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In this paper, we analyze the quantum vacuum in a radiation-dominated and CPT-invariant universe by
further imposing the quantum states to be ultraviolet regular i.e., satisfying the Hadamard/adiabatic
condition. For scalar fields, this is enforced by constructing the vacuum via the states of low-energy proposal.
For spin-1

2
fields, we extend this proposal for a FLRW spacetime and apply it for the radiation-dominated and

CPT-invariant universe. We focus on minimizing the smeared energy density around the big bang and give
strong evidence that the resulting states satisfy the Hadamard/adiabatic condition. These states are then self-
consistent candidates as effective big bang quantum vacuum from the field theory perspective.
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I. INTRODUCTION

One of the basic issues in the theory of quantized fields
in curved spacetime [1–4] is the fixing of a preferred
vacuum state. The canonical quantization approach soon
exhibited that the vacuum state is not unique in a time-
dependent spacetime. Only for stationary spacetimes, or
adiabatic regions in expanding universes, one can naturally
find a privileged definition of the vacuum. A major
consequence of this ambiguity is the particle creation
phenomena, as first discovered in cosmology [5–8] and
also in the vicinity of black holes [9]. However, a require-
ment that a physically admissible quantum state should
satisfy is the Hadamard condition [10], which specifies the
singularity structure of the two-point function. This con-
dition ensures the existence of Wick polynomials of
arbitrary order [11–13] and hence, the perturbative series
of an interacting theory to be well-defined at any order. The
necessity of the Hadamard condition was further motivated
in [14]. The Hadamard condition, which is defined for
arbitrary spacetimes, can be transformed into the adiabatic
condition [2,3,15,16] in homogeneous spacetimes. The
adiabatic condition fixes the large momentum structure
of admissible states.
On a generic time-varying spacetime one cannot single

out a preferred vacuum. This lack of a uniquevacuumchoice
is strongly manifested in Friedmann-Lemaître-Robertson-

Walker (FLRW) spacetimes. Several approaches have been
considered to select a preferred vacuum state at early times,
based on different viewpoints [17–22], from which one can
predict late time quantum effects. Furthermore, it is also
highly nontrivial to obtain a vacuum state satisfying the
Hadamard condition. An especially appealing proposal is
the states of low energy (SLE) prescription [23,24]. These
states of low energy are obtained by minimizing the expect-
ation value of the energy density after smearing it with a
time-dependent test function. This prescription ensures the
Hadamard condition or, equivalently, the (all orders) adia-
batic condition [3]. The SLEwere introduced originally only
for scalar fields (and forminimal coupling). It is easy to show
that the Minkowski vacuum is the state of low energy,
irrespectively of the specific form of the smearing function.
For simple asymptotically flat regions, where the expansion
factoraðtÞ approaches constant values at t → �∞, the initial
and final Minkowski vacua, corresponds to the state of
minimal energywhen the time averaging has support at early
and late times respectively. For de Sitter spacetime, the
Bunch-Davies vacuum is the state of low energy, irrespec-
tive of the particular form of the smearing function, as long
as it has support at the distant past [25,26]. However, the
states of low energy depend, in general, on the choice of the
smearing function. This method was recently applied to
obtain physically motivated vacua in the Schwinger effect
[27] and for scalar fields with Yukawa interaction [28].
Of special physical interest is to analyze this issue for a

radiation-dominated universe. The study of this particular
expansion rate has different motivations. It can be thought
of as a natural pre-inflationary phase, as it has been recently
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discussed in [29–31]. The vacuum in this pre-de Sitter
space should smoothly evolve to a state that is approx-
imately equivalent to the Bunch-Davies state for large k’s,
but differs significantly from it at small k’s. Furthermore,
from a noninflationary perspective, the issue of how to
define a preferred vacuum in a radiation-dominated uni-
verse is also of special relevance in general, particularly in
relation to the interesting and recent proposal of
Ref. [32,33]. In this view of cosmic evolution, the CPT
symmetry plays a crucial role to single out privileged
vacua. The gravitational background is assumed to be time-
reversal symmetric with respect to the big bang event
τ ¼ 0. A radiation-dominated era emerges from this special
event, for which a natural analytic continuation of the
expansion factor aðτÞ ∼ τ to negative values of conformal
time τ is assumed. A radiation-dominated universe going
back to the big bang is also the simplest way to enforce
Penrose’s Weyl curvature hypothesis [34].
The goals of this paper are to:
(i) Extend the prescription of states of low energy for

spin-1
2
fields on FLRW spacetimes.

(ii) Characterize the possible CPT-invariant Hadamard
states for scalars and spin-1

2
fields just at the big

bang event τ ¼ 0, obtaining a fθk;Θkg-family of
CPT-invariant Hadamard states for scalars and
fermions respectively.

(iii) Study the possible CPT-invariant states of low
energy in a radiation-dominated universe and ana-
lyze whether the smeared energy density can be
minimized around the big bang for both scalar and
spin-1

2
fields. We check that the resulting family of

CPT-invariant states of low energy, indeed satisfy
the Hadamard/adiabatic condition.

For pedagogical reasons the organization of the paper is as
follows. In Sec. II we parametrize the possibleCPT-invariant
states in a radiation-dominated universe for scalar fields and
give the asymptotic ultraviolet condition that they have to
satisfy in order to beHadamard. In Sec. III we review the SLE
characterization, extending it for a general coupling to the
scalar curvature and paying special attention to the big bang
singularity. We restrict the SLE characterization to the
CPT-invariant states. In Sec. IV, we study the possible
SLE with smearing functions with support around the big
bang for scalar fields. In Sec. V we parametrize the possible
CPT-invariant states in a radiation-dominated universe
for spin-1

2
fields and characterize the asymptotic ultra-

violet condition that they have to satisfy in order to be
Hadamard. InSec.VIweprovide theSLEcharacterization for
fermions. In Sec. VII, we study the possible SLE with
smearing functions with support around the big bang for
spin-1

2
fields. Finally, in Sec. VIII we summarize our results

and discussions. Most of the computations in this paper have
been done with the aid of the Mathematica software.
Throughout this paper, we use units in which ℏ ¼ c ¼ 1.

II. CPT-INVARIANT STATES FOR SCALARS
IN A RADIATION-DOMINATED SPACETIME

In this section, we consider a massive scalar field ϕ
propagating in a flat FLRW spacetime

ds2 ¼ a2ðτÞðdτ2 − dx⃗2Þ: ð1Þ

We will assume a radiation-dominated universe. The
expansion factor is given, in conformal time, by

aðτÞ ∝ τ: ð2Þ

It is convenient to expand the quantized field in Fourier
modes adapted to the underlying homogeneity of the
3-space

ϕðτ; x⃗Þ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p �
Ak⃗e

ik⃗ x⃗ϕkðτÞ þ A†
k⃗
e−ik⃗ x⃗ϕ�

kðτÞ
�
;

ð3Þ
where the creation and annihilation operators satisfy the
usual commutation relations (½Ak⃗; A

†
k⃗0
� ¼ δ3ðk⃗ − k⃗0Þ, etc.).

The normalization of the modes is fixed by the condition

ϕkϕ
0�
k − ϕ0

kϕ
�
k ¼

2i
a2

; ð4Þ

where the prime denotes derivative with respect to the
conformal time. For our purposes it is convenient to
work with the rescaled Weyl field φ≡ aϕ and the
rescaled modes φk ≡ aϕk. The field equation implies
(a2m2 ¼ γ2τ2)

φ00
kðτÞ þ ½k2 þ γ2τ2�φkðτÞ ¼ 0; ð5Þ

and the normalization condition is given by

φkφ
0�
k − φ0

kφ
�
k ¼ 2i: ð6Þ

The general solution of (5) can be expressed in terms of
parabolic cylindrical functions DνðzÞ [35]

φkðτÞ ¼ Ck;1SkðτÞ þ Ck;2S�kð−τÞ; ð7Þ

where

SkðτÞ ¼
1

ð2γÞ1=4 D−1
2
−2iκðeiπ4

ffiffiffiffiffi
2γ

p
τÞ; ð8Þ

and

κ ¼ k2

4γ
: ð9Þ
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Any choice of k-functions Ck;1 and Ck;2 defines a set of
modes characterizing a given vacuum state.1 All these
vacua are, by construction, invariant under spatial trans-
lations, rotations, parity and charge conjugation (which is
here trivial since our scalar field is real). Time translation is
not a symmetry for an expanding universe, and time-
reversal has not been considered so far. As remarked in
the introduction, there is no natural way to select a preferred
Fock vacua. In the radiation-dominated universe, and due
to the very special form of the expansion factor in
conformal time, one can further reduce the freedom in
choosing a vacuum by exploiting the time-reversal sym-
metry τ → −τ of the background ds2 ∝ τ2ðdτ2 − dx⃗2Þ.
Following [32,33], we directly study the effect of

charge conjugation C, parity P, and time-reversal T on
the Weyl transformed scalar field φ. The action
of these transformations is [36], C∶φðτ; x⃗Þ → ξ�cφ�ðτ; x⃗Þ;
P∶φðτ; x⃗Þ → ξ�pφðτ;−x⃗Þ; T∶φðτ; x⃗Þ → ξ�tφ�ð−τ; x⃗Þ. [The
ξ’s are the associated phases of the C, P, T transforma-
tions]. In the quantized theory, C and P are represented as
unitary operators, while T is converted into a antiunitary
operator. In our case C and P are trivially implemented in
the assumed Fourier expansion. Enforcing T is the key
ingredient. However, it seems more useful to consider CPT
all at once in the analysis [furthermore, we also choose
ξcξpξt ¼ 1 [37]; therefore CPTφðxÞðCPTÞ−1 ¼ φð−xÞ†].2
The condition for a CPT-invariant vacuum state takes a
very simple form on the time-dependent part of scalar field
modes,

φkð−τÞ ¼ φ�
kðτÞ: ð10Þ

Using standard properties of the parabolic cylindrical
functions it can be easily shown that in terms of the general
solution (7), the condition above implies Ck;1 ¼ C�

k;2. It
seems natural to characterize the CPT-invariant state by
specifying initial data at τ ¼ 0. In the limit of τ → 0, the
mode equation becomes

φ00
kðτÞ þ k2φkðτÞ ∼ 0: ð11Þ

Then,

φkðτÞ ∼ cke−ikτ þ dkeikτ: ð12Þ

The normalization condition implies jckj2 − jdkj2 ¼ k−1.
This condition, together with the required CPT invariance
[ck ¼ c�k and dk ¼ d�k, i.e., ck and dk must be real] allows us
to reparametrize the constants ck and dk in terms of an
hyperbolic angle θk as

ck ¼
coshðθkÞffiffiffi

k
p ; dk ¼

sinhðθkÞffiffiffi
k

p : ð13Þ

Therefore, the CPT-invariant solution for τ → 0 should
go as

φkðτÞ ∼
1ffiffiffi
k

p e−ikτ cosh θk þ
1ffiffiffi
k

p eikτ sinh θk: ð14Þ

At τ ¼ 0 this results into

φkð0Þ ¼
eθkffiffiffi
k

p ; φ0
kð0Þ ¼ −i

ffiffiffi
k

p
e−θk : ð15Þ

where θk is an arbitrary real function. In summary, the CPT
requirement reduces the space of possible vacuum states to
a family of states characterized by the hyperbolic initial
(τ ¼ 0) phase θk. In terms of this parameter, the functions
Ck;1 and Ck;2 read3

Ck;1 ¼ 2iκ
ffiffiffi
π

p
eπκ

0
B@ e−

iπ
4eθk

κ
1
4Γ
�
1
4
− iκ

�þ iκ
1
4e−θk

Γ
�
3
4
− iκ

�
1
CA; ð16Þ

with κ defined in (9) and Ck;2 ¼ C�
k;1. In other words, any

CPT-invariant solution can be written in terms of the θk
angle as

φCPT
k ðτÞ ¼ Ck;1SkðτÞ þ C�

k;1S
�
kð−τÞ; ð17Þ

with Ck;1 given above. We can regard this result as an
equivalent characterization of the CPT-invariant vacua
proposed in [32,33]. The main advantage of this repar-
ametrization is that it allows us to characterize the non-
trivial ultraviolet behavior of the modes at large k. Also, in
the Heisenberg picture we understand now the time reversal

1From the Wronskian condition (6) we get the following
normalization condition for Ck;1 and Ck;2:

eπκ

2
ðjCk;1j2 þ jCk;2j2Þ þ

ffiffiffi
2

p
cosh ð2πκÞffiffiffi

π
p

× Re

�
e−i

π
4Ck;1C�

k;2Γ
�
1

2
− 2iκ

��
¼ 1:

2We note that if the T transformation is directly applied on the
original scalar field ϕðxÞ there will be a difference of sign with
respect to the transformation defined here. This sign can be
always absorbed in the phase ξ�t or by making a redefinition of the
(Weyl transformed) modes φk → iφk to keep our choices (e.g.,
ξcξpξt ¼ 1), and hence, the final form of the CPT transformation
unaltered. For convenience we have adopted the conventions used
in [32,33].

3The final expression for Ck;1 can be written in several
ways by using some properties of the gamma functions. In
particular we have used ΓðzÞΓðzþ 1

2
Þ ¼ 21−2z

ffiffiffi
π

p
Γð2zÞ and

ΓðzÞΓð1 − zÞ ¼ π
sinðπzÞ.
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vacuum state j0i as defined by giving initial data φCPT
k ðτ0Þ

at τ0 ¼ 0.
To clarify the discussion above, it is interesting to present

states that are not CPT invariant. As time evolves the
expansion of the universe slows down and one can naturally
define a late-times (infinite order) adiabatic vacuum
j0þi [38]. In this asymptotic region (τ → ∞), the general
solution (7) behaves as a linear combination of positive
and negative-frequency solutions, and the preferred
(positive-frequency) solution for the late-times modes at
τ → ∞ reads

φðþÞ
k ðτÞ ∼ e−i

R
τ
ωðuÞduffiffiffiffiffiffiffiffiffiffi
ωðτÞp ∼

e−ið
γ
2
τ2þκ lnð2γτ2ÞÞffiffiffiffiffi

γτ
p ; ð18Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2

p
. The constants Ck;1 and Ck;2 can

be fixed imposing this late-times behavior. We directly find

Ck;1 ¼
ffiffiffi
2

p
e−

πκ
2 ei

π
8; Ck;2 ¼ 0: ð19Þ

We note that the late-times adiabatic vacuum is not CPT
invariant, since Ck;1 ≠ C�

k;2. Analogously, the early-times
adiabatic vacuum j0−i is determined by the asymptotic
condition (τ → −∞)

φð−Þ
k ðτÞ ∼ e−i

R
τ
ωðuÞduffiffiffiffiffiffiffiffiffiffi
ωðτÞp ∼

eið
γ
2
τ2þκ logð2γð−τÞ2ÞÞffiffiffiffiffiffiffiffi−γτp ; ð20Þ

and Ck;1 ¼ 0, Ck;2 ¼
ffiffiffi
2

p
e−

πκ
2 e−i

π
8, which is also not CPT

invariant. Given the constants Ck;1 and Ck;2 for each
solution, it is direct to see that CPTj0�i ¼ j0∓i.

A. Ultraviolet regularity of the CPT-invariant
vacuum states

For a quantum state j0i, to be admitted as physically
acceptable we should demand it to be ultraviolet regular.
This means that the high-energy behavior of the state must
approach the behavior of Minkowski space at a rate such
that basic composite operators can be renormalized. In
cosmological backgrounds this translates into the adiabatic
condition: for large k, the behavior of the field modes φk
should follow the Wentzel-Kramers-Brillouin (WKB) type
asymptotic condition at all orders [39–42]

φkðτÞ ∼
1ffiffiffiffiffiffiffiffiffiffiffiffi
ΩkðτÞ

p e−i
R

τ Ωkðτ0Þdτ0 ; ð21Þ

where the function ΩkðτÞ admits an asymptotic expansion
in terms of the derivatives of aðτÞ

Ωk ¼ ωþ ωð1Þ
k þ ωð2Þ

k þ ωð3Þ
k þ ωð4Þ

k þ � � � : ð22Þ

The coefficients of the expansion ωðnÞ
k are obtained by

systematic iteration from the mode equation, and depend on
derivatives of a up to and including order n. The expansion
above dictates the ultraviolet behavior that the fields modes
must obey in order to define an admissible quantum state.
Note that (21) and (22) should be satisfied at all orders
to be equivalent to the Hadamard condition. This expansion
is in general asymptotic, and therefore cannot define a
unique vacuum state, but rather a family of acceptable
states. Furthermore, the two-point function inherits from
(21) and (22) an adiabatic expansion which produces the
same renormalized stress-energy tensor as the DeWitt-
Schwinger expansion when it is restricted to FLRW
spacetimes in four spacetime dimensions [43–45]. In
Appendix Awe give more detail about the adiabatic method
for scalars.
For the CPT-invariant vacua, parametrized by the real

and time-independent function θk, this condition should be
reexpressed in terms of the hyperbolic initial phase. It is

important to note that the adiabatic modes φðNÞ
k of order N

satisfy the equation of motion at order N. Therefore,
adiabaticity is preserved in time and it is enough to study
the large momentum behavior of the modes φk at a given
instant of time τ0 to study its ultraviolet behavior.
In the context of our analysis, it is natural to evaluate the

complete adiabatic expansion of the modes (21) at τ ¼ 0.
We get

φkð0Þ ∼
1ffiffiffi
k

p þ γ2

8k9=2
þ 41γ4

128k17=2
þ � � � : ð23Þ

From this, we infer an asymptotic expansion for θk

θk ∼
γ2

8k4
þ 5γ4

16k8
þ 61γ6

24k12
þ � � � : ð24Þ

The set of vacuum states that fit the above large k expansion
can be generically referred to as adiabatic (CPT-invariant)
vacua. In Appendix B we show that only if θk behaves as in
(24), the high-energy behavior of the field modes is
compatible with the adiabatic condition after time evolution
(i.e., for τ > 0).

III. STATES OF LOW ENERGY FOR SCALARS

Let us briefly summarize the method for constructing
states of low energy. We follow the prescription described
in [23,24]. The main idea of this construction is to fix
the free parameters of the problem (e.g., θk in our
CPT-invariant model) by requiring that the vacuum expect-
ation value of the smeared energy density over a temporal
window should be minimal. A special and very important
virtue of this construction is that it guarantees that the
resulting states are Hadamard for smooth regions of the
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spacetime. We first review the general method for arbitrary
aðτÞ emphasizing the aspects that will be relevant for our
analysis and then we particularize it for the CPT-invariant
model under consideration. We further generalize the
standard result by including an arbitrary coupling to the
scalar curvature ξ. The starting point is to fix a fiducial set
of normalized modes ϕkðτÞ. They are related to the Weyl
modes of the previous section by φk ¼ aϕk. One can
parametrize a general set of modes TkðτÞ in the form

TkðτÞ ¼ λkϕkðτÞ þ μkϕ
�
kðτÞ; ð25Þ

where λk and μk are complex numbers that must obey
jλkj2 − jμkj2 ¼ 1. The goal now is to find for which values
of λk and μk the smeared energy density is minimal.
The smeared energy density can be defined as follows.

The vacuum expectation value of the Hamiltonian HðτÞ for
a scalar field ϕ, associated to a foliation of a spacelike
Cauchy surface Στ and a temporal vector characterizing an
observer ub is given by

HðτÞ ¼
Z
Στ

d3x
ffiffiffiffiffiffi
jhj

p
hTabinaub: ð26Þ

ffiffiffiffiffiffijhjp
is the determinant of the induced Riemann metric in

Στ, hTabi is the vacuum expectation value of the stress-
energy tensor, na is the unit normal vector to the foliation.
We should take as hTabi the renormalized values. However,
we are interested in the problem of minimizing the energy
density, and since the subtraction terms in the renormal-
ization are independent of the vacuum state we can ignore
them. Wewill only consider the contributions of the modes,
as in (28). Following [23], we choose the privileged
isotropic observer, ua ¼ na ¼ ða−1; 0; 0; 0Þ in conformal
time coordinates, and the above expression reduces to

HðτÞ ¼
Z
Στ

d3x
ffiffiffiffiffiffi
jhj

p
hTabiuaub

¼
Z
Στ

d3x
ffiffiffiffiffiffi
jhj

p
hρðτÞi

¼
Z
Στ

d3x
Z

d3k

ð2πÞ3=2
ffiffiffiffiffiffi
jhj

p
ρkðτÞ; ð27Þ

where ρkðτÞ is the formal energy density of a given mode
Tk. In conformal coordinates ρkðτÞ is given by

ρkðτÞ ¼
1

4a2

�
jT 0

kj2 þ ω2jTkj2

þ 6ξ

�
a02

a2
jTkj2 þ

a0

a
ðTkT 0�

k þ T�
kT

0
kÞ
��

; ð28Þ

(remember ω2 ¼ k2 þm2a2). It is interesting to stress that,
for a radiation-dominated universe, Tk ∼ a−1 and therefore

the behavior of ρk near the big bang is ρk ∼ a−6. This will
be important in the following section.
The smeared Hamiltonian is defined then as

H½f� ≔
Z

dτ
ffiffiffiffiffi
a2

p
f2ðτÞHðτÞ

¼
Z

d3k

ð2πÞ3=2
Z
Στ

d3x
Z

dτ
ffiffiffiffiffi
jgj

p
f2ðτÞρkðτÞ; ð29Þ

where we have used (27), and where the smearing has been
done with a positive definite window function f2, along
the curve of an isotropic observer. One can see that the
temporal dependence term to be minimized is indeed the
smeared energy density for each mode k with the appro-
priate factor

ffiffiffiffiffijgjp
coming from the four-dimensional

volume element. Therefore, from now on we will work
directly with the smeared energy density

Ek½f� ≔
Z

dτ
ffiffiffiffiffi
jgj

p
f2ρk: ð30Þ

As stated above, the SLE prescription is based on choosing
the (Hadamard) state that minimizes the energy density
over a temporal window function (30). It is important to
stress the appearance of

ffiffiffiffiffijgjp
which in our case reduces toffiffiffiffiffijgjp ¼ a4. We note that this type of factors also appear in

the analysis of Ref. [46] to smooth the big bang singularity
via quantized fields. In Sec. IV we will apply this
prescription to build a Hadamard state around τ ¼ 0 in a
radiation-dominated spacetime by taking advantage of this
volume element.
In order to minimize Ek, it is very convenient to express it

explicitly in terms of the free parameters μk and λk, namely

Ek ¼ ð2μ2k þ 1Þck;1 þ 2μkReðλkck;2Þ; ð31Þ

where we have defined

c1 ≡ ck;1 ¼
1

4

Z
dτ

ffiffiffiffiffi
jgj

p f2

a2

�
jϕ0

kj2 þ ω2jϕkj2

þ 6ξ

�
a02

a2
jϕkj2 þ

a0

a
ðϕkϕ

0�
k þ ϕ�

kϕ
0
kÞ
��

; ð32Þ

c2 ≡ ck;2 ¼
1

4

Z
dτ

ffiffiffiffiffi
jgj

p f2

a2

�
ϕ0 2
k þ ω2ϕ2

k

þ 6ξ

�
a02

a2
ϕ2
k þ 2

a0

a
ϕkϕ

0
k

��
: ð33Þ

In the above formulas it is assumed that c1 is a positive
quantity, as it is trivially satisfied for ξ ¼ 0. It can be
showed that if we take μk to be real and positive, the
minimization problem over the parameters λk and μk
determines a unique solution, namely
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μk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 − jc2j2

p −
1

2

s
;

λk ¼ −e−iArg c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 − jc2j2

p þ 1

2

s
: ð34Þ

Notice that the minimization problem holds whenever
jc2j
c1

< 1 is satisfied. This is usually the case if ϕk do not

contain singularities in the support of f2 [23,24]. This issue
will be relevant around the big bang singularity, as we will
see in the following sections.

A. CPT-invariant states of low energy

Let us now extend the method above for the
CPT-invariant states in a radiation-dominated universe.
If the minimizing problem is restricted to the set of
CPT-invariant states, we can parametrize the state of
low energy using θk. For this we choose as a fiducial
solution

ϕkðτÞ ¼
1

a
φCPT
k ðτ; θk ¼ 0Þ; ð35Þ

with φCPT
k given in (17) and choosing θk ¼ 0. If we impose

CPT to our general solution (25), using theCPT conditions
at τ ¼ 0, [i.e., φkð0Þ ¼ φ�

kð0Þ and φ0
kð0Þ ¼ −φ0�

k ð0Þ] we
arrive to

λk ¼ coshðθkÞ; μk ¼ sinhðθkÞ: ð36Þ

That is, λk and μk are real functions. Now we proceed to
minimize Ek with the θk parametrization

Ek ¼ ð2μ2k þ 1Þc1 þ 2μkReðλkc2Þ
¼ c1 coshð2θkÞ þ sinhð2θkÞReðc2Þ: ð37Þ

Taking ∂θkW ¼ 0 we end up with

tanhð2θkÞ ¼ −
Reðc2Þ
c1

: ð38Þ

So the state given by

Tk ¼ coshðθkÞϕk þ sinhðθkÞϕ�
k; ð39Þ

with ϕk given in (35) and

θk ¼
1

2
arctanh

�
−
Reðc2Þ
c1

�
ð40Þ

corresponds to the CPT-invariant state of low energy. Note
again that, although a particular fiducial solution has been
chosen in the minimization process, the final result (39) is

independent of this basis. However it depends, in general,
on the choice of f2.

1. An example: CPT-invariant vacuum of low energy
at late times

Let us see how to obtain an example of an adiabatic
(Hadamard) vacuum which is also CPT invariant using the
prescription above. For each choice of the initial vacuum j0i
we have a different prediction for the particle creation
spectrum at late times. Particles are defined at τ → þ∞
as excitations of the out-vacuum j0þi. The particle produc-
tion rate can be obtained by the frequency-mixing
approach [5–8]. It has been reviewed in [1,3,47,48] and
used extensively in the literature for decades (see, for
instance, [18,49–57]). In our case, we find the following
expression for the average density number of created
particles in the mode k⃗ as a function of the initial state
characterized by θk,

nk ≡ jβkj2 ¼ −
1

2
þ e−πκ cosh ð2πκÞ

4π

�
e−2θkκ

1
2

				Γ
�
1

4
þ iκ

�				2

þ e2θkκ−
1
2

				Γ
�
3

4
þ iκ

�				2
�
; ð41Þ

with κ given in Eq. (9). We remark that the above general
expression can be reexpressed, after somemanipulations, as

jβkj2 ¼
1

2
ðcoshð2ηkÞ coshðΛkÞ − 1Þ; ð42Þ

where we have defined coshðΛkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−4πκ

p
, and

2ηk ¼ 2ðθlatek − θkÞ; ð43Þ

with

θlatek ¼ 1

4
ln

�
κ cosh ð2πκÞ

2π2

				Γ
�
1

4
þ iκ

�				4
�
: ð44Þ

The state producing the minimal amount of particles at late
time is therefore given by

θk ¼ θlatek : ð45Þ

This state can be seen as a CPT-invariant low-energy state
associated to a smearing function with support at jτj ∼∞
since at late times (here we include the conventional
renormalization subtractions),

Ek½f� ∝
1

2

Z
dτ f2ωjβkj2: ð46Þ

It is important to remark that, in this case, this state
minimizes the smeared energy density at late times
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independently of the choice of smearing function f2. One
can check that this state is Hadamard by evaluating the
asymptotic large k expansion of θlatek

θlatek ¼ 1

4
ln

�
κ cosh ð2πκÞ

2π2

				Γ
�
1

4
þ iκ

�				4
�

∼
γ2

8k4
þ 5γ4

16k8
þ 61γ6

24k12
þ � � � ð47Þ

and comparing with the adiabatic expansion (24). As
expected, they agree at all orders. This Hadamard and
CPT-invariant state is equivalent to the one proposed in
[32,33]. We note that, if we do not impose CPT invariance,
the states of low energy at early and late times are just j0�i,
which have zero energy [see Eqs. (18) and (20)]. Finally, we
also point out that this identification of the low-energy state
at late times is somewhat similar to the characterization of
the Bunch-Davies vacuum as the low-energy state in de
Sitter when the smearing function has support at very early
times. This is also independent of the particular smearing
function [25,26].
In the following section we will study states of low

energy in a CPT-symmetric radiation-dominated universe
but with f2 supported around the big bang (τ ¼ 0). As we
will see, in this case we find that the result strongly depends
on the choice of f2, and also on ξ. For ξ ≠ 1

6
the issue is

more subtle, and an extra condition has to be imposed on
f2. For ξ ¼ 1

6
this constraint is alleviated.

IV. CPT-INVARIANT STATES OF LOW ENERGY
AT τ = 0 FOR SCALARS

In the last subsection, we have obtained a CPT-invariant
state by minimizing the smeared energy density at jτj → ∞.
However, this may seem an unnatural vacuum state since
we are imposing an initial condition θk ¼ θlatek which is
determined by the late time behavior of the Universe.
Therefore, a simple question arises; can we obtain a
Hadamard state by minimizing the smeared energy density
supported around the big bang, τ ¼ 0 ? We will study the
above question using a Gaussian smearing function

f2gðτÞ ¼
1ffiffiffi
π

p
ϵ
e−

τ2

ϵ2 : ð48Þ

In this section we will work with minimally coupled
scalars ξ ¼ 0 for simplicity. The results can be generalized
to other couplings except for the very special conformal
coupling ξ ¼ 1=6. We detail this last for completeness in
Appendix C.

A. Massless case

Let us first analyze the massless case, where we can find
analytic solutions. We take the fiducial solution given in
(35), that in this case corresponds to the conformal solution

ϕk ¼ e−ikτ

a
ffiffi
k

p . We proceed to obtain the CPT-invariant state of

low energy with the Gaussian function centered at τ ¼ 0,
i.e., f2 ¼ f2g. We first evaluate c1 and c2

c1 ¼
1

4

Z
dτ f2g

�
1

2kτ2
þ k

�
¼ k

4
−

1

4kϵ2
; ð49Þ

c2 ¼
1

4

Z
dτ f2ge−2ikτ

�
1

2kτ2
þ i
τ

�
¼ −

e−k
2ϵ2

4kϵ2
: ð50Þ

We note that, in evaluating them, we made use of the
distributional character of the integrand (see, for example,
[46]). However, although this quantities give finite results,
c1 changes sign depending on the value of k, and therefore

the quotient jc2j
c1

is not necessarily smaller than 1 for all k,
thus the minimization prescription cannot be applied
around τ ¼ 0 whenever we have a divergence in the above
integrals. To bypass this problem and to be able to
minimize the smeared energy density for all k we require
the condition

lim
τ→0

f2ðτÞ
τ2

< ∞: ð51Þ

For example, using f2 ¼ a2f2g one obtains the following
state of low energy for all k centered at τ ¼ 0

θm¼0
k ¼ −

1

2
coth−1

�
eðϵkÞ2

1þ ðϵkÞ2
1þ 2ðϵkÞ2

�
: ð52Þ

The resulting state is Hadamard because the large momen-
tum expansion of θk decays faster than any power of k−n

[see Eq. (24) for γ ¼ 0]. The divergent terms τ−2 in the
integrands of Eqs. (49) and (50) disappear for a confor-
mally coupled field (see Appendix C) and the

ffiffiffiffiffijgjp ¼ a4

factor from the volume element is enough to render both
integrals finite. However, because we are minimizing the
state around the big bang, the resulting state depends on the
test function f2.

B. Massive case

Let us now study the massive case. In this context we
cannot obtain an analytic expression for the state of low
energy centered at τ ¼ 0. However, we can obtain an
approximated state given by the expansion of the modes ϕk
around τ ∼ 0, and study its large-k behavior. We have
explicitly checked that this approximated solution for θk
follows the adiabatic condition (24) up to a given order, that
increases as we increase the order of the expansions in
powers of τ.
This analysis can be done as follows. We start from the

definition of c1 and c2 given in Eqs. (32) and (33) with
the fiducial modes ϕk proposed in Eq. (35), and using
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f2 ¼ a2f2g as the smearing function to ensure a well posed
minimization problem. We then expand the modes in
powers of τ around τ ¼ 0 (where the center of the temporal
window is located), and find

c1 ¼
1

4

Z
dτ a2f2g

�
1

kτ2
þ 2kþ 3γ2τ2

2k
−
1

9
γ2kτ4 � � �

�
; ð53Þ

c2 ¼
1

4

Z
dτa2f2g

�
1

kτ2
þ 2k−

8

3
ik2τ− 2k3τ2 þ 3γ2τ2

2k
� � �
�
:

ð54Þ

We remark that we have chosen f2 ¼ a2f2g for the smearing
function so that the minimization problem is well posed for
all k.
Finally, using Eq. (40), we take the expansions above

and use them to obtain an approximated (and very
involved) expression for the initial phase θk. As a by-
product, we can use this result to check that the state obeys
the Hadamard condition. Namely, if we expand our result
for large k we recover order-by-order the expected asymp-
totic behavior (24). As we include more terms of the τ
expansion, more terms in the large k expansion are
recovered. We have explicitly proved that for Oðτ14Þ in
(53) and (54) we obtain the expected large momentum
expansion up to Oðk−16Þ.

θk ∼
γ2

8k4
þ 5γ4

16k8
þ 61γ6

24k12
þOðk−16Þ: ð55Þ

These computations involves very long analytical
expressions and have required the intensive use of the
Mathematica software.
In summary, with the prescription of states of low energy

we can obtain a CPT-invariant Hadamard state which
minimizes the smeared energy density around the big bang
for a smearing function f2 such as f2 ¼ a2f2g. We note that
the asymptotic expansion (55) is not sensitive to the
particular smearing function f2 that we are using; the
particular choice of f2 only matters in the infrared regime.
We also note that the result above (55) is independent of the
scalar coupling ξ. We have explicitly checked that the large
k expansion of the hyperbolic angle θk obtained via the
SLE prescription does not depend on ξ.

V. CPT-INVARIANT STATES FOR FERMIONS
IN A RADIATION-DOMINATED SPACETIME

Let us consider now a spin one-half field Ψ propagating
in the same background metric ds2 ¼ a2ðτÞðdτ2 − dx⃗2Þ.
The field equation ðiγμ∇μ −mÞΨ ¼ 0, where γμ ¼ 1

a γ
μ and

γμ are the flat spacetime Dirac matrices, become4

�
γ0∂τ þ γ⃗ · ∇!þ 3a0

2a
γ0 þ ima

�
Ψ ¼ 0: ð56Þ

It is also convenient to perform a Weyl transformation for
the spinor field of the form ψ ¼ a3=2Ψ. The mode expan-
sion for the quantized ψ field is given by (Dk⃗h ¼ Bk⃗h for
Majorana spinors)

ψðxÞ ¼
Z

d3k
X
h

h
Bk⃗huk⃗hðxÞ þD†

k⃗h
vk⃗hðxÞ

i
; ð57Þ

where the subindex h refers to the helicity, and where the u-
modes in the Dirac representation

γ0 ¼
�
I 0

0 −I

�
; γ⃗ ¼

�
0 σ⃗

−σ⃗ 0

�
; ð58Þ

can be written as (we have re-expressed the results in
[58,59] in terms of the conformal time, up to the above
a−3=2 Weyl rescaling factor)

uk⃗hðxÞ ¼
eik⃗·x⃗ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
 

hIkðτÞξhðk⃗Þ
hIIk ðτÞ σ⃗·k⃗k ξhðk⃗Þ

!
; ð59Þ

and where ξh is a constant and normalized two-component
spinor ξ†hξh0 ¼ δh0h that represent the helicity eigenstates.
vk⃗hðxÞ is obtained by the charge conjugation operation. The
Dirac equation for the functions hIkðτÞ and hIIk ðτÞ is trans-
formed into [we define again ma ¼ γτ]

h0Ik þ ik hIIk þ iγτ hIk ¼ 0; ð60Þ

h0IIk þ ik hIk − iγτ hIIk ¼ 0; ð61Þ

together with the normalization condition

jhIkj2 þ jhIIk j2 ¼ 1: ð62Þ

As in the scalar case, the general solution can be given in
terms of parabolic cylindrical functions DνðzÞ as

hIk ¼ Ck;1sIkðτÞ þ Ck;2sII�k ð−τÞ; ð63Þ

hIIk ¼ Ck;1sIIk ðτÞ þ Ck;2sI�k ð−τÞ; ð64Þ

where

sIk ¼
1ffiffiffi
2

p D−2iκ

�
e
iπ
4

ffiffiffiffiffi
2γ

p
τ
�
;

sIIk ¼ e
iπ
4

ffiffiffi
κ

p
D−1−2iκ

�
e
iπ
4

ffiffiffiffiffi
2γ

p
τ
�
; ð65Þ4We use the conventions of [1,3].
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and where again κ ¼ k2
4γ. The complex functions Ck;1 and

Ck;2 defining the vacuum state are constrained by the
normalization condition (62).5

It is important to note that the equations (60) and (61) for
the time-dependent part of the field modes hIk and hIIk
remain unchanged under the transformation τ → −τ and,
simultaneously, hIk → hII�k and hIIk → hI�k . Therefore, the
vacuum will be CPT invariant if the chosen modes verify
the relation

hIkðτÞ ¼ hII�k ð−τÞ: ð66Þ

In terms of the functions Ck;1 and Ck;2 a CPT-invariant
vacuum is characterized by the restriction Ck;1 ¼ C�

k;2.
As for the scalar field, we can easily constraint the
CPT-invariant initial conditions at τ ¼ 0 as

hIkð0Þ ¼ hII�k ð0Þ: ð67Þ

Furthermore, we have also the normalization condition (62)
at τ ¼ 0 implying

jhIkð0Þj ¼ jhIIk ð0Þj ¼
1ffiffiffi
2

p : ð68Þ

Therefore, the general (τ ¼ 0) solution to the conditions
(67) and (68) can be written as

hIkð0Þ ¼
eþiΘkffiffiffi

2
p ; hIIk ð0Þ ¼

e−iΘkffiffiffi
2

p ; ð69Þ

where Θk is an arbitrary trigonometric angle. In terms of
Θk, the constants Ck;1 and Ck;2 read

Ck;1 ¼ 2iκ
ffiffiffi
π

p
eπκ
�

eiΘk

Γð1
2
− iκÞ þ

κ
1
2ei

3π
4 e−iΘk

Γð1 − iκÞ
�
; ð70Þ

Ck;2 ¼ C�
k;1. Therefore, the CPT-invariant solution reads

hI;CPTk ¼ Ck;1sIkðτÞ þ C�
k;1s

II�
k ð−τÞ; ð71Þ

hII;CPTk ¼ Ck;1sIIk ðτÞ þ C�
k;1s

I�
k ð−τÞ; ð72Þ

and with Ck;1 given above.
As for the scalar field case, it is also possible to find

solutions that are not CPT invariant. In particular, at late
times there is a preferred solution for the field modes

given by the leading-order adiabatic expansion (positive-
frequency solution)

hIðþÞ
k ðτÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþma

2ω

r
e−i
R
τ
ωðuÞdu ∼ e−iðγ2τ2þκ lnð2γτ2ÞÞ; ð73Þ

hIIðþÞ
k ðτÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω −ma
2ω

r
e−i
R
τ
ωðuÞdu ∼

ffiffiffi
κ

pffiffiffi
γ

p
τ
e−iðγ2τ2þκ lnð2γτ2ÞÞ;

ð74Þ

that leads to

Ck;1 ¼
ffiffiffi
2

p
e−

πκ
2 ; Ck;2 ¼ 0: ð75Þ

This solution is not CPT invariant since Ck;1 ≠ C�
k;2. For

completeness, we also give the form of the preferred
solution at early times (τ → −∞). Again, the solution is
fixed by imposing the late-times negative-frequency beh-
viour

hIð−Þk ðτÞ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþma
2ω

r
e−i
R
τ
ωðuÞdu∼−

ffiffiffi
κ

pffiffiffi
γ

p
τ
eþiðγ2τ2þκ lnð2γð−τÞ2ÞÞ;

ð76Þ

hIIð−Þk ðτÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω −ma
2ω

r
e−i
R
τ
ωðuÞdu ∼ eþiðγ2τ2þκ lnð2γð−τÞ2ÞÞ:

ð77Þ

From this condition we get Ck;1 ¼ 0 and Ck;2 ¼
ffiffiffi
2

p
e−

πκ
2 .

A. Ultraviolet regularity of the CPT-invariant
vacuum states

As happens with the scalar field case, it becomes
fundamental to study the ultraviolet regularity of the
CPT-invariant vacuum states. For cosmological back-
grounds and for spin-1

2
fields it means that for large k,

the behavior of the modes hIkðτÞ and hIIk ðτÞ should be
dictated by their adiabatic expansion. The analysis of the
adiabatic expansion for spinors is more involved than for
scalars. It does not fit the conventional WKB-type template,
as happens for scalar fields. It is given, assuming the
definitions (59) for the modes, by

hIkðτÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþma

2ω

r
ð1þ Fð1Þ

k þ Fð2Þ
k þ � � �Þe−i

R
τ Ωkðτ0Þdτ0 ;

hIIk ðτÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω −ma
2ω

r
ð1þ Gð1Þ

k þGð2Þ
k þ � � �Þe−i

R
τ Ωkðτ0Þdτ0 ;

ð78Þ

where again ω2 ¼ k2 þm2a2, and ΩkðτÞ ¼ ωþ
ωð1Þ
k þ ωð2Þ

k þ � � �. The recursive algorithm is displayed in

5In terms of Ck;1 and Ck;2 the normalization condition reads

eπκ

2
ðjCk;1j2 þ jCk2j2Þ þ

2
ffiffiffi
κ

p
sinh ð2πκÞffiffiffi

π
p

× Re½e−iπ4Ck;1C�
k;2Γð−2iκÞ� ¼ 1:
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[58–61]. Note that (78) provides the adiabatic condition for
spin-1

2
fields: for large k the behavior of the modes hI;IIk

should follow this expansion at all orders. This is the
analogous adiabatic condition for scalar fields defined in
Eqs. (21) and (22). Again, in order to find the desired
asymptotic behavior for the trigonometric phase Θk it is
enough to evaluate the adiabatic expansion at τ ¼ 0. At this
limit we obtain a well-defined large k asymptotic expansion

hIkð0Þ ∼
1ffiffiffi
2

p
�
1 − i

γ

4k2
−

γ2

32k4
− i

21γ3

128k6
−

85γ4

2048k8
þ � � �

�
;

ð79Þ

and hIIk ð0Þ ∼ hI�k ð0Þ, which requires the following large k
expansion for Θk:

Θk ∼ −
�

γ

4k2
þ γ3

6k6
þ 4γ5

5k10
þ � � �

�
: ð80Þ

This determines the appropriated rate for the decaying of
Θk when k → ∞ to have a CPT-invariant vacuum of
infinite adiabatic order. A vacuum that satisfies the asymp-
totic condition above is an adiabatic vacuum state and
hence ultraviolet regular or, equivalently, Hadamard.

VI. STATES OF LOW ENERGY FOR FERMIONS

In this section, we extend the prescription to build states
of low energy to spin-1

2
fields. We proceed here in analogy

with the scalar field case. First, we consider a generic scale
factor a, and then, we particularize the method for a
radiation-dominated universe with CPT symmetry.
Although we do not present here a formal proof that the
states of low energy in a general FLRW are Hadamard, we
check that the resulting CPT-invariant states of low energy
considered here satisfy (80), and therefore are Hadamard/
adiabatic states.
The starting point is again to fix a basis of solutions for

the modes, namely, fhIk; hIIk g. Any other set of modes can
be parametrized in the form

tIk ¼ λkhIk þ μkhII�k ;

tIIk ¼ λkhIIk − μkhI�k : ð81Þ

From the normalization condition, μk and λk should obey

jλkj2 þ jμkj2 ¼ 1: ð82Þ

The smeared energy density over a temporal window
function f2 is given by (see Sec. III)

Ek½f� ≔
Z

dτ
ffiffiffiffiffi
jgj

p
f2ρk; ð83Þ

where
ffiffiffiffiffijgjp ¼ a4, and where the energy density ρk asso-

ciated with the set of modes ftIk; tIIk g reads

ρkðτÞ ¼
2i
a4

�
tIk
∂tI�k
∂τ

þ tIIk
∂tII�k

∂τ

�
: ð84Þ

We can choose μk or λk to be real since feiαtIk; eiαtIIk g is
also a solution of the system of equations. For future
convenience, and following similar arguments than in the
scalar case [23], we assume that λk is real and positive
λk > 0. The smeared energy density can be written, as in
the scalar case, in terms of two constants c1 ≡ ck;1 and
c2 ≡ ck;2, namely

Ek ¼ ð1 − 2jμkj2Þc1 þ 2jμkjReðμ�kc2Þ
≡ ð1 − 2jμkj2Þc1 þ 2jμkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jμkj2

q
jc2j

× cosðArgc2 − ArgμkÞ; ð85Þ

where

c1 ¼ 2i
Z

dτ f2
�
hIk

∂hI�k
∂τ

þ hIIk
∂hII�k

∂τ

�
; ð86Þ

c2 ¼ 2i
Z

dτ f2
�
hIk

∂hIIk
∂τ

− hIIk
∂hIk
∂τ

�
: ð87Þ

From now on, we assume that the fiducial modes are such
that c1 is a real, negative quantity. Note that this is the case
for the standard mode solutions in Minkowski spacetime.
We find that Ek is trivially minimized with respect to

Argμk for Argμk ¼ Argc2 þ π. Therefore, the task now is
to minimize

Ek ¼ ð1 − 2jμkj2Þc1 − 2jμkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jμkj2

q
jc2j: ð88Þ

with respect to jμkj. Taking ∂jμkjEk ¼ 0 we obtain four
possible solutions. Only two of them are real and positive
for λk,

λk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
∓ c1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21þjc2j2

p
s

; jμkj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� c1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21þjc2j2

p
s

:

ð89Þ

From the above solution, one can easily check that the one
that minimizes the smeared energy density Ek is

λk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
−

c1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21þjc2j2

p
s

; jμkj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ c1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21þjc2j2

p
s

:

ð90Þ
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and the minimum value of the smeared energy density Ek

is Ek ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ jc2j2

p
.

As a final remark, we note that, in contrast to the analysis
for scalar fields, it is here possible to find a maximal value
for Ek. If we take now Argμk ¼ Argc2 in (85) and then
compute ∂jμkjEk ¼ 0 we find again (89). Now, inserting
them into Ek again, we find that it takes its maximum value
for the opposite solution (þ for λk and − for μk), that gives
Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ jc2j2

p
. This renders a nonphysical state.

A. CPT-invariant states of low energy

We can repeat the above analysis imposing CPT
invariance. In this case, we can choose a convenient fiducial
solution given by

hIk ¼ hI;CPTk ðτ;Θk ¼ 0Þ; hIIk ¼ hII;CPTk ðτ;Θk ¼ 0Þ;
ð91Þ

with hI;CPTk and hII;CPTk given in Eqs. (71) and (72) for
Θk ¼ 0. Therefore, the modes tI;IIk read

tIk ¼ cosðΘkÞhIk þ i sinðΘkÞhII�k ; ð92Þ

tIIk ¼ cosðΘkÞhIIk − i sinðΘkÞhI�k : ð93Þ

Therefore,

Ek ¼ cosð2ΘkÞc1 þ sinð2ΘkÞImðc2Þ; ð94Þ

and the minimization equation ∂Θk
Ek ¼ 0 becomes

− sinð2ΘkÞc1 þ cosð2ΘkÞImðc2Þ ¼ 0; ð95Þ

therefore

tanð2ΘkÞ ¼
Imðc2Þ
c1

: ð96Þ

The solution for the angle then reads

Θk ¼
1

2
arctan

�
Imðc2Þ
c1

�
þ nπ

2
: ð97Þ

For n even we have a state of low energy, while for n odd
we obtain a state of high energy, which has to be discarded.
Up to irrelevant global phases (97) characterize a single
low-energy state, CPT invariant, depending only on the
smearing function f2.

1. An example: CPT-invariant vacuum
of low energy at late times

We can also compute the particle creation for an initial
vacuum state characterized by Θk. The vacuum j0i is

perceived at late times as a collection of particles, defined
as quantum excitations of the adiabatic out-vacuum j0þi.
We find6

nk;h ¼ jβk;hj2 ¼
1

2
−
e−πκ sinhð2πκÞ ffiffiffi

κ
p

4π

�
e−2iΘkei

π
4

× ΓðiκÞΓ
�
1

2
− iκ

�
þ e2iΘke−i

π
4Γð−iκÞΓ

�
1

2
þ iκ

��
;

ð98Þ

where κ ¼ k2
4γ. As for the case of scalar fields, and in

agreement with the results of [32,33], the above expression
can be rewritten as

jβk;hj2 ¼
1

2
ð1 − cosð2ηkÞ cosðΛkÞÞ; ð99Þ

where cosðΛkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−4πκ

p
and

2ηk ¼ 2ðΘlate
k − ΘkÞ ð100Þ

with

Θlate
k ¼ π

8
þ 1

2
Arg

�
Γ
�
1

2
− iκ

�
ΓðiκÞ

�
: ð101Þ

Arg(z) refers to the argument of z. As for the scalar case this
state is the low-energy state associated to a smearing
function f2 with support at jτj ∼∞. It minimizes the
smeared energy density Ek at late times independently of
f2, and as expected, it is Hadamard. One can easily check
this statement by evaluating the asymptotic large k expan-
sion of Θlate

k and confirming that it agrees with the adiabatic
expansion (80) at any order. This Hadamard and CPT-
invariant state turns out to be equivalent to the one proposed
in [32,33].

VII. CPT-INVARIANT STATES OF LOW ENERGY
AT τ = 0 FOR FERMIONS

In this section, we study how to obtain a vacuum state
with the SLE prescription using a smearing function with
support around τ ¼ 0. For this purposes, we use again the
Gaussian function f2g defined in Eq. (48). It is interesting to
note that the energy density decays as a−4 for τ → 0, this is
a consequence that massless fermions enjoys conformal
invariance. A similar behavior was found for massive
scalars with ξ ¼ 1=6. It means that the term

ffiffiffiffiffijgjp ¼ a4

from the volume element makes the integral of the smeared
energy density perfectly finite (see also the conformally
coupled scalar case Appendix C). As in the scalar case, we
study both the massless and the massive cases.

6Note that the spectrum is indeed independent of the helicity h.
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A. Massless case

In this case the fiducial solution (91) correspond to the
conformal modes hIk ¼ 1ffiffi

2
p e−ikτ and hIIk ¼ 1ffiffi

2
p e−ikτ. For

the smearing function we choose f2 ¼ f2g. If we compute
the integrals (86) and (87) we obtain

c1 ¼ −
2k
2

Z
dτ f2g ¼ −

k
2
; c2 ¼ 0: ð102Þ

Therefore, from (96) we get the state of low energy

Θm¼0
k ¼ 0: ð103Þ

This result is independent of the smearing function that we
use. This is because Θk ¼ 0 minimizes the energy density

ρkðτÞ ¼ −
2k
a4

cos 2Θk; ð104Þ

for all τ. We note that Θm¼0
k ¼ 0 satisfies the adiabatic

condition (80) at all orders (remember that m ¼ 0 implies
γ ¼ 0). This is the same situation as for the conformally
coupled massless scalar field (see Appendix C).

B. Massive case

Let us study now the massive case. We follow the same
procedure as in the scalar case to obtain an approximated
state of low energy by expanding the modes hIk and hIIk
around τ ∼ 0. We explicitly compute its large-k behavior
and check that it satisfies the adiabatic condition (80) up to
a given order, that increases as we improve the orders of the
expansion in τ.
The process is as follows. First, we expand the modes in

c1 and c2 in powers of τ around τ ¼ 0. We use the fiducial
solution given in (91) and the Gaussian smearing function
f2 ¼ f2g. The first orders of the expansion read

c1 ¼ 2i
Z

dτ f2g

�
hIk

∂hI�k
∂τ

þ hIIk
∂hII�k

∂τ

�

¼
Z

dτ f2g

�
−4

ffiffiffiffiffi
γκ

p
−
2

3
γ2

ffiffiffiffiffi
γκ

p
τ4 þ � � �

�
; ð105Þ

c2 ¼ 2i
Z

dτ f2g

�
hIk

∂hIIk
∂τ

− hIIk
∂hIk
∂τ

�

¼ i
Z

dτ f2g

�
4

ffiffiffiffiffiffiffi
γ3κ

q
τ2 −

16

3
γ5=2κ3=2τ4 þ � � �

�
: ð106Þ

Then, we insert this integrals in (96) and obtain an
approximated solution for the initial phase Θk. We have
computed these expressions up to Oðτ14Þ. Finally, we
compute the large-k expansion of Θk, obtaining

Θk ¼
1

2
arctan

�
Imðc2Þ
c1

�

∼ −
�

γ

4k2
þ γ3

6k6
þ 4γ5

5k10
þOðk−14Þ

�
; ð107Þ

which fully agrees with the asymptotic expansion (80).
As for the scalar case, these computations have also
required the assistance of the Mathematica software.
The more orders we consider in the τ expansion the
better is the coincidence with the adiabatic expansion. We
have checked that for an expansion at order Oðτ14Þ
we recover the adiabatic expansion to Oðk−14Þ. This
gives strong evidence that the prescription for the low-
energy states proposed here is consistent with the
Hadamard/adiabatic condition for more general FLRW
spacetimes.

VIII. CONCLUSIONS AND FINAL COMMENTS

The concept of states of low energy appears to be a very
useful prescription to single out a preferred state in FLRW
cosmologies. One of the major virtues of the construction is
that it guarantees the Hadamard condition for the selected
vacuum state. The crucial point is the use of a smearing
window in the time variable. The prescription was estab-
lished in [23] for scalar fields. In this paper, we have
extended the construction to spin-1

2
fields and applied it to

the special case of a radiation-dominated universe. In this
context a further symmetry condition can also be imposed.
In conformal time τ, the expansion factor for a radiation-
dominated universe is a linear function, which allows
analytic continuation to negative values of the conformal
time [32,33]. CPT symmetry at the big bang can be
naturally required as an extra condition to impose on the
low-energy states. A possible choice for the smearing
function is to select it with support at jτj → ∞. In this
case, the resulting state is independent of the particular
choice of the smearing function, since its support lies in an
adiabatic region of the spacetime. However, this involves
giving initial conditions by knowing the late-times behavior
of the expanding universe. There is a more natural option
that consists of choosing the window function around the
big bang itself. Performing a careful analysis for the
minimization of the smeared energy density, including
the appropriate factors coming from the volume element,
we have checked that this choice is fully consistent with
physical requirements at the ultraviolet, namely, the adia-
batic/Hadamard condition. Therefore, these states are then
suitable candidates as effective big bang vacua from the
quantum field theory viewpoint. The infrared behavior of
these states is then sensitive to the smearing function
chosen. This ambiguity could be naturally interpreted, at
least heuristically, as encoding quantum gravity effects of a
more fundamental theory.
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APPENDIX A: THE ADIABATIC EXPANSION

In this appendix we briefly review the adiabatic method
for scalar fields. We follow [3], but we translate the notation
and expression to work in conformal time. Consider a
massive scalar field ϕ propagating in a flat FLRW space-
time ds2 ¼ a2ðdτ2 − dx⃗2Þ. As in the main text, we expand
the quantized field in Fourier modes (3). From the Klein-
Gordon equation, we can easily obtain the equation for the
field modes

ϕ00
k þ 2

a0

a
ϕ0
k þ

�
k2 þ a2m2 þ 6ξ

a00

a

�
ϕk ¼ 0: ðA1Þ

As in the main text, it is convenient to work with the
rescaled Weyl field φ≡ aϕ and the rescaled modes
φkðτÞ≡ aðτÞϕkðτÞ. And then, the mode equation results in

φ00
k þ

�
ω2 þ ð6ξ − 1Þ a

00

a

�
φk ¼ 0: ðA2Þ

An unavoidable requirement that any suitable vacuum
state must meet is that is has to be ultraviolet regular. It can
be easily understood by requiring that the short distance
behavior of the Feynman Green’s function iGFðx; x0Þ
and related quantities must be similar to that found in
Minkowski space. This becomes necessary to guarantee the
existence of finite vacuum expectation values after renorm-
alization. For quantum states in FLRW spacetimes this
criterion can be implemented by the adiabatic condition
(see Sec. 3.1) [3]. In terms of field modes this means that,
for large k, the field modes must behave as

φkðτÞ ∼
1ffiffiffiffiffiffiffiffiffiffiffiffi
ΩkðτÞ

p e−i
R

τ Ωkðτ0Þdτ0 ; ðA3Þ

where the function ΩkðτÞ admits an asymptotic adiabatic
expansion in terms of the derivatives of aðτÞ

Ωk ¼ ωð0Þ
k þ ωð1Þ

k þ ωð2Þ
k þ ωð3Þ

k þ ωð4Þ
k þ � � � : ðA4Þ

The coefficient ωðnÞ
k depends on derivatives of aðτÞ up to

and including the order n. The leading order of the

expansion is ωð0Þ
k ≡ ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2m2

p
and the next-to-

leading orders are obtained, by systematic iteration, from
the relation

Ω2
k ¼ ω2 þ ð6ξ − 1Þ a

00

a
þ 3

4

ðΩ0
kÞ2

Ω2
k

−
1

2

Ω00
k

Ωk
; ðA5Þ

derived from the mode equation (A2). Inserting the
adiabatic expansion in the equation above, and grouping
terms with the same adiabatic order, it is possible to obtain
the nth coefficient from the lower ones once the leading
term is defined. It can be proved that the terms with odd

adiabatic order are zero, i.e., ωð2nþ1Þ
k ¼ 0. The first next-to-

leading-order terms can be found, for example, in [3]. From
the adiabatic expansion of the field modes, one can easily
build the adiabatic expansion of the Feynman Green’s
function at coincidence

iGFðx; xÞAd ¼
Z

d3k
2ð2πÞ3a2

X∞
n¼0

ðΩ−1
k ÞðnÞ: ðA6Þ

In Refs. [43–45] it was checked that the first orders of this
expansion, when expressed at separated points, coincide
with the deWitt-Schwinger expansion of the two point
function in four spacetime dimensions. As stated above, in
FLRW universes the Hadamard condition translates to
require for the field modes φk a large momentum behavior
dictated by (21) at all orders. A state that satisfies this
requirement is called a state of infinite adiabatic order (or
just an adiabatic state). We demand the physical admissible
states to be adiabatic states (of infinite adiabatic order) and
hence equivalent to be Hadamard states.

APPENDIX B: LARGE k EXPANSION
AT A FIXED TIME

In this appendix, we give, for a radiation-dominated
spacetime, the large-k expansion of the CPT-invariant two-
point function in momentum space at a fixed time and for
an arbitrary θk, and compare it with its adiabatic expansion.
Our goal here is to show that only if θk satisfies the
asymptotic condition given in (24), the field modes are
compatible with the adiabatic condition, and therefore, the
vacuum state is Hadamard.
From the CPT-invariant solution (17), and for an

arbitrary value of θk, we can compute the large k expansion
of the square of the CPT-invariant modes at a fixed time τ
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jφCPT
k j2 ∼ coshð2θkÞ

�
1

k
−
γ2τ2

2k3
þ 3γ4τ4

8k5
þ γ2

4k5
−
γ2 cosð2kτÞ

4k5
þOðk−6Þ

�

þ sinhð2θkÞ
�
−

γ2

4k5
þ cosð2kτÞ

k
−
γ2τ3 sinð2kτÞ

3k2
−
γ4τ6 cosð2kτÞ

18k3
−
γ2τ2 cosð2kτÞ

2k3
þO

�
sinð2kτÞ

k4

��
; ðB1Þ

and compare this result with the asymptotic behavior
dictated by the adiabatic expansion, namely

jφkj2Ad ∼
1

k
−
γ2τ2

2k3
þ γ2

4k5
þ 3γ4τ4

8k5
þOðk−6Þ: ðB2Þ

If we now impose for the initial hyperbolic phase the
asymptotic behavior given in (24), the oscillatory behavior
in (B1) cancels out and we recover, order by order, the large
k behavior required by the adiabatic expansion (B2) at any
time τ. Therefore, any θk obeying (24) gives an adiabatic
(Hadamard) CPT-invariant vacua.

APPENDIX C: STATES OF LOW ENERGY FOR
CONFORMALLY COUPLED SCALARS

For conformally coupled scalar fields ξ ¼ 1=6 it is
convenient to write the energy density ρk for the mode
Tk in terms of the Weyl transformed mode T k (i.e.,
T k ¼ aTk) because it takes the simple form

ρkðτÞ ¼
1

4a4
ðjT 0

kj2 þ ω2jT kj2Þ; ðC1Þ

with ω2 ¼ k2 þm2a2. Note that all the divergent behavior
at τ → 0 is encapsulated in the term a−4. The minimization
prescription follows as in Sec. III. The smeared energy
density to be minimized around the big bang takes the
simple form

Ek½f� ≔
Z

dτ
ffiffiffiffiffi
jgj

p
f2ρk ¼

1

4

Z
dτ f2ðjT 0

kj2 þ ω2jT kj2Þ;

ðC2Þ

As we see in the above equation, conformally coupled
scalar fields are less sensitive to the big bang singularity.
The same behavior was found for spin-1

2
fields. We try to

define a Hadamard state around τ ¼ 0 as we did in the
above sections. The integrals which are left to compute are

c1 ≡ ck;1 ¼
1

4

Z
dτ f2ðjφ0

kj2 þ ω2jφkj2Þ; ðC3Þ

c2 ≡ ck;2 ¼
1

4

Z
dτ f2ðφ02

k þ ω2φ2
kÞ: ðC4Þ

where fφk;φ�
kg are a pair of fiducial solutions of the Klein-

Gordon equation. Any general mode is given by

T kðτÞ ¼ λkφkðτÞ þ μkφ
�
kðτÞ: ðC5Þ

For the massless case we can take the conformal vacuum
φkðτÞ ¼ e−ikτffiffi

k
p as the fiducial mode and obtain that c2 ¼ 0

irrespectively of f2. Therefore, using (34), we find μk ¼ 0
and λk ¼ 1, and we conclude that the conformal vacuum
minimizes the energy density at any τ. Therefore, this state
is independent of the test function. One can also see this
by computing the energy density for any CPT-invariant
state parametrized by θk. In this case one obtains
ρk ¼ k

4a4 coshð2θkÞ. This quantity is minimized for θk ¼ 0,
at any τ.
For the massive case we can take Eq. (35) as the fiducial

solution and build a state that minimizes the smeared
energy density with f2 with support at τ ¼ 0. As for spin-1

2
fields, we do not need extra requirements for the smearing
function. The resulting Hadamard state is also dependent
on f2.

APPENDIX D: STATES OF LOW ENERGY IN
MINKOWSKI FOR FERMIONS

Let us consider the minimization prescription described
in Sec. VI for fermions in a Minkowski spacetime. A
general mode ftIk; tIIk g solution can be described by the
following linear combination of fiducial solutions:

tIk ¼ λkhIk þ μkhII�k ;

tIIk ¼ λkhIIk − μkhI�k : ðD1Þ

We take the well-known postive and negative frequency
solutions of Minkowski spacetime as the fiducial solutions.

hIk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþm
2ω

r
e−iωτ; hIIk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω −m
2ω

r
e−iωτ: ðD2Þ

By minimizing the smeared energy density for a generic
mode we obtain that only λk ¼ 1 and μk ¼ 0 renders a
minimum value for the smeared energy density Ek, irre-
spective of the test function used. This solution as one can
see from (D1) corresponds to the standard positive fre-
quency mode in Minkowski spacetime. The calculation
proceeds as follows. First one has to compute the coef-
icients c1 and c2 given in (86) and (87). By substituting
with (D2) one arrives at

c1 ¼ −2ω
Z

dτ f2 c2 ¼ 0: ðD3Þ
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Therefore, the two possible solutions that appears when
minimizing Ek [see Eq. (88)] are given by

λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
∓ −ω

2ω

r
; jμkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� −ω

2ω

r
: ðD4Þ

From the above solutions, the one that minimizes the
smeared energy density is given by

λk ¼ 1; μk ¼ 0; ðD5Þ

which corresponds to the standard positive-frequency
solution (D2). If we compute the energy density we obtain

ρk ¼ 2i
�
hIk

∂hI�k
∂τ

þ hIIk
∂hII�k

∂τ

�
¼ −2ω: ðD6Þ

In other words, this choice gives the well-know state of low
energy in Minkowski spacetime. This is the state of lowest
energy for fermions. As a curiosity, the other possible
solution that we obtain when finding the extrema of Ek
corresponds to λk ¼ 0, μk ¼ 1. That correspond to negative
frequencies, which renders a nonphysical state. In this case,
the vacuum energy density results in ρk ¼ þ2ω, which
corresponds to its maximal value.
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