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Motivated by properties of tensor networks, we conjecture that an arbitrary gravitating region a can be
assigned a generalized entanglement wedge E ⊃ a, such that quasilocal operators in E have a holographic
representation in the full algebra generated by quasilocal operators in a. The Universe need not be
asymptotically flat or anti–de Sitter (AdS), and a need not be asymptotic or weakly gravitating. On a static
Cauchy surface Σ, we propose that E is the superset of a that minimizes the generalized entropy. We prove
that E satisfies a no-cloning theorem and appropriate forms of strong subadditivity and nesting. If a lies
near a portion A of the conformal boundary of AdS space, our proposal reduces to the quantum minimal
surface prescription applied to A. We also discuss possible covariant extensions of this proposal, although
none prove completely satisfactory. Our results are consistent with the conjecture that information in E that
is spacelike to a in the semiclassical description can nevertheless be recovered from a, by microscopic
operators that break that description. We thus propose that E quantifies the range of holographic encoding,
an important nonlocal feature of quantum gravity, in general spacetimes.
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I. INTRODUCTION

We seek a theory of quantum gravity that can describe
our own Universe. One possible approach to this challenge
is to analyze the well-known theories [1] that instead
describe asymptotically anti–de Sitter (AdS) space. In
particular, one would like to identify elements of the
AdS=CFT correspondence that have broader validity.
The entanglement wedge prescription is a crucial part of
the AdS=CFT dictionary: it identifies the spacetime region
dual to a given conformal field theory (CFT) subregion.
We will propose a more general prescription that associates
an entanglement wedge to arbitrary regions in arbitrary
spacetimes.

A. Entanglement wedge of a boundary region

The Ryu-Takayanagi (RT) proposal [2] was first intro-
duced in the context of the AdS=CFT correspondence,
as a method for computing the von Neumann entropy of a
stationary CFT state reduced to any spatial region A of the
boundary. The proposal was refined to allow for time-
dependent states by Hubeny et al. [3]. Quantum corrections

were first included by Faulkner et al. [4]. Engelhardt and
Wall [5] introduced the present, most powerful formulation
of RT in terms of the quantum-extremal surface QESminðAÞ
anchored on A with smallest generalized entropy among
all such surfaces. This prescription can be applied in the
semiclassical regime to any order in Gℏ.
The entanglement wedge EWðAÞ is defined as the

homology wedge, i.e., the causal development of any
spatial region bounded by QESminðAÞ and A. There is
strong evidence that, in a large class of states,1 EWðAÞ is
precisely the bulk dual to the boundary region A [8,9].2

That is, any local bulk operator in EWðAÞ can be imple-
mented, or “reconstructed,” by a CFT operator in the
algebra associated with the region A, and no bulk operator
outside EWðAÞ can be so implemented. This result is
known as entanglement wedge reconstruction.
Its definition does not require the entanglement wedge

to be connected. Any component of EWðAÞ that is not
connected to A is called an entanglement island [13,14]. An
island arises naturally in the course of black hole evapo-
ration, if the radiation is stored in a distant, localized
reservoir a [15]. Consider a small boundary region Awhose
entanglement wedge contains a, as shown in Fig. 1. After
the Page time, i.e., when the entropy of the radiation*bousso@berkeley.edu
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1See Refs. [6,7] for subtleties and appropriate refinements of
the entanglement wedge. Our proposal admits analogous refine-
ments, which may be important for its generalization to time-
dependent settings; see Sec. IV C.

2See Refs. [10–12] for early work on this problem.
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exceeds the Bekenstein-Hawking entropy of the remaining
black hole, EWðAÞ will also include an island b just inside
of the black hole horizon. The inclusion of b in EWðAÞ
decreases the generalized entropy since the radiation
entropy in a is purified by the Hawking partners in b,
and the price paid is only the Bekenstein-Hawking entropy
of the island boundary (roughly that of the black hole).

B. Going beyond AdS space

With certain assumptions, the entanglement wedge
prescription can be derived from the gravitational path
integral [16]. This implies that the entanglement wedge
prescription can be used to compute the entropy not only of
subregions of the conformal boundary of AdS space, but of
more general systems that are coupled to a gravitating
spacetime, regardless of whether an exact description is
known.3

Crucially, this suggests that the entanglement wedge
prescription is not confined to the context of AdS=CFT.
Here we propose that an entanglement wedge prescription
should be applicable in general spacetimes. Like the
generalized second law [18,19] and the covariant entropy
bound [20,21], the entanglement wedge reveals aspects
of the (usually unknown) full quantum gravity theory,
extracted from the gravitational path integral.4

The full generality of the entanglement wedge
prescription—its applicability beyond the AdS=CFT cor-
respondence—was long obscured by the lack of nontrivial
boundary-anchored extremal surfaces in non-AdS space-
times or auxiliary systems. Entanglement islands, however,
are detached from the conformal boundary by definition.
Hence, islands furnish nontrivial examples of entanglement
wedges of systems that have nothing to do with the
conformal boundary of AdS space.
For example, if the Hawking radiation is transferred to an

external systemR, then after the Page time,Rwill possess a
nontrivial entanglement wedge: EWðRÞ ¼ R ∪ b. (Islands
were first discovered in this setting.) This should also be
the case for Hawking radiation far from the black hole in
asymptotically flat spacetimes (see Fig. 2, left panel). In
both cases, the presence of an entanglement island b is
crucial to deriving the Page curve and thus the unitarity of
the Hawking process. And in neither case is the entangle-
ment wedge computed for a portion of the conformal
boundary of AdS space.
What should be regarded as the proper input for

computing an entanglement wedge: a portion of the
conformal boundary? Nongravitating systems outside the
spacetime? In this paper, we will propose that the answer is
neither: rather, the entanglement wedge prescription should
be formulated as a map that takes any gravitating spacetime
region as input and outputs another (equal or larger) bulk
spacetime region. The entanglement wedges of nongravi-
tating systems and of boundary regions should be inter-
preted as limits of this more general prescription that arise if

FIG. 1. Entanglement island. Hawking radiation emitted from a
black hole (gray circle) is collected in the reservoir a (red) located
near the boundary region A. Before the Page time, the (ordinary)
entanglement wedge EW(A) consists only of the blue region
adjacent to A. After the Page time, EW(A) also contains an island
b in the black hole interior.

b a
A

A

E(a) =
 EW(A)

a

FIG. 2. Examples that motivate and constrain our definition of a
generalized entanglement wedge, a map E∶a → EðaÞ, that takes
bulk regions as its input. Left: Hawking radiation arrives on a
portion A of future null infinity. After the Page time, the (original)
entanglement wedge of A includes an island: EWðAÞ ¼ A ∪ b.
When the radiation is still in the distant spacetime region a (green
shaded), it should already possess a generalized entanglement
wedge, such that EðaÞ ⊃ a ∪ b. Right: the (original) entangle-
ment wedge EWðAÞ of an AdS boundary region A can be
regarded as the bulk algebra of operators encoded in the CFT
algebra of operators in A. The latter is generated by local
operators in A, which are dual to quasilocal bulk operators in
the near-boundary region a. Hence a should possess a general-
ized entanglement wedge such that EðaÞ ¼ EWðAÞ.

3The earliest example of this phenomenon was the observation
that, if a nongravitating external system R purifies matter near
the QES that bounds EWðAÞ, then access to R can increase the
size of the reconstructible bulk region [6,17]. In other words,
EWðA ∪ RÞ can differ from EWðAÞ.

4When a full theory is available, it can be used to verify the
predictions of the entanglement wedge prescription. For example,
by the AdS=CFT duality, the Page curve for an evaporating AdS
black hole follows independently from the scrambling properties
and the unitarity of the CFT.
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the input region is weakly gravitating or approaches the
asymptotic boundary.
Because the real world has gravity, such a proposal

might be testable at least in principle, unlike a boundary-to-
bulk map. Importantly, it should extend the notion of
an entanglement wedge to arbitrary spacetimes, including
cosmology.
For static spacetimes, we propose that the generalized

entanglement wedge EðaÞ is simply the superset of a with
smallest generalized entropy.5 We motivate this prescrip-
tion using tensor network toy models of quantum gravity
and show that it satisfies a number of desirable properties
that suggest it correctly quantifies the range of holographic
encoding.
For general regions in time-dependent spacetimes, the

correct definition of the generalized entanglement wedge
seems less clear. We discuss one possible definition in some
detail and show that it satisfies some but not all of the
properties satisfied by E.

C. Outline

In Sec. II, we motivate our prescription. We argue in
Sec. II A that it must be possible to assign a larger entangle-
ment wedge at least to some gravitating regions. Universality
then suggests that all gravitating regions have an entangle-
ment wedge. In Sec. II B, we analyze the example of tensor
network toy models and argue that a sensible entanglement
wedge may be assigned to bulk regions.
In Sec. III, we define the entanglement wedge EðaÞ of a

bulk region a. We focus on the “static” case, when a and
EðaÞ are part of time-reversal invariant initial data. That is,
we propose a generalization of the Ryu-Takayanagi
prescription [2] including quantum corrections [4]. We
establish some definitions and notation in Sec. III A. In
Sec. III B, we define EðaÞ as the spatial region with
smallest generalized entropy, among all regions that con-
tain a. In Sec. III C, we show that E obeys nontrivial
properties consistent with its interpretation as an entangle-
ment wedge: no cloning, nesting, and strong subadditivity.
In Sec. IV, we discuss possible generalizations of our

prescription to the time-dependent case, analogous to the
Hubeny-Rangamani-Takayanagi prescription [3] and its
quantum extension by Engelhardt and Wall [5]. After
introducing relevant concepts in Sec. IVA, we consider
EnðaÞ, the wedge with the smallest generalized entropy
among all quantum-normal wedges that contain a and share
the conformal boundary (if any) of a. We show that En
reduces to the entanglement wedge prescription for boun-
dary regions and static regions. Moreover, En satisfies an
appropriate no-cloning theorem. However, En fails to
satisfy strong subadditivity and nesting. We briefly discuss
some alternative proposals.

D. Discussion

By analogy with the interpretation of the usual entan-
glement wedge, our results suggest that information in
EðaÞ can be manipulated or summoned by a bulk observer
in a. This is a striking implication.
We expect that such operations would not admit an

interpretation in terms of a continuous, classical spacetime.
Indeed, even simple operations in AdS space, such as the
instantaneous, local addition of a particle deep in the bulk,
would violate the Bianchi identity and hence cannot be
represented as a continuous geometry without introducing
time folds. Yet, this operation can be implemented instan-
taneously on a global boundary slice σ. Continuity of the
boundary manifold across σ then suggests that the bulk
exists as a semiclassical spacetime in the past and future of
σ, but not spacelike to σ. We expect that the reconstruction,
from a bulk region a, of operators in EðaÞ ∩ a0 involves
comparably violent breakdowns of the spacetime geometry,
at least outside of a.
We stress that the full physical significance of our

proposal is not yet clear. In particular, we are not proposing
a specific reconstruction map for operators in EðaÞ ∩ a0 or
any other generalization of the known entries of the holo-
graphic dictionary beyond the entanglement wedge pre-
scription. But given its nontrivial properties, we expect E to
play a role in formulating quantum gravity as a holographic
duality beyond AdS=CFT, for arbitrary spacetimes.

E. Relation to other work

In Ref. [22], a definition was given for entanglement
islands of low-energy bulk fields in a weakly gravitating
region. The fields have an explicit momentum cutoff, and
higher-energy operators, such as those that would create
black holes, are explicitly excluded. Hence, when applied
to an asymptotic bulk region, the prescription [22] would
not give the entanglement wedge of the corresponding
boundary region. Thus, while we believe that Ref. [22]
correctly treats the problem formulated there, its construc-
tion cannot be the right answer to the question we pose.
In Ref. [23], a restricted maximin prescription was

proposed for the entanglement wedge of a boundary region
in a cutoff spacetime. Again, this prescription is intended
to answer a different question than the one we are interested
in here. As we describe in Sec. IV C, a closely related

FIG. 3. Left: two tensors T1 and T2 in a tensor network. The in-
plane legs (horizontal) connect different tensors together, while
the bulk legs (vertical) input matter degrees of freedom. Right: by
bending the in-plane leg connecting T1 and T2 around, we can
reinterpret it as two maximally entangled bulk legs, one on each
tensor.

5Throughout, the symbols ⊂ and ⊃ are understood to allow set
equality.
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prescription—with the edge of a playing the role of the
cutoff surface—yields a time-dependent generalization of
our proposal that obeys strong subadditivity, but which
violates the nesting property required for the entanglement
wedges of bulk regions.
Finally, the present work does not support claims that

there is no Page curve for an evaporating black hole [24].
The Page curve is expected to describe the entropy of low-
energy Hawking radiation modes, not all the information, in
principle, accessible far from the black hole. For example,
let a be the exterior of a large sphere in asymptotically
flat space. Then the generalized entanglement wedge we
define, EðaÞ, can include the entire interior enclosed by a.
But this does not mean that the information inEðaÞna can be
accessed via low-energy operators in a.

II. MOTIVATION

A. Why a bulk region should have
an entanglement wedge

We begin by arguing that at least some gravitating bulk
regions constitute legitimate input to the entanglement
wedge prescription. We will discuss the two examples
shown in Fig. 2.
First, consider the Hawking radiation emitted by a

black hole in asymptotically flat space, after the Page
time. The radiation must contain the same information,
whether it has been extracted into an auxiliary non-
gravitating system, or arrived at a portion A of future null
infinity, or is still traversing a distant, weakly gravitating
region a. Operationally, the presence of an island b in
the former cases indicates unitarity: sufficiently careful
experiments would show that the ultimate state of the
radiation is pure. But if such experiments could only
succeed in the complete absence of gravity, they would
fail in the real world, so the question of unitarity would be
operationally meaningless.
These considerations make it implausible that the

radiation has an entanglement island only if its self-
gravity is completely turned off, but not if its self-gravity
is arbitrarily small. It follows that the weakly gravitating
region a must be assigned an entanglement wedge that
includes the island b,

Eðdistant Hawking radiation aÞ ⊃ a ∪ b: ð2:1Þ

Let us pause for a moment to examine what is happen-
ing here. Careful measurements on one part of the bulk
spacetime, the Hawking radiation, are allowing us to
extract information that resides (from the semiclassical
viewpoint) in a distant spacelike-separated region: the
black hole interior. This is a striking example of a
fundamental nonlocality that appears to be present in
quantum gravity; sufficiently complex operators do not
have to respect the semiclassical structure of spacetime.

Importantly, this fundamental nonlocality is not solely
a feature of black hole physics; instead it is an essential
aspect of holography. This brings us to our second
example (Fig. 2, right panel).
In the AdS=CFT correspondence, local CFT operators in

a conformal boundary subregion A are dual to (quasi)local
bulk operators near A [25,26]. The notion of “near” can be
made precise by defining a bulk region a as the union of the
entanglement wedges of tiny boundary regions containing
slightly smeared local boundary operators.6 But local CFT
operators generate the entire algebra of the CFT. It follows
that the algebra generated by bulk operators in the near-
boundary bulk region a encodes the entire entanglement
wedge of A.7 Information apparently located deep in the
bulk must be secretly, and highly nonlocally, encoded in
quasilocal bulk operators near the asymptotic boundary.8

Thus, the traditional entanglement wedge prescription
for boundary subregions, EWðAÞ, can be reinterpreted as a
statement about the algebra generated by quasilocal bulk
operators in the asymptotic bulk region a, without any
reference to a CFT dual. It follows that an asymptotic bulk
region a in asymptotically AdS spacetime must possess
an entanglement wedge—indeed, the same entanglement
wedge that would have been assigned to its conformal
boundary A,

Eðasymptotic AdS bulk region aÞ ¼ EWðAÞ: ð2:2Þ

If two such apparently dissimilar bulk regions—
Hawking radiation and asymptotic regions in AdS—
encode a larger entanglement wedge, then Occam’s razor
suggests that

(i) any bulk region should have an associated entangle-
ment wedge, and

(ii) only bulk regions possess an entanglement wedge.
(Boundary regions and auxiliary systems can be
viewed as idealized limits of bulk regions that are
near asymptotic infinity or very weakly gravitating,
respectively.)

6High-dimensional local operators in the CFT will not corre-
spond to low-energy fields in the bulk effective field theory.
Instead, they will generically create large black holes. However,
these black holes will still be localized near the asymptotic
boundary. See, e.g., the discussion in [27].

7In 2þ 1 boundary dimensions and higher, Wilson loops play
an important role; these are nonlocal operators that (in non-
Abelian gauge theories) cannot be written as a product of gauge-
invariant local operators. However, any Wilson loop will be
contained in a thin boundary strip with arbitrarily shallow
entanglement wedge. Therefore, it should also be accessible as
a bulk operator in the corresponding near-boundary region and
should still be contained in the associated bulk algebra.

8In fact, this encoding is exponentially simpler than the
encoding of the black hole interior in Hawking radiation [28,29].
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B. Motivation from tensor networks

Additional motivation for such a proposal comes from
tensor networks, a useful toymodel of static states in quantum
gravity [30–33]. In these models, each tensor represents a
patch of the gravitational spacetime, with the logarithm of the
dimension of an edge capturing the area (in Planck units)
of the surface connecting two neighboring patches. Bulk
degrees of freedom within the patch are described by addi-
tional “out-of-plane” legs that feed into the network.
Importantly, the distinction between out-of-plane and in-

plane tensor network legs is not precise. Mathematically,
highly entangled Rindler modes on either side of a cut play
an identical role in the tensor network as in-plane legs
representing area, as shown in Fig. 3. The same effect is
seen in gravity where the Rindler modes and geometrical
area are equivalent under renormalization group flow. As
we increase the UV cutoff on the bulk quantum field theory,
the amount of Rindler entanglement across a surface
increases; this increase is canceled in a computation of
generalized entropy by the decrease in A=4G created by the
renormalization of Newton’s constant.
If we extrapolate the UV cutoff all the way to the Planck

scale, it is natural to conjecture that the area term, or
analogously the in-plane tensor network legs, go away
entirely, with the entanglement coming entirely from out-
of-plane bulk legs. In such a limit, the tensor network
consists purely of a set of projection operators that map the
bulk state to the boundary state.
Why does this suggest that a region a encodes the larger

region EðaÞ, as suggested in Fig. 4. If in-plane legs are
really bulk Planck scale bulk legs, then an operator O can
be reconstructed by a (potentially very-high-energy) oper-
ator within the region a if the action of O is the same as an
operator Õ that acts on the out-of-plane legs within a,
along with the in-plane legs at the boundary of a. After all,
both sets of degrees of freedom should be, in principle,
accessible from a, even if the Planckian degrees of freedom
may not be described by an effective field theory.

In a tensor network, EðaÞ corresponds to the smallest-
entropy cut through the network such that a is contained
entirely within the cut (see Fig. 4, right panel). Let us
assume for simplicity that the dominant contribution to
the entropy of any given cut comes from the maximally
entangled in-plane legs. (In gravity, this corresponds to
taking the semiclassical limit where the area term gives the
dominant contribution to generalized entropy.) Now con-
sider the map V induced by the tensor network from the
boundary of EðaÞ, together with bulk legs in EðaÞna, to the
boundary of a. By definition, any intermediate cut through
this subnetwork describing V has larger area (i.e., much
larger bond dimension) than the input to V. For networks
with sufficiently generic tensors, this ensures that the
map V is an (approximate) isometry,9 and hence that the
operator Õ ¼ V†OV, which acts on the in-plane legs at
the boundary of a, successfully reconstructs any operatorO
acting in EðaÞna.

III. GENERALIZED ENTANGLEMENT WEDGES
IN TIME-REFLECTION SYMMETRIC SLICES

A. Preliminaries

Definition 3.1.—A spacetime M is time-reflection sym-
metric if there exists a Z2 action on M that exchanges past
and future timelike directions and preserves all points in a
Cauchy surface Σ.
Convention 3.2.—In this section, we will only be

concerned with the time-reflection symmetric Cauchy
surface Σ, regarded as a manifold with Riemannian metric
h. We assume that Σ is inextendible.
Definition 3.3.—We use ∂s to denote the boundary of a

set s ⊂ Σ in the induced topology of Σ. Also cl s≡ s ∪ ∂s
and int s ¼ s ∩ cl sC, where the superscript C denotes the
set complement in Σ.
Definition 3.4.—Awedge a is any open subset of Σ that

is the interior of its closure: a ¼ int cl a. (The name is
slightly more natural in the more general time-dependent
context; it is adopted for compatibility with the existing
phrase entanglement wedge).
Definition 3.5.—The intersection of two wedges is a

wedge; but the union, complement, and relative comple-
ment need not be. Given two wedges a and b, the wedge
union, wedge complement, and wedge relative complement
are wedges defined by

a ⋓ b≡ int clða ∪ bÞ; ð3:1Þ

a0 ≡ int aC; ð3:2Þ

anb≡ a ∩ b0: ð3:3Þ

a E(a)

FIG. 4. Left: in this example, the edge of a is a nonconvex
surface on a static slice of Minkowski space, and the edge of EðaÞ
is its convex hull. Right: a tensor network analog of the region a.
For random tensor networks, the map from the boundary of EðaÞ
(blue) to the boundary of a (green) will be an approximate
isometry.

9Concretely, this will be the case with very high probability if
the tensors are drawn from a Haar random ensemble [32].
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Definition 3.6.—The area of a wedge a is the geometric
area of ∂a and is denoted AreaðaÞ.
Definition 3.7.—The generalized entropy of a wedge a is

SgenðaÞ≡ Areað∂aÞ
4Gℏ

þ SðaÞ þ… ð3:4Þ

Here

SðaÞ ¼ −tr ρa log ρa ð3:5Þ

is the von Neumann entropy of

ρa ¼ tra0 ρ; ð3:6Þ

the density operator of the quantum fields restricted to a.
Remark 3.8.—The area in Eq. (3.4) can be thought of as a

counterterm that cancels the leading divergence in the von
Neumann entropy S. Additional counterterms for sublead-
ing divergences have been omitted. See the appendix of
Ref. [21] for details.
Definition 3.9.—Let Σ̃≡ ðM; h̃Þ denote the conformal

completion of Σ, obtained by conformally mapping Σ to
a subset of a compact set (for example, a sphere) and
taking the closure of the image. Σ̃ may be a manifold with
boundary [34]. The boundary of the image ∂Σ̃ is called the
conformal boundary of Σ. We will not distinguish nota-
tionally between a set a ⊂ Σ and its image in Σ̃. However,
such a distinction is crucial for boundaries of sets.
Definition 3.10.—The boundary of a wedge a ⊂ Σ̃ will

be denoted δa. As shown in Fig. 5, we define the conformal
boundary of a as the set

e∂a≡ δa ∩ ∂Σ̃; ð3:7Þ

thus,

δa ¼ ∂a ⊔ e∂a: ð3:8Þ

B. Definition and basic properties

Definition 3.11.—Given a wedge a ⊂ Σ, we define its
generalized entanglement wedge EðaÞ as the wedge that
satisfies

a ⊂ EðaÞ ⊂ Σ and e∂a ¼ e∂EðaÞ ð3:9Þ

and which has the smallest generalized entropy among all
such wedges. We assume without proof that EðaÞ exists,
and for convenience we shall assume that it is unique.
Lemma 3.12: Monotonicity.—Let a and b be wedges

with the same conformal boundary, e∂a ¼ e∂b. Then

a ⊂ b ⇒ Sgen½EðaÞ� ≤ Sgen½EðbÞ�: ð3:10Þ

That is, the generalized entropy of the entanglement wedge
increases monotonically with the input wedge under
inclusion, if the conformal boundary is held fixed.
Proof.—EðbÞ ⊃ b ⊃ a ⇒ Sgen½EðbÞ� ≥ Sgen½EðaÞ� by

Definition 3.11. ▪
Definition 3.13: Entanglement wedge of a boundary

region.—Let B ⊂ ∂Σ̃ be a subregion of the conformal
boundary ∂Σ̃. The (ordinary) entanglement wedge EWðBÞ ⊂
Σ [2,4] is the wedgewith conformal boundaryB and smallest
generalized entropy among all such sets.
Lemma 3.14: EW as a special case of E.—If the wedge a

lies in the (ordinary) entanglement wedge of its conformal
boundary, a ⊂ EWðe∂aÞ, then its generalized entanglement
wedge is

EðaÞ ¼ EWðe∂aÞ: ð3:11Þ

Proof.—The result follows immediately from Definitions
3.11 and 3.13. ▪
Remark 3.15: Asymptotic bulk regions.—Let an be an

infinite sequence of wedges with anþ1 ⊂ an, e∂anþ1 ¼ e∂an,
and ∩n an ¼ ∅. Then EðanÞ ¼ EWðe∂anÞ for all sufficiently
large n.

C. No cloning, strong subadditivity, and nesting

Theorem 3.16: No cloning.—

a ∩ EðbÞ ¼ ∅; b ∩ EðaÞ ¼ ∅: ð3:12Þ

Then

EðaÞ ∩ EðbÞ ¼ ∅: ð3:13Þ
FIG. 5. The boundary δa ∈ Σ̃ of a wedge a in the conformal
completion Σ̃ decomposes into the original boundary ∂a ∈ Σ and
a conformal boundary e∂a ∈ ∂Σ̃.
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Proof.—As shown in Fig. 6,

Area½EðaÞnEðbÞ� þ Area½EðbÞnEðaÞ�
≤ Area½EðaÞ� þ Area½EðbÞ�: ð3:14Þ

[This need not be an equality; for example, there may be a
disconnected shared boundary in EðaÞ ∩ EðbÞ.] Strong
subadditivity implies the same inequality for the von
Neumann entropies; hence

Sgen½EðaÞnEðbÞ� þ Sgen½EðbÞnEðaÞ�
≤ Sgen½EðaÞ� þ Sgen½EðbÞ�: ð3:15Þ

That is, the generalized entropy of EðaÞ or EðbÞ decreases
when EðaÞ ∩ EðbÞ is removed. By the assumption of the
Lemma, a ⊂ EðaÞnEðbÞ and b ⊂ EðbÞnEðaÞ, so this con-
tradicts Definition 3.11 unless EðaÞ ∩ EðbÞ ¼ ∅. ▪
Theorem 3.17: Strong subadditivity.—

Sgen½Eða ⋓ bÞ� þ Sgen½Eðb ⋓ cÞ�
≥ Sgen½EðbÞ� þ Sgen½Eða ⋓ b ⋓ cÞ�: ð3:16Þ

Proof.—The setup is illustrated in Fig. 7. Rearranging
components of surfaces, we have

Area½Eða⋓ bÞ�þArea½Eðb⋓ cÞ�
≥Area½Eða⋓ bÞ∩Eðb⋓ cÞ�þArea½Eða⋓ bÞ⋓Eðb⋓ cÞ�:

ð3:17Þ

(This need not be an equality since the wedge union can
erase boundary portions.) Strong subadditivity implies the
same inequality for the von Neumann entropies, and hence
for the generalized entropy

Sgen½Eða ⋓ bÞ�þSgen½Eðb ⋓ cÞ�
≥ Sgen½Eða ⋓ bÞ ∩Eðb ⋓ cÞ�þSgen½Eða ⋓ bÞ ⋓Eðb ⋓ cÞ�:

ð3:18Þ

The first set on the right contains b and the second contains
a ⋓ b ⋓ c, so Definition 3.11 implies Eq. (3.16). ▪
Theorem 3.18: Nesting.—

a ⊂ b ⇒ EðaÞ ⊂ EðbÞ: ð3:19Þ

Proof.—The setup is illustrated in Fig. 8. Since a ⊂ b,
we have a ⊂ EðaÞ ∩ EðbÞ, so by Definition 3.11,

Sgen½EðaÞ� ≤ Sgen½EðaÞ ∩ EðbÞ�; ð3:20Þ

Sgen½EðbÞ� ≤ Sgen½EðaÞ ⋓ EðbÞ�: ð3:21Þ

But

Area½EðbÞ� þ Area½EðaÞ�
≥ Area½EðaÞ ∩ EðbÞ� þ Area½EðaÞ ⋓ EðbÞ�: ð3:22Þ

(This need not be an inequality since the wedge union can
erase boundary portions.) Strong subadditivity implies the
same inequality for the von Neumann entropies, and hence
for the generalized entropy

E(a)a bE(b)

FIG. 6. A configuration excluded by Theorem 3.16 (no clon-
ing): if a∩EðbÞ¼∅ and b ∩ EðaÞ ¼ ∅ then EðaÞ ∩ EðbÞ ¼ ∅,
because otherwise removing the overlap from each entanglement
wedge would fail to increase their combined generalized entropy. FIG. 7. An illustration of the setup from Theorem 3.17 (strong

subadditivity): The combined Sgen of Eða ⋓ bÞ and Eðb ⋓ cÞ is
at least big as the combined Sgen of their intersection and union.
In turn, these upper bound the combined Sgen of EðbÞ and
Eða ⋓ b ⋓ cÞ, respectively.

E(a)a

b
E(b)

FIG. 8. A hypothetical counterexample to Theorem (3.19)
(nesting): if a ⊂ b but EðaÞ ⊄ EðbÞ, we can replace the two
entanglement wedges by EðaÞ ∩ EðbÞ and EðaÞ ⋓ EðbÞ, respec-
tively, decreasing their combined area.
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Sgen½EðbÞ� þ Sgen½EðaÞ�
≥ Sgen½EðaÞ ∩ EðbÞ� þ Sgen½EðaÞ ⋓ EðbÞ�: ð3:23Þ

To avoid a contradiction, all three of the above inequalities
must be saturated. The assumed uniqueness of EðaÞ implies
EðaÞ ∩ EðbÞ ¼ EðaÞ, and hence EðaÞ ⊂ EðbÞ. ▪

IV. TIME DEPENDENCE

In this section, we discuss possible generalizations of
our proposal to the case where a does not lie on a time-
reflection symmetric Cauchy surface. We will sketch
approaches, obtain some partial results, and outline
specific challenges. We focus primarily on one possible
generalization—the smallest-generalized-entropy quantum-
normal wedge EnðaÞ—which turns out to obey a no-cloning
theorem, but not strong subadditivity or nesting. We briefly
comment on other possible generalizations that preserve
strong subadditivity and nesting, respectively, but do not find
any single definition that preserves all three.

A. Preliminaries

We begin by introducing natural generalizations of the
key objects introduced in Sec. III A. Let M be a globally
hyperbolic Lorentzian spacetime with metric g. The
chronological and causal future and past I� and J�, and
the future and past domains of dependence and Cauchy
horizons D� and H�, are defined as in Wald [34]. Given
s ⊂ M, we use ∂s to denote the boundary of s inM and s0 to
denote the interior of the set of points that are spacelike
related to all points in s, that is, points outside the causal
future and past of s.
Definition 4.1.—A wedge is a set a ⊂ M that satisfies

a ¼ a00 (see Fig. 9, left).
Remark 4.2.—It can be shown that the intersection of

two wedges a, b is a wedge (see Fig. 9, right); and the
complement wedge a0 is a wedge,

ða ∩ bÞ00 ¼ a ∩ b; a000 ¼ a0: ð4:1Þ

Definition 4.3.—Given two wedges a and b, we define
the relative complement of b in a as a ∩ b0 and the wedge
union as a ⋓ b≡ ða0 ∩ b0Þ0 (see Fig. 10); these objects are
wedges by the above remark.
Remark 4.4.—The wedge union satisfies a ⋓ b ⊃ a ∪ b.

It is minimal in the sense that any wedge that contains
a ∪ b must contain a ⋓ b.
Definition 4.5.—The edge ða of a wedge a is defined

by ða≡ ∂a ∩ ∂a0. Note that a is fully characterized by
specifying ða and one spatial side of ða.
Definition 4.6.—The area and generalized entropy of a

wedge a are defined as in the static case, Definitions 3.6
and 3.7, with ∂a replaced by ða. Note that neither depend
on a choice of Cauchy slice of a.
Definition 4.7.—Given a wedge a, we distinguish

between its edge ða in M and its edge �δa as a subset of
the conformal completion M̃. The latter can contain an
additional piece, the conformal edge

ð̃a≡�δa ∩ ∂M̃: ð4:2Þ

Definition 4.8.—Given a wedge a and a point p ∈ ða,
the past (future) quantum expansion, Θ−ða; pÞ [Θþða; pÞ]
is the shape derivative of the generalized entropy under
outward deformations of a along the past (future) null
vector field orthogonal to ða at p. A precise definition can
be given in terms of a functional derivative,

Θ�ða; pÞ≡ 4Gℏ
δSgen½aðX�ðpÞÞ�

δX�ðpÞ : ð4:3Þ

Here X� are null coordinates orthogonal to ða, and
aðX�ðpÞÞ are wedges obtained by deforming ða along
them. See Ref. [21] for further details.
Remark 4.9.—By Eq. (3.4), the quantum expansion can

be decomposed into a classical and a quantum piece,

Θ�ða; pÞ ¼ θðpÞ þ 4Gℏ
δS½aðX�ðpÞÞ�

δX�ðpÞ : ð4:4Þ

FIG. 9. Left: a spherical wedge a, its complement wedge a0,
and their shared edge ða in Minkowski space. The wedge a is
diamond shaped in this spacetime diagram; a Cauchy slice
of a is shown in dark green. This wedge is “normal,” since
outgoing orthogonal light rays expand. Right: the intersection
of two wedges is itself a wedge, with an edge that decomposes
as ðða ∩ bÞ ¼ cl½ðða ∩ bÞ ⊔ ðHþðaÞ ∩ H−ðbÞÞ ⊔ fa ↔ bg�.

FIG. 10. The wedge union (thick purple diamond) of two
wedges (blue diamonds) is defined as the wedge complement
of the intersection of their wedge complements. Two examples
are shown.
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The first term is the classical expansion [34], which
depends only on the shape of ða near p. The second term
in Eq. (4.4) is nonlocal.
Lemma 4.10.—Let a ⊂ b be wedges whose edges

coincide in an open neighborhood O. At any point
p ∈ ða ∩ O,

Θ�ða; pÞ ≥ Θ�ðb; pÞ: ð4:5Þ

Proof.—Since ða and ðb coincide near p, their shape,
and hence their classical expansion θ, will agree at p. The
Lemma then follows from strong subadditivity of the von
Neumann entropy, applied to an infinitesimal deformation
of a, and of b, at p; see Fig. 3(a) in Ref. [21]. ▪
Definition 4.11.—The wedge a is called quantum normal

at p ∈ ða if Θþða; pÞ ≥ 0 and Θ−ða; pÞ ≥ 0. Other com-
binations of signs correspond to quantum-antinormal
(≤;≤), quantum trapped (≤;≥), quantum antitrapped
(≥;≤), and quantum extremal (¼;¼). Marginal cases arise
if one expansion vanishes at p. In relations that hold for all
p ∈ ða, we drop the argument p.
Conjecture 4.12: Quantum focusing conjecture.—At all

orders in Gℏ [21],

δΘða; pÞ
δX�ðp̄Þ ≤ 0: ð4:6Þ

Remark 4.13.—In the “off-diagonal” case p ≠ p̄, the
quantum focusing conjecture (QFC) follows from Lemma
4.10. A quantum field theory limit of the QFC, the quantum
null energy condition [21], was proven in Refs. [35,36];
see also Refs. [37–40]. The general diagonal case p ¼ p̄
remains a conjecture.
Lemma 4.14.—The intersection of two quantum-normal

wedges is quantum normal.
Proof.—Let a and b be quantum normal. We use the

decomposition of ðða ∩ bÞ described in Fig. 9. Forp ∈ ða ∩
b (or p ∈ a ∩ ðb), the condition Θ�ða ∩ b; pÞ ≥ 0 follows
from the normalcy of a (or b) at p and Lemma 4.10. For
p ∈ H�ðaÞ ∩ H∓ðbÞ, let ap ⊂ a and bp ⊂ b be deforma-
tions of a and b alongH�ðaÞ andH∓ðbÞ, respectively, such
that ðap; ðbp coincide with H∓ðaÞ ∩ H�ðbÞ in a neighbor-
hood of p. Since Θ�ðaÞ ≥ 0 and Θ∓ðbÞ ≥ 0 in a neighbor-
hood of the points lightlike separated fromp, Conjecture 4.12
implies that Θ�ðap; pÞ ≥ 0 and Θ∓ðbp; pÞ ≥ 0. Hence
Θ�ða ∩ b; pÞ ≥ 0 by Lemma 4.10. ▪

B. Smallest-generalized-entropy normal wedge

Definition 4.15.—Given a wedge a, let EnðaÞ denote
the quantum-normal wedge that contains a, has the same
conformal boundary as a, and has the smallest generalized
entropy among all such wedges. As in the static case
(Definition 3.11), we assume without proof that this wedge
exists, and we assume for convenience that it is unique.

Lemma 4.16: Monotonicity.—Let a and b be wedges
with the same conformal boundary, ð̃a ¼ ð̃b. Then

a ⊂ b ⇒ Sgen½EnðaÞ� ≤ Sgen½EnðbÞ�: ð4:7Þ

Proof.—The proof is analogous to the static case,
Lemma 3.12. ▪
Lemma 4.17: Quantum expansion.—By definition, En is

quantum normal. Marginal cases arise at points p ∈ ð that
do not lie on ða:

(i) EnðaÞ is marginally quantum antitrapped,Θ−½EnðaÞ;
p� ¼ 0, at p ∈ Hþða0Þ.

(ii) EnðaÞ is marginally quantum trapped, Θþ½EnðaÞ;
p� ¼ 0, at points p ∈ H−ða0Þ.

(iii) EnðaÞ is quantum extremal, Θþ½EnðaÞ; p� ¼
Θ−½EnðaÞ;p� ¼ 0, at points p ∈ a0.

Proof.—By quantum normalcy of EðaÞ, Sgen decreases
when ðEðaÞ is deformed toward ða at p. Lemma 4.10
ensures quantum normalcy of ðEðaÞ away from p under
this inward deformation. This conflicts with the Sgen-
minimization requirement in Definition 4.15, unless the
quantum expansion at p in the other null direction immedi-
ately becomes negative under the deformation. ▪
Definition 4.18: Entanglement wedge of a boundary

region.—Let B ⊂ ∂M̃ be a subregion of a Cauchy surface
of the conformal boundary ∂M̃. The entanglement wedge
of B, EWðBÞ ⊂ M, is the smallest-generalized-entropy
quantum-extremal wedge with conformal edge B [5].
Lemma 4.19: Reduction of En to EW.—Let a be

contained in the ordinary quantum-entanglement wedge
of its conformal edge ð̃a, i.e., a ⊂ EWðð̃aÞ. Then

EnðaÞ ¼ EWðð̃aÞ: ð4:8Þ

Proof.—By the arguments in the proof of Lemma 4.17, the
smallest-Sgen quantum-normal wedge with conformal edge
ð̃a is necessarily extremal, and hence is given by EWðð̃aÞ.
By assumption a ⊂ EWðð̃aÞ, so this continues to be true
when we restrict to normal wedges containing a. ▪
Lemma 4.20: Reduction of En to E.—Let Σ0 be a time-

reflection symmetric Cauchy surface, and let a be a wedge
with ða ⊂ Σ0. Then EnðaÞ reduces to the static entangle-
ment wedge EðaÞ,10

ðEnðaÞ ¼ ∂EðaÞ: ð4:9Þ

Proof.—Let T be the time-reflection operator. The set
EðaÞ ∩ T½EðaÞ� is a wedge by Remark 4.2, normal by
Lemma 4.14, and it contains a. It is also time-reflection
symmetric, so its edge lies on Σ0. This conflicts with

10In Sec. III, ∂ denotes the boundary in the topology of Σ0, and
we revert to this usage in this Lemma and its proof. Elsewhere in
the present section, ∂ denotes the boundary in M.
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Conjecture 4.12 unless EðaÞ ¼ T½EðaÞ�. Hence ðEnðaÞ ⊂
Σ0. Moreover, ∂Eða ∩ Σ0Þ must be pointwise quantum
normal or antinormal by time-reflection symmetry. If it
were antinormal at some point p, we could decrease Sgen by
deforming ∂Eða ∩ Σ0Þ outward on Σ0 at p, contradicting its
definition. ▪
Theorem 4.21: No cloning for En.—Let a, b be wedges

that satisfy

a ⊂ EnðbÞ0; b ⊂ EnðaÞ0: ð4:10Þ

Then

EnðaÞ ⊂ EnðbÞ0; ð4:11Þ

or, equivalently, EnðbÞ ⊂ EnðaÞ0.
Proof.—For arbitrary wedges c and d, let

c=d ≡ ðc ∩ dÞ ⋓ ðc ∩ d0Þ: ð4:12Þ

Lemma 4.17 and Conjecture 4.12 can be shown to imply

Sgen½EnðaÞ0=EnðbÞ� ≤ Sgen½EnðaÞ� and

Sgen½EnðbÞ0=EnðaÞ� ≤ Sgen½EnðbÞ�: ð4:13Þ

We add these inequalities and use strong subadditivity of
the von Neumann entropy to obtain

Sgen½EnðaÞ ∩ EnðbÞ0� þ Sgen½EnðaÞ0 ∩ EnðbÞ�
≤ Sgen½EnðaÞ� þ Sgen½EnðbÞ�: ð4:14Þ

We will now show that EnðaÞ ∩ EnðbÞ0 is quantum normal.
Let us begin by substituting a → EnðaÞ and b → EnðbÞ0 in
the proof of Lemma 4.14. The Lemma assumed that a and b
are normal, whereas now EnðbÞ0 is quantum antinormal.
However, our assumption, Eq. (4.10), implies that
Θþ½EnðbÞ0; p� ¼ 0 or Θ−½EnðbÞ0; p� ¼ 0 at any points p
where these expansions actually appear in the proof.
Indeed, since EnðaÞ is spacelike to b, Θ�½EnðbÞ0; p� ¼ 0
for p ∈ EnðaÞ ∩ ðEnðbÞ by Lemma 4.17. If p is the end
point of a geodesic generator of H−½EnðbÞ0� that intersects
Hþ½EnðaÞ�, thenΘ−½EnðbÞ0; p� ¼ 0 by Lemma 4.17, or else
there would be a causal curve from ðEnðaÞ to b, in conflict
with Eq. (4.10).
By the same reasoning, EnðaÞ0 ∩ EnðbÞ is also quantum

normal. Moreover, a ⊂ EnðaÞ ∩ EnðbÞ0 and b ⊂ EnðaÞ0 ∩
EnðbÞ by Eq. (4.10). By Definition 4.15, EnðaÞ and EnðbÞ
are the unique smallest-Sgen quantum-normal wedges
containing, respectively, a and b. Equation (4.14) thus
implies EnðaÞ ∩ EnðbÞ0 ¼ EnðaÞ, which is equivalent to
Eq. (4.11). ▪

C. Discussion

En does not satisfy subadditivity or nesting. This
suggests that En is not quite the correct generalization
of E. A counterexample to both properties is shown in
Fig. 11. A purely classical counterexample to strong
subadditivity is furnished by taking b to be a rectangle
of length and width Δy ≫ τ ≫ Δx ≫ lP at t ¼ 0 in two-
dimensional Minkowski space and a and c to be identical
rectangles obtained by moving b by 1þ 2Δx in the �x
direction and by τ in the t direction.
Ideally, we would like to find a prescription eðaÞ that

satisfies all of the following properties:
(1) e reduces to the time-reflection symmetric prescrip-

tion given in Sec. III: eðaÞ ¼ EðaÞ.
(2) e reduces to the QES prescription for the entangle-

ment wedge of boundary regions: a ⊂ EWð�δaÞ ⇒
eðaÞ ¼ EWð�δaÞ.

(3) e is well defined.
(4) e satisfies no cloning, strong subadditivity, and

nesting, in the sense shown for E in Sec. III.
We have seen that En satisfies the first three require-

ments as well as no cloning. We are aware of alternate
candidate prescriptions satisfying other subsets of these
requirements, but of no single prescription that satisfies
all. For example, one can ensure nesting in addition to
the requirements satisfied by En, by taking the wedge
union ⋓b⊂a EnðbÞ over all subwedges b ⊂ a. However,
this definition is somewhat artificial, and it still does not
obey strong subadditivity.
Reference [23] proposed a restricted maximin prescrip-

tion for the entanglement wedge of a cutoff boundary
region. This prescription can be converted into a proposal
for the generalized entanglement wedge of a bulk region,
which (like En) satisfies the first three requirements above.
In addition, it obeys strong subadditivity; however, it

FIG. 11. Collapse of a null shell purified by a distant reference
system r. The wedge a is marginally quantum trapped, so
a ¼ EnðaÞ. One can arrange that Sgen½EnðaÞ� þ Sgen½EnðrÞ� ≫
Sgen½Enða ∪ rÞ�. If r is the Python’s lunch [29] (dashed red) of an
asymptotic region b, one can arrange that Enða ∪ bÞ⊅EnðbÞ.
Hence En satisfies neither subadditivity nor nesting.
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violates nesting.11 Explicitly, let ða be the cutoff surface
denoted γ in Ref. [23], and let a be its exterior, i.e., the
portion discarded by the cutoff. Choosing A ¼ γ in their
notation, the prescription of Ref. [23] defines a wedge
EðaÞ ⊂ a0 bounded by ða and its restricted maximin
surface. The wedge union eðaÞ ¼ a ⋓ EðaÞ is then a
candidate for the generalized entanglement wedge. The
proof of strong subadditivity from Ref. [23] directly implies
strong subadditivity for the generalized entanglement
wedges, so long as eða⋓bÞ∩c¼eðb⋓cÞ∩a¼∅. (This
ensures that the maximin surfaces lie in a0 ∩ b0 ∩ c0, the
spacetime region that survives all three cutoffs. From an
information-theoretic perspective, it is roughly analogous
to the conditions in Theorem 3.16 that ensure that a, b,
and c are genuinely independent degrees of freedom.)
However, the statement of nesting proved in Ref. [23],
while appropriate in that context, is very different from the
general statement eðaÞ ⊂ eðbÞ that must hold for e to be an
entanglement wedge of a bulk region. In fact, it is easy to
see that the latter statement fails, since eðaÞ ¼ a for any
region a with edge ða piecewise lightlike.
However, it may not be appropriate to seek a single

definition of the entanglement wedge of bulk regions. In
recent work, it was shown that the QES prescription for the
entanglement wedge EW of boundary regions must be
refined, by replacing the von Neumann entropy with certain

one-shot entropies [7]. For static spacetimes, instead of a
single entanglement wedge, the refined prescription defines
two wedges, called the max-EW and the min-EW. They
describe the bulk regions that are, respectively, fully
encoded in, and partially influenced by, the boundary
region. This refinement has been generalized to the full
time-dependent setting [41]. For a boundary input region,
the difference between its max- and min-EW is always a
quantum effect. However, if one tries to generalize this
prescription further to allow for bulk input regions, it
appears that, in time-dependent settings, the max- and min-
EW may differ even at the classical level. We are hopeful
that this may resolve the difficulties that we encountered in
this section when trying to define a single generalized
entanglement wedge with all our desired properties. We
leave the details of any such prescription to future work.
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