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In this paper, we discuss various possible schemes for the perturbative generation of the axion-photon
interaction term in different Lorentz-breaking extensions of QED, involving operators with mass
dimensions up to five. We demonstrate explicitly that there are only a few schemes allowing one to
generate a finite axion-photon interaction term from one-loop radiative corrections, and within all these
schemes, the generated term turns out to be ambiguous. Also, through the current experimental limits on the
axion-photon coupling, we extract some present constraints on the Lorentz violation parameters.
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I. INTRODUCTION

Axions and axionlike particles (ALPs) are light pseu-
doscalar particles predicted in several models aiming to
solve problems left open by the Standard Model.
Generically, they are pseudo-Nambu-Goldstone bosons
of a spontaneously broken approximate global symmetry,
with their mass arising from supposedly suppressed
violating symmetry operators. Axions are associated with
the Uð1ÞPQ Peccei-Quinn symmetry, which allows to
obtain a solution to the strong CP problem [1–3], i.e.
the absence of interactions violating charge conjugation
and parity symmetries in the strong interactions. As it
happens, the axion mass and couplings are related, being
all inversely proportional to the energy scale in which the
Peccei-Quinn symmetry breaks down. In the invisible
axion models [4–7], this scale can be high enough to
imply a low mass and very weak interactions for the

axion, which may also figure as a dark matter candidate
[8–10]. The name ALP is, in fact, a generic designation
for particles with similar features to the axion, except that
their mass and couplings are unrelated. The majoron,
which is associated with the lepton number symmetry
[11,12], is one example of ALP. Both axions and ALPs
with faint interactions are general predictions of string
theory, since they naturally arise within the context of
string compactifications, as reviewed in [13]. It is also
worthwhile to remark that the electrodynamics with the
axion term is also studied within the topological insulator
context [14,15]. Once the difference between axions and
ALPs is not so relevant to this work, we will refer to these
particles simply as “axions” without making any distinc-
tion among them in what follows.
The axion-photon interaction is of central importance for

investigating observable axion effects. It has been tested in
laboratory searches, astrophysics, and cosmology, as we can
see from the compilation in Refs. [16–18]. One way of
obtaining the axion-photon interaction term is to start with
an axion field ϕ coupled to a charged fermion ψ , through
the parity-violating interaction term iϕψ̄γ5ψ . Following the
general methodology of the low-energy effective theory,
integration of the fermion field leads to an effective
Lagrangian describing the pseudoscalars interacting with
photons of the form

Leff ¼ −
1

4
FμνFμν þ 1

2
∂μϕ∂

μϕ −
mϕ

2
ϕ2 −

gϕγ
4

ϕFμνF̃μν;

ð1Þ
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where gϕγ is the axion-photon coupling constant, which has
dimension of the inverse of mass; Fμν is the electromagnetic
field strength, with F̃μν ¼ 1

2
εμναβFαβ its dual. The last term in

Eq. (1) is the most common form for the axion-photon
interaction term.
It was shown in [19] that the axion-photon term can

also be generated as radiative corrections within a
particular nonminimal—including interactions of higher
orders in derivatives—Lorentz-violating (LV) extension
of QED. In such a context, the generated axion term is
finite but ambiguous, i.e. its value depends on the
computation scheme, explicitly, on the regularization
used within the calculations. A similar ambiguity has
been intensively discussed in the literature regarding the
generation of the Carroll-Field-Jackiw (CFJ) term [20],
which is an LV generalization of the Chern-Simons term
to four spacetime dimensions (see also [21], and refer-
ences therein). This result establishes an interesting
relationship between two very active fields of research,
namely, the search for axions, and the systematic inves-
tigation of the possibility of Lorentz violation that has
been guided by the formulation of the Standard Model
extension (SME) [22]. This points out the possibility of
constraining LV interactions via the effective axion-
photon interaction.
We are interested in studying more generally the

mechanism of radiative generation of the axion-photon
interaction term, using as a guide the generalization of
the QED sector of the SME to include nonminimal
interaction terms, as described in [23]. We want to find
out if the mechanism uncovered in [19] is unique and, if
other instances of radiative generation of a finite axion-
photon interaction term exist, whether they suffer the
same kind of ambiguity, as it was found there. We will
show that the answer to both questions is positive: there
are different ways to generate a finite axion-photon
interaction term, but all of them suffer from the same
kind of ambiguity. To keep our search reasonably
contained, we will restrict ourselves to LV operators of
mass dimension up to five, i.e., the dimension of Lorentz-
breaking parameters is no less than −1.
The paper is structured as follows. In Sec. II, we

formulate the initial statements of our problem and outline
the calculations we will make to answer the questions we
pose. In Sec. III, we identify the situations in which the
generation of the axion-photon interaction term occurs, and
perform one-loop calculations to verify its appearance.
Some constraints on the Lorentz violation parameters
entering in the axion-photon coupling are present in
Sec. IV. Finally, in Sec. V, we formulate our conclusions.

II. INITIAL STATEMENTS

Our aim consists in finding the possibilities to
generate the axion-photon interaction term in various

Lorentz-breaking extensions of QED. By definition, the
axion term we are looking for is given by

Lð1Þ
axion ¼ −

gϕγ
8

ϕϵμνλρFμνFλρ ¼ gϕγϕE⃗ · B⃗; ð2Þ

which is explicitly Lorentz invariant (LI), with the coupling
gϕγ depending on LV parameters. So, first we have to
explain in what sense this term can be generated from a
Lorentz-violating model. One possibility, which was
uncovered in [19], is a scheme involving two LV vectors
that are contracted, leading to a LI axion term. Specifically,
it has been shown that radiative corrections involving the
fermion-photon nonminimal interaction dνFμνψ̄γ

μψ and
the LV Yukawa coupling bμϕψ̄γ5γμψ generate the axion-
photon interaction in the form

Lð1Þ
axion ¼ CeϕϵμαβρdρbκFαβFκμ ¼ 2Ceðb · dÞϕðE⃗ · B⃗Þ; ð3Þ

where e is the electromagnetic coupling and C the
mentioned ambiguous constant whose value depends on
the regularization scheme.
Another possibility is to notice that the CFJ term [20] can

be related to the axion by assuming the axion field ϕ to be
slowly varying, so that bμ ¼ ∂μϕ can be considered as a
small and constant LV vector. This relation is given by the
equality

−
1

4
ϕF̃F ¼ 1

2
ϵμνλρbμAνFλρ; ð4Þ

which holds up to surface terms. Now, it is a very well-
known fact (see, e.g., [22]) that the CFJ term (the right-
hand side of this last equation) can be generated by the bμ
term in the minimal LV extension of QED. That is, Eq. (2)
could naturally emerge from quantum corrections starting
with

L ¼ ψ̄ði=∂ −m − =bγ5 − e=AÞψ −
1

4
FμνFμν: ð5Þ

Interesting as it is, we may argue that this scheme is not the
one we are interested in. First, it demands the axion field ϕ
to be considered as a (fixed) slowly varying background (it
is worth mentioning that the relation between spacetime-
varying constants and Lorentz symmetry breaking has been
originally claimed in [24]). Actually, gauge invariance of
the CFJ term demands ϕ ¼ kλxλ so that kλ ∝ bλ, with kμ
being a (very small) constant. On the other hand, if we
want to make connection with the experimental searches
for axions/ALPs, it is more natural to consider ϕ as an
arbitrary, dynamic field. Second, there are arguments that
the ambiguous CFJ term generated via this mechanism
should vanish, in order to preserve gauge invariance [21].
For these reasons, we will refer to this as the “trivial
scheme,” which will not be our main concern.
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Therefore we will concentrate on looking for possible
schemes of generation of terms similar to (3), disregarding
the trivial scheme outlined above. This effectively means
that we will study contributions involving one constant
vector and one constant axial vector, which will eventually
appear in contracted form in order to reproduce the LI axion
term given in (2). Since the axion is pseudoscalar, the
couplings involved in the scheme should contain either
γ5 or ϵμνλρ. This will be an important guide in our
considerations.
Following the methodology of constructing Lorentz-

breaking extensions of QED [22,23], we start by defining
the following generic LV extension of QED:

L ¼ ψ̄

�
i=∂ −m − e=Aþ 1

Λn−4 T̂
ðnÞ
�
ψ −

1

4
FμνFμν; ð6Þ

where T̂ðnÞ is a dimension-n LV operator. To arrive at the
axion-photon interaction term in Eq. (3), after the loop
calculations one can multiply the resulting Aμ-dependent
term by ϕ, which is equivalent to replacement of TðnÞ by
ϕTðnÞ. Actually this corresponds to extracting the leading
order term in an expansion in powers of the momenta
associated to the ϕ field, as explained in detail in [19]. In
what follows, we assume this substitution to be taken from
the very beginning. It is clear that the axion term arises
if the operator T̂ðnÞ involves either the Levi-Civita symbol
or the γ5 matrix. The operators we will consider are
extracted from the general classification presented in [23].
Finally, we restrict our consideration for Lorentz-breaking
operators of dimension five, i.e., n ¼ 5. Higher dimensions
will not be considered for simplicity, and the restriction to
LV operators of mass dimension three or four corresponds
to the minimal LV extension of QED [22,25],

LmQED ¼ i
2
ψ̄ΓνD

↔

μψ − ψ̄Mψ þ Lphoton; ð7Þ

where Lphoton is the minimal LV Maxwell Lagrangian,

Γν ≡ γν þ cμνγμ þ dμνγ5γμ þ eν þ ifνγ5 þ
1

2
gλμνσλμ; ð8Þ

M ≡mþ aμγμ þ bμγ5γμ þ
1

2
Hμνσ

μν; ð9Þ

and σμν is the commutator of two γ matrices. Here aμ, bμ,
cμν, dμν, eμ, fμ, gλμρ, Hμν are constant tensors of corre-
sponding ranks, introducing the Lorentz symmetry
breaking. All these parameters have non-negative mass
dimensions, hence they do not jeopardize the renormaliz-
ability of the theory.
It is easy to see that in this minimal case, no axion term

can be generated except by the trivial scheme. Indeed the
only operators involving γ5 are those proportional to bμ,

dμν, and fμ, and the absence of contributions proportional
to the first order in dμν and fμ is checked straightforwardly.
We note that this conclusion matches the results found
in [25], while also being consistent with [26]. As for the
possible second-order terms of the form (3), we note that
since they require one vector and one pseudovector, they
must be proportional to products of bμ, fμ or hμ ¼ ϵμνλρgνλρ

(here, for the sake of simplicity, we choose the gνλρ to be
completely antisymmetric, and such a choice has been used
earlier in [27]) with eμ. Such contributions can be easily
shown to vanish. Indeed, the vector eμ enters the action
only within the contraction with Aμ or ∂μ. In the first case,
the only possible second-order terms involving the Levi-
Civita symbol and second orders in gauge fields and
derivatives should look like ðe · AÞϵμνλρqμ∂ν∂λAρ, where
qμ is for any of our pseudovectors, i.e., bμ, fμ or hμ. Such a
term is evidently equal to zero. In the second case,
vanishing of corresponding contributions is shown
straightforwardly.

III. ONE-LOOP CALCULATIONS

So, let us begin with our calculations. Actually, we must
consider two situations: (i) corrections of the first order in
LV parameters and (ii) corrections of the second order in
LV parameters.

A. First-order contributions

Let us start with the first scenario. It is clear that the
axion-photon terms of the first order in LV parameters
must have the form ϕϵμαβρtρκFαβFκμ, which reduces to the
standard expression (3) in the case tρκ ¼ dρbκ. Effectively,
to obtain the lower contributions, those of the first order in
LV parameters, we have two possibilities: first, we replace
one of the vertices in the usual contribution to the two-point
function of the gauge field by a nonminimal one, or,
second, we consider a nonminimal modification of the
kinetic term of the spinor field, which implies in a LV
insertion in the spinor propagator. These two possibilities
can be formally represented by the Feynman diagrams
given in Fig. 1, where the black dot is for a nonminimal LV
insertion.
Now, let us list the possible dimension-five operators.

Following Kostelecký and Li [23], we have either operators
proportional to iDðαiDβÞ (where as usual Dα ¼ ∂α þ ieAα)
or operators proportional to Fαβ. Let us start with the
second case. It is clear that if we consider operators

(a) (b)

FIG. 1. General formoffirst orderLorentz-breaking contributions.
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involving Fαβ, the propagator of ψ is not modified, but a
new vertex proportional to Fαβ is present. Therefore, the
corresponding diagrams can have only the form (a).
Moreover, as we consider the first-order contributions,
we assume that we have no other LV insertions. Also, it is
evident that the terms proportional to odd-rank constant
tensors can be disregarded.

Immediately we see that the operator Hð5Þμναβ
F ψ̄σμνψFαβ

cannot generate the axion-photon term (except for the

trivial case Hð5Þμναβ
F ∝ ϵμναβ, which actually is LI and

therefore outside of our interest). The operator proportional

to − 1
2
mð5Þαβ

F ψ̄Fαβψ , in the case of the absence of other
insertions, is ruled out as well (i.e., the scalar, vector, and
tensor couplings cannot yield axion-photon contributions
since they do not allow for the appearance of the Levi-
Civita symbol, unlike axial couplings).
So, it remains to consider axial couplings. We start with

dimension-five vertices proportional to Fαβ. The only
even-rank axial coupling is represented by the term

− i
2
mð5Þαβ

5F ψ̄γ5Fαβψ . The graph (a), after expansion of the
corresponding propagator in the external momentum, is
proportional to

Σ5FðpÞ ¼ tr
Z

d4k
ð2πÞ4 γλð=kþmÞγ5ð=kþmÞ=pð=kþmÞ

×
1

ðk2 −m2Þ3 A
λð−pÞmð5Þαβ

5F FαβðpÞ; ð10Þ

which is zero, either by vanishing of the integral or by

vanishing of the trace, for any form of mð5Þαβ
5F .

As for the terms proportional to ψ̄ iDðαiDβÞψ , we can
apply the same arguments as above to prove that such terms
could yield the axion-photon form (3) only if they are
proportional to the second-rank constant pseudotensor.
From the classification presented in [23], the only candidate

is imð5Þαβ
5 ψ̄γ5iDðαiDβÞψ . However, the pseudotensor m

ð5Þαβ
5

is symmetric. It is easy to show that all scalars involving the
Levi-Civita symbol, two field strengths, and a symmetric

mð5Þαβ
5 , identically vanish. Therefore, there is no axion-

photon contribution proportional to mð5Þαβ
5 .

As a result, we conclude that there is no generation of the
axion term of the first order in LV parameters.

B. Second-order contributions

Let us consider the possibility of the generation of an
axion term of second order in LV coefficients. Within our
study, we restrict ourselves to those ones generated by two
vertices, with one of them proportional to a constant LV
vector and another one to a constant LV pseudovector,
to match the form (3). Essentially, we are looking for
possible generalizations of the mechanism outlined in
[19]. This also means that we can consider terms from

[23] proportional to any odd-rank tensors as well since
they, in certain cases, can be treated as contractions of
constant (pseudo)vectors either with the Minkowski metric
or with the Levi-Civita symbol. Explicitly, we focus on

the terms: − 1
2
að5ÞμαβF ψ̄γμFαβψ , − 1

2
bð5ÞμαβF ψ̄γ5γμFαβψ ,

− 1
2
að5Þμαβψ̄γμiDðαiDβÞψ , and − 1

2
bð5Þμαβψ̄γ5γμiDðαiDβÞψ .

First, there is a possibility for a nonzero contribution

involving að5ÞμαβF . We consider the case að5ÞμαβF ¼ ϵμαβγbγ ,
corresponding to the known dimension-five operator
ψ̄ϵμνλργμbνFλρψ , which has been used in [28] to generate
a finite aether term. In this case, bν is a pseudovector.
The contribution of the first order in bν has been evaluated
in [29], where it was shown to yield a finite and
ambiguous result for the CFJ term (it should be noted
that, since the dimension-five vertices, including the
Lorentz-breaking case, are nonrenormalizable, their pres-
ence can in principle imply in arising divergent contri-
butions in other sectors of the effective action, both purely
gauge ones and those including the spinor fields, such
contributions will be studied elsewhere). However, as
noted above, arising of the CFJ term corresponds to the
trivial scheme commented in Sec. II. So, now we proceed
with the second-order contributions involving this
pseudovector.
For the next step, we consider the following LV

extension of the QED involving two such nonminimal
vertices:

S ¼
Z

d4xψ̄ði=∂ −m − e=Aþ aαFαβγ
β þ ϵαβγδbαFβγγδÞψ :

ð11Þ

Here aμ and bν are the usual (polar) and axial vectors,
respectively.
First, we obtain the contribution involving one

minimal vertex and one magnetic-like vertex, that is,
ψ̄ϵμνρσbμFνργσψ , which is of first order in Lorentz-breaking
parameter bμ. The corresponding Feynman diagram has
been evaluated in [29], where it was demonstrated that in
this case the finite and ambiguous CFJ term arises. This is
another instance of the trivial mechanism we are not
interested in.
We can also obtain the axion-photon term involving

two nonminimal vertices and contributing to the
second order in Lorentz-breaking parameters, represented
in Fig. 2.

FIG. 2. Contributions involving two different nonminimal LV
vertices.
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The contribution of this diagram looks like

ΣabðpÞ ¼−ϵαβλρbαFβλð−pÞaα0Fα0ρ0 ðpÞ

×
Z

d4k
ð2πÞ4

1

ðk2 −m2Þ2 tr½m
2γργρ0 þ kμkνγμγργνγρ0 �:

ð12Þ

After doing all contractions and integration, returning to
Minkowski space, we get

Σab ¼ −2m2C1aαFαγbβF̃βγ; ð13Þ

with C1 being the ambiguous finite constant defined in
[28]. Its explicit value can be read off from the expression:

m2C1ηγδ ¼
Z

d4k
ð2πÞ4

1

ðk2 −m2Þ2
�
m2ηγδ þ kαkβðηαγηβδ

þ ηβγηαδ − ηαβηγδÞ
�
: ð14Þ

Within various regularization schemes, this constant is
known to take different values, e.g., if we apply the
symmetrization kμkν → 1

4
ημνk2 and afterwards promote

the integral to 4þ ϵ dimensions, the result will be C1 ¼
1
8π2

[28]. If we apply the symmetrization kμkν → 1
4þϵ η

μνk2

and integrate in 4þ ϵ dimensions, the result will be
C1 ¼ 0 [30]. That is, proceeding with the substitution
aαFαβγ

β → aαϕFαβγ
β, as mentioned above, we succeeded

in obtaining the axion-photon interaction of the form (3),
which is finite and ambiguous, i.e., the result for the loop
integral depends on the regularization scheme.
Although this case is very interesting since it allows us to

demonstrate the generation of a finite and ambiguous
axion-photon term, we note that any nonminimal vertex
yields a very small contribution, since it is a general
expectation that the higher the mass dimension of an
operator, more suppressed it should be. However, if the
fermion ψ would be heavy enough, in the sense that
m2C1aαbβ may be comparable to the typical axion-photon
coupling in models without LV, then Eq. (13) could
represent a relevant contribution. Anyway, it is also
interesting to generate axion-photon contributions involv-
ing one nonminimal LV insertion and another minimal one.
For the sake of concreteness, we will consider the cases
where the minimal LV term is the most studied one, i.e.,
ψ̄=bγ5ψ . That means we will consider two additional ways
to generate the axion term: first, the insertion of =bγ5 into a
spinor propagator, together with one vertex proportional
to Fμν; second, insertion of the same =bγ5 into a spinor
propagator with the presence of the vertex proportional
to iDðαiDβÞ.

1. Second-order contributions with =bγ5 and Fμν

Let us start with contributions involving Fμν.
Straightforward calculations show that in the case of
inserting =bγ5 into a spinor propagator, the contributions

proportional to mð5Þαβ
F and mð5Þαβ

5F (as well as to other even-
rank constant tensors) vanish. Actually, the first promising
dimension-five operator cited in [23] in this case is

ψ̄bð5ÞμαβF γ5γμFαβψ . The contribution involving this opera-
tor, together with the =bγ5 insertion, can yield the axion-

photon interaction only if bð5ÞμαβF ¼ ϵμαβγnγ , with nγ being a
vector. In this case one can write

ΣbnðpÞ ¼ ϵμρσγnγFρσð−pÞAλðpÞ

× tr
Z

d4k
ð2πÞ4

�
γ5γμð=kþmÞ=bγ5ð=kþmÞγλð=kþmÞ

× =pð=kþmÞ þ γ5γμð=kþmÞγλð=kþmÞ=bγ5ð=kþmÞ
× =pð=kþmÞ þ γ5γμð=kþmÞγλð=kþmÞ

× =pð=kþmÞ=bγ5ð=kþmÞ
�

1

ðk2 −m2Þ4 : ð15Þ

This expression superficially logarithmically diverges.
Next, we use the trace identity

trðγαγβγγγδÞ ¼ 4ðηαβηγδ − ηαγηβδ þ ηαδηβγÞ: ð16Þ

Calculating traces and symmetrizing the integrals through
the four-dimensional replacements kαkβ → 1

4
ηαβk2 and

kαkβkγkδ → 1
24
ðηαβηγδ þ ηαγηβδ þ ηαδηβγÞ, we find that the

divergent part of this contribution, already before the
integration, is zero. Such vanishing of the divergent part
can indicate that the result is ambiguous, which is very
typical in LV theories (see, e.g., [31]). At the same time, the
superficially finite part of this contribution differs from
zero, being equal to

Σbn ¼ −
1

48π2
bμFμλϵλρσβFρσnβ; ð17Þ

i.e., it replays the form in Eq. (3).
If we use the d-dimensional replacements kαkβ →

1
d ηαβk

2 and kαkβkγkδ →
1

dðdþ2Þ ðηαβηγδ þ ηαγηβδ þ ηαδηβγÞ,
with d ¼ 4þ ϵ, and afterward consider the d → 4 limit,
the formally superficially divergent part of this contribution
turns out to yield a nonzero finite result (we note that
finiteness of superficially divergent contributions is a rather
typical situation in LV theories, see, e.g., [22,28]), which
exactly cancels the finite contribution (17), resulting now in
Σbn ¼ 0. Then, we conclude that this contribution is
ambiguous. In analogy with calculations of the CFJ term,
it is natural to expect that other regularizations could yield
other results.
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There is one more way to prove the ambiguity of this
contribution. We consider the following one-loop contri-
bution to the effective action, involving the same two
couplings present in Eq. (15):

Γ¼−iTrlnði=∂−m−e=A−=bγ5−γ5γμϵ
μαβνnγFαβÞ; ð18Þ

which can be rewritten as

Γ ¼ −iTr lnði=∂ −m − e=A − =bγ5Þ; ð19Þ

where

Bμ ¼ bμ − ϵμαβνnγFαβ: ð20Þ

It is clear that the lower Lorentz-violating and hence Bμ-
dependent contribution to this trace, apart from the
nonaxion contribution proportional to ðϵμαβνnγFαβÞ2, is
proportional to ϵμνρσBμAν∂ρAσ. However, this expression
will yield either the usual CFJ term without any impact
of the nonminimal vertex, that is, the trivial scheme, or
the contribution of third order in background fields
which is also irrelevant for our purposes as we are
interested in quadratic contributions only, in order to
match (3). That is to say, the possible relevant axion-
photon contribution of first order in Aμ and in Bμ does
not exist. Moreover, if the vector Bμ is not constant, the
term ϵμνρσBμAν∂ρAσ is not gauge invariant. Therefore, the
vanishing result (independent of the direction of vectors
bμ and nμ) is preferable in a certain sense; see the
discussion in [21].
The second appropriate dimension-five operator in this

case is ψ̄að5ÞμαβF γμFαβψ with að5ÞμαβF ¼ aαημβ − aβημα. The
diagram responsible for generating the axion-photon con-
tribution, in this case, with the =bγ5 insertion in the
propagator, is represented in Fig. 3, which has been
considered in [19].
In this graph, the × sign means that the corresponding

gauge field Aν is replaced by bμFμν. We note that actually
this contribution is described by the standard triangle
graph that appears within studies of the CFJ term.
Repeating the calculations that were already considered,
for instance, in [19,31], we arrive at the following
contribution:

Σab ¼ C0ϵ
αβγδbαaμFμβ∂γAδ ¼

1

2
C0bαaμϵαβγδFμβFγδ; ð21Þ

with C0 being a finite but arbitrary constant arising from
the usual triangle diagram contributing to the CFJ term,
defined explicitly by the expression

C0ηαβ ¼ 2

Z
d4k
ð2πÞ4

ηαβðk2 þ 3m2Þ − 4kαkβ
ðk2 −m2Þ2 ð22Þ

and, in various papers, found to be equal to 1
4π2

, 3
16π2

, zero,
etc., within different regularization schemes (see [31] and
references therein for a detailed discussion of this con-
tribution). We note that the same C0 arose for the axion
term in our previous paper [19]. It is clear that this term
matches the axion term given by Eq. (3).
So, besides the scenario presented in [19], and the

trivial scheme commented in Sec. II, where one calculates
the CFJ term considering bμ ¼ ∂μϕ, we found only three
possibilities to obtain the axion term in the form of a
finite one-loop correction. They are those generated by

the að5ÞμαβF ψ̄γμFαβψ vertex together with the =bγ5 insertion
in the propagator, resulting in Eq. (21), by the

bð5ÞμαβF ψ̄γ5γμFαβψ vertex together with the same =bγ5
insertion in the propagator, leading to Eq. (17), and by
two nonminimal vertices aαψ̄Fαβγ

βψ and bαψ̄ϵαβγδFβγγδψ ,
resulting in Eq. (13). We note that all these results are
finite and ambiguous.

2. Second-order contributions with =bγ5 and iDðαiDβÞ
Now, it remains to consider the possibilities for gen-

erating the axion based on terms proportional to iDðαiDβÞ,
with one =bγ5 insertion. We adopt the same reasoning as
above. It is clear that contributions involving the quartic
vertex from the term ψ̄iDðαiDβÞψ (i.e., ψ̄AαAβψ ) cannot
yield the axion form (3), giving only derivative indepen-
dent terms, which are further canceled with analogous
terms arising from other Feynman diagrams. So, we take
into account only triple vertices. Then, we consider
graphs of the form given by Fig. 1(a) with one vertex
now involving the factor iDðαiDβÞ, while another vertex is
minimal, and of the form given by Fig. 1(b) with a
nonminimal LV insertion into the propagator, while both
vertices are minimal, and the propagators are bμ depen-
dent and must be expanded in power series in bμ up to the
first order.
By analogy with the previous discussions, it is easy to

conclude that in both cases the axion-photon contribu-
tions will differ from zero only if odd-rank nonminimal
Lorentz-breaking parameters are used. Moreover, the new
vertex cannot involve γ5 (otherwise, there will be no
possibility to generate the Levi-Civita symbol since we
already have the =bγ5 insertion). So, the only new vertexFIG. 3. Contribution with a LV modification of one of the legs.
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which could contribute to the axion term is the
að5Þμαβψ̄γμiDðαiDβÞψ .
Thus, it remains to consider the last possibility, that is, to

calculate contributions generated by að5Þμαβψ̄γμiDðαiDβÞψ
together with =bγ5, i.e., of first order in að5Þμαβ and bμ. So,
effectively our Lagrangian looks like

L ¼ ψ̄ði=∂ −m − =bγ5 − e=A − að5Þμαβψ̄γμiDðαiDβÞÞψ : ð23Þ

In this case, we have the terms given by diagrams
depicted in Fig. 4.

Let us write the contributions arising from these graphs.
For (d), we have

Σab1ðpÞ¼ ie2að5ÞμαβAβð−pÞAλðpÞ
Z

d4k
ð2πÞ4 tr

�
−pα

�
γμð=kþmÞ=bγ5ð=kþmÞγλð=kþmÞ=pð=kþmÞ

þ γμð=kþmÞγλð=kþmÞ=bγ5ð=kþmÞ=pð=kþmÞþ γμð=kþmÞγλð=kþmÞ=pð=kþmÞ=bγ5ð=kþmÞ
�

1

ðk2−m2Þ4

þ2kα

�
γμð=kþmÞ=bγ5ð=kþmÞγλð=kþmÞ=pð=kþmÞ=pð=kþmÞþ γμð=kþmÞγλð=kþmÞ=bγ5ð=kþmÞ=pð=kþmÞ=pð=kþmÞ

þ γμð=kþmÞγλð=kþmÞ=pð=kþmÞ=bγ5ð=kþmÞ=pð=kþmÞ

þ γμð=kþmÞγλð=kþmÞ=pð=kþmÞ=pð=kþmÞ=bγ5ð=kþmÞ
�

1

ðk2−m2Þ5
�
; ð24Þ

for (e),

Σab2ðpÞ ¼ −ie2Aμð−pÞAλðpÞað5Þραβ
Z

d4k
ð2πÞ4 kαkβtr

�
γμð=kþmÞγρð=kþmÞγλ

×

�
ð=kþmÞ=pð=kþmÞ=bγ5ð=k −mÞ=pð=kþmÞ þ ð=kþmÞ=bγ5ð=kþmÞ=pð=kþmÞ=pð=kþmÞ

þ ð=kþmÞ=pð=kþmÞ=pð=kþmÞ=bγ5ð=kþmÞ
��

1

ðk2 −m2Þ6 ; ð25Þ

and finally, for (f),

Σab3ðpÞ ¼ −ie2Aμð−pÞAλðpÞað5Þναβ
Z

d4k
ð2πÞ4 kαkβtr

�
γμð=kþmÞ=bγ5ð=kþmÞγνð=kþmÞγλð=kþmÞ=pð=kþmÞ=pð=kþmÞ

þ γμð=kþmÞγνð=kþmÞ=bγ5ð=kþmÞγλð=kþmÞ=pð=kþmÞ=pð=kþmÞ
�

1

ðk2 −m2Þ6 : ð26Þ

Taking into account that the axion-photon contribution has
the form (3), we require the að5Þμαβ to be completely
characterized by a vector aμ. Since að5Þμαβ is symmetric
with respect to the two last indices, we see that there
are two possibilities to describe this tensor in terms
of the unique vector needed to obtain (3), that is, að5Þμαβ ¼
aμηαβ and að5Þμαβ ¼ ημαaβ þ ημβaα (in principle, one can
introduce as well the completely symmetric case
að5Þμαβ ¼ ημαaβ þ ημβaα þ ηαβaν, but this is nothing more
as the sum of the previous cases). As a consequence, it is

natural to expect that the total result of these contributions
is of the form

Σab ¼ h1ϵμνλρbμFνλaσFσρ þ h2ϵμνλρaμFνλbσFσρ; ð27Þ

with h1 and h2 being some numbers and Σab ¼
Σab1 þ Σab2 þ Σab3. Then, straightforward computation
allows to show that Σab1 ¼ 0, for an arbitrary form of
að5Þμαβ. Further, the explicit calculations of integrals for
Σab2 and Σab3 show that if both að5Þμαβ ¼ ημαaβ þ ημβaα

(d) (e) (f )

FIG. 4. Contributions involving both a að5Þμαβ (represented
by •) and a =bγ5 (represented by ×) insertions.
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and að5Þμαβ ¼ aμηαβ, the axion-photon contributions di-
verge and are equal for (e) and (f) diagrams. So, we can
write down the final result for Σab, the same for að5Þμαβ ¼
ημαaβ þ ημβaα and að5Þμαβ ¼ aμηαβ, as follows:

Σab ¼
e2

6π2ϵ
ϵμνλρð−2bμaα þ aμbαÞFαλFρν; ð28Þ

with ϵ ¼ d − 4. We see that this result is less advantageous
in comparison with the previous schemes as it requires to
introduce the axion term from the very beginning, in order
to achieve multiplicative renormalizability.
To close this section, let us briefly discuss the problem of

ambiguities in our theory. As it is known, see, e.g., [26,30]
and references therein, ambiguities arise naturally when a
superficially divergent integral turns out to be finite, and, in
certain cases, they can signalize the presence of anomalies.
For example, the ambiguity of the CFJ term is related with
the Adler-Bell-Jackiw (ABJ) anomaly, and the ambiguity
of the four-dimensional gravitational Chern-Simons term is
related with gravitational anomalies. Therefore, the ambi-
guity of the axion term arising within several schemes of its
calculation can be treated as an argument in favor of the
existence of some new anomalies related with the axion.
From another side, the ABJ anomaly equal to F̃μνFμν

multiplied by some number yields the same form propor-
tional E⃗ · B⃗ as the axion-photon term bαF̃αμaβFβμ.
Therefore, it is natural to treat the ambiguity of the axion
term as a consequence of the ABJ anomaly.

IV. CONSTRAINTS ON THE LORENTZ
VIOLATION PARAMETERS FROM THE

AXION-PHOTON COUPLING

The limits from direct searches, astrophysics and cos-
mology for axions/ALPs on the axion-photon coupling
allow us to constrain the related LV parameters. In a
more general context, the total effective coupling would
still receive contributions out of LI operators so that

gϕγ ¼ gðLIÞϕγ þ gðLVÞϕγ . An upper bound for the LV can be

obtained assuming that gϕγ ≈ gðLVÞϕγ . The limits over the
axion-photon coupling are dependent on axion mass
[17,18]. For example, the CAST experiment puts the limit
jgϕγj < 6.6 × 10−11 GeV−1 for axion mass mϕ < 0.02 eV
[32]. Taking into account the coupling from Eq. (3),
generated by the LV operators dνFμνψ̄γ

μψ and
bμϕψ̄γ5γμψ , one has gϕγ ¼ 4

ffiffiffiffiffiffi
πα

p
Cðb · dÞ ≈ 0.6Cðb · dÞ,

in which α ¼ 1=137. Thus, the CAST limit implies
that jCðb · dÞj < 1.1 × 10−10 GeV−1.
In the case of the axion-photon effective Lagrangian

generated by LV operators ψ̄aαϕFαβγ
βψ and

ψ̄ϵαβγδbαFβγγδψ , the coupling that follows from Eq. (13)
is gϕγ ¼ 2C1m2ða · bÞ, with aα and bα having dimension of
inverse of mass squared and inverse of mass, respectively.

Then, the constraint from CAST turns out to be
jC1m2ða · bÞj < 3.3 × 10−11 GeV−1. As we see, the higher
the fermion mass m, the stronger is the constraint over the
product jC1ða · bÞj of the LV parameters. As an example,
for a fermion of mass m ¼ 1 TeV, the limit would be
jC1ða · bÞj < 3.3 × 10−17 GeV−3. While, in Ref. [33] the
operator ϕF̃F is not considered, we note that, in principle,
the estimations we have done can serve for obtaining
better results for constraining nonminimal LV parameters.

Finally, the proportionality of gðLVÞϕγ withm2 seems to pose a
problem for this coupling constant once it does not lead to a

decoupling as m gets large, contrary to the typical gðLIÞϕγ

obtained through integration of heavy fermions in a
renormalizable LI theory. But, we note that, actually, the
theory in Eq. (11) is an effective one, valid below an energy
scale ΛLV related to the LV parameters aαð∼1=Λ2

LVÞ and
bαð∼1=ΛLVÞ out of the nonrenormalizable operators (the
constant C1 does not play here an essential role being of the
order of the unit). In this vein, the fermion mass is assumed
such that m ≪ ΛLV in order to have a consistent low
energy effective Lagrangian describing the axion-photon
interaction.

V. SUMMARY

We have demonstrated explicitly that the axion-photon
interaction term arises within certain dimension-five
Lorentz-breaking extensions as a quantum correction.
The most interesting situations are those where the
axion-photon term is finite, so one does not need to worry
about its renormalization, hence, introducing it from the
beginning is unnecessary.
However, as we have noted, besides the trivial scheme

where the axion contribution is obtained from the CFJ term
and the scheme described in [19] and presented here in
Fig. 3 [see Eq. (21)], there are only a few possibilities for
the radiative generation of the axion-photon interaction
term. These take into account: first, two nonminimal
vertices involving axial and usual vectors [see Eq. (13)];
second, one minimal vertex =bγ5 insertion and one vertex

involving ψ̄bð5ÞμαβF γ5γμFαβψ [see Eq. (17)]; third, a =bγ5
insertion and the að5Þμαβψ̄γμiDðαiDβÞψ vertex, with this last
case representing a divergent contribution [see Eq. (28)].
One can understand this scarcity in the possibilities in the

following terms: the axion-photon contributions are always
superficially divergent, as follows from the degree of
divergence of the corresponding Feynman diagrams, there-
fore, they can be finite only if they are generated by an
ambiguous Feynman diagram, and there were only two
such one-loop diagrams known up to now, the triangle one
studied in [19], and the one studied in [31]. Besides these
diagrams, we found that the lower contribution in Eq. (17)
arising from the one-loop effective action in Eq. (19) is also
ambiguous. In all other cases, the axion-photon terms either
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diverge or are equal to zero. It must be also noted that in
many cases the axion-photon terms, besides displaying
divergences, are of the second order in the Lorentz-
violating parameters, thus expected to be highly
suppressed.
Now, we formulate the prescriptions for possible

schemes allowing us to generate axion-photon interaction
terms for generic higher-dimension operators. We can
consider two situations: (i) contributions of the first order
in Lorentz-breaking parameters; (ii) contributions of the
second order in Lorentz-breaking parameters. However, as
we already argued, the first case is trivial, effectively
replaying the calculation of the usual CFJ term. The second
case requires attention. Then, we note that the axion-photon
terms actually can be generated from schemes where the
LV vertices involve either one Levi-Civita symbol or one γ5
matrix, but not together. Also, we can consider an odd-rank
Lorentz-breaking tensor to obtain a CFJ-like term that is
transformed to the axion-photon term after integration by
parts, and an even-rank tensor to obtain an explicit axion-
photon term involving two derivatives. It should be noted
nevertheless that it seems to be very improbable to obtain
finite axion-photon terms for higher-dimension operators
since finite results can arise from nonrenormalizable
theories only in very rare situations. Nevertheless, such
corrections were shown to arise due to the cancellation of
divergences like those that occurred in [28]. We have

demonstrated that within all schemes considered in this
work, the nonzero axion-photon terms either diverge,
which is a less valuable result since it requires introducing
the axion term at the tree level to achieve multiplicative
renormalizability, or are ambiguous. This last case could
signalize some profound relation between axions and
anomalies.
The natural continuation of this study would be an

analysis of the possibilities for generating axion-photon
interaction term for operators with dimensions six and,
perhaps, from higher loops. However, these calculations
will be much more involved, and the absence of CFJ
contributions in higher loops argued in [34] will imply the
absence of higher-loop axion contributions, at least in
certain cases. We plan to perform a more detailed dis-
cussion of higher-order contributions to the axion-photon
interaction term, as well as of other contributions generated
by higher-dimension LV terms in our next papers.
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