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The real-time dynamics of chiral phase transition is investigated in a two-flavor (Nf ¼ 2) soft-wall anti–
de Sitter/QCD model. To understand the dynamics of thermalization, we quench the system from initial
states deviating from the equilibrium states. Then, we solve the nonequilibrium evolution of the order
parameter (chiral condensate hσ ≡ q̄qi). It is shown that the system undergoes an exponential relaxation at
temperatures away from the critical temperature Tc. The relaxation time diverges at Tc, presenting a typical
behavior of critical slowing-down. Numerically, we extract the dynamic critical exponent z and get z ≈ 2 by
fitting the scaling behavior σ ∝ t−β=ðνzÞ, where the mean-field static critical exponents (order parameter
critical exponent β ¼ 1=2, correlation length critical exponent ν ¼ 1=2) have been applied. More
interestingly, it is remarked that, for a large class of initial states, the system would linger over a
quasi-steady-state for a certain period of time before the thermalization. It is suggested that the interesting
phenomenon, known as prethermalization, has been observed in the framework of holographic models.
In such prethermal stage, we verify that the system is characterized by a universal dynamical scaling law
and described by the initial-slip exponent θ ¼ 0.
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I. INTRODUCTION

The nonequilibrium dynamics plays an essential role
from the high-energy physics and cosmology to condensed
matter physics, at which relevant physical properties
exhibit universal dynamic scaling behavior. The observed
phenomena in relativistic heavy-ion collisions [1] lead to a
consistent framework of bulk QCD matter evolutions and
critical fluctuations, which has become significantly impor-
tant to address the critical slowing-down near a critical
point [2] and to reveal the domain formation at the first-
order phase transition [3]. Recently, the precision cosmol-
ogy has firmly supported the big bang paradigm [4]. The
description of the cosmological fluctuations and the sub-
sequent dynamical response are, in particular, required to
establish the scenarios of the baryon asymmetry and the
dark matter production [5]. In quantum systems of ultracold
atomic gases [6], eventually, many out-of-equilibrium

progresses are set into the context of universal dynamics
in recent decades [7].
Among very different physical systems, a universal time

evolution appearing in the early-time regime was discov-
ered by Berges et al. in Ref. [8] through a quark-meson
model. It is found that, governed by the strong fields or
large occupancy of modes, a transient occurs in the far-
from-equilibrium initial conditions, named as prethermal-
ization. The observed evolution suggests that the systems
are usually passing in the vicinity of a nonthermal fixed
point (NTFP) before approaching the long time thermal-
ization [8,9]. In regard to the numerical value of the scaling
exponents, one observes that several macroscopic proper-
ties of the underlying system play a vital role, such as the
number of spatial dimensions and whether the particle or
energy cascade is being produced. Many relevant works of
prethermalization have been completed within a variety of
many-body models after sudden quenches of the phase
transition parameters. In general, they can be classified
into isolated systems [10–15] and open systems [16,17].
In a few integrable isolated systems, the prethermal states
turn out to be described by the generalized Gibbs ensemble
[18–20], though a general conclusion for any system is not
reached yet. Under the renormalization group flow frame,
the behaviors near the NTFP have been discussed [13–15].
On the other hand, prior to reaching equilibrium, another

possible preequilibrium critical phenomena emerges as the
memory of the initial condition during the early stage and
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instead has been discovered earlier by Janssen et al. [21]. In
the regime near the continuous phase transition, the initial
preparation extends to all times in a manner similar to the
surface critical phenomena. To describe the distribution width
of initial configurations, the universal initial-slip exponent θ
is proposed in the pioneering work of [21] with a pure
dissipative classical system. Here, the universal collective
behavior is developed in the time window between the
microscopic timescales and the translationally invariant
asymptotics. Critical exponent θ specifically characterizes
the breaking of the time translation invariance due to the
initial conditions. The study of short time scaling has already
attracted much attention in the toy model of ϕ4 theory
through the nonequilibrium renormalization group method
[21–23] and by the large N expansion [24]. In many other
open systems, further investigations on the short time
dynamical scaling are currently under active exploration [25].
While the unusual initial states are created in the off-

central heavy-ion collisions, we expect that a potentially
unique signature of magnetic fields would be manifested
in the out-of-equilibrium evolution near the critical end
point. Generally, an ultrastrong magnetic field is produced
by the fast colliding, highly charged nuclei in heavy-ion
experiments, and the strength of the eB field is at the order
of m2

π [26]. However, the duration of the magnetic field
remains an open question. A reasonable estimation is that
the lifetime of the eB field is as long as the starting time of
the hydrodynamic evolution, ∼0.6 fm [27]. The rapidly
decayed magnetic field leads to an undetectable signal of
the chiral magnetic effect [28]. As it turned out, such a
quickly disappeared field could serve as a randomly
prepared initial state for the evolution of the hydrody-
namic quark-gluon plasma. And we expect that the short
time scaling is nevertheless encoded in the evolutions
of two- and higher-point correlation functions [29]. The
influence of the initial-slip exponent in the context of
heavy-ion collisions is not yet completed, in contrast with
the relativistic hydrodynamics [30]. This is because a full
theory that incorporates the fluctuations near the phase
transition and bulk evolution in strongly coupling plasma
is currently under construction.
As a powerful tool for addressing strongly coupled gauge

theories, the holographic duality has successfully predicted a
lower bound of the shear viscosity over the volume density
of entropy η=S ≤ 1=4π [31–33]. Impressively, the holo-
graphic method not only takes advantage of addressing the
near equilibrium phenomena for strongly coupling systems
in a perturbative manner, but it is also adept at studying the
far-from-equilibrium dynamic processes. For the out-of-
equilibrium dynamics, it is proposed that the linear relax-
ation is corresponding to the quasinormal mode (QNM) of
the black hole in the AdS=CFT correspondence [34]. The
nonequilibrium dynamics in the holographic model actually
is the problem in classical general relativity, which can be
solved with numerical relativity. The holographic duality has

been successfully used to study the far-from-equilibrium
dynamic phenomena, for example, the Kibble-Zurek
mechanics in the holographic superfluid or superconductiv-
ity [35–38], the NTFP in the holographic superfluid [39],
and the holographic thermalization of super Yang-mills
theory and QCD [40–46].
In this work, we will study the nonequilibrium physics of

QCD matter in the holographic framework, focusing on
both the long time thermalization and the short time scaling
behavior. Therefore, a holographic description of both the
light modes and phase transitions would be quite necessary.
In the bottom-up approach, the soft-wall anti–de Sitter
(AdS)/QCD model proposed in Ref. [47] does provide an
effective scenario to consider the light meson spectrum
[48–61] and chiral phase transition [62–71], as well as the
pion condensed phase [72,73]. Thus, we will take the soft-
wall model as our starting point.
The paper is organized as follows. We will introduce the

soft-wall AdS/QCD model and holographic chiral phase
transition in Sec. II. Then, in Sec. III, we will verify the
linear relaxation and the critical slowing-down with
the time-dependent sigma condensate in the soft-wall
AdS/QCD model, as well as the relations between the
thermalization and the QNM. In Sec. IV, we will study the
prethermalization, as well as the crossover to the thermal-
ization through different quench protocols. The short time
dynamic exponent is numerically fitted and θ ¼ 0. Finally,
conclusions and discussion are given in Sec. V.

II. THE SOFT-WALL AdS/QCD MODEL
AND CHIRAL PHASE TRANSITION

In this section, we will briefly review the soft-wall
AdS/QCD model, which is a bottom-up holographic
QCD model, based on the global SUðNfÞL × SUðNfÞR
chiral flavor symmetry. The original soft-wall model was
proposed by Karch et al. in Ref. [47]. As mentioned above,
by slightly extending the original soft-wall model, the chiral
phase transition and light meson spectra could be well
described. Furthermore, the mass diagram of chiral phase
transition could be realized [74], in which a critical point
appears in the two-flavor chiral limit. Thus, it provides an
ideal starting point for the main interests of this work.
In the soft-wall models, the background metric is usually

taken as the AdS metric

ds2 ¼ e2AðrÞð−dr2 þ ημνdxμdxνÞ; ð1Þ
where AðrÞ ¼ − ln r, ημν ¼ diagð1;−1;−1;−1Þ, xμ repre-
sents the 4D time and space dimensions, and r represents
the fifth dimension. In this work, we concentrate on the
bulk scalar field part and neglect the gauge field part of the
5D action. Thus, the 5D action in the bulk is

S ¼
Z

d5xe−ΦðrÞ ffiffiffi
g

p
TrfjDXj2 − ðm2

5jXj2 þ λjXj4Þg; ð2Þ
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in which X is the bifundamental scalar field, m5 is the 5D
mass of X,

ffiffiffi
g

p
is the determinant of the metric, and λ is a

fitting parameter of the quartic term of the potential.ΦðrÞ is
the dilaton field that is introduced as a smooth cutoff, and
it is very essential for the Regge-like behavior of the
mass spectrum. For simplicity, we employ the degenerate
Nf ¼ 2 case withmu ¼ md ¼ mq; thus X can be defined as

X ¼
� χþS

2
0

0 χþS
2

�
Exp½2iπiti�; ð3Þ

where ti are the generators of SU(2), S is the scalar
perturbation, and πi are the pseudoscalar perturbations.
The near boundary (r ¼ 0) expansion of the bulk scalar
field χðrÞ could be derived from the equation of motion as

χðr → 0Þ ¼ mqγrþ � � � þ σ

γ
r3 þ � � � ; ð4Þ

with the chiral condensate σ ¼ hq̄qi. The parameter
γ ¼ ffiffiffiffiffiffi

Nc
p

=2π (the number of colors Nc ¼ 3) is a normali-
zation constant, which is fixed by matching the 4D two-
point correlator [75].
In thermal medium, one often takes the AdS-

Schwarzchild black hole solution as the background metric

ds2 ¼ e2AðrÞ
�
−

1

fðrÞ dr
2 þ fðrÞdt2 − dx⃗2

�
; ð5aÞ

fðrÞ ¼ 1 −
r4

r4h
; ð5bÞ

with the position of the horizon at r ¼ rh and 0 ≤ r ≤ rh.
From the holographic dictionary, one can identify the
temperature T with the Hawking temperature of the
black hole

T ¼ 1

πrh
: ð6Þ

As shown in Refs. [63,74], the original soft-wall model
gives a vacuum without chiral condensate in the chiral
limit mq ¼ 0. Therefore, to reproduce the correct behavior,
following Ref. [70], we introduce an r-dependent form of
the 5D mass m2

5 and keep the quadratic dilaton, i.e., taking

m2
5 ¼ −3 − μ2cr2; ð7aÞ

ΦðrÞ ¼ μ2gr2; ð7bÞ

where μc, μg are two model parameters. There could be
several possible kinds of origins of this modification. One

might consider it as coming from the anomalous dimension
correction to the operator dimension ΔðrÞ, the r (or energy
scale) dependence of which would lead to an r dependent
m2

5ðrÞ. It could also come from a coupling between X
and Φ, representing the interaction of the flavor part with
the background, and the mass term would effectively
become m2

5 → m2
5 þ hðΦÞ with h a function of Φ. As a

phenomenological model, here we would not try to derive
the exact form of the corrections. Instead, we will mainly
focus on the qualitative behavior. So we just follow
Ref. [70] and take the simple form in Eq. (7). From our
numerical calculation, though the quantitative quantities
(like the location of the critical point) would depend on
the value of μc, the qualitative behavior discussed in this
work would not be changed when we change the value
of μc, guaranteeing the existence of the critical point.
Actually, when we take another form of m2

5 [like
m2

5 ¼ −3þ κ1 tanhðκ2ΦÞ, in another work currently in
progress by some of the authors [76]], or even when we
take another form of the dilaton field as in Ref. [63], the
qualitative results remain the same. Thus, the qualitative
behavior discussed below would depend only on the
existence of the critical point, and we will stick to the
model in Eq. (7) in this work. The values of μc; μg; mq; λ are
fitted by the hadron spectra. With μc ¼ 1450 MeV, μg ¼
440 MeV,mq ¼ 3.22 MeV, and λ ¼ 80, it gives a physical
pion mass mπ ¼ 139.7 MeV.
In this model, for any finite quark mass, the chiral phase

transition is a crossover. To study the critical phenomena,
one has to take the chiral limit mq ¼ 0. In this limit, the
crossover transition turns to a second-order transition.
After fitting the model parameter by the hadronic spectra,
we can study the chiral phase transition in the chiral limit
and obtain the critical temperature Tc ≈ 0.16332301 GeV
and the saturation value of the sigma condensate σsat ≈
0.015 GeV3 [56]. It is interesting to see that it is compa-
rable with the results of the critical temperature from lattice
QCD and holographic models, like lattice results Tc ¼
171� 4 MeV in Ref. [77] and Tc ¼ 154� 9 MeV in
Ref. [78], and holographic model results Tc ¼ 210 MeV
in Ref. [62] and Tc ¼ 151 MeV in Ref. [63].
In this work, we will study the universal properties of

the nonequilibrium QCD in this IR-modified soft-wall
AdS/QCD model. In the soft-wall AdS/QCD model,
the mesons are considered as the perturbations on the
fixed background metric. In other words, we will
consider a subsystem that is coupled to an infinite large
heating bath.

III. THERMALIZATION

In the previous studies, the scalar field X is considered as
a time-independent field to describe the thermal equilib-
rium state. To extend those studies to nonequilibrium cases,
one has to study the time evolution of X. To avoid the
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divergence near the horizon, one would transform the
coordinates to the Eddington-Finkelstein (EF) coordinates,

t → v ¼ t − hðrÞ; ð8Þ

h0ðrÞ ¼ 1

fðrÞ ; ð9Þ

with a new “time” coordinate v. By properly choosing
the integral constant in Eq. (9), one can set t ¼ v at the
boundary r ¼ 0. Thus, the AdS-Schwarzchild metric
becomes

ds2 ¼ e2AðrÞffðrÞdv2 þ 2dvdr − dx⃗2g: ð10Þ

Under the EF coordinate background metric, one obtains
the equation of motion (EOM) of χ as1

2∂v∂rχðv; rÞ −
�
3

r
þΦ0ðrÞ

�
∂vχðv; rÞ − fðrÞ∂2rχðv; rÞ

þ
�
3

r
fðrÞ þΦ0ðrÞfðrÞ − f0ðrÞ

�
∂rχðv; rÞ

þ 1

r2

�
m2

5 þ
λ

2
χðv; rÞ2

�
χðv; rÞ ¼ 0: ð11Þ

As shown in Refs. [55,74], in the case of Nf ¼ 2, the
second-order phase transition point (critical point) appears
only in the chiral limit. Therefore, we will focus on the two-
flavor case with zero quark mass for studying the phenom-
ena in the critical region.

A. Relaxation and critical slowing-down

The static chiral phase transition is a second-order
phase transition in the chiral limit, with the symmetry
spontaneously breaking from SUð2ÞL × SUð2ÞR to
SUVð2Þ. From a previous work, in Ref. [74], the chiral
phase transition in the soft-wall model is very similar to
the mean-field 3D Ising model, with critical exponents
including the order parameter critical exponent β ¼ 1=2,
the correlation length critical exponent ν ¼ 1=2, and the
critical exponent of extra-field versus order parameter
δ ¼ 3. To extend to nonequilibrium physics, we study the
dynamic relaxation properties and the critical slowing-
down behavior described by this modified soft-wall
AdS/QCD model in this section.

1. Relaxation time

Within the linear response theory [81], either the
perturbation taking place in the condensed phase (ordered

phase) or in the chiral symmetry restored phase (disordered
phase), the sigma condensate σðtÞ relaxes as

∂

∂t
σðϵ; tÞ ¼ −

σðϵ; tÞ − σeq
τR

; ð12Þ

with the distance to the critical point ϵ ¼ ðT − TcÞ, the
equilibrium sigma condensate σeq ¼ σðϵ;∞Þ, and the
relaxation time τR. Then, one has σðϵ; tÞ,

σðϵ; tÞ ¼ σeq þ ½σðϵ; t0Þ − σeq�e−ðt−t0Þ=τR ; ð13Þ

with the initial sigma condensate σðϵ; t0Þ at t0.
Generally, to realize the relaxation process described in

Eq. (12), the initial state should slightly deviate from the
equilibrium state. We choose a temperature higher than the
critical temperature as a final temperature, Tf¼164MeV.2

Generally, the relaxation time τR should not depend on the
details of the initial state or the way by which the initial
state is prepared. The only physical constraint is that the
sigma condensate of the initial state should be less than the
saturation sigma condensate σsat. Here, we will try to verify
this numerically. We give three different initial states as
examples: one has a tiny quark mass, mi ¼ 0.1 MeV; the
other one has a temperature slightly below the critical
temperature, Ti ¼ 160 MeV; and the last one is given a
small quantity of sigma condensate, σi ¼ 10−3 GeV3. We
numerically calculate the χðϵ; tÞ through Eq. (11) with
these three different initial states. As presented in Fig. 1(a),
after a microscopic timescale [∼2=ðπTfÞ], the system
crosses over to the linear relaxation regime, in which sigma
condensates behave as exponential decay (linearly decreas-
ing in the semilog plot). Then we choose the initial time of
the relaxation at t0 ¼ 200 GeV−1 and rescale the time
dependence σðtÞ as shown in Fig. 1(b). The numerical data
are well fitted with Eq. (13) which give relaxation times
τR ¼ 111.207, 111.186, and 111.202 GeV−1, respectively.
Within allowable errors, these three different relaxation
processes share the same relaxation time, which is deter-
mined by the same final state.
When the final state is too far from the critical temper-

ature, the relaxation process behaves differently. For exam-
ple, we set the system initially at a equilibrium state with
Ti ¼ 110 MeV, then sudden quench to the final temperature
Tf ¼ 120 MeV. The evolution curves of the sigma con-
densate are shown in Fig. 2. Instead of pure relaxation, the
evolution of σðtÞ moves in an oscillation damping mode.
However, the damping rate of the sigma condensate is
determined by the relaxation time. We fitted the envelope
curve with Eq. (13) and got τR ¼ 10.342 GeV−1, as shown
in Fig. 2(b).

1We solve the EOM [Eq. (11)] through the pseudospectral
method [79,80]. A brief introduction to the solving processes is
given in the Appendix.

2This temperature ensures that the final equilibrium sigma
condensate σeq ¼ 0.
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Therefore, we numerically verified that the relaxation is
described by the linear response function Eqs. (12) and (13),
and the relaxation time is related to the distance deviated
from the critical temperature ϵ ¼ Tf − Tc in the soft-wall
model.3

2. Critical slowing-down

In the thermodynamic limit, it is well known that the
critical slowing-down arises at the critical point, since
the correlation length is getting divergent, as well as
the relaxation time. However, this nonequilibrium phe-
nomenon in the holographic QCD still lacks sufficient
investigations. In this section, we will verify the critical
slowing-down phenomenon with the dynamical evolution
of the order parameter σðtÞ in the soft-wall model.
In the critical region (near the critical point), the

correlation length ξ should satisfy the scaling
hypothesis [82],

ξðϵ; mq; tÞ ¼ bξðϵb1=ν; mqbβδ=ν; tb−zÞ; ð14Þ

with an additional length rescaling factor b and static
critical exponents β, ν, and δ. From Eq. (14), it is
implicated that the sigma condensate satisfies

σðϵ; mq; tÞ ¼ b−β=νσðϵb1=ν; mqbβδ=ν; tb−zÞ; ð15Þ
and the relaxation time τR behaves as

τRðϵ; mq; tÞ ¼ bzτRðϵb1=ν; mqbβδ=ν; tb−zÞ: ð16Þ

After choosing particular scaling parameters mq and ϵ, the
corresponding scaling forms can be derived and the leading
orders of the scaling forms, respectively, behave as

ξ ∼m−ν=βδ
q ; σ ∼m1=δ

q ; τR ∼m−νz=βδ
q ; ð17aÞ

ξ ∼ ϵ−ν; σ ∼ ϵβ; τR ∼ ϵ−νz: ð17bÞ

Those static critical exponents β, δ, and ν, have been
obtained numerically and analytically in Refs. [55,74] with
the soft-wall model. However, to describe the evolution of
thermalization, an additional dynamic critical exponent z is
required. From Eq. (15), one can obtain the scaling form in
terms of t as

σðtÞ ¼ t−β=νzfthðϵt1=νz; mqtβδ=νzÞ; ð18Þ

(a)

(b)

FIG. 2. (a) Relaxation process of sigma condensate, with
initial state at Ti ¼ 110 MeV and final equilibrium temperature
at Tf ¼ 120 MeV. (b) Envelope of the sigma condensate is
fitted with the local maximum values of the oscillation
attenuation curve of sigma condensate and the relaxation time
τR ¼ 10.342 GeV−1.

(a)

(b)

FIG. 1. Relaxation of the sigma condensate σðtÞ with different
initial conditions and final temperature Tf ¼ 164 MeV. (a) Time
dependence of sigma condensate σðtÞ. The inset is a partial
enlarged view at the very beginning time region. (b) σðtÞ rescaled
by σ0 ¼ σð200Þ.

3The relaxation time also is a function of quark mass and other
external parameters.
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with the scaling function fth. So that the sigma condensate
decays as a power law of the form

σðtÞ ¼ t−β=νzfthð0; 0Þ ∝ t−β=νz; ð19Þ

at the critical point, ϵ ¼ 0 andmq ¼ 0. It means that infinite
time is needed to recover the equilibrium state σ ¼ 0 at the
critical point, which is the famous critical slowing-down
phenomena.
We adopt four cases; they begin with the same initial

sigma condensate. As verified in the last subsection, the
initial values have no effect on the late time relaxation
process, we only take a specific case of σ0 ¼ 10−2 GeV3 as
an example. Then, one can quench the initial state to
different final temperatures, Tf ¼ 157, 159, 161, and
163 MeV, as shown in Fig. 3(a). From Eq. (13), one has
the slope of the semilogarithmic curve corresponding to the
inverse of the relaxation time. By fitting the data, we obtain
τR ¼ 3.960, 6.929, 14.541, and 113.964 GeV−1 for
Tf ¼ 157, 159, 161, and 163 MeV, respectively. Varying
the final temperature Tf in the condensed phase, the
relaxation time increases with Tf. On the other hand,
the relaxation of sigma condensate in the chiral symmetry
restored phase is also shown in Fig. 3(b). We extract
the relaxation time τR ¼ 980.566, 111.205, 20.177, and

6.092 GeV−1 for Tf ¼ 163.4, 164, 167, and 175 MeV,
respectively. The relaxation time decreases with the
increasing temperature for Tf > Tc. Therefore, the relax-
ation time diverges either approaching to or receding
from Tc.
Furthermore, we show extracted values of relaxation

time at different temperatures in Fig. 4. The result shows
that the relaxation time diverges at the critical temperature.
When the system is a certain distance deviation from the
critical point, the relaxation of the sigma condensation
decreases exponentially, satisfying Eq. (13) with a particu-
lar relaxation time τR. As shown in Fig. 4(b), when ϵ
approaches zero, the relaxation time behaves as the power-
law divergence form in Eq. (17b). We fitted out the
combination exponents −νz ¼ −1.04 and −1.02 for the
ordered phase and disordered phase, respectively. Since
ν ¼ 1=2, we have z ≈ 2.08 and 2.04. Except for the
correlation time, we can study the critical slowing-down
phenomena directly from the order parameter. As shown
in Fig. 5(a), as examples, we have three different
evolution curves of σðtÞ with different initial states
quenched to the critical point. These different initial
states are initial temperature Ti ¼ 100 MeV, initial quark
mass mi ¼ 3.22 MeV, and initial sigma condensate
σi ¼ 10−2 GeV3. After a very initial time stage, which
mainly depends on the initial configurations and the
microscopic details, the sigma condensate relaxes to the

(a)

(b)

FIG. 3. Evolution of sigma condensate σðtÞ with different final
temperatures Tf . (a) Time dependence of σðtÞ − σeq with the
same initial state σ0 ¼ 10−2 GeV3 quenched to different final
temperatures Tf in the ordered phase. (b) Time dependence of
σðtÞ with the same initial state σ0 ¼ 10−4 GeV3 quenched to
different final temperatures Tf in the disordered phase.

(a)

(b)

FIG. 4. (a) Relaxation time constant τR as a function of
temperature. (b) Fitting the relaxation time constants with
Eq. (17b).
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equilibrium state in an extremely long time, as shown in
Fig. 5(b).4 The slope of σðtÞ in the log-log plot is about a
constant value −0.4998 at the long time relaxation stage.
From Eq. (19), it yields −β=νz ≈ −0.4998. Thus, the
dynamic exponent z ≈ 2.0008, which is consistent with
the result obtained from the scaling of the relaxation time.
According to the classification in Ref. [84], the soft-wall
model belongs to model A.5

B. The relation between the thermalization and QNM

At finite temperature, the Lorentz symmetry is broken,
and the real part of the dispersion relation would behave as

fRe½ωðpÞ�g2 ¼ u2πðp2 þm2
scrÞ; ð20Þ

where uπ is the pion velocity,mscr is the screening mass that
satisfies p2 ¼ −m2

scr at ω ¼ 0, and mpole ¼ Re½ωð0Þ� ¼
uπmscr is the pole mass at p ¼ 0 [85,86].

The quasinormal mode is the oscillation mode of the
perturbation of the background. The QNM frequency ω0

corresponds to the pole of the two-point Green’s function at
p ¼ 0 [87]. Under the framework of holographic duality,
the real and imaginary part of ω0 correspond to the
pole mass mpole and the thermal width Γ [88]. We have
already verified these relationships (mpole ¼ Re½ω0� and
Γ=2 ¼ −Im½ω0�) in the soft-wall AdS/QCD model in our
previous work [55]. In that work, we also talk about the
screening mass mscr (inverse of the correlation length ξ−1).
A particular momentum satisfying p2

0 þm2
scr ¼ 0 corre-

sponds to the pole of the two-point retarded Green’s
function at ω ¼ 0.
In this section, we will study the relationships among the

relaxation time, correlation length, screening mass, and
QNM frequency. For completeness, we briefly review the
derivations of the retarded Green’s function of the scalar
mode; more details of the derivation can be found in
Ref. [87]. The perturbation action of the scalar sector is

Sσ ¼
1

2

Z
dx5

ffiffiffi
g

p
e−Φ

�
gμν∂μS∂νSþ grrð∂rSÞ2

−m2
5S

2 −
3λ

2
χ2S2

�
: ð21Þ

Then, we can derive the EOM for the scalar meson S as

S00 þ
�
3A0 þ f0

f
−Φ0

�
S0

þ
�
ω2

f2
−
p2

f
−
2m2

5 þ 3λχ2

2f
A02

�
S ¼ 0; ð22Þ

which is transformed into the momentum space ðω;pÞ.
For simplicity, we let p along a particular x1 direction
p ¼ ðp; 0; 0Þ.
Near the boundary at r ¼ 0, one can obtain the boundary

asymptotic expansion as

SðrÞ ¼ s1rþ s3r3 þ � � � ; ð23Þ
with two integral constants s1 and s3. According to the
holographic dictionary, one has s1 corresponding to the
extra source Js. The incoming wave condition at the horizon
r ¼ rh is

SðrÞ ∼ ðr − rhÞ−iωt=ð4πTÞ: ð24Þ
Combining these conditions, we numerically solve the
EOM (22) though the so-called “shooting method” [56,79].
Following the prescription in Ref. [87], one has the

retarded Green’s function of S proportional to the ratio of s1
and s3,

Gsðω; pÞ ∼
s3ðω; pÞ
s1ðω; pÞ

: ð25Þ

(a)

(b)

FIG. 5. (a) Time-dependent relaxation of σ quenched to
the critical temperature with different initial sates. (b) Time-
dependent evolution of d ln t=dt.

4During the review process, it is interesting to see that the
recent study in holographic superfluid shows a similar behavior
[83], though the symmetries considered in the two systems are
different.

5Since the critical slowing-down, it is available to determine
the critical temperature with scaling behaviors of the relaxation
time or the sigma condensate. However, the critical temperature
with extremely high accuracy is obtained through the static
method proposed in Refs. [56,74].
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From Eq. (25), we know that the pole of the two-point
retarded Green’s function is equivalent to s1ðω; pÞ ¼ 0.
To obtain the pole mass mpole and the thermal width Γ, we
need to solve s1ðω; 0Þ ¼ 0 and label the solution of the
frequency as ω ¼ ω0. As to the screening mass mscr, we
should solve s1ð0; pÞ ¼ 0 and label the solution of the
momentum as p ¼ p0.
We show the numerical results of pole mass,6 thermal

width, and the screening mass in Fig. 6(a) and the screening
mass and the relaxation time in Fig. 6(b). The thermal
width curve collapses with the curve of the inverse of the
relaxation time. It means that the inverse of the thermal
width can be identified as the relaxation time, i.e.,
Γ=2 ≈ 1=τR. As shown in Figs. 1 and 2, the value of the
sigma condensate is varying with time in the relaxation
process. More importantly, the absolute value of the sigma
condensate departing from the equilibrium value is very
small and approaching zero. It means that the whole
relaxation process can be regarded as a slight perturbation
on the equilibrium state. From the aspect of the scalar

meson, it is enough to only consider up to the quadratic
terms in the perturbation action (21). That would be the
reason why the relaxation mode is well consistent with the
scalar meson mode. As shown in Fig. 6(b), based on
Eq. (17b), it is verified that the scaling mass and the
relaxation time satisfy the relation mscr ¼ ξ−1 ≈ kτ−1=2R in
the critical regionwith k a fitting parameter. In our numerical
results, the fitting results are k ≈ 2.47444T1=2

c in the ordered
phase and k ≈ 2.82086T1=2

c in the disordered phase.

IV. PRETHERMALIZATION

Governed by the timescales, the nonequilibrium process
can be naturally divided into three stages, including the
microscopic timescale dominated prescaling stage at the
very beginning period, the prethermalization in the inter-
mediate time, and the long time thermalization. The
thermalization stage has been studied in the last section.
Here, we will focus on the short time dynamics arising in
the intermediate time.

A. Quench protocols

To clearly reveal the short time dynamics, we have a
sketch for the quenching protocols. In the nonequilibrium
evolution, the external parameters change with time,

RðtÞ≡ ðTðtÞ; mðtÞÞ: ð26Þ

The initial state of the system is elaborately prepared,
Rðt ¼ 0Þ≡ Ri ¼ ðTi; miÞ. Eventually, the system is
quenched to the critical region, Rf ≡ Rðt → þ∞Þ ¼
ðTf;mqÞ. As shown in Fig. 7(a), three different initial
states will be considered. Those are extremely high

(a)

(b)

FIG. 6. (a) Comparison between the thermal width and the
relaxation time, pole mass, and relaxation frequency. It is shown
that ΓS=2 ≈ τ−1R and mpole ≈ ωR. (b) Comparison between the
screening mass and the relaxation time. In the critical region,
it is shown that mscr ¼ ξ−1 ≈ kτ−1=zR with a scalar factor k ≈
2.47444T1=2

c in the ordered phase and k ≈ 2.82086T1=2
c in the

disordered phase.

FIG. 7. (a) Schematic diagram of quench protocols. (b) Time
dependence of the external parameters RðtÞ.

6We remind the reader that, at low temperatures, the finite pole
mass induces oscillations along with the relaxation evolution, as
the case shown in Fig. 2.
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temperature with a finite sigma condensate (A → C), finite
quark mass (B → C), and the equilibrium state in the
ordered phase (A0 → C). The changing of the external
parameters is shown in Fig. 7(b). To quench from Ri at
t ¼ 0 to Rf is within a finite timescale τQ. In this work, we
only consider the sudden quench case, i.e., τQ → 0, so that

RðtÞ ¼ Ri þ θðtÞðRf − RiÞ; ð27Þ

with θðtÞ as the step function.

B. Short time scaling

In Sec. III, we have studied the properties in the limit of
thermalization. In the asymptotic long time stage, all the
initial state information has been washed out. It is shown
that the system reaches the equilibrium thermal state, which
only depends on the final external parameters Rf. However,
in the prethermalization stage, the evolution is expected
to depend on the initial parameters, Ri ¼ ðTi; miÞ. Inspired
by the short time scaling in the condensed matter
model [21–24], we have a suggested a scaling hypothesis
for the sigma condensate,

σðRi;ϵ;mq;tÞ¼b−β=νσðRiðbÞ;ϵb1=ν;mqbβδ=ν;tb−zÞ; ð28Þ

with a scaling length parameter b. RiðbÞ is the initial
parameters rescaled by b. As a result of the memory of
the initial state, the scaling is proposed to employ a new
exponent x, and so Eq. (28) becomes

σðϵi; mi; ϵ; mq; tÞ
¼ b−β=νσðϵibx=ν; mibxβδ=ν; ϵb1=ν; mqbβδ=ν; tb−zÞ: ð29Þ

Near the critical point, the equilibrium sigma condensate
relates to the distance to the critical point with σ ∼ ϵβ, so
that one obtains

σðσi; mi; ϵ; mq; tÞ
¼ b−β=νσðσibxβ=ν; mibxβδ=ν; ϵb1=ν; mqbβδ=ν; tb−zÞ: ð30Þ

1. Quench from the disordered phase

In the chiral limit, when the temperature is above the
critical temperature T > Tc, the solution of χðzÞ is exactly
equal to 0. Thus the sigma condensate σ ¼ 0. To realize the
nonequilibrium evolution from the disordered phase to the
critical region, a finite initial condensate σi is necessary for
the initial state. From the asymptotic solution of χðrÞ in
Eq. (4), we know that mq and σ are two integral constants
for this solution. Since the chiral limit mq ¼ 0, the leading
term of this solution becomes ðσ=γÞr3. In addition,
rh ¼ 1=T is very small at high temperature. It means that
r ≤ rh is very small. Therefore, when Ti > Tc, we can take

the asymptotic solution as an approximation of the
initial state,

χðrÞ ¼ σi
γ
r3: ð31Þ

First, we consider the sudden quench to the critical point,
i.e., ϵ ¼ Tf − Tc ¼ 0 and mq ¼ 0. To derive the specific
scaling form in terms of t, one can let tb−z ¼ tpre where tpre
is a microscopic timescale. tpre marks the moment when
the universal prethermalization stage begins. Then, from
Eq. (30), we have

σðσi; 0; 0; 0; tÞ ¼ t
−β
νzσ

h
σiðt=tpreÞ

xβ
νz; 0; 0; 0; tpre

i
: ð32Þ

One can define a new scaling function

ftðσitxβ=νzÞ≡ σ
h
σiðt=tpreÞxβ=νz; 0; 0; 0; tpre

i
: ð33Þ

Therefore, one can obtain the following scaling form in
terms of t as

σðσi; tÞ ¼ t−β=νzftðσitxβ=νzÞ: ð34Þ

In the long time region, the system evolves into the
thermalization stage and σitxβ=νz ≫ 1, so that ft ¼ const
and σðσi; tÞ ∝ t−β=νz, which has been verified in Sec. III. In
the short time region, one has t ≪ tth ∝ σ−νz=xβi . The time
scalar tth marks the system crossover to the thermalization
regime. Note that t is often referred to as the waiting time.
In this period, the magnitude of sigma condensates has not
varied too much, compared to σi, so that ft is dominated by
its linear term. It implies that

σðσi; tÞ ∝ σitðx−1Þβ=νz: ð35Þ

Additionally, the general scaling form in terms of σi is
presented by Eq. (30) as

σðσi; tÞ ¼ σ1=xi fσiðtσzν=xβi Þ; ð36Þ

with a scaling function fσi . In the short time, one has

fσi ∝ σðx−1Þ=xi tðx−1Þβ=νz to guarantee that σðσi; tÞ satisfies
Eq. (35). One can define the short time dynamic (dynamic
initial-slip) exponent θ≡ ðx − 1Þβ=νz to characterize the
universal short time behavior.
In Fig. 8(a), there is obvious difference on the order of

the magnitude of initial σi, but the evolution curves share
the same tendency and all can be separated into three
stages. The intermediate stage is the period in which the
short time dynamic appears. Through numerically fitting
the data according to Eq. (35) as shown in Fig. 8(b), we
have θ ≈ 0 or x ≈ 1. With the short time dynamical critical
exponent, the curves with different initial states can be
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completely scaled by Eq. (36) as shown in Fig. 8(c).
Therefore, it is verified that the universal short time
behavior with the exponent θ ¼ 0 arises in the pretherm-
alization stage. It implies that a smaller initial sigma
condensate leads to a longer duration of the prethermaliza-
tion stage.
If the final state is slightly deviated from the critical

point, the evolution still can emerge as the universal short
time behavior. Similar to the derivation of scaling form in
Eq. (34), one can derive the corresponding scaling form in
terms of t as

σðσi; ϵ; mq; tÞ ¼ t−β=νzftðσitxβ=νz; ϵt1=νz; mqtβδ=νzÞ: ð37Þ

One can also have the scaling form in terms of σi as

σðσi; ϵ; mq; tÞ ¼ σ1=xi fσiðϵσ−1=xβi ; mqσ
−δ=x
i ; tσνz=xβi Þ: ð38Þ

When the final state is Rf ¼ ðTf; 0Þ with ϵ ¼ Tf − Tc ≠ 0,
the system will relax to the final equilibrium state with
finite time at σ ∝ ϵβ in the ordered phase, as shown in
Fig. 9, or at σ ¼ 0 in the disordered phase, as shown in
Fig. 10. In Eq. (38), the scaling function fσi has three
variables. For simplicity, we use the projection method to
analyze the multivariate scaling behavior. We get the
evolution curves in Figs. 9(a) and 9(b) by fixing −ϵσ−1=βi ¼
3323 and 92, respectively. To verify the scaling function,
based on Eq. (38), we plot σðtÞ=σ1=xi versus σitβ=νz in
Fig. 9(c). Since the short time dynamic exponent θ ¼ 0, the
curves overlap and behavior is as a plateau in the pre-
thermalization stage. In the long time limit, the curves
overlap and show as horizontal lines at different values
because of different fixing values. Note that the different
fixing values only change the crossover position and have
no impact on the short time scaling behavior.
In another case, we let the final state Rf ¼ ð0; mqÞ and

fix mqσ
−δ
i ¼ 3 × 10−6. In Fig. 11(a), the prethermalization

stage arises after the microscopic-scale dominant region.
Then the system crosses to the long time thermalization
stage. Finally, the system relaxes to the steady state and
σ ∝ m1=δ

q . Scaling the data according to the scaling form in

(a) (b) (c)

FIG. 8. (a) Evolution of the sigma condensate with different initial sigma condensate values sudden quenched to the critical point.
(b) Fitting the intermediate time with Eq. (35), one gets the short time dynamic exponent θ ¼ −2 × 10−5. (c) Scaling the evolution
curves of the sigma condensate in (a) based on Eq. (36).

(a)

(b)

(c)

FIG. 9. Evolution curves of sigma condensate with
(a) −ϵσ−1=βi ¼ 3323 and (b) −ϵσ−1=βi ¼ 92. (c) Scaling the
evolution curves of sigma condensate in (a) and (b) based
on Eq. (38).
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Eq. (38), we obtain overlapped curves in Fig. 11(b). These
numerical analyses indicate that the scaling function fσi is
well verified through the projection method.
In above analyses, the short time dynamic and the

thermalization are realized with small initial sigma con-
densates. What if the magnitudes of the initial sigma
condensate are close to or larger than the saturated value?
Generally, in the small initial sigma condensate, before the
universal short time dynamic, there are two particular
properties in evolution. On the one hand, it is a nonuni-
versal period. On the other hand, this period is about
in 0 ≤ t ≤ tpre ≈ 2πTf. As shown in Fig. 12, we find
that when σi is almost equal to or larger than σsat, σðtÞ
show a steep decrease approximately at tpre. If σi ≲ 2.54×
10−2 GeV3, σðtÞ drops to a “prethermalization” state.7

However, if σi are roughly larger than 2.54×10−2GeV3,
for example when σi ¼ 3.0 × 10−2 GeV3, the sigma con-
densate drops to a negative value and approaches zero from
the bottom, as shown in the inset of Fig. 12.

2. Quench from the ordered phase

As in the schematic program shown in Fig. 7, we will
also study the short time dynamics from A0 → C and
B → C. Without considering the high orders, the five-
dimensional scalar field behaves as χðrÞ ∝ r3 in the critical
region. It is interesting to explore whether the scaling
behavior in this case is the same as the case of A → C.
One can apply the initial state at Ri ¼ ðϵi; miÞ and

sudden quench the system to the critical point. By choosing
the particular scaling, the scaling form of Eq. (29)
transforms to

σðϵi; mi; tÞ ¼ t−β=νzftðϵitx=νz; mitxβδ=νzÞ; ð39Þ

(a)

(b)

FIG. 10. (a) Evolution curves of sigma condensate with
ϵσ−1=βi ¼ 16677. (b) Scaling the evolution curves of sigma
condensate in (a) based on Eq. (38).

(a)

(b)

FIG. 11. (a) Evolution curves of sigma condensate with
mqσ

−δ
i ¼ 3 × 106. (b) Scaling the evolution curves of sigma

condensate in (a) based on Eq. (38).

FIG. 12. Initial state dependence of the sigma condensate
evolution σi ≳ σsat.

7It might be not a real prethermalization stage, but behaves as a
prethermalization.
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and

σðϵi; mi; tÞ ¼ ϵβ=xi fϵiðmiϵ
−βδ; tϵνz=xi Þ; ð40aÞ

σðϵi; mi; tÞ ¼ m1=δx
i fmi

ðϵim−1=βδ
i ; tmνz=xβδ

i Þ: ð40bÞ

Because of the complexity of considering finite ϵi and mi
simultaneously, we separately consider either finite ϵi ormi

at once. When Ri ¼ ðϵi; 0Þ, σðtÞ should behave as σ ∝ ϵβi in
the prethermalization stage, so that ft ∝ ðϵitx=νzÞβ. Thus,
one has the leading scaling term as

σ ∝ ϵβi t
ðx−1Þβ=νz ¼ ϵβi t

θ: ð41Þ

In the long time region, the scaling function ft must reduce
to a constant, so that the evolution of the sigma condensate
is reduced to the critical slowing-down scaling σ ∝ t−β=νz,
which has been studied in Sec. III A 2. The numerical
results are shown in Fig. 13(a). The evolution has two
different features: the prethermalization and the thermal-
ization stages. In Fig. 13(b), according to Eq. (40a), by
scaling the σðtÞ with ϵβi , the curves of σðtÞ=ϵβi overlap as a
function of ϵβi t

β=νz.
Similarly, we let Ri ¼ ð0; miÞ and study the scaling

function in Eq. (40b). Along with the evolution, first, sigma
condensate behaves as σðtÞ ∝ m1=δ

i tðx−1Þβ=νz ¼ m1=δ
i tθ in

the prethermalization stage, then crosses to σðtÞ ∝ t−β=νz in
the thermalization stage. These scaling predictions are
verified in Fig. 14. In Fig. 13(a), it is the original data
for σðtÞ. The curves have the prethermalization and the
thermalization stages and their crossover. As predicted
by the scaling form in Eq. (40b), the σðtÞ=m1=δ

i versus

m1=δ
i tβ=νz curves overlap each other in Fig. 14.
It seems that the evolution in Figs. 13 and 14 does not

have obvious boundaries between the prescaling and
prethermalization stages, which are primarily different
from Fig. 8. To analyze the difference between them, we
compare the evaluations of sigma condensate σðtÞ and the
second derivation of the chiral field with respect to r χ00ðrÞ.
For convenience of numerical calculation, we have a
coordinate transform in Eq. (11),

u ¼ r=rh; ṽ ¼ v=rh: ð42Þ

In Fig. 15, we show the numerical results of σðtÞ and
χ00ðuÞ=σðt ¼ 0Þ obtained from the quench paths A → C and
A0 → C with equal initial sigma condensate in Fig. 14. The
sigma condensation increases in the very beginning non-
universal period in the case of A → C. However, the sigma
condensation almost keeps invariant in the nonuniversal
period in the case of A0 → C. From the aspect of
χ00ðuÞ=σðt ¼ 0Þ, in the prescaling stage, in case A → C,
χ00ðuÞ=σðt ¼ 0Þ has a changing process from a constant to a

(b)

(a)

FIG. 13. (a) Evolution curves of sigma condensate with differ-
ent initial temperature. (b) Scaling the evolution curves of sigma
condensate in (a) based on Eq. (40a).

(a)

(b)

FIG. 14. (a) Evolution curves of sigma condensate with differ-
ent initial quark mass. (b) Scaling the evolution curves of sigma
condensate in (a) based on Eq. (40b).
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time-independent function. In case A0 → C, χ00ðuÞ=σðt ¼ 0Þ
is always a time-independent function.
It is interesting that the ratio is stable in the pretherm-

alization stage and equal the values in the thermali-
zation stage. It means that the time-dependent term and
u-dependent part are decoupled in Eq. (11). To some extent,
even though the scaling form in prethermalization is totally
different from the thermalization, there are some particular
physical quantities that behave like the (quasi)equilibrium
state. Furthermore, as a result of the decoupling of t and u,
if the sigma condensate satisfies the power-law scaling
σðtÞ ∝ t−a with a > 0, i.e., σðṽÞ ∝ ṽ−a for t ¼ ṽπT at
r ¼ 0, one has χðṽ; uÞ ¼ σðṽÞgðuÞ. From Eq. (A1), one can
derive −a − 1 ¼ −3a, thus a ¼ 1=2, with dimension
analysis. Moreover, there is another solution, σðtÞ ∝ t0.
These two solutions correspond to the thermalization and
prethermalization, respectively.

V. CONCLUSIONS AND DISCUSSIONS

The soft-wall AdS/QCD model provides an effective
holographic framework to deal with the nonperturbative
problems of QCD, especially for chiral symmetry break-
ing and restoration. Since the model contains information
of the order parameter, it would be quite interesting to
extend the previous equilibrium studies to nonequili-
brium phase transition.

By quenching the system from initial states deviating
from the equilibrium states, we solve the real-time evolu-
tion of chiral condensate in the two-flavor (Nf ¼ 2) soft-
wall AdS/QCD model. At this stage, we work in the probe
limit, i.e., neglecting the backreaction to the background
geometry. In this way, we are considering the thermali-
zation of the system under an infinite heat bath.
It is shown that, at very low temperatures, the chiral

condensate shows oscillating behaviors, while its amplitude
decays exponentially with time. At higher temperatures, but
still below Tc, the oscillation disappears and only the fast
exponential damping is left. We compare the oscillating
frequencies and the relaxation times with the complex
frequency of quasinormal modes. It is found that they
match with each other very well. Therefore, the late-time
thermalization of the system could be described by the
quasinormal modes. Furthermore, it is also found that
the relaxation time would diverge when the temperature
of the heat bath approaches Tc, showing a typical behavior
of critical slowing-down. The exponential damping turns to
a power law, and by fitting the late-time behavior, we get
the dynamical critical exponent z ≈ 2.0.
In addition to the late-time thermalization, it is more

interesting to observe that, starting from a large class of
initial states, the system would linger over a quasi-steady-
state for a certain period of time before the thermalization,
which is very similar to the interesting phenomenon named
prethermalization in the QCD community. According to
the extracted initial-slip exponent θ ≈ 0, it is observed that
such quantity is still a mean-field value due to the large N
suppression. Therefore, there are some important open
issues that can be studied in the future. From a theoretical
point of view, it is crucial to explore how to vary the initial
conditions to realize the scenario of the nonthermal fixed
point in the soft-wall AdS/QCD model and whether the
collective modes of two out-of-equilibrium universalities,
characterized by the NTFP and the initial-slip exponent,
are the same.
In the prethermalized regime, θ arises as a new universal

critical exponent, which forms as the memory of initial
configurations. Taking into account the rapidly decayed
magnetic field that is produced in the off-central heavy-ion
collisions, the mass of charged particles, such as protons, is
strongly altered by the magnetized environment, which
presents as a unique scenario to study the short time
dynamical scaling and its subsequent behaviors [27].
A prolonged stage also affects the estimation of rapidity
distribution of the charged particles as a function of
collision centrality in experimental measurements. A quan-
titative impact of the initial-slip exponent on the two-
and higher-point correlation functions of protons remains
to be evaluated.
Triggered by the forthcoming experimental measure-

ments at high baryon chemical potentials, the description of
fireballs created in low-energy collisions needs to be

(a)

(b)

FIG. 15. (a) Time dependence of σðtÞ with equal σi through
different quenching protocols, A → C and A0 → C. (b) Curves of
χ00ðuÞ=σðt ¼ 0Þ at different ν̃.
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contained the phase transition of the first order [89]. The
corresponding time evolution has to be improved in two
aspects. First, the soft-wall AdS/QCD model should extend
to finite chemical potentials, where the first-order phase
transition occurs and the phase boundary beyond the
critical point is located [45]. Second, coupling with the
baryon density, the chiral condensate is governed by
the conservation law and its linear response is presented by
the diffusive equation. The influence of the short time
dynamical behaviors on the possible spinodal instability
and other associated phenomena are under way and will be
published elsewhere.
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APPENDIX: PSEUDOSPECTRAL METHOD

The pseudospectral method [79,80] is a very effective
numerical method with high accuracy for solving the
initial-value problem of the partial differential equation.
The following is a brief overview to simulate the EOM in
Eq. (A1) by the pseudospectral method.
First, we apply the variable substitution v → ṽ≡ v=rh

and r → u≡ r=rh. Then Eq. (11) becomes

2∂ṽ∂uχðṽ; uÞ −
�
3

u
þΦ0ðuÞ

�
∂ṽχðṽ; uÞ − fðuÞ∂2uχðṽ; uÞ

þ
�
3

u
fðuÞ þΦ0ðuÞfðuÞ − f0ðuÞ

�
∂uχðṽ; uÞ

þ 1

u2
ðm2

5 þ
λ

2
χðṽ; uÞ2Þχðṽ; uÞ ¼ 0: ðA1Þ

Generally, the function χðrÞ can be expanded into the
nodal expansion

χðuÞ ¼
XN
i¼0

χiliðuÞ; ðA2Þ

with

χi ¼ χðuiÞ;

liðuÞ ¼ Π
N

i¼0;i≠j

u − ui
uj − ui

;

where fuigNi¼0 are the collocation points and fligNi¼0 are
the basis functions. In this expansion, the undetermined
parameters are directly the function values at the colloca-
tion points. For the optimal scenario, the collocation points
or the grid points fuigNi¼0 for the basis are given by the
Chebyshev-Gauss-Lobatto points [90]. The discrete u in
the interval [0, 1] is

ui ¼
1

2

�
1 − cos

�
i − 1

N − 1
π

��
; ðA3Þ

with j ¼ 1; 2;…; N. In this work, we choose N ¼ 60.
The derivative operator ∂x is approximately replaced by a
discrete finite difference derivative D̂. At the point uj, one
obtains the p-order derivative as

χðpÞðujÞ ¼ D̂ðpÞχðujÞ ¼
XN
i¼0

χil
ðpÞ
i ðujÞ: ðA4Þ

In our calculation, the derivation is realized by employ-
ing the built-in “FiniteDifferenceDerivative” operator in
Mathematica. Then, we get a series of equations in the
form of

∂ṽχðṽ; uiÞ ¼ F½D̂; ui; χðṽ; uiÞ�; ðA5Þ

with i ¼ 1; 2;…; N. Thus, a second-order partial differ-
ential equation is transformed into the first-order ordinary
differential equation. With prepared initial conditions
χð0; uiÞ ¼ χ0ðuiÞ, it is straightforward that these equations
are solved.
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