ð1 − σv2Þ

þ σv1½σv2 − 1 − σv3ð3þ σv2Þ�g; ðC20Þ

GBðσ⃗vÞ ¼
1

8
f−13þ σv3 þ 5σv2ð1 − σv3Þ

þ σv1½σv3 − 1 − σv2ð3þ σv3Þ�g; ðC21Þ

GCðσ⃗vÞ ¼
1

8
f−13þ σv1ð3þ σv2 þ σv3Þ þ 5σv2

þ σv3½5 − σv2ð1þ σv1Þ�g: ðC22Þ

Therefore the trace over the boundary half-links gives

Y
eivv̄∈∂γ

dGðσ⃗
v;μ⃗vÞ

jvi
; ðC23Þ

with Gðσ⃗v; μ⃗Þ ¼ GAðσ⃗vÞ þGBðσ⃗vÞ þ GCðσ⃗vÞ.

3. The action

We now write the result as

logm3 ¼ logZ1 − logZ0 ¼ F0 − F1; ðC24Þ

where Fi are the free energies that we write as

Fi ¼ − logZi ¼ − log
�X

fσ⃗g
e−Aiðσ⃗Þ

�
; ðC25Þ

with Aiðσ⃗Þ given by − the logarithm of the trace computed
in the previous subsection. In particular we have

−A1ðσ⃗Þ ¼
X

hvwi∈Ω
Kðσ⃗v; σ⃗wÞ logDj⃗vw

þ
X
v∈∂γ

Gðσ⃗v; μ⃗vÞ log djiv

þ
X
eivw∈L

Kðσ⃗v; σ⃗wÞ logdjivw − ξ ðC26Þ

and A0ðσ⃗Þ has the same functional form but with all the
pinning fields set to 1, ν⃗ ¼ ð1; 1; 1Þ. ξ is just a constant
whose value is not relevant, since in the large spin limit the
dominant configuration for Z1 (Z0) is the one that mini-
mizes the action A1 (A0), thus we have logm3 ¼ A1 − A0.
In computing this difference, ξ cancels out.
In the case of homogeneous spin network, all the above

dimensions are the same, Dj⃗vw
¼ djivw ¼ djiv ¼ d ¼ 2jþ 1.

Therefore we can rewrite the action as

A1ðσ⃗Þ ¼ βHðσ⃗; μ⃗Þ; ðC27Þ

with β ≔ log d. Since we are in the large d limit, namely the
low temperature regime, the dominant will be the one that
minimizes the HamiltonianH, while A0 ¼ 0. We show this
for the configurations that minimize the Hamiltonian for
the two vertices and the three vertices cases analyzed in the
main text.
For the two vertices case we have that the configuration

that minimizes the Hamiltonian is the one where the two
vertices are colored with the same noncrossing pairing. For
the case k ¼ 3 the noncrossing pairings are given by the
swap operators S13, S12, and S23. These correspond to the
spin configurations

gv ¼ gw ¼ S12∶ σ⃗v ¼ σ⃗w ¼ ð−1; 1; 1Þ;
gv ¼ gw ¼ S13∶ σ⃗v ¼ σ⃗w ¼ ð1;−1; 1Þ;
gv ¼ gw ¼ S23∶ σ⃗v ¼ σ⃗w ¼ ð1; 1;−1Þ: ðC28Þ

With this in mind, it is possible to easily compute (C26) to
obtain the value of the Hamiltonian in these three configu-
rations. These give the same value of H ¼ 6 both with and
without the intertwiner link.
For the three vertices case the minimal configuration still

corresponds to the one where the three vertices are all
colored with the same noncrossing pairing (one of the swap
operators) and the value of the Hamiltonian is easily
obtained from (C26) to be H ¼ 8 both with and without
the nonlocal intertwiner link.

APPENDIX D: COMPUTATION
OF kth ORDER HAMILTONIAN

The Hamiltonian associated to the Ising model can be
written as

Hk ¼
X
eivw∈L

Δðgv; gwÞ þ
X
∂A

Δðgv; XÞ

þ
X
∂B

Δðgv; X−1Þ þ
X
∂C

Δðgv; 1Þ; ðD1Þ

for each order k. Inserting bulk correlations, Hk exhibits a
corrective term

Hc
k ¼

X
eivw∈L

Δðgv; gwÞ þ
X
∂A

Δðgv; XÞ þ
X
∂B

Δðgv; X−1Þ

þ
X
∂C

Δðgv; 1Þ þ
X

hvwi∈Ω
Δðgv; gwÞ: ðD2Þ

We can consider the generic boundary tripartition exam-
ined in Secs. IVA and IV B for the case of a two and
three vertices graph, and compute the value of the kth
Hamiltonian for different configurations of the domain
walls associated to the Ising model.
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1. Hamiltonian of the two vertices graph

a. Order k= 2 Hamiltonians

This case has no particular interest, because of the trivial
features of S2, such as X ¼ X−1 and NCP given by only one
permutation, whose domain is actually the same of the
second configuration (Fig. 19). More interesting results can
be found investigating higher orders of negativity, since
X ≠ X−1 if k ≠ 2. In this case the value of the minimal
Hamiltonian is equal to the number of links that cross the
domain wall. For higher orders such equality is lost, but a
proportionality still holds, thus allowing us to find a
formula that directly relates the value of the Hamiltonian
to the number of links crossing the domain wall.

b. Order k= 3 Hamiltonians

The permutation group S3 has 3! ¼ 6 elements

S3 ¼ f1 ¼ ð1Þð2Þð3Þ; S12 ¼ ð12Þð3Þ; S13 ¼ ð13Þð2Þ;
S23 ¼ ð1Þð23Þ; X ¼ ð123Þ; X−1 ¼ ð321Þg: ðD3Þ

Cyclic and anticyclic permutations are now different. Using
the relations (A9) we can write some preliminary calcu-
lations on the distances:

Δð1; XÞ ¼ k − 1 ¼ 2; ðD4Þ

Δð1; X−1Þ ¼ k − 1 ¼ 2; ðD5Þ

ΔðX;X−1Þ ¼ k − 1 ¼ 2ðodd kÞ: ðD6Þ

We can now compute the Hamiltonian for some configu-
rations emerging from the six possible “spins” that can be
attached to vertices. To lighten the notation, we will only
write the nonvanishing terms of the Hamiltonian.

(i) gv ¼ gw ¼ 1;→ v; w ∈ C (Fig. 20),

H3 ¼ 2Δð1; XÞ þ 2Δð1; X−1Þ ¼ 8: ðD7Þ

(ii) gv ¼ X; gw ¼ X−1 → v ∈ A; w ∈ B (Fig. 21),

H3 ¼ΔðX;X−1ÞþΔðX;1ÞþΔðX−1;1Þ ¼ 6: ðD8Þ

(iii) gv ¼ X; gw ¼ 1 → v ∈ A; w ∈ C (Fig. 22),

H3 ¼ ΔðX;1Þ þ 2Δð1;X−1Þ þΔðX;1Þ ¼ 8: ðD9Þ

We can now consider correlations between intertwiners

Hc
k ¼ 2Δðgv; gwÞ þ 2Δðgv; XÞ

þ 2Δðgw; X−1Þ þ Δðgv; 1Þ þ Δðgw; 1Þ ðD10Þ

and investigate on how the values of the previous
Hamiltonians are modified.

(i) gv ¼ gw ¼ 1 → v; w ∈ C (Fig. 23),

Hc
3 ¼ 2Δð1; XÞ þ 2Δð1; X−1Þ ¼ 8: ðD11Þ

FIG. 19. Tripartition of a tree graph with two vertices.

FIG. 20. Two vertices k ¼ 3 configuration with v; w ∈ C.

FIG. 21. Two vertices k ¼ 3 configuration with v ∈ A and
w ∈ B.

FIG. 22. Two vertices k ¼ 3 configuration with v ∈ A and
w ∈ C.
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(ii) gv ¼ X; gw ¼ X−1 → v ∈ A; w ∈ B (Fig. 24),

Hc
3¼2ΔðX;X−1ÞþΔðX;1ÞþΔðX−1;1Þ¼8: ðD12Þ

(iii) gv ¼ X; gw ¼ 1 → v ∈ A; w ∈ C (Fig. 25),

Hc
3¼2ΔðX;1Þþ2Δð1;X−1ÞþΔðX;1Þ¼10: ðD13Þ

(iv) gv ¼ gw ¼ τ → v; w ∈ T (Fig. 26),

Hc
3 ¼ 2Δðτ;XÞþ2Δðτ;X−1Þþ2Δðτ;1Þ¼ 6: ðD14Þ

c. Order k = 4 Hamiltonians

The permutation group S4 has 4! ¼ 24 elements. We can
focus on the set of permutations we are going to use in the
calculation of H4:

X ¼ ð1234Þ X−1 ¼ ð4321Þ 1 ¼ ð1Þð2Þð3Þð4Þ;
τ ¼ ð12Þð34Þ; ð14Þð23Þ;

Δð1; XÞ ¼ Δð1; X−1Þ ¼ 4 − 1 ¼ 3;

ΔðX;X−1Þ ¼ 4 − 2 ¼ 2;

Δð1; τÞ ¼


4

2

�
¼ 2;

Δðτ; XÞ ¼ Δðτ; X−1Þ ¼ ⌈ 4

2
⌉ − 1 ¼ 1:

We can study in detail the cases of the two degenerate
minimal configurations

(i) gv ¼ X; gw ¼ X−1 → v ∈ A; w ∈ B (Fig. 27),

H4 ¼ΔðX;X−1ÞþΔðX;1ÞþΔðX−1;1Þ¼ 8: ðD15Þ

(ii) The set of noncrossing pairings is made up by
permutations with two blocks of length two. In S4
there are two NCP, given by S12S34 and S14S23.
Denoting by τ such permutations we have gv ¼
gw ¼ τ → v; w ∈ T (Fig. 28),

H4 ¼ 2Δðτ;XÞþ2Δðτ;X−1Þþ2Δðτ;1Þ¼ 8: ðD16Þ

FIG. 23. Two vertices k ¼ 3 configuration with v; w ∈ C and
intertwiner correlation.

FIG. 24. Two vertices k ¼ 3 configuration with v ∈ A, w ∈ B
and intertwiner correlation.

FIG. 25. Two vertices k ¼ 3 configuration with v ∈ A, w ∈ C
and intertwiner correlation.

FIG. 26. Two vertices k ¼ 3 configuration with v; w ∈ T and
intertwiner correlation.

FIG. 27. Two vertices k ¼ 4 configuration with v ∈ A and
w ∈ B.
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Considering now bulk correlation
(i) gv ¼ X; gw ¼ X−1 → v ∈ A; w ∈ B (Fig. 29),

H4 ¼ 2ΔðX;X−1Þ þ ΔðX; 1Þ þ ΔðX−1; 1Þ ¼ 10:

ðD17Þ

(ii) gv ¼ gw ¼ τ → v; w ∈ T (Fig. 30),

H4 ¼ 2Δðτ;XÞþ2Δðτ;X−1Þþ2Δðτ;1Þ¼ 8: ðD18Þ

2. Hamiltonian of the three vertices graph

a. Order k= 3 Hamiltonians

(i) gx ¼ gy ¼ gz ¼ 1;→ x; y; z ∈ C (Fig. 31),

H3¼2Δð1;XÞþΔð1;XÞþ2Δð1;X−1Þ¼10: ðD19Þ

(ii) gx ¼ gy ¼ X; gz ¼ X−1 → x; y ∈ A; z ∈ B (Fig. 32),

H3¼Δðgy;gzÞþΔð1;XÞþΔð1;XÞþΔð1;X−1Þ¼8:

ðD20Þ

FIG. 28. Two vertices k ¼ 4 configuration with v; w ∈ T.

FIG. 29. Two vertices k ¼ 4 configuration with v ∈ A, w ∈ B
and intertwiner correlation.

FIG. 30. Two vertices k ¼ 4 configuration with v; w ∈ T and
intertwiner correlation.

FIG. 31. Three vertices k ¼ 3 configuration with x; y; z ∈ C
and intertwiner nonlocal correlation.

FIG. 32. Three vertices k ¼ 3 configuration with x; y ∈ A,
z ∈ B and intertwiner nonlocal correlation.

FIG. 33. Three vertices k ¼ 3 configuration with x; y; z ∈ T
and intertwiner nonlocal correlation.

FIG. 34. Three vertices k ¼ 3 configuration with x ∈ A,
y; z ∈ T and intertwiner nonlocal correlation.
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(iii) gx ¼ gy ¼ gz ¼ τ → x; y; z ∈ T (Fig. 33),

H3¼2Δðτ;XÞþΔðτ;XÞþ3Δð1;τÞþ2Δðτ;X−1Þ¼8:

ðD21Þ

(iv) gx ¼ X; gy ¼ gz ¼ τ → x ∈ A; y; z ∈ T (Fig. 34),

H3 ¼ 2Δðτ;XÞþΔð1;XÞþ2Δð1;τÞþ2Δðτ;XÞ¼ 8:

ðD22Þ

The configuration with x and y in T gives the same
value of H3.

(v) gx ¼ gy ¼ X; gz ¼ τ → x; y ∈ A; z ∈ T (Fig. 35),

H3 ¼Δðτ;XÞþΔðτ;X−1ÞþΔðX;τÞ
þΔð1;XÞþΔðτ;XÞþΔðX−1;1Þ¼ 8: ðD23Þ

The configurations with x or y in T gives the same
value of H3.
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[92] F. Anzà and G. Chirco, Phys. Rev. Lett. 119, 231301 (2017).
[93] D. Oriti, D. Pranzetti, and L. Sindoni, Phys. Rev. D 97,

066017 (2018).

CEPOLLARO, CHIRCO, CUFFARO, and D’ESPOSITO PHYS. REV. D 107, 086003 (2023)

086003-28

https://doi.org/10.1103/PhysRevD.92.085045
https://doi.org/10.1103/PhysRevD.92.085045
https://doi.org/10.1103/PhysRevD.90.044044
https://doi.org/10.1103/PhysRevD.90.044044
https://doi.org/10.1088/0264-9381/32/3/035011
https://doi.org/10.1088/0264-9381/32/3/035011
https://doi.org/10.1103/PhysRevD.97.064040
https://doi.org/10.1103/PhysRevD.94.086009
https://doi.org/10.1103/PhysRevD.99.085001
https://arXiv.org/abs/gr-qc/0603008
https://doi.org/10.1088/1361-6382/aaa27c
https://doi.org/10.1088/1361-6382/aaa27c
https://doi.org/10.1103/PhysRevD.94.084047
https://doi.org/10.1103/PhysRevD.99.086011
https://doi.org/10.1103/PhysRevD.99.086011
https://doi.org/10.1103/PhysRevD.97.046015
https://doi.org/10.1103/PhysRevD.97.046015
https://doi.org/10.1142/S0218271819440115
https://doi.org/10.1016/j.nuclphysb.2018.06.007
https://doi.org/10.1016/j.nuclphysb.2018.06.007
https://doi.org/10.1088/1361-6382/aac606
https://doi.org/10.1088/1361-6382/aac606
https://doi.org/10.1088/1361-6382/ac103f
https://doi.org/10.1088/1361-6382/ac103f
https://doi.org/10.1088/1361-6382/ac90aa
https://doi.org/10.1088/1361-6382/ac90aa
https://doi.org/10.1088/1361-6382/aabf55
https://doi.org/10.1088/1361-6382/aabf55
https://doi.org/10.1007/JHEP07(2021)052
https://doi.org/10.1007/JHEP07(2021)052
https://doi.org/10.1103/PhysRevD.97.126002
https://doi.org/10.1103/PhysRevD.97.126002
https://doi.org/10.1088/1361-6382/ab7bb9
https://doi.org/10.1088/1361-6382/ab7bb9
https://doi.org/10.1103/PhysRevD.105.046018
https://doi.org/10.1103/PhysRevD.105.046018
https://doi.org/10.1103/PhysRevD.105.066005
https://doi.org/10.1103/PhysRevD.105.066005
https://arXiv.org/abs/2207.07625
https://arXiv.org/abs/2207.07625
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevA.58.883
https://doi.org/10.1103/PhysRevA.60.3496
https://doi.org/10.1080/09500349908231260
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevLett.95.090503
https://doi.org/10.1103/PhysRevB.94.035152
https://doi.org/10.1103/PhysRevB.94.035152
https://doi.org/10.1007/JHEP02(2022)076
https://doi.org/10.1007/JHEP02(2022)076
https://doi.org/10.1007/JHEP06(2021)024
https://doi.org/10.1007/JHEP06(2021)024
https://doi.org/10.1103/PRXQuantum.2.030347
https://doi.org/10.1063/1.532254
https://doi.org/10.1063/1.532254
https://doi.org/10.4310/ATMP.1999.v3.n4.a3
https://doi.org/10.4310/ATMP.1999.v3.n4.a3
https://doi.org/10.1103/PhysRevD.83.044035
https://doi.org/10.1103/PhysRevD.83.044035
https://doi.org/10.1103/PhysRevD.97.026009
https://arXiv.org/abs/1408.7112
https://doi.org/10.26421/QIC7.5-6-1
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevLett.97.080501
https://doi.org/10.1103/PRXQuantum.2.040340
https://doi.org/10.1103/PRXQuantum.2.040340
https://doi.org/10.1103/PhysRevD.99.086013
https://doi.org/10.1103/PhysRevD.99.086013
https://doi.org/10.1002/prop.201500095
https://doi.org/10.1007/JHEP11(2016)129
https://doi.org/10.1007/JHEP11(2016)129
https://doi.org/10.1016/j.nuclphysb.2006.02.012
https://doi.org/10.1103/PhysRevD.81.104032
https://doi.org/10.1088/0264-9381/30/16/165004
https://doi.org/10.1103/PhysRevLett.119.231301
https://doi.org/10.1103/PhysRevD.97.066017
https://doi.org/10.1103/PhysRevD.97.066017

