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We explore static and spherically symmetric solutions of the 4-dimensional semiclassical Einstein’s
equations using the quantum vacuum polarization of a conformal field as a source. These solutions may be
of interest for the study of exotic compact objects (ECOs). The full backreaction problem is addressed
by solving the semiclassical Tolman-Oppenheimer-Volkoff (TOV) equations making use of effective
equations of state inspired by the trace anomaly and an extra simplifying and reasonable assumption.
We combine analytical and numerical techniques to solve the resulting differential equations, both
perturbatively and nonperturbatively in ℏ. In all cases the solution is similar to the Schwarzschild metric up

to the vicinity of the classical horizon r ¼ 2M. However, at r ¼ 2M þ ε, with ε ∼Oð ffiffiffi
ℏ

p Þ, we find a
coordinate singularity. In the case of matching with a static star, this leads to an upper bound in the
compactness, and sets a constraint on the family of stable ECOs. We also study the corrections that
the quantum-vacuum polarization induces on the propagation of waves, and discuss the implications. For
the pure vacuum case, we can further extend the solution by using appropriate coordinates until we reach
another singular point, where this time a null curvature singularity arises and prevents extending beyond.
This picture qualitatively agrees with the results obtained in the effective two-dimensional approach, and
reinforces the latter as a reasonable method.
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I. INTRODUCTION

Advances in gravitational wave (GW) astronomy to
detect and analyze GWs in the last years [1], as well as
the recent progress in very long baseline interferometry [2],
are opening new avenues to study strong-field gravity and
the physics of black holes. In particular, with the advent
of large amounts of data from GW and electromagnetic
observations in the future, it will become possible to test
and to quantify in precise terms the existence of horizons.
As a result, there is a growing interest in studying models of
dark, compact horizonless astrophysical objects that may
mimic very closely the behavior of black holes in the GW
data, and in examining different physical mechanisms that
could be used to uncover these exotic compact objects
(ECOs) with observations [3].
While there exists a large class of different models that

manage to simulate black holes, most of them require going
beyond the Standard Model of particles and/or general
relativity (GR) [4–10]. This is because similar values of BH
compactness are required to mimic GW observations, but

stable astrophysical objects with such compactness are
forbidden within GR by Buchdahl’s theorem and the
classical energy conditions. An appealing possibility is
to consider quantum effects (while preserving classical
gravity as described by conventional GR), as they can
potentially avoid the assumptions of this theorem without
requiring exotic assumptions. This involves facing the
difficulties of the renormalized stress-energy tensor
hTabi, describing the gravitational vacuum polarization
of quantum fields, and also solving the corresponding
semiclassical backreaction equations. So far all methods
developed to compute hTabi in quantum field theory in
curved spacetime, either analytical or numerical, assume a
fixed background metric. Even fixing the background, the
explicit computation of hTabi is complicated and only a few
examples are known, mainly in cosmology [11–13] and for
stationary configurations [14–16]. As a consequence, the
problem of solving the full semiclassical Einstein’s equa-
tions is terribly complicated, even approximately. Since the
nontrivial (t − r) part of a spherically symmetric metric is
two-dimensional, a popular approach in the past has been to
consider the analogous problem in effective 1þ 1 dimen-
sions. A first attempt in this direction is to truncate the
theory to the s-wave sector of the matter field and imple-
ment dimensional reduction by integrating the angular
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degrees of freedom. One ends up with an effective two-
dimensional theory (i.e., a particular dilaton-gravity theory
[17]), which, after further simplifying assumptions (near-
horizon approximation), has a semiclassical description
univocally determined by the two-dimensional trace
anomaly hTi ¼ ℏ

24πR
ð2Þ (this is usually referred to as the

Polyakov theory approximation [17]). In two-dimensions
the trace anomaly is sufficient to fix the quantum stress-
energy tensor, which in turn can be used to produce a
reasonable approximation for evaluating static quantum
corrections to the Schwarzschild geometry in vacuum.
The semiclassical solution is similar to the classical
Schwarzschild solution until very close to the event
horizon, but the near-horizon geometry is replaced by a
bouncing surface for the radial coordinate, mimicking the
throat of a nonsymmetric wormhole. A curvature singu-
larity is found beyond the throat [18]. This picture has been
confirmed with more analytical details in [19] and also
in [20] (using a natural deformation of the Polyakov theory
approximation), and very interesting extensions for stellar
configurations have been analyzed in [21–23].
The above two-dimensional effective method is expected

to provide important insights, but since the problem is very
relevant and it is not entirely clear to what extent the two-
dimensional approach is really a good approximation, an
intrinsic four-dimensional approach is demanded. This is
one of the aims of this work. Our strategy here will be to
solve the full semiclassical Einstein’s equations but without
explicitly calculating hTabi. Instead, we shall approach the
problem as in classical general relativity, by simply giving
equations of state and some appropriate boundary condi-
tions. One of the equations of statewill be determined by the
four-dimensional trace anomaly, which is independent of the
choice of quantum state. More specifically, wewill consider
a conformal quantum field, in which the trace of hTabi is
entirely determined by the anomaly. Then, wewill assume a
natural condition on the tangential pressurewhichwe expect
to capture the main qualitative aspects of the actual solution
(we differ here from the assumptions given in [24]). Thiswill
make the problemmanageable andwill allow us to approach
the problem directly in four dimensions.
In this new framework we will also be interested in

investigating whether there exists physically reasonable,
horizonless “vacuum” geometries which may mimic black
holes (e.g., wormholes), as well as analyzing what impli-
cations the quantum vacuum-polarization from the exterior
geometrymay have on static ECOs. Uniqueness theorems in
classical GR tell us that the exterior vacuum solution of any
ECO must be described by the Schwarzschild metric, and
this is widely taken for granted in the literature. However,
quantum fields exist all around, and their presence may
break this degeneracy with respect to black holes.
Even though semiclassical gravity may provide a

conservative framework for studying the formation
and/or exterior geometry of exotic astrophysical objects,

for solar-mass scales it is often expected that quantum
effects should only lead to extremely low corrections of the
classical solutions, in such a way that from an observational
point of view the difference is totally negligible.
Remarkably, recent works developed by different indepen-
dent groups have shown that even tiny corrections to the
metric may significantly alter the quasinormal mode
(QNM) frequency spectrum of black holes [25–28], open-
ing the possibility of constraining these quantum correc-
tions with GW spectroscopy. Incidentally, this provides a
fantastic opportunity to test quantum field theory in
astrophysics and adds further motivation to address the
historical difficulties encountered when solving the semi-
classical Einstein’s equations.
The paper is organized as follows. In Sec. II we provide

the setup of the calculation by writing down the central
equations, as well as by specifying and motivating the
assumptions in our problem. Then in Sec. III we solve
the differential equations, combining both analytical and
numerical techniques, and highlight the main features of
the solution obtained, as well as the implications for ECOs.
In Sec. IV we obtain the maximal extension and describe
the curvature singularity that arises. Section V is devoted to
physical applications of the obtained semiclassical metric.
In particular we derive the dynamical equations governing
scalar and electromagnetic waves, estimate the associated
light-ring frequencies using the WKB approximation, and
compare them with the Schwarzschild case. Finally, in
Sec. VI we present our conclusions.
Our conventions are as follows. We work in geometrized

units G ¼ c ¼ 1 and keep ℏ explicit throughout. The
metric signature has signature ð−;þ;þ;þÞ, ∇a will denote
the associated Levi-Civita connection, the Riemann tensor
is defined by 2∇½a∇b�vc ≕Rabc

dvd for any 1-form vd; the
Ricci tensor is defined by Rab ≔ Racb

c; and the scalar
curvature is R ≔ gabRab. All tensors and functions are
assumed to be smooth, unless otherwise stated.

II. SEMICLASSICAL TOV EQUATIONS
IN QUANTUM VACUUM

Our aim in this work is to study solutions of the
semiclassical Einstein’s equations

Gab ¼ 8πðhTabi þ Tclassical
ab Þ; ð1Þ

in order to find an effective metric that may describe
quantum corrections to classical black hole spacetimes
induced by the quantum vacuum, or even a new family of
solutions. Here Tclassical

ab represents some classical gravita-
tional source, while hTabi denotes the expectation value of
the stress-energy tensor, evaluated for some vacuum state
j0i of some given quantum field living on the background
metric gab that solves the above equations. For Tclassical

ab ¼ 0

and in the absence of quantum fields the spherically
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symmetric solution is a Schwarzschild black hole due to
Birkhoff’s theorem. But if a quantum field is included,
hTabi ≠ 0, and we expect to get a Schwarzschild-type
deformed metric due to quantum vacuum effects ascribed to
that field. Solving this problem requires finding a vacuum
state j0i and a metric gab that together solve (1). For reasons
that we will discuss in more detail below, this is an
extraordinary problem and there are currently no systematic
techniques available to address the full question. Our
strategy will consist in fixing some desirable properties
for the vacuum state and solving the resulting PDE for gab.
More precisely, we will demand the vacuum state to be
static and invariant under the group of rotations. This may
be thought of as the most immediate quantum generaliza-
tion of the classical Schwarzschild vacuum. The solution to
(1) will then correspond to a spherically symmetric and
static metric, which in global coordinates ft; r; θ;ϕg can be
written as [29]

ds2 ¼ −e−2ϕðrÞdt2 þ dr2

1 − 2mðrÞ
r

þ r2dΩ2: ð2Þ

Physically, the assumption of staticity is fundamental for
studying the exterior vacuum region of exotic compact
objects (ECOs) that are stable. For black holes, on the other
hand, it is well-known that the assumption of staticity leads
to the Boulware state, which gives rise to divergences in the
stress-energy tensor at the classical horizon [30]. However,
this conclusion holds only when the renormalized stress-
energy tensor is computed for a test quantum field on a
fixed Schwarzschild background. In this work we will
evaluate the implications of staticity when considering the
whole problem, including the backreaction effect that the
quantum vacuum may produce in the metric.
To get the specific values of the metric components in

(2) we have to solve (1) for Tclassical
ab ¼ 0. For a static and

spherically symmetric vacuum state the most general
expression for the renormalized stress-energy tensor
hTabi is

hTabi ¼ −hρðrÞiuaub þ hprðrÞirarb þ hptðrÞiqab; ð3Þ

where ua ¼ e−ϕ∇at is a timelike vector normalized as

u2 ¼ −1, ra ¼ ð1 − 2mðrÞ
r Þ−1=2∇ar is a unit spacelike vector,

and qab is the metric on the unit 2-sphere. The metric can be
written covariantly as gab ¼ −uaub þ rarb þ qab. There
are only three independent equations from the semiclassical
Einstein equations. On the other hand, there is one non-
trivial Bianchi identity. Collecting the tt and rr Einstein’s
equations and this Bianchi identity we get the following
equations

dmðrÞ
dr

¼ 4πr2hρðrÞi; ð4Þ

dϕðrÞ
dr

¼ −
mðrÞ þ 4πr3hprðrÞi

r2ð1 − 2mðrÞ
r Þ

; ð5Þ

dhprðrÞi
dr

¼ −
mðrÞ þ 4πr3hprðrÞi

r2ð1 − 2mðrÞ
r Þ

ðhρðrÞi þ hprðrÞiÞ

−
2

r
ðhprðrÞi − hptðrÞiÞ: ð6Þ

When hpri ≠ hpti, there are anisotropic pressures. In the
isotropic case this system of equations reduces to the usual
Tolman-Oppenheimer-Volkoff (TOV) equations. In the rest
of the work we will refer to this system of equations as the
semiclassical TOV equations.
In this system there are 5 unknowns (3 from the stress-

energy tensor and 2 from the metric) for 3 equations.
Normally one would compute hTabi and express the result
in terms of ϕðrÞ and mðrÞ in order to get the system above
solved. Instead, we will impose two functional relations
between the components of the stress-energy tensor, in
order to avoid such a difficult (or unattainable) calculation.
First, we will consider the case of a massless quantum field
conformally coupled to the spacetime. The advantage of
doing this is that the relation between the three independent
components of the stress energy tensor is univocally fixed
by the trace anomaly hTa

ai as

−hρi þ hpri þ 2hpti ¼ hTa
ai; ð7Þ

and the trace anomaly is uniquely determined by the
geometry of the spacetime

hTa
ai ¼

ℏ
2880π2

ðαCabcdCabcd þ βRabRab þ γR2 þ δ□RÞ:
ð8Þ

In this expression Cabcd is the Weyl tensor, Rab the Ricci
tensor, R the Ricci scalar and α, β, γ, δ are real numbers.
Most importantly, this result is independent of the choice of
the quantum state. The idea of exploiting the trace anomaly
goes back to [31]. The constant coefficients depend on the
particular field under consideration. It should be noted
though that there exits an intrinsic ambiguity in the trace
anomaly for the coefficient δ [32]. This ambiguity is related
to the choice of the renormalization scheme. The term with
□R can always be removed by adding a local counterterm
in the Lagrangian so, from now on we set δ ¼ 0. This
simplifies the problem considerably, since it will avoid
derivatives of second and third order of the metric in the
field equations.
By evaluating (8) with our metric and using the semi-

classical TOV equations written above one can obtain a
simplified expression for the trace anomaly in terms of hρi,
hpri and hpti. This leads to the following equation of state
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−hρi þ hpri þ 2hpti ¼
ℏ
270

�
α

�
3m
4πr3

− hρi þ hpri − hpti
�

2

þ 6βðhρi2 þ hpri2 þ 2hpti2Þ þ 6γð−hρi þ hpri þ 2hptiÞ2
�
:

ð9Þ

For definiteness in this work we restrict to scalar fields, for which the coefficients are α ¼ β ¼ 1 and γ ¼ −1=3. For these
values the above expression can be further simplified to

−hρiþhpriþ2hpti¼
ℏ
180

�
m
πr3

�
3
m
πr3

þ8ð−hρiþhpri− hptiÞ
�
þ8hρiðhρi− hpriþ2hptiÞþ8ðhpri− hptiÞ2

�
: ð10Þ

We need another restriction to make our system of
equations solvable. Unfortunately there are no other uni-
versal geometric properties of the stress-energy tensor that
may allow us to fix a similar relation between the different
components of the stress-energy tensor. To proceed further
we need to impose a condition on hTabi based on what we
may expect from the quantum state. We will consider here
that hpri ¼ hpti. This simplifying assumption is inspired
by the “zero-order” result that one gets when calculating
hTabi in a fixed Schwarzschild background when r → 2M,
and we expect this near-horizon approximation to capture
the qualitative behavior of the actual solution. Indeed, in a
Schwarzschild spacetime background the vacuum expect-
ation value hTabi of a conformal scalar field in the static
spherically symmetric state behaves, in the vicinity of the
horizon, as [30]

hTν
μi∼−

ℏ
2π2ð1− 2M=rÞ2

Z
∞

0

dωω3

e8πMω − 1

2
6664
−1 0 0 0

0 1
3

0 0

0 0 1
3

0

0 0 0 1
3

3
7775:

ð11Þ

Both hTθ
θi≡ hpti and hpri≡ hTr

ri merge for r → 2M, but
as one moves away from the vicinity of the horizon, the
tangential and radial pressures start to differ. In fact, for
r → ∞ one has hpri ¼ − 1

3
hpti ∼Oðr−5Þ [33]. Therefore,

our assumption is expected to work only qualitatively as an
approximation to the actual relationship, whose knowledge
requires computing hTabi in detail. This simplification is
expected to capture the main physical ingredients of our
field theory (the results obtained will be exact at least in a
neighborhood of the classical horizon).
Our approach can be easily compared with other works

by fixing this free condition with different assumptions. For
instance, the effective two-dimensional Polyakov approxi-
mation [18,19,21,22] can be regarded as fixing trivially the
tangential pressure hpti ¼ 0 (or with additional extra
deformations [20,23]) and restricting the trace anomaly

to its two-dimensional value. Instead, we are trying to solve
the 4D problem directly without assuming a priori that it is
similar to the 2-dimensional case. On the other hand, the
approach of [24] also quantizes the matter field in four
dimensions, but assumes that hpti is regular as r → 2M,
even in the Schwarzschild background. Instead, our
assumption is compatible with Eq. (11).

III. SEMICLASSICAL METRIC SOLUTION

A. Perturbative analytical solution

The leading order contributions of the stress-energy
tensor are expected to behave as hρi ∼Oðℏ1Þ, hpi ∼
Oðℏ1Þ [where hpi ¼ hpri ¼ hpti]. We can thus look for
perturbative solutions of the semiclassical TOV equations,
solving the system order by order in powers of ℏ. In this
subsection we will obtain the first order correction using
analytical techniques, and in the next subsection we will
analyze the validity of this approach by solving the system
of equations numerically.
Solving the TOV equations at order ℏ0 gives mðrÞ ¼

M þOðℏÞ and ϕ ∼ − 1
2
logð1 − 2M=rÞ þOðℏÞ, whereM is

an arbitrary constant of integration, which can be identified
with the ADM mass. This is the Schwarzschild metric, as
expected at order ℏ0. To get something interesting we have
to solve the equations at first order in ℏ. Let us define
m ¼ M þm1ℏþOðℏ2Þ, ϕ ∼ − 1

2
logð1 − 2M=rÞ þ ϕ1ℏþ

Oðℏ2Þ, hρi ¼ ρ1ℏþOðℏ2Þ, hpi ¼ p1ℏþOðℏ2Þ. Then the
system of equations at first order in ℏ is given by

dm1

dr
¼ 4πr2ρ1; ð12Þ

dϕ1

dr
¼ −

m1

r2f2
−
4πrp1

f
; ð13Þ

dp1

dr
¼ −

M
r2f

ðρ1 þ p1Þ; ð14Þ

−ρ1 þ 3p1 ¼
M2

60π2r6
; ð15Þ
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where f ¼ 1 − 2M
r . This system can be solved analytically,

obtaining the following expressions for the pressure and
density1

hpi ¼ −
ℏM3

480π2r7f2

�
1

7
þ f

�
þOðℏ2Þ; ð16Þ

hρi¼ℏ

�
−

M3

160π2r7f2

�
1

7
þf

�
−

M2

60π2r6

�
þOðℏ2Þ; ð17Þ

and the following ones for the metric components

m ¼ M þ ℏ
40320πMf

ð9 − 36f logðfÞ þ 10f − 174f2

þ 246f3 − 91f4Þ þOðℏ2Þ; ð18Þ

ϕ¼ −
1

2
logfþ ℏ

80640πM2f2
ð3þ 36ð−1þ 3fÞf logðfÞ

− 35fþ 152f2 − 132f3 þ 5f4 þ 7f5Þ þOðℏ2Þ: ð19Þ
To fix the constants of integration we have assumed
the natural boundary conditions hpiðr → ∞Þ ¼ 0,
hρiðr → ∞Þ ¼ 0 and the metric tending to the
Schwarzschild one as r → ∞. For pedagogical purposes,
we display the asymptotic form of themetric around r ¼ 2M

ds2¼−
�
fðrÞ−ℏ

�
1

13440πM2fðrÞþOðlogfÞ
�
þOðℏ2Þ

�
dt2þ dr2

fðrÞ−ℏð 1
4480πM2fðrÞþOðlogfÞÞþOðℏ2Þþ r2dΩ2: ð20Þ

In the Appendix we prove that the curvature at this singular
point is finite, so this is just a coordinate singularity. In
fact, this is just the classical Schwarzschild coordinate
singularity at r ¼ 2M shifted to the value r0 defined by
g−1rr ðr0Þ ¼ 0. Using the expression (18) and imposing
2mðr0Þ ¼ r0, we easily obtain

r0 ¼ 2M þ
ffiffiffi
ℏ

p

4
ffiffiffiffiffiffiffiffi
70π

p þOðℏÞ: ð21Þ

In geometrized units
ffiffiffi
ℏ

p ¼ lp is the Planck length. This
singular, limiting point defines the end of validity of our
coordinate system, which would traditionally indicate the
location of a “horizon” at r ¼ r0. However, note that,
unlike the Schwarzschild case, in this point the component
gtt of the metric (the so called redshift function) does not
vanish, but takes the value

gttðr0Þ ¼ −
ffiffiffi
ℏ

p

12
ffiffiffiffiffiffiffiffi
70π

p
M

þOðℏÞ: ð22Þ

This implies that the static spacetime that we have obtained
does not contain a horizon, i.e. it is not defining a black
hole [34]. We check this in the Appendix.
Note that, even though (16) and (17) are generally very

small (because of the prefactor ℏ), they become relevant
around r ∼ r0, since in this limit the factor fðrÞ in the
denominator can compensate ℏ. In other words, quantum
effects are quite important near the location of what was
classically the horizon. The Krechtmann scalar is also
found to be significantly corrected at the singular point

(see Appendix). These observations lead us to the follow-
ing subsection.

B. Nonperturbative numerical solution

As we can see the results obtained above at first order in ℏ
also depend on fðrÞ, which takes values of order ffiffiffi

ℏ
p

near the
singular point r ¼ r0. This dependence compensates the
small value ofℏ in some expressions above.Becauseof this, a
natural question is whether the perturbativemethod is a good
approximation near to the singular point. To answer this we
can solve the TOVequations at second order inℏ and analyze
whether near the singular point the solution is consistentwith
the perturbative hypothesis (i.e. that theorderℏ1 is larger than
the order ℏ2, etc.). The analysis is tedious and we avoid
showing the details. What we obtain is that the ℏ2 contri-
bution to the pressure and the density is proportional to
ℏ2=fðrÞ4. Near to the singular point fðrÞ4 is of order ℏ2, so
this term competes with the first order contribution (16),
which is proportional to ℏ=fðrÞ2. Therefore we find that,
near the singular point, the higher order contributions inℏ are
not necessarily smaller than the first one and perturbation
theory actually breaks down. Therefore, we cannot rely on
the perturbative series in the vicinity of r0 and we are forced
to solve the differential TOV equations exactly, which can
only be done numerically. Still, we shall find that the
perturbative approach presented in the previous subsection
is a good approximation to the problem, and it qualitatively
predicts well the behavior of the nonperturbative solution.2

1The negative sign and the dependence on 1=f2 obtained in
these expressions are in agreement with the exact results obtained
on the fixed (Schwarzschild) background near the horizon for the
Boulware vacuum state [see (11)].

2In this paper we work in the semiclassical regime in which
fluctuations of the stress-energy tensor are negligible compared to
its mean value. Going beyond this framework would require
working with techniques in stochastic gravity [13], which is out
of the scope of the present paper. By nonperturbative we mean the
exact solution of the TOV equations within the semiclassical
framework.
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We now turn to solve numerically the TOV equations
(4)–(6) using the equation of state (10) and hpri ¼ hpti. We
place the boundary conditions at r ¼ 1000M, and demand
that at this location the solution is approximately the
Schwarzschild metric.3 An important issue that one faces
when solving the equations numerically is that the value ofℏ
is much smaller than M. To be able to distinguish the
implications of a nonzero but tiny value of ℏ from the
numerical error, one needs a huge computer accuracy. To
avoid this issue, a useful strategy is to use first some artificial
high values of ℏ (between 10−5M2 and 10−15M2), study the
dependence of the results on ℏ, and then extrapolate the
relevant quantities to the actual value of ℏ. By solving
numerically the equations for different values of ℏ and
calculating for each case thevalue of r0weobtain results that
approximately fit the expression r0 ≈ 2M þ 0.01947

ffiffiffi
ℏ

p
.

This shift differs from the one estimated by the perturbative
method (r0 ≈ 2M þ 0.01686

ffiffiffi
ℏ

p
) but the functional depend-

ence on ℏ remains the same.
In Fig. 1 we plot the components of the metric obtained

numerically, normalized by the factor fðrÞ ¼ 1–2M=r, as
well as the renormalized energy density and pressure. They
are plotted as a function of ϵ ¼ r−2Mffiffi

ℏ
p . With this new radial

variable the singular point r0 does not depend on the
specific value of ℏ. These plots are taken for ℏ=M2 ¼ 10−5,
but we have analyzed them for other values and have seen
that they do not significantly depend on the chosen value of
ℏ near the singular point. From these plots one can see that,
as in the perturbative solution, the component g−1rr tends to 0
at the singular point r ¼ r0, while gtt tends to a nonzero
value. The energy density and pressure differ from 0 as they
approach the singular point, as expected. More precisely
gtt ∼Oð ffiffiffi

ℏ
p

=MÞ, g−1rr ∼ ðr − r0Þ=M, ρ ∼Oðℏ0Þ, and p ∼
Oðℏ0Þ as r → r0. This is the same dependence on

ffiffiffi
ℏ

p
=M as

that obtained by the perturbative approach, although the
numerical coefficients are different. This allows us to

consider the perturbative solution as a qualitatively good
approximation.
We can summarize the above numerical result in terms of

the following generic expression for the metric

ds2 ¼ gttdt2 þ grrdr2 þ r2dΩ2; ð23Þ

where g−1rr → 0, as r → r0 > 2M and gttðr0Þ ≠ 0.
Furthermore, g−1rr ∼ ðr − r0Þ=M and gttðrÞ ∼Oð ffiffiffi

ℏ
p

=MÞ
in a neighborhood of r0.

IV. EXTENSION BEYOND THE
COORDINATE SINGULARITY

The metric (23) [or (20)] is only meaningful when r > r0
because of the coordinate singularity at r ¼ r0. We recall
(see Appendix) that the curvature scalars are finite at
r ¼ r0. Physically this effective metric can be used to
describe the exterior spacetime of a static, spherically
symmetric star, including the vacuum polarization effects
of quantum fields around. But in close analogy to the
classical Schwarzschild case when expressed in ft; r; θ;ϕg
coordinates, one may attempt to extend the spacetime
across the r ¼ r0 point and examine if there exists a purely
(quantum) vacuum solution. As remarked at the end of
Sec. III. A, the usual Eddington-Finkelstein coordinates fail
to provide a regular metric, which prevents the usual
analytical extension beyond r ¼ r0.
By looking at the specific form of the metrics (23) or (20)

one realizes that they can be used to construct a portion
of a static, traversable (and Lorentzian) wormhole [35,36].
By introducing the usual proper-length coordinate lðrÞ≡R
r
r0
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðr0Þ=r0p

dr0 ≥ 0 the metric can be rewritten to
fit the Morris-Thorne ansatz

ds2 ¼ −e−2ϕðlÞdt2 þ dl2 þ rðlÞ2dΩ2: ð24Þ

Therefore, one can extend the spacetime beyond the critical
point r ¼ r0 or l ¼ 0 (which physically represents the
throat of the wormhole) by analytically extending to
negative values of l. The function r ¼ rðlÞ is determined

FIG. 1. Numerical results obtained for the metric components and the renormalized energy density and pressure near the singular point
ϵ ¼ 0.01949 (where r ¼ 2M þ ϵ

ffiffiffi
ℏ

p
). We have chosen ℏ=M2 ¼ 10−5, but the plots do not change significantly for other values. We

compare them with the perturbative solution (dashed curves), for which the singular point is ϵ ¼ 0.01686.

3To get more precision we can choose the corrected solution at
first order in ℏ obtained above, but the results near the singular
point are numerically indistinguishable.
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by inverting the equation l ¼ lðrÞ given above, but only
when l > 0. For l < 0 the function r ¼ rðlÞ must be
determined by other means.

A. Setup

Instead of working with the metric ansatz (2) and then
transforming to (24) by a change of variables, we can
alternatively solve the problem from scratch using the latter
metric directly and explore if there exist wormhole solu-
tions. The equivalent system of TOV equations now reads
(we find convenient to introduce the defining relation
gðlÞ≡ dr

dl )

dr
dl

¼ g; ð25Þ

dg
dl

¼ 1 − 8πr2hρi þ g2

2r
; ð26Þ

dϕ
dl

¼ −1 − 8πr2hpri þ g2

2rg
; ð27Þ

dhpri
dl

¼ ð−1 − 8πr2hpri þ g2Þðhpri þ hρiÞ
2rg

þ 2gðhpti − hpriÞ
r

: ð28Þ

There are six unknowns for four equations. Again, we can
impose two equations of state to get a solvable model. As
before, we shall take hpti ¼ hpri (notice that the contribu-
tion of hpti − hpri is negligible near the throat, where as we
will see gð0Þ ¼ 0) and hTa

ai given by the trace anomaly:

− hρi þ 3hpi

¼ ℏ
180

�
1 − g2

2πr2

�
3
1 − g2

2πr2
− 8hρi

�
þ 8hρiðhpi þ hρiÞ

�
:

ð29Þ

To get wormhole solutions we must impose several
conditions. Without loss of generality, we can locate the
throat at l ¼ 0. One of the sectors of the throat (that
would represent the universe we live in) must be asymp-
totically flat, and inertial observers at infinity must measure
time with t. We choose that sector corresponding to
l > 0. Then the previous condition requires ϕð∞Þ ¼ 0,
hprið∞Þ ¼ hρið∞Þ ¼ 0. On the other hand, the coordinate
l should agree with the radial function rðlÞ at infinity, i.e.
rðlÞ → l as l → ∞. Furthermore, for sufficiently large
distances away from the throat, g must be given by the
Morris-Thorne coordinate transformation (the solution
should mimic a hole at large distances), i.e. gðlÞ ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðlÞ=lp

and therefore gð∞Þ ¼ 1.
This set of boundary conditions, together with the two

equations of state specified above, can be used to obtain a
unique solution to the above system of differential equa-
tions, integrating all the way down from l ¼ þ∞ until
negative values of l. Notice that in general there will be no
mirror-reflection symmetry at the throat. The results are
shown in the next subsection. For the solution to represent a
wormhole, note that (i) the throat must have a finite,
nonvanishing radius, so rð0Þ ¼ r0 > 0, and (ii) the throat
area must correspond to a minimum, therefore gð0Þ ¼ 0.
Before discussing the results, we remark an important

issue. It may seem that the above system of equations is not
well defined at the throat l ¼ 0 because of gð0Þ ¼ 0 in the
denominator of some equations. But notice that, according
to Einstein’s equation,

hprðrÞi ¼ −
1

8π

�
2m
r3

− 2

�
1 −

2m
r

�
∂rϕ

r

�
; ð30Þ

so at the throat (where 2mðrÞ ¼ r) we also have
prð0Þ ¼ −1=ð8πr20Þ, provided that ∂rϕð0Þ is well-defined
at the throat or that it does not blow up as quickly as
ð1 − 2m=rÞ−1 (this is verified in this case, using the
numerical solution obtained in the previous section one
can see that ∂rϕ ∼ ð1 − 2mðrÞ=rÞ−1=2 when r → r0).

FIG. 2. Numerical results obtained for the components of the metric (24) and gðlÞ ¼ r0ðlÞ in terms of l̃ ¼ lℏ−1=4M−1=2. The
represented interval of l̃ includes the throat (l̃ ¼ 0) and the curvature singularity (l̃ ≈ −0.278). We have defined the quantities
r̃ ¼ ðr − 2MÞℏ−1=2 and g̃tt ¼ gttℏ−1=2M, in such a way that their values at the throat do not depend on the chosen value of ℏ. We have
chosen ℏ=M2 ¼ 10−3 for these plots, but they have a similar form for other values.
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Therefore, the numerator of (27) and (28) also vanishes
whenever the denominator does, and we have a 0=0
ambiguity. To ensure that we can extend the metric across
the throat one needs to check first that the limit l → 0
tends to a finite value under the boundary conditions
specified above. Numerically we find that near the throat
1þ 8πr2p ∼OðlÞ and g ∼OðlÞ, so we can conclude that
the limit of the quotient will be finite.

B. Results

In Fig. 2 we show the result of solving numerically the
system of equations (25), (26), (27), (28) and (29) under the
conditions specified in the previous subsection. As in
Sec. III. B, to capture the implications of a nonvanishing
but tiny value of ℏ on the equations, we do the calculation
for several high values of ℏ (so that their effect is
numerically distinguishable), then we perform a fit of
the results to be able to extrapolate the value of interest
with the actual value of Planck’s constant. In our calcu-
lation the throat is located at l ¼ 0, note how at this point
there is a bounce in the function rðlÞ (its derivative gðlÞ
changes sign).
Furthermore, we find that in the interior region, l < 0,

a new singular point appears at ls ∼ −0.278ℏ1=4
ffiffiffiffiffi
M

p
. It is

a singular point because the redshift function vanishes
there, gttðlsÞ ¼ 0. As we approach to ls we find that the
renormalized density, the pressure and the scalar of
curvature R ¼ 8πð−ρþ 3pÞ all tend to diverge. This
signals the existence of a curvature singularity. To confirm
the existence of this singularity from an analytical view-
point we can examine the expression of the scalar curvature
in terms of the metric components:

RðlÞ ¼ g0ttðlÞ2
2gttðlÞ2

−
g00ttðlÞrðlÞ þ 2g0ttðlÞr0ðlÞ

gttðlÞrðlÞ

−
2ð2rðlÞr00ðlÞ þ r0ðlÞ2 − 1Þ

rðlÞ2 : ð31Þ

Since at the singular point gttðlsÞ ¼ 0 (see Fig. 2) some
terms of this expression diverge at this point. Although
g0ttðlÞ also vanishes at l ¼ ls, numerical computations show
that it decreases slower than gttðlÞ. To see the causal
character of this curvature singularity, let us consider the
induced metric on a l ¼ constant three-dimensional hyper-
surface: ds̄2 ¼ gttðlÞdt2 þ rðlÞ2dΩ2. At the singularity
l ¼ ls we have gttðlsÞ ¼ 0, so the metric becomes degen-
erate: ds̄2 ¼ 0þ rðlsÞ2dΩ2. Therefore, the surface l ¼ ls
becomes a null hypersurface [37], and this curvature
singularity is null. Figure 3 provides a Penrose diagram
that shows all these features.
An important question is how long it would take for an

observer crossing the throat to reach this curvature singu-
larity. To study this let us consider a radial and time-like
geodesic starting at l ¼ 0 (throat) and ending at the singular

point l ¼ ls. The relevant geodesic equation for a static and
spherically symmetric metric ds2 ¼ gttðlÞdt2 þ gllðlÞdl2 þ
rðlÞ2dΩ2 is given by

dl
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g−1ll

�
E2g−1tt þ L2

r2
þ μ

�s
ð32Þ

where τ is the proper time, μ ¼ þ1; 0;−1 for timelike, null
and spacelike geodesics respectively, and E and L are
constants of motion given by E ¼ −gtt dtdτ and L ¼ r2 dϕ

dτ .
In our case gll ¼ 1, μ ¼ 1, L ¼ 0, and dl=dτ < 0 (the
geodesic is approaching the singularity), so

dl
dτ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2gttðlÞ−1 − 1

q
: ð33Þ

The proper time needed to reach the curvature singularity
from the throat is then given by

Δτ ¼ −
Z

ls

0

dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2gttðlÞ−1 − 1

p : ð34Þ

(the condition that the geodesic propagates into the future,
∂τt > 0, implies E2gttðlÞ−1 > 1 and guarantees that the
integral is real). The order of magnitude of this quantity
can be estimated as follows. From (22) we know that
gttð0Þ ∼

ffiffiffi
ℏ

p
=M. Assuming E ∼ 1, we have E2g−1tt ðlÞ ≫ 1

in the region of the integration. Since jlsj ∼ ℏ1=4
ffiffiffiffiffi
M

p
≪ 1

we can also Taylor expand the integral to finally get

FIG. 3. Penrose diagram showing the wormhole throat (l ¼ 0)
and the null curvature singularity (l ¼ ls).
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Δτ ∼ −
Z

ls

0

ffiffiffiffiffiffiffiffiffiffi
gttðlÞ

p
dl ∼

ffiffiffiffiffiffiffiffiffiffiffi
gttð0Þ

p
jlsj þOðl2sÞ ∼

ffiffiffi
ℏ

p
ð35Þ

So an observer crossing the throat will almost immediately
see the presence of the curvature singularity.
Finally, we want to stress that the occurrence of the

curvature singularity has been obtained for a purely
vacuum semiclassical solution. The presence of matter
producing very compact stellar objects (ECOs) makes only
the outer part of the solution physically relevant. Moreover,
these results also suggest a maximum in the compactness of
ECOs. This maximum would be given by the minimum of
the radial function rðlÞ, i.e. the throat (r ¼ r0). Therefore
this maximum of compactness [measured as 2M=rðlÞ] is of
order

2M
r0

∼ 1 − 0.01686

ffiffiffi
ℏ

p

2M
: ð36Þ

We regard (36) as one of the main results of this work.
Probing the exterior of the semiclassical metric via scalar
and vector perturbations will be the topic of the next
section.
Remark: Another way to extend the metric beyond the

coordinate singularity r ¼ r0 consists in defining a coor-

dinate r̄ by dr̄
dr ¼ e−ϕðrÞð1 − 2mðrÞ

r Þ−1=2. In this case the metric
has the form

ds2 ¼ −Gðr̄Þdt2 þ dr2

Gðr̄Þ þ Rðr̄Þ2dΩ2: ð37Þ

Using this metric as an ansatz for solving the semiclassical
TOVequations we found that the functions G and R can be
analytically extended beyond the coordinate singularity
r̄ ¼ r̄0. In particular Rðr̄Þ reaches a minimum at r̄0 and
starts increasing for lower values, as expected for a
wormhole metric. On the other hand Gðr̄Þ continues to
decrease until it reaches the value r̄ ¼ r̄s, whereGðr̄sÞ ¼ 0.
At this point we again find a curvature singularity, which is
equivalent to the one found in the other extension explained
above. Therefore, with this alternative extension, we
obtain the same conclusions. However the approach
described above allows a higher accuracy in the numerical
calculations.

V. PROPAGATION OF WAVES IN THE
SEMICLASSICAL METRIC

The propagation of waves on a given spacetime back-
ground provides a way to test some features of this metric
by studying the scattering properties of the wave.
Furthermore, they provide a means to test the stability of
the metric under linear perturbations, which is a necessary
condition for any semiclassical metric that aims to describe
acceptable astrophysical systems. In this section we will

study scalar and electromagnetic perturbations around the
semiclassical metric constructed in Sec. III. In particular,
we will compute the leading order corrections to the light-
ring frequency modes. These frequencies depend only on
the geometry around the light-ring of the classical black
hole, and describe the early ringdown stage in gravitational
wave observations of binary mergers. While the late ring-
down stage is expected to be described by the proper QNM
frequencies [38,39], the calculation of these is out of the
scope of the present paper.

A. Scalar perturbations

Let us study the behavior of a massless scalar field
coupled to a general static and spherically symmetric
background, ds2 ¼ gttdt2 þ grrdr2 þ r2dΩ2. The field sat-
isfies the Klein-Gordon equation

ð□þ ξRÞϕ ¼ 0: ð38Þ

Since the metric is static and spherically symmetric, we can
look for solutions of the following form

ϕωlm ¼ 1

r
e−iωtYlmðθ;ψÞΨωlðrÞ: ð39Þ

For a curved spacetime the D’Alembert operator is given by
□ϕ ¼ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp

gμν∂νϕÞ. The Klein-Gordon equation

decouples and, after some calculations one obtains the
following equation for the radial function

F2Ψ00
ωl þ FF0Ψ0

ωl þ ðω2 − VlÞΨωl ¼ 0; ð40Þ

where

FðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
−
gtt
grr

r
; ð41Þ

VðrÞ ¼ −gttðrÞ
�
lðlþ 1Þ

r2
− ξRðrÞ

�
þ FðrÞF0ðrÞ

r
: ð42Þ

If we define a generalized tortoise coordinate as ∂r� ¼
FðrÞ∂r, then Eq. (40) can be rewritten in the usual Regge-
Wheeler form ∂

2
r�Ψlm þ ðω2 − VÞΨlm ¼ 0. In particular,

for a Schwarzschild background we recover the usual
expression.
Now let us study this potential for our particular case,

given by gtt ¼ −e−2ϕðrÞ and grr ¼ 1 − 2mðrÞ
r , where ϕðrÞ

and mðrÞ have been obtained in Sec. III. Using the
semiclassical TOVequations we can rewrite the potential as

VðrÞ ¼ e−2ϕðrÞ
�
lðlþ 1Þ

r2
þ 2mðrÞ

r3
þ 4πðð1 − 6ξÞhpðrÞi

þ ð−1þ 2ξÞhρðrÞiÞ
�
: ð43Þ
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It is easy to see that in the Schwarzschild limit ℏ → 0 this
expression reduces to the usual effective potential for scalar
fields. We can now use the perturbative solution of the
corrected Schwarzschild metric to obtain the correction
of the Regge-Wheeler potential at first order in ℏ. The
resulting expression, at first order in ℏ, yields

VðrÞ ¼ V0ðrÞ þ
ℏ

20160πM2r6f
½−2688M4ξf2

þMr3ð−3λþ ð53þ 32λÞf − 40ð1þ 3λÞf2
þ 12ð−36þ λÞf3 þ ð664þ 7λÞf4 − 245f5Þ
þ 18r4ðð1þ λÞ − ð5þ 3λÞf þ 4fÞf logðfÞ�
þOðℏ2Þ; ð44Þ

where f ¼ 1 − 2M
r , λ ¼ lðlþ 1Þ and V0ðrÞ ¼ fð λr2 þ 2M

r3 Þ,
which is the effective potential for scalar fields on a
Schwarzschild background. Note that this expression does
not depend on ξ. This is because the scalar curvature is
given by R ¼ 8πð−ρþ 3pÞ, and expanding around
r ¼ 2M we have ρ ≈ 3p at leading order [see (17) and
(16)], so the term ξR is subleading. On the other hand, near
the throat fðr0Þ ∼Oð ffiffiffi

ℏ
p

=MÞ so the quantum correction of
the effective potential is of order Oð ffiffiffi

ℏ
p

=M3Þ near the
throat, while it is of order Oðℏ=M4Þ in general.

Using this expression for the corrected effective poten-
tial, we can now obtain the quantum corrections at first
order in ℏ to the light ring frequencies. The computation of
these frequencies requires numerical methods. However,
one can obtain a reasonable estimation by using the WKB
approximation [40].
Let us briefly review the calculation for a Schwarzschild

metric. In this framework the light ring frequencies at 0th
adiabatic order are given by

ω2
n ¼ Vðr�mÞ − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00ðr�mÞ

p �
nþ 1

2

�
; ð45Þ

where r�m is the value of the tortoise coordinate at which the
potential is maximum, and the primes mean derivatives
with respect to r�. In the case of a Schwarzschild back-
ground the maximum of the potential is located at

rm ¼ 3ðλ − 1Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9λþ 14Þλþ 9
p
2λ

M; ð46Þ

which for large l tends to rm ∼ 3M. [The case λ ¼ 0 (l ¼ 0)
has to be studied separately, we analyze it at the end of this
section]. Using this expression, we can obtain the fre-
quency of the light-ring modes for a scalar perturbation in a
classical black hole

ω2
Sch ¼

1

M2

�
1 −

2

r̃m

��
λ

r̃2m
þ 2

r̃3m

�
− i

�
nþ 1

2

�
2

M2r̃4m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2

r̃m

�
ð−96r̃m − 10ð3λ − 7Þr̃2m þ 4ð5λ − 3Þr̃3m − 3λr̃4mÞ

s
; ð47Þ

where r̃m ¼ rm=M.
Now let us see how this expression changes if we add quantum corrections at first order in ℏ. The corrected effective

potential (44) has its maximum at r ¼ rm þ ℏ
M ϵþOðℏ2Þ, where

ϵ ¼ 1

5040π
r̃−4m ð40þ 12ðλ − 1Þr̃m − 3λr̃2mÞ−1

�
1 −

2

r̃m

�
−2
�
−392ð48ξ − 35Þ þ 8ð21λþ 3360ξ − 2663Þr̃m

− 2ð249λþ 6384ξ − 5057Þr̃2m þ 12ð6λþ 168ξ − 59Þr̃3m þ 3ð89λ − 177Þr̃4m þ 27ð3 − 5λÞr̃5m þ 18λr̃6m

þ 9

2
r̃5mð−32 − 9ðλ − 1Þr̃m þ 2λr̃2mÞ

�
1 −

2

r̃m

�
2

log

�
1 −

2

r̃m

��
: ð48Þ

Using the equation (45) we obtain the following expression for the corrected frequencies at first order in ℏ

Re½ω2� ¼ Re½ω2
Sch� þ

ℏ
630πM4

336ðλþ 2Þξ − 201λ − 560þ r̃mð−84ðλþ 3Þξþ 13λ2 þ 42λþ 210Þ
λr̃8mð1 − 2

r̃m
Þ þOðℏ2Þ: ð49Þ
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Im½ω2� ¼ Im½ω2
Sch� −

ℏ
2520πM4

�
nþ 1

2

�
r̃−8m

�
1 −

2

r̃m

�
−3=2

ð−96r̃m − 10ð3λ − 7Þr̃2m þ 4ð5λ − 3Þr̃3m − 3λr̃4mÞ−1=2

·

�
1176ð144ξ − 125Þ þ 12r̃mð−749λ − 25760ξþ 645120πr̃mϵþ 23011Þ

þ 4r̃2mð3977λþ 52584ξþ 25200πð21λ − 121Þr̃mϵ − 45476Þ
− 2r̃3mð3468λþ 31584ξþ 25200πð63λ − 139Þr̃mϵ − 20771Þ
þ 2r̃4mð−1069λþ 3528ξþ 5040πð170λ − 171Þr̃mϵþ 1956Þ − 9r̃5mð−271λþ 560πð77λ − 30Þr̃mϵþ 312Þ

þ 9r̃6mð−71λþ 3360πλr̃mϵþ 30Þ þ 54λr̃7m þ 9

2
r̃4mð−768 − 14ð15λ − 59Þr̃m − 6ð47 − 35λÞr̃2m − 5ð13λ − 6Þr̃3m

þ 6λr̃4mÞ
�
1 −

2

r̃m

�
log

�
1 −

2

r̃m

��
þOðℏ2Þ: ð50Þ

As mentioned above, the case l ¼ 0 requires special attention. In this case the effective potential has its maximum at

r ¼ 8M
3

þ ℏ
430080πM

ð1008ξ − 1767þ 2048 logð2ÞÞ þOðℏ2Þ: ð51Þ

Therefore, the corrected frequency at first order in ℏ for l ¼ 0 is given by

ω2 ¼ ω2
Sch þ

3ℏ
286720πM2

ðð336ξ − 241ÞRe½ω2
Sch� − 2ið336ξ − 5ÞIm½ω2

Sch�Þ ð52Þ

One can see that, even if the geometry of the spacetime is
drastically changed by quantum effects near to the horizon,
they do not imply significant corrections to the physical
observables in the exterior region.

B. Electromagnetic perturbations

Let us now study the propagation of electromagnetic
waves on a general static and spherically symmetric
metric given by ds2 ¼ gttðrÞdt2 þ grrðrÞdr2 þ r2dΩ2.
The electromagnetic field Fab satisfies the source-free
Maxwell equations:

∇aFab ¼ 0; ∇a
�Fab ¼ 0; ð53Þ

where �F is the Hodge dual of F. The second equation is
solved with Fab ¼ Aa;b − Ab;a, where Aa is the electro-
magnetic potential, and the problem is reduced to solve the
first equation above for the vector field Aa. For a spherically
symmetric background spacetime we can search for sol-
utions by expanding Aa in the basis of 4-dimensional vector
spherical harmonics ðYaÞlm. Elements of this basis are
classified according to their behavior under parity trans-
formations. For axial/odd modes, which have parity
ð−1Þlþ1, the electromagnetic potential can be expanded as

A−
a ðt; r; θ;ϕÞ ¼

X
l;m

2
6664

0

0
almðt;rÞ
sin θ ∂ϕYlm

−almðt; rÞ sin θ∂θYlm

3
7775; ð54Þ

for some (gauge-invariant) coefficients almðt; rÞ. Using this
ansatz one can check that there is only one nontrivial
independent equation from ∇aFab ¼ 0. For a static space-
time we can further separate alm ¼ e−iωtΨ−

lmðrÞ, and the
resulting equation can be written as

F2Ψ−00
lm þ FF0Ψ−0

lm þ ðω2 − VlÞΨ−
lm ¼ 0; ð55Þ

where

FðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
−
gtt
grr

r
; ð56Þ

VlðrÞ ¼ −gttðrÞ
lðlþ 1Þ

r2
: ð57Þ

Again, introducing the tortoise coordinate by ∂r� ¼ FðrÞ∂r,
one recovers the usual Regge-Wheeler form of the
equation, ∂

2
r�Ψ

−
lm þ ðω2 − VlÞΨ−

lm ¼ 0. In particular,
for a Schwarzschild background we recover the usual
expression.
For polar/even modes, which have parity ð−1Þl, the

electromagnetic potential can be expanded as

Aþ
a ðt; r; θ;ϕÞ ¼

X
l;m

2
6664

flmðt; rÞYlm

hlmðt; rÞYlm

klmðt; rÞ∂θYlm

klmðt; rÞ∂ϕYlm

3
7775; ð58Þ
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for some coefficients flm, hlm, klm. However, these coef-
ficients are gauge-dependent. Let us introduce the three
gauge-invariant combinations Ψþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrr

p r2
lðlþ1Þ×

ð∂thlm − ∂rflmÞ, Ψ1;lm ¼ flm − ∂tklm and Ψ2;lm ¼ hlm −
∂rklm (these combinations are essentially the field compo-
nents Ftr, Ftϕ, Frϕ, respectively; the rest of the field
components are redundant). Using Maxwell equations
one can conclude, after some work, that Ψþ

lm satisfies
the same equation (55) as the axial solution Ψ−

lm, and the
rest of the field variables are determined from it:

Ψ1 ¼ − ∂rΨþ
grr

þ ∂rðgttgrrÞ
2gttg2rr

Ψþ and Ψ2 ¼ ∂tΨþ
gtt

. One can easily

check that these results fully solve the system of equations
∇aFab ¼ 0, and the whole problem reduces to solve (55)
with suitable boundary conditions.
The fieldsΨ�

lm constitute the two fundamental degrees of
freedom per spacetime point of the electromagnetic field.
Notice that both fields satisfy exactly the same dynamical
equation even when the quantum corrections considered in
this paper are included, leading in particular to the usual
phenomenon of isospectrality [41]. This could have been
guessed in advance from the electric-magnetic duality
symmetry of the source-free Maxwell equations [42], since
Ψþ plays the role of the electric field while Ψ− represents
the magnetic degree of freedom.
For the perturbative corrected Schwarzschild metric

provided in Sec. III, the first order correction in ℏ to the
potential yields

VðrÞ ¼ V1ðrÞ−
ℏlðlþ 1Þ

5040πM2r7

�
2M
fðrÞ ð21M

2r2 þ 40M3r

− 14M4 − 36Mr3 þ 9r4Þ þ 9r4ðr− 3MÞ logðfðrÞÞ
�

þOðℏ2Þ; ð59Þ

where V1 ¼ fðrÞ lðlþ1Þ
r2 is the potential for electromagnetic

perturbations on the Schwarzschild metric, and fðrÞ ¼
1 − 2M

r . As in the scalar case, for r → r0 the effective
potential acquires a nonzero residual value of orderffiffiffi
ℏ

p ¼ lp, which is not present in the classical case.
Finally, let us analyze the quantum corrections to the

light ring frequencies of electromagnetic perturbations,
again using the WKB approximation described above.
For the Schwarzschild metric the maximum of the
Regge-Wheeler potential is located at r ¼ 3M, and there-
fore using the expression (45) one obtains

ω2
Sch ¼

lðlþ 1Þ
27M2

− i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
27M2

�
nþ 1

2

�
: ð60Þ

For our (perturbatively) corrected spacetime, at first order
in ℏ we obtain the maximum of the potential (59) at
r ¼ 3M þ ℏ

90720πM ð243 logð3Þ − 20Þ. Substituting in (45)

and expanding in Taylor series we obtain the following
expression for the quantum correction to the light ring
frequencies:

ω2¼ω2
Schþ

ℏ
17010πM2

ð−13Re½ω2
Sch�þ11iIm½ω2

Sch�Þ: ð61Þ

Again, the quantum effects of vacuum polarization do not
lead to significant, observable corrections.

VI. SUMMARY AND FINAL COMMENTS

The theory of test quantum fields in a given gravitational
background is widely regarded as a useful and fruitful
framework for exploring quantum fluctuations enhanced
by gravity. This theory can be further used to analyze the
backreaction of these quantum effects on the spacetime
background by looking at the semiclassical Einstein’s
equations (1). Solving these equations is, however, a very
elusive problem and only in very highly symmetric
situations one can carry out the computation in a manage-
able way. A good example are conformally flat spacetimes
with conformal matter fields. In this case hTabi is essen-
tially characterized by the conformal anomaly. Another
relevant example emerges in two-dimensional dilaton-
gravity models coupled to conformal matter. The conformal
anomaly in two dimensions fully determines the quantum
stress tensor for a given choice of the vacuum state, thus
allowing us to solve analytically the semiclassical back-
reaction equations for a relevant class of two-dimensional
models [17].
In this paper we have reanalyzed the four-dimensional

problem from scratch, focusing on static and spherically-
symmetric backgrounds. The general expressions given
in [14] for the renormalized stress tensor, when the quantum
field lives in static and spherically symmetric spacetimes,
represent a very significant progress, but they are still quite
involved andunpractical to solve the semiclassical equations.
One way to simplify the problem is to restrict ourselves to
conformal matter and take advantage of the trace anomaly.
However, those assumptions (spherical symmetry, staticity
and conformal matter) are still not sufficient to reduce the
problem to a manageable form, in sharp contrast with the
effective two-dimensional case [18–20]. To overcome
this difficulty we have introduced an extra simplifying
assumption, suggested by well-known results in the fixed
Schwarzschild background. Since we are mainly interested
in the behavior of the geometry in the very near horizon
region r ∼ 2M (in the macroscopic vicinity of 2M one does
not expect any significant modification of the classical
Schwarzschild geometry)wehave assumed the exact relation
between hpti and hpri in the vicinity of the classical horizon
(suggested by the results in the fixed background approach).
Our findings appear to be essentially insensitive of this
assumption. More precisely, we have numerically checked
that the (nonperturbative) backreaction solution obtained
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with other restrictions (such as hpti ¼ 0) are qualitatively
similar to those described in Sec. III. Furthermore, our results
do not depend on the particular form of the conformal matter
either (for a massless Dirac field we have obtained results
similar to those for a scalar field).
One remarkable property of the semiclassical backreac-

tion solution obtained in Secs. III and IV is that the radial
function can never reach 0 (where the classical curvature
singularity is located), but rather it has a minimum on a
time-like surface. This mimics the throat of an (asymmet-
ric) wormhole, and it is located at r0 ≈ 2M þOð ffiffiffi

ℏ
p Þ,

where the red-shift function reaches a very small but
nonzero value.4 Beyond this bouncing surface for the
radial function we have found a null curvature singularity
at a finite proper-time distance (of order Oð ffiffiffi

ℏ
p Þ from

the throat). The overall physical picture qualitatively
agrees with the results obtained from the purely two-
dimensional approach. This indicates that the two-dimen-
sional approach could be more accurate than it could be
expected.
The global picture obtained from this semiclassical

framework differs drastically from its counterpart in
classical general relativity, specially regarding the black
hole interior region. Strictly speaking, here the classical
horizon disappears and it is replaced by a bouncing timelike
surface, beyond which a null curvature singularity emerges
immediately. The underlying reason for this seems to be
rooted in the singular behavior of the renormalized stress
tensor at the classical horizon obtained in the fixed back-
ground approach. In light of these results, it looks as if the
original singular behavior of the stress-tensor in the
classical horizon manifests itself in the metric in the form
of a curvature singularity as a result of the backreaction. We
regard this singularity as a side effect of the assumption of a
pure vacuum solution. The presence of matter could tame
the singularity if vacuum polarization effects continue to be
relevant (as suggested by the results in [23]) and allow the
formation of ECO’s. However in this case the maximum
compactness of these objects is bounded by 2M=r0 ∼
1 − 0.01686

ffiffiffi
ℏ

p
=ð2MÞ. This bound is a direct consequence

of the fact that the exterior geometry of ECOs has to be
described by the external portion of our semiclassical
solution, and not by the classical Schwarzschild metric.
We have also analyzed potential physical implications of

the quantum corrected geometry in the exterior region. In
Sec. V we have analyzed in detail the scalar and electro-
magnetic perturbations, paying special attention to the
so-called “light ring frequencies,” which are the relevant
observables in the ringdown of binary black holes. We have
evaluated the corrected light ring frequencies using our

predictions for the semiclassical metric, and they differ
from their classical counterpart by corrections of order
Oðℏ=M2Þ. Somewhat not surprising, the drastic modifica-
tion of the metric around the classical horizon does not
lead to observable corrections on these observables, since
these frequencies are determined by the spacetime curva-
ture around the light-ring. To really probe the quantum
corrections around the classical horizon geometry one
would need to compute the proper BH quasinormal
mode frequencies of the system, which would most likely
differ nonperturbatively from the classical BH QNMs.
However these observables require the specification of
boundary conditions at the center or surface of the quantum
object in question, and this is out of the scope of the
present paper.
We plan to extend this work in several directions. Apart

from computing the QNM frequencies above, our goal is to
analyze the inclusion of collapsing matter and the impact of
the time-dependent phase on the backreaction effects. This
is indeed a very difficult problem in the four-dimensional
arena and requires a separate study.
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APPENDIX: NATURE OF THE SINGULAR
POINT r= r0

In this appendix will analyze in detail the nature of the
singular point r ¼ r0 obtained in Sec. III and will prove that
it is a coordinate singularity. We will also see why this
singular point does not define a classical horizon.
Let us consider a general metric of the form

ds2 ¼ −GðrÞdt2 þ dr2

FðrÞ þ r2dΩ2; ðA1Þ

with GðrÞ > 0 and FðrÞ > 0. Its corresponding curvature
scalar is given by

4We note that the power in the dependence on ℏ is different
from that obtained in the approach of Ref. [24], for which
r0 ≈ 2M þOðℏÞ. Furthermore, we also have discrepancies in the
analytic form of the metric components.
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R ¼ 4G2ðrF0 þ F − 1Þ þ rGðG0ðrF0 þ 4FÞ þ 2rFG00Þ − r2FðG0Þ2
2r2G2

: ðA2Þ

In our case Fðr0Þ ¼ 0 at the singular point, but Gðr0Þ ≠ 0
and their derivatives are not divergent, so the scalar
curvature is finite at this point, and therefore r ¼ r0 is a
coordinate singularity. This statement can also be inferred
from a perturbative analysis of the semiclassical Einstein’s
equations R ¼ 8πhTa

ai, since at first order the trace does not
diverge [hTa

ai ¼ ℏM2

60π2r6
þOðℏ2Þ].

Another way to confirm this, and to assess the impact
of the quantum-vacuum polarization on the classical
Schwarzschild geometry, is by analyzing the Kretschmann
curvature scalar. For a static and spherically symmetric
metric, the explicit expression can be simplified considerably
if we use the TOV equations. It reads

KðrÞ ¼ 16

�
−
8πmðrÞhρðrÞi

r3
þ 3mðrÞ2

r6
þ 4π2½2hpðrÞihρðrÞi þ 3hpðrÞi2 þ 3hρðrÞi2�

�
ðA3Þ

Since the renormalized pressure and density are of order ℏ=f2 near the singular point (i.e. numerically of order ∼1 since
fðr0Þ ∼

ffiffiffi
ℏ

p
), we can see that the Kretschmann scalar does not diverge. In particular, by substituting the perturbative

solution at first order in ℏ into this expression we obtain

KðrÞ¼ 48M2

r6
þ ℏ
105πr9

�
2M

r2fðrÞ2
�
728M4−818M3rþ212M2r2þ27Mr3−9r4

�
−9r3 log

�
1−

2M
r

��
þOðℏ2Þ: ðA4Þ

As mentioned above, near the singular point the leading
correction to the Kretschmann scalar behaves as ℏ=f2,
which tends to Oð1Þ at this point. Notice that, as compared
to the classical Schwarzschild value, the Kretschmann
scalar is expected to receive corrections that are of order
Oðℏ0Þ in a neighborhood of the singular point, meaning
that quantum corrections may be significant for the nearby
geometry despite the tiny value of ℏ.
If we substitute the equation of state (10) in (A3), we see

that the terms that include the trace anomaly are of order ℏ
near the singular point, so for a conformal quantum field we
can further approximate the Kretschmann scalar as

KðrÞ ∼ 16

�
−
8πmðrÞhρðrÞi

r3
þ 3mðrÞ2

r6
þ 16π2hρðrÞi2

�
ðA5Þ

As mentioned above, this coordinate singularity does not
define a classical horizon. To check this explicitly, it is useful
to switch to Eddington-Finkelstein coordinates. Defining

the generalized tortoise coordinate as dr2� ¼ G−1F−1dr2

and the advanced time as v ≔ tþ r�, the metric (A1) can be
expressed as

ds2¼−GðrÞdv2þ2F−1=2ðrÞG1=2ðrÞdvdrþ r2dΩ2: ðA6Þ

Notice that 2F−1=2G1=2dvdr ¼ −ð−ds2 −Gdv2 þ r2dΩ2Þ.
Therefore for causal (ds2 ≤ 0) and future-directed (dv > 0)
curves, dr < 0 is only possible if GðrÞ < 0. If there were a
critical point where GðrÞ ¼ 0, it would define a one-way
membrane for radial (dΩ ¼ 0) null geodesics, i.e. a horizon.
But in our caseGðrÞ > 0 for all r ≥ r0, so there is no horizon
in this spacetime.
As a side remark, notice that in sharp contrast to the

Schwarzschild metric where FðrÞ ¼ GðrÞ, the Eddington-
Finkelstein coordinates are not useful to penetrate across
the coordinate singularity r ¼ r0, because the metric in
these coordinates is not regular. We discuss the question of
how to extend the metric across r ¼ r0 in Sec. IV.
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