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We show that tunneling between two degenerate minima, as allowed in a finite volume, leads to a
nonextensive symmetric ground state. This results in a null energy condition violation for sufficiently low
temperatures, when a continuous set of momenta in the box containing the field is assumed. Taking into
account discrete momenta can modify this picture and is achieved via the addition of the Casimir energy to
the tunneling-induced ground state energy. Focusing on zero-temperature, these nontrivial effects are found
to compete, depending on the typical length scales involved.
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I. INTRODUCTION

Spontaneous symmetry breaking (SSB) is strictly speak-
ing valid for infinite volumes only, where tunneling
between degenerate vacua is completely suppressed. On
the other hand, for a field confined in a box of finite
volume, tunneling between degenerate vacua is allowed,
and we study here the energetic consequences.
Involving tunneling in the quantization of a system

automatically takes into account the different vacua and
is known to lead to a convex effective action [1–9]. This is
not the case in the situation of SSB, where the different
vacua are decoupled and quantization over a single vacuum
does not necessarily lead to convexity. Taking into account
several degenerate vacua in the partition function comes
with a remarkable energetic feature, generated dynami-
cally: the effective action is nonextensive, as was shown in
[10,11] with a semiclassical approximation for the partition
function.
The latter works were done in an Oð4Þ-symmetric

Euclidean spacetime though, and to account for a full
description of tunneling one needs a finite spatial volume V
and an independent large Euclidean time β. The natural
context for these studies is therefore equilibrium field
theory at a finite-temperature T ¼ 1=β. The corresponding
quantum mechanics study was done by the authors of [12],
involving a gas of instantons/anti-instantons which domi-
nates the partition function in the limit of a small temper-
ature. It is shown there that the null energy condition (NEC)
(see [13,14] for reviews) is violated as a consequence of a

nonextensive effective action induced by tunneling. The
present article extends this study to full four-dimensional
quantum fluctuations, and we find that NEC violation occurs
in any finite volume for sufficiently low temperatures.
Our study does not, however, deal with high-temperature

symmetry restoration, as seen in the Kibble-Zureck
mechanism [15,16]. We are instead interested in the low-
temperature regime, where tunneling dominates over ther-
mal fluctuations providing an opportunity to violate the
NEC, which the Kibble-Zurek mechanism does not.
We first evaluate quantum corrections with continuous

momentum for fluctuations above each saddle point, to
describe the fundamental dynamical mechanism induced
by tunneling. We then take into account the modification
arising from discrete momentum in a finite volume, using
results known from studies of the Casimir effect (see [17] for
a review). The latter is known to be either attractive or
repulsive, depending on the geometry of the box containing
the field, as well as the boundary conditions the field satisfies
on the walls of the box. As a consequence, as far as NEC
violation is concerned, the difference between discrete and
continuous momentum can play an important role.
In Sec. II we describe the semiclassical approximation

in which the partition function is derived, to take into
account the different saddle points which are relevant
to tunneling: static saddle points and the instanton/
anti-instanton dilute gas. Details of the calculations with
continuous momentum are given in Appendixes A and B.
Section III focuses on the ground state of the effective
action, with a nonextensive energy density providing the
origin of NEC violation. The maximum effect occurs at
zero temperature and is the regime in which we introduce
corrections arising from discrete momentum in Sec. IV via
the Casimir energy. We find that tunneling and the Casimir
effect compete when the typical size of the box containing
the field is of the order of the Compton wavelength of the
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corresponding particle. For a larger box, the Casimir effect
seems to be dominant.
To summarize our results: in the low-temperature

regime, the sum of energy density ρ and pressure p can
be written in the form

ρþ p ≃ Afinite-T þ Btunneling þ CCasimir;

where
(i) the finite-temperature contribution A is always

positive (and vanishes exponentially for T → 0);
(ii) the tunneling contribution B, calculated with con-

tinuous momentum, is always negative (and van-
ishes exponentially for V → ∞);

(iii) the discrete momentum correction C has a sign
which depends on the geometry and topology
of the finite box containing the field (and vanishes
for V → ∞).

As expected, the NEC is satisfied at zero temperature and
for infinite volume, where ρþ p ¼ 0 for a homogeneous
vacuum.

II. SEMICLASSICAL APPROXIMATION

A. Model

Consider a single real scalar field ϕðt; xÞ in Euclidean
space, at finite-temperature T ¼ 1=β and in a three-
dimensional spatial volume V, described by the Euclidean
actionZ

β

0

dt
Z
V
d3x

�
1

2
ð∂ϕÞ2 þ λ

24
ðϕ2 − v2Þ2 þ jϕ

�
: ð1Þ

The finite volume is represented by a physical box
containing the scalar field, in which we assume continuous
momenta to calculate quantum corrections. Section IV
discusses corrections arising from discrete momentum and
the boundary conditions the field satisfies at the walls of
the box. Finite temperature requires field configurations to
have periodic boundary conditions in Euclidean time and,
as later discussed, has an impact on the saddle point
configurations which are allowed in the partition function.
Introducing the dimensionless variables τ≡ ωt and

ω≡ v

ffiffiffi
λ

6

r
; φ≡

ffiffiffi
λ

6

r
ϕ

ω
; k≡

ffiffiffi
λ

6

r
j
ω3

ð2Þ

leads to the bare action

S½φ� ¼ λv4

12ω

Z
ωβ

0

dτ
Z
V
d3x

�
ðφ0Þ2 þ 1

ω2
ð∇φÞ2

þ 1

2
ðφ2 − 1Þ2 þ 2kφ

�
; ð3Þ

where a prime represents a derivative with respect to the
dimensionless Euclidean time τ. As shown further in this

article, the effective action is convex, and we thus focus on
the true vacuum, which occurs for vanishing source
j ¼ 0 ¼ k. As a consequence, no bubbles of true/false
vacuum can form as they would have an infinite radius
[18,19]. We are therefore interested in time-dependent
instantons only, beyond the static and homogeneous saddle
points. The corresponding equation of motion is then

φ00 − φ3 þ φ − k ¼ 0; ð4Þ

where the solutions to this equation, φiðτ;xÞ, are the saddle
points of the partition function to be introduced below.

B. Static saddle points

Introducing the critical dimensionless source

kc ≡ 2=ð3
ffiffiffi
3

p
Þ ð5Þ

allows us to distinguish two cases.
For jkj > kc, there is only one static and homogeneous

(real) solution to the equation of motion (4), and quantiza-
tion of the theory can therefore be based on one saddle
point only, leading to the usual 1PI effective potential.
For jkj < kc, the regime we focus on, there are two such

solutions

φLðkÞ ¼
2ffiffiffi
3

p cosðπ=3 − ð1=3Þ arccosðk=kcÞÞ;

φRðkÞ ¼
2ffiffiffi
3

p cosðπ − ð1=3Þ arccosðk=kcÞÞ

¼ −φLð−kÞ: ð6Þ

The actions for these configurations are

SL ≡ S½φLðkÞ� ¼ Bωβð4k − k2 þOðk3ÞÞ;
SR ≡ S½φRðkÞ� ¼ S½φLð−kÞ�; ð7Þ

where

B≡ λv4V
24ω

: ð8Þ

C. Instanton/anti-instanton gas

In Euclidean time, and with the absence of a source,
the motion described by Eq. (4) corresponds to the
motion in real time with the upside-down potential
VðφÞ≡ −ðφ2 − 1Þ2=2, for which the minimum action
Sinst is obtained by the known solution

φinstðτÞ ¼ � tanh

�
τ − τ0ffiffiffi

2
p

�
; ð9Þ
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where 0 ≤ τ0 ≤ ωβ and

Sinst ≡ S½φinst� ¼
8

ffiffiffi
2

p

3
B: ð10Þ

Because of finite temperature though, field configurations
should be periodic in Euclidean time, such that one needs to
consider an instanton/anti-instanton pair as the basic building
block. For two distant “jumps” at τ1 and τ2 such that
jτ1 − τ2j ≫ 1, the configuration can be approximated by [12]

φpairðτÞ ≃ − tanh
�
τ − τ1ffiffiffi

2
p

�
tanh

�
τ − τ2ffiffiffi

2
p

�
; ð11Þ

with an action exponentially close to 2Sinst.
In the presence of a source, the basic building block is in

principle either a bounce or a shot (see [20,21] for reviews).
However, since we are interested in the limit of vanishing
source and periodic boundary conditions, the fundamental
saddle point we consider behaves as the function (11).
Assuming the jumps occur over a short time in comparison
to β, the instanton/anti-instanton pair spends the same time
β=2 exponentially close to each static saddle point, result-
ing in an action for such a pair φpair of

Spair ≃
1

2
SL þ 1

2
SR þ 2Sinst: ð12Þ

Revisiting the analogy of classical mechanics in the
upside-down potential VðφÞ, the other possible saddle
points consist of periodic oscillations made of n instan-
ton/anti-instanton pairs, where the value of n depends on
how “exponentially close” the oscillations from a static
saddle point begins. An example of an exact saddle point is
given in Fig. 1(a). Assuming the total Euclidean time β is
large enough to leave the structure of pairs intact, the time
spent close to one static saddle point is the same as the time
spent close to the other and the total action for n pairs is

Sn pairs ≃
1

2
SL þ 1

2
SR þ 2nSinst: ð13Þ

The latter “crystalline” structure, with n periodic oscil-
lations, corresponds to an exact solution of the equation of
motion. For large β, where the average distance between
instantons and anti-instantons remains large compared
to their width, a translation of each jump leaves the action
Sinst invariant and the resulting highly degenerate “gas”
of instanton/anti-instanton pairs dominates the partition
function. An example of an approximate saddle point is
given in Fig. 1(b). In this “dilute gas” approximation, the n
instanton/anti-instanton pair configurations spend on aver-
age an equal time β=2 close to each static saddle point, with
the same total action (13) as for an exact n-pair configu-
ration as a result of the translational invariance of jumps.

D. Partition function

The partition function is evaluated in the semiclassical
approximationvia a sum over the two static saddle points,φL
and φR, and the dilute gas of n instanton/anti-instanton pairs
for all possible values of n. Together, with the corresponding
one-loop fluctuation factors FL;R and Fn, the semiclassical
approximation of the partition function reads

Z½k� ≃ FLðβÞ expð−SLÞ þ FRðβÞ expð−SRÞ

þ
X∞
n¼1

�Y2n
i¼1

Z
ωRβ

τi−1

τi

�
Fn expð−Sn pairsÞ: ð14Þ

In the latter expression, the product of integrals over the times
τiwhere the jumps occur corresponds to the zero-mode of the
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FIG. 1. Examples of exact and approximate saddle points. In
the dilute gas approximation, the difference between the corre-
sponding actions is of order Bωβ expð−ωβÞ ≪ 1, and the
partition function is dominated by the whole set of approximate
saddle points. (a) An exact saddle point conguration with 3
instanton/anti-instanton pairs and action S3 pairs: the oscillations
are periodic. (b) An approximate saddle point conguration with 3
instanton/anti-instanton pairs: the jumps are randomly distrib-
uted, but the average distance between them is larger than their
width, such that they keep their shape and the action of the
conguration is also S3 pairs.
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fluctuation factor for the saddle point made of n instanton/
anti-instanton pairs. Indeed, the translational invariance
of the action means that the ith jump can happen at any
time τi ∈ ½τi−1; β�. For finite temperature though, there is
a maximum number of instanton/anti-instanton pairs;
however, the error made in the summation for n → ∞ is
negligible since each term is suppressed by expð−nSinstÞ.
With the fluctuation factors derived in Appendix A and
Appendix B, we can write

Z½k� ¼ expð−ΣLðβÞÞ þ expð−ΣRðβÞÞ þ expð−ΣgasðβÞÞ;
ð15Þ

where ΣL, ΣR, and Σgas are the connected graphs generating
functionals for the static saddle points and the gas of
instanton/anti-instanton pairs, respectively. We note that
an instanton or anti-instanton does not lead to any imaginary
part in the partition function, unlike a bounce, since the
former aremonotonous functions of theEuclidean time, such
that the fluctuation operator does not have negative eigen-
values [22].

1. Static saddle points

One-loop quantum corrections can be split into two
contributions: the zero-temperature corrections, contain-
ing all the divergences, and the divergence free finite-
temperature dependent corrections. The zero-temperature
contribution is calculated in [11] and is expressed in terms
of the renormalized parameters. It is mentioned here that, in
the case of several saddle points and in order to avoid
confusion between loop orders, renormalization should be
done at the level of the individual connected graphs gen-
erating functionals before performing the Legendre trans-
form. The finite-temperature contribution can be calculated
using the Schwinger proper time representation—see
Appendix A—and the overall contribution is

ΣL;RðβÞ ¼ Brωrβ

0
B@ðφ2

L;R − 1Þ2 þ 4kφL;R

þ λr
96π2

ð3φ2
L;R − 1Þ2 ln

�
3

2
φ2
L;R −

1

2

�

−
λrð3φ2

L;R − 1Þ
3π2

X∞
l¼1

K2

�
lωrβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3φ2

L;R − 1
q �

ðlωrβÞ2

1
CA:

ð16Þ

In the previous expression, the renormalized parameters are

λr ≡ λ −
3λ2

32π2
log

�
Λ2

λv2

�
;

v2r ≡ v2 −
3Λ2

16π2
þ λv2

16π2
log

�
Λ2

λv2

�
;

Br ≡ λrv4rV
24ωr

;

ωr ≡ vr

ffiffiffiffi
λr
6

r
; ð17Þ

and K2ðzÞ is a modified Bessel function of the second kind
with asymptotic behavior

K2ðz → ∞Þ ≃ e−z
ffiffiffiffiffi
π

2z

r
: ð18Þ

We note that l does not correspond to Matsubara modes.
Also, the temperature-independent part of the expression
(16) reproduces the zero-temperature result derived in [11].

2. Gas of instanton/anti-instanton pairs

The evaluation of Σgas involves the fluctuation factor
above each jump and includes a summation over the
allowed jump positions in the interval τ ∈ ½0; β� [22].
The additional contribution of quantum fluctuations arises
from the “flat” parts of the instanton/anti-instanton con-
figurations, which are exponentially close to each static
saddle point for the approximate average time of β=2 when
neglecting the width of each jump compared to β.
Performing the resummation over instantons/anti-instan-
tons, we show in Appendix B that the corresponding
connected graphs generating functional is then

ΣgasðβÞ ≃ ΣLðβ=2Þ þ ΣRðβ=2Þ − lnðcoshðN̄Þ − 1Þ; ð19Þ

where

N̄ ≡ ωrβ

ffiffiffiffiffiffiffiffiffiffiffiffi
6

π
Sinst

r
e−Sinst ; ð20Þ

corresponding to the average number of instanton/anti-
instanton pairs at temperature T ¼ 1=β. In this article we
are interested in the limit ωrβ ≫ 1 for a fixed volume—and
thus fixed action Sinst—such that we consider the situation
where N̄ ≫ 1, corresponding to the full tunneling regime.
In the situation where β is fixed and V becomes large we
have N̄ ≪ 1, where tunneling is suppressed and the system
is better approximated by SSB [12].
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III. NONEXTENSIVE GROUND SATE

A. One-particle-irreducible effective action

From the partition function evaluated for a constant
source j, the classical field is obtained as

ϕc ≡ −
1

Z
δZ
δj

→ −
1

VβZ
∂Z
∂j

; ð21Þ

which, in terms of the dimensionless quantities previously
introduced, can be written as

φc ¼ −
1

4BrωrβZ
∂Z½k�
∂k

: ð22Þ

From the expression (15) for the partition function, together
with the expressions (16) and (19), the classical field is
expanded in powers of the source k,

φc ¼
�
−f0 þ

λr
128π2

f1

�
kþOðk3Þ; ð23Þ

where

f0 ≡ 1þ 16Brωrβ þ coshðN̄Þ
2ð1þ coshðN̄ÞÞ ;

f1 ≡ 7þ 32Brωrβ þ 7 coshðN̄Þ
1þ coshðN̄Þ : ð24Þ

Consistently with the symmetry of the bare potential, the
classical field ϕc is an odd function of k: the even powers of
k cancel out in the expression for φc after adding the
contribution of the different saddle points, leading to the
mapping k ¼ 0 ⇔ φc ¼ 0.
We then perform the Legendre transform, after express-

ing the source as a function of the classical field

kðφcÞ ¼ −
1

2

�
g0 þ

λ

16π2
g1

�
φc þOðφ3

cÞ; ð25Þ

where

g0 ≡ 4ð1þ coshðN̄ÞÞ
1þ 16Brωrβ þ coshðN̄Þ ;

g1 ≡ ð1þ coshðN̄ÞÞð7þ 32Brωrβ þ 7 coshðN̄ÞÞ
ð1þ 16Brωrβ þ coshðN̄ÞÞ2 : ð26Þ

The effective action for a constant configuration is finally

ΓðφcÞ ¼ − lnZðkðφcÞÞ − 4Brωrβ

Z
kðφcÞdφc

¼ Γð0Þ þ Brωrβ

�
g0 þ

λ

16π2
g1

�
φ2
c þOðφ4

cÞ; ð27Þ

where

Γð0Þ ¼ − lnZð0Þ
¼ − ln ð2e−Σ0ðβÞ þ e−2Σ0ðβ=2ÞðcoshðN̄Þ − 1ÞÞ; ð28Þ

and Σ0 ≡ ΣLjk¼0 ¼ ΣRjk¼0. The effective potential Ueff is
finally given by

ΓðϕcÞ ¼ VβUeffðϕcÞ; ð29Þ

and, as expected, it satisfies the following properties:
(i) it is a convex function of ϕc, since the mass term is

positive;
(ii) the ground state is at φc ¼ 0, or equivalently k ¼ 0;
(iii) it has a nontrivial volume-dependence and is thus

nonextensive.
For the following studies of NEC violation we focus on the
ground state φc ¼ 0.

B. NEC violation

The ground state density ρ and pressure p are obtained
from the free energy

F ¼ 1

β
Γð0Þ ¼ −

1

β
lnZð0Þ; ð30Þ

and their sum can be written as [12]

ρþ p ¼ 1

V

�
F − T

∂F
∂T

�
−
∂F
∂V

¼ −T
∂Ueffð0Þ

∂T
− V

∂Ueffð0Þ
∂V

: ð31Þ

From the expression (28), we obtain for ωrβ ≫ 1

ρþp≃
4ω5=2

R

ð ffiffiffi
2

p
πβÞ3=2e

−ωRβ=
ffiffi
2

p
−
ωR

V

�
Sinstþ

1

2

� ffiffiffiffiffiffiffiffiffiffiffi
6

π
Sinst

r
e−Sinst :

ð32Þ

On the right-hand side, the first term corresponds to thermal
fluctuations and the second term corresponds to tunneling.
These terms compete for the overall sign of ρþ p leading
to the following cases:

(i) Infinite volume: ρþ p ≥ 0
In the limit of infinite volume tunneling is sup-

pressed, as seen via the vanishing of the average
number (20) of instanton/anti-instanton pairs for any
fixed temperature: limV→∞ N̄ ¼ 0 for fixed β. Hence
only thermal fluctuations contribute and

ρþ p ¼ 4ω5=2
R

ð ffiffiffi
2

p
πβÞ3=2 e

−ωRβ=
ffiffi
2

p
; ð33Þ

NULL ENERGY CONDITION VIOLATION: TUNNELING VERSUS … PHYS. REV. D 107, 085022 (2023)

085022-5



with ρþ p → 0 as the temperature goes to 0 or
equivalently β → ∞. This result is not surprising: the
limit of infinite volume corresponds to SSB and, as
expected, the NEC is satisfied.

(ii) Finite volume and zero temperature: ρþ p < 0
In this situation, only the tunneling term contrib-

utes and

ρþ p ¼ −
ωR

V

�
Sinst þ

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
6

π
Sinst

r
e−Sinst : ð34Þ

The NEC is violated as a consequence of the explicit
volume dependence of the effective potential.

(iii) Boundary ρþ p ¼ 0
We sketch in Fig. 2 the boundary VðTÞ between

the region where the NEC is satisfied and the region
where the NEC is violated.

Finally, we note that NEC violation is suppressed
exponentially with the volume, unlike the power-law
suppression which is found with Oð4Þ-symmetric
Euclidean spacetime coordinates [11,23,24].

IV. DISCRETE MOMENTUM CORRECTIONS

We focus here on the ground state obtained for k ¼ 0 in
the case of zero temperature, where NEC violation arising
from tunneling is maximum.
The previous sections ignore quantization of momen-

tum when calculating the connected graphs generating
functional for each static saddle point in a finite volume.
As we explain below, the evaluation of ΣL;R with discrete
momentum consists of taking into account the relevant
Casimir energy. There is no such contribution from the
jumps in the instantons/anti-instantons since the corre-
sponding one-loop corrections do not depend on
momentum.

A. Vacuum energy

The Casimir contribution to the connected graphs gen-
erating functional is defined as

ΣCas ≡ ΣL;Rjdiscrete − ΣL;Rjcontinuum; ð35Þ

where the ultraviolet divergences cancel out since they are
identical in the discrete and continuum cases. For zero
temperature and vanishing source, the expression (16) gives

ΣL;Rðk ¼ 0; T ¼ 0Þjcontinuum ¼ lim
β→∞

Σ0ðβÞ ¼ 0; ð36Þ

such that, instead of Eq. (28), one-loop corrections obtained
with discrete momentum lead to

Γð0Þ ¼ − ln ð2e−ΣCas þ e−ΣCasðcoshðN̄Þ − 1ÞÞ
¼ ΣCas − lnðcoshðN̄Þ þ 1Þ: ð37Þ

The above expression takes advantage of the proportion-
ality between Σ0 and β in the limit of vanishing temper-
ature, such that

2Σ0ðβ=2Þ → Σ0ðβÞ; ð38Þ

as β → ∞. In the situation of one saddle point, and
therefore no tunneling, Γð0Þ ¼ ΣCas ¼ βECas where ECas
is the Casimir energy corresponding to quantum fluctua-
tions about a single vacua �v (where one has approx-
imately quadratic fluctuations with mass m ¼ ffiffiffi

2
p

ωr).
Hence

Ueffð0Þ ¼
ECas

V
−

1

Vβ
lnðcoshðN̄Þ þ 1Þ; ð39Þ

and we see the additive nature of the Casimir effect and
tunneling contributions, similar to the finite-temperature
contribution. The sum of density and pressure reads finally

ρþ p ¼ ECas

V
−
∂ECas

∂V
−
ωR

V

�
Sinst þ

1

2

� ffiffiffiffiffiffiffiffiffiffiffi
6Sinst
π

r
e−Sinst :

ð40Þ

B. Casimir contribution to the NEC

The Casimir energy is highly sensitive to the geometry of
the box containing the field, as well as the boundary
conditions used on the corresponding surfaces [17]. For a
scalar field φðt; xÞ in the interval x ∈ ½0; L�, for example,
the possible choices of boundary conditions are defined as
follows:

Dirichlet∶ φðt; 0Þ ¼ φðt; LÞ ¼ 0; ð41Þ

FIG. 2. The boundary between the regions where the NEC is
satisfied and where it is violated due to the competition of
tunneling and thermal fluctuations. The plot shows the curve
VðTÞ in terms of the dimensionless variables used in this article.
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Neumann∶ ∂xφðt; 0Þ ¼ ∂xφðt; LÞ ¼ 0;

Periodic∶ φðt; 0Þ ¼ φðt; LÞ: ð42Þ

For the cases we consider, the asymptotic form of the
Casimir effect is identical for both Dirichlet and Neumann
boundary conditions. We thus consider mixed boundary
conditions, where different subsets of the boundary can
possess either Dirichlet or Neumann conditions. For the
case of mixed boundary conditions, the Casimir energy is
dependent on the size/curvature of the material boundaries,
and for the case of periodic boundary conditions, it is
dependent on the period length/curvature of the nontrivial
spacetime. A “general rule” states that flat geometries lead
to exponential suppression of the Casimir energy for
mL ≫ 1, where L is the length scale of the relevant
boundaries, and that curved geometries lead to power-
law suppression of the Casimir energy for mR ≫ 1, where
R is the radius of curvature of the relevant surfaces. There
are exceptions to this general rule though, which are
highlighted in the following examples.

(i) Dirichlet boundary conditions, flat boundaries
The original Casimir configuration consists of a

scalar field constrained between two parallel, flat
mirrors with surface area A and separation a, with
the scalar field satisfying Dirichlet conditions on
the boundaries. The corresponding Casimir energy
is [17]

ECas ≃

(
− Aπ2

1440a3 for am ≪ 1

− A
8
ffiffi
2

p ðmπaÞ3=2e−2ma for am ≫ 1
ð43Þ

and is always negative.
(ii) Dirichlet boundary conditions, curved boundaries

For dimensional reasons, the Casimir energy for a
scalar field confined within the curved boundary of a
2-sphere of radius R with Dirichlet boundary con-
ditions is given in terms of the dimensionless function

ECas ¼
1

R
fðmRÞ ð44Þ

and is found to obey power-law suppression in mR,
for mR ≫ 1 [25].

(iii) Periodic boundary conditions, flat spacetime
For a scalar field confined to the surface of a 3-torus

(a rectangular box with periodic boundary condi-
tions), the sign of the Casimir energy depends on the
ratio of the lengths of the box and we have [26]

ECas ≃ −
ðmLÞ3=2

L
expð−mLÞ for mL ≫ 1; ð45Þ

where L is the typical size of the period length.

(iv) Periodic boundary conditions, curved spacetime
For a scalar field confined to the surface of a

3-sphere with radius R, we would expect the asymp-
totic form to be a power law in R. However, this
special case is an exception to the general rule as a
consequence of the accidental vanishing of the heat-
kernel coefficients (see Sec. 3 of [17] for details).
The resulting Casimir energy has instead an ex-
ponential asymptotic form, as in the case of flat
geometries [27]

ECas ≃þðmRÞ5=2
R

expð−2πmRÞ for mR ≫ 1:

ð46Þ

The above examples display how the Casimir effect for a
massive scalar field is at most suppressed by the expo-
nential e−mL, where L is a typical size of the boundary
containing the field. On the other hand, the tunneling
contribution to the NEC, calculated with continuous
momentum, is proportional to

e−Sinst ∼ exp

�
−
ðmLÞ3

λ

�
; ð47Þ

and is therefore negligible compared to the Casimir con-
tribution in the regime mL ≫

ffiffiffi
λ

p
. For mL ∼

ffiffiffi
λ

p
though,

tunneling competes with the Casimir effect and can change
the sign of ρþ p in the situation where the Casimir energy
is positive. As an example, we sketch in Fig. 3 the boundary
RðλÞ between the region where the NEC is satisfied and the
region where it is violated, due to the competition between
tunneling and the Casimir effect on a 3-sphere.
We note, however, two important points regarding the

Casimir examples cited here: (i) they are valid for ideal
surfaces only, and a realistic confining mechanism for the

FIG. 3. The boundary between the regions where the NEC is
satisfied and where it is violated, due to the competition of the
Casimir energy and tunneling at zero temperature on a 3-sphere.
The plot shows the curve RðλÞ in terms of the dimensionless
variables used in this article.
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scalar field would lead to a modification of the Casimir
vacuum energies, especially if the field is confined by an
external potential instead of a physical box [28]. (ii) they
assume free scalar fields and ignore its self-interactions. On
the other hand, the tunneling mechanism described here as
follows: (i) necessitates the field to be self-interacting; and
(ii) is not sensitive to the geometry/topology of the box
containing the field. Hence the conclusions regarding which
effect dominates could be modified by a more thorough
study, depending on the situation which is considered.
Finally, the average null energy condition is not violated

by the presentmechanism. Indeed, ifwe take into account the
energy necessary to maintain the confining mechanism, the
overall ground state of the system does not violate the NEC
[29], consistent with what is expected from causality [30].

V. CONCLUSIONS

Tunneling between degenerate vacua is exponentially
suppressed with the volume of the box containing the field,
but nevertheless allows the possibility of NEC violation at
low temperatures. Taking into account discrete momentum
of fluctuations in a finite volume implies this effect is mainly
relevant for situations where the typical size of the box is
not too large compared to the Compton wavelength of the
particle, and where tunneling can lead to an overall NEC
violation. A potential application lies in axion physics,where
the de Brogliewavelength can be of order 1 kpc [31] with the
confinement provided by a gravitational well.
Exponential suppression in the volume could potentially

be avoided by a consideration of nondegenerate vacua,
where other saddle points with a volume-independent
action become relevant, as in the original study of false
vacuum decay [18,19]. The resulting effective action would
be nonextensive in a certain regime of the classical field,
but more studies need to be done for the status of NEC
violation in the corresponding vacuum.
Finally, NEC violation could play an important role in

early universe cosmology, where tunneling could provide
a dynamical mechanism for a cosmological bounce, as
explained in [23,24]: as the Universe contracts, tunneling
switches on and violates the NEC, which induces a bounce
after which tunneling is suppressed as the Universe
expands. This scenario necessitates the study of tunneling
in a Friedman-Lemaître-Robertson-Walker background
though, and is left for future work.
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APPENDIX A: FLUCTUATION FACTOR
FOR A STATIC SADDLE POINT

The fluctuation factors for the static saddle points are
calculated with continuous three-dimensional momenta,
introducing the cutoff Λ in the Schwinger proper time
representation of the propagator. Introducing the dimen-
sionless Matsubara frequency νn ≡ 2πn=ωβ, we have

Trfln ðδ2S½φi�Þg

¼ V
Z

d3p
ð2πÞ3

X∞
n¼−∞

Z
∞

1=Λ2

ds
s
e−4Bωβsðp2=ω2þν2nþ3φi−1Þ

¼ Vω3

2π2
X∞
n¼−∞

Z
∞

1=X2

dx
x

Z
∞

0

dqq2e−xðq2þν2nþ3φi−1Þ

¼ Vω3

8π3=2

X∞
n¼−∞

Z
∞

1=X2

dx

x5=2
e−xðν2nþ3φi−1Þ

¼ Vω3

8π3=2

Z
∞

1=X2

dx

x5=2
e−xð3φi−1Þϑ0

�
4πx
ω2β2

�
; ðA1Þ

where the dimensionless variables are

q≡ p
ω
; x≡ 4Bωβs; X2 ≡ Λ2

4Bωβ
; ðA2Þ

and ϑ0ðyÞ is the Jacobi function

ϑ0ðyÞ≡
X∞
n¼−∞

e−πyn
2

: ðA3Þ

Making use of the following property:

ϑ0ðyÞ ¼ y−1=2ϑ0ð1=yÞ; ðA4Þ
the above becomes

Trfln ðδ2S½φi�Þg

¼ Vω4β

16π2

Z
∞

1=X2

dx
x3

e−xð3φi−1Þϑ0

�
ωβ

4πx

�

¼ Vω4β

16π2

Z
∞

1=X2

dx
x3

e−xð3φi−1Þ
X∞
n¼−∞

e−ω
2β2n2=4x

¼ λ
Bωβ
24π2

ðIΛðφiÞ þ ITðφiÞÞ; ðA5Þ

where

IΛðφiÞ≡
Z

∞

1=Λ2

dx
x3

e−xð3φi−1Þ;

ITðφiÞ≡ 2
X∞
n¼1

Z
∞

0

dx
x3

e−xð3φi−1Þ−ω2β2n2=4x: ðA6Þ
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The first integral IΛ is the temperature-independent diver-
gent integral which, after renormalization, produces the
same results as in the zero-temperature case [11]. The
second integral IT is the temperature-dependent contribu-
tion corresponding to the finite-temperature corrections. It
is finite, which is why the cutoff is taken to infinity in this
specific term. This temperature-dependent integral can be
written in terms of the modified Bessel functions of the
second kind K2ðzÞ as

ITðϕiÞ ¼
X∞
n¼1

16ð3φi − 1Þ
ðnωβÞ2 K2ðnωβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3φi − 1

p
Þ: ðA7Þ

Together with the integral IΛ, the connected graphs gen-
erating functional for homogeneous saddle points is given
by Eq. (16).

APPENDIX B: FLUCTUATION FACTOR
FOR THE INSTANTONS/ANTI-INSTANTONS GAS

We calculate here the contribution expð−ΣgasÞ to the
partition function (15), following the known approach in
studies of tunneling effects [22].
The invariance of the action for n instanton/

anti-instanton pairs under the translation of the jumps leads
to the degeneracy factor in the partition function

�Y2n
i¼1

Z
ωβ

τi−1

τi

�
¼ ðωβÞ2n

ð2nÞ! ; ðB1Þ

where τi ∈ ½τi−1;ωβ� and τ0 ¼ 0, since successive instan-
ton jumps can only occur after previous ones. Each jump
has an associated fluctuation factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Sinst=π

p
, and thus the

total fluctuation factor is given by the product of the
contributions of the “flat” parts of the n-pairs of instanton/
anti-instantons and the n pairs of jumps. On average, each
configuration of n instanton/anti-instanton pairs spends the
same time ≃β=2 close to each static saddle point, such that
the expression for Fn is finally

Fn ¼ FLðβ=2ÞFRðβ=2Þ
�
6Sint
π

�
n
: ðB2Þ

Substituting the above results into the partition function
(14), along with the total action (13) for n pairs, yields the
total contribution to the partition function due to instanton/
anti-instanton pairs

expð−ΣgasÞ ¼ e−ΣL½β=2�e−ΣR½β=2�
X∞
n¼1

ðωβÞ2n
ð2nÞ!

�
6Sint
π

�
n
e−2nSint

¼ expð−ΣL½β=2� − ΣR½β=2�Þ

×

�
cosh

�
ωβ

ffiffiffiffiffiffiffiffiffi
6Sint
π

r
e−Sinst

�
− 1

�
; ðB3Þ

This leads to the expression (19), where the parameters can
be replaced by their renormalized version, since the overall
expression is already at one-loop.
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