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We study the nonrelativistic limit of quantum fields for an inertial and a noninertial observer. We show
that nonrelativistic particle states appear as a superposition of relativistic and nonrelativistic particles in
different frames. Hence, the nonrelativistic limit is frame dependent. We detail this result when the
noninertial observer has uniform constant acceleration. Only for low accelerations, the accelerated observer
agrees with the inertial frame about the nonrelativistic nature of particles locally. In such a quasi-inertial
regime, both observers agree about the number of particles describing quantum field states. The same does
not occur when the acceleration is arbitrarily large (e.g., the Unruh effect). We furthermore prove that wave
functions of particles in the inertial and the quasi-inertial frame are identical up to the coordinate
transformation relating the two frames.
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I. INTRODUCTION

Since the theoretical proposal of the Unruh effect [1–3]
as the equivalent of the Hawking effect [4] in accelerated
frames, there has been a wide interest in detectors able to
reveal such an effect. In their pioneering works, Unruh and
DeWitt [3,5,6] considered a particle in a box detecting
field excitation in the comoving frame via monopole
coupling. These works provided a toy model for the
description of noninertial detectors that interact with fields
in their proper frame and produce acceleration-induced
effects. The same model has been used in the context of
electrodynamics for light-matter interaction of accelerated
atoms (see e.g., [7–9]).
Atomic Unruh-DeWitt detectors are described by a first-

quantization prescription: the atom is assumed to be non-
relativistic and made by a fixed number of particles.
However, to the best of our knowledge, the fact that such
a description is frame dependent has been overlooked.
Remarkably, one has to take into account that the labo-
ratory and the atom frame have different representations for
the same quantum system.
One of the features of quantum field theory in curved

spacetime is the fact that different observers give different
particle representations for the same state [10]. For

instance, the vacuum state of an inertial frame appears
as a thermal bath of particles if seen by accelerated
observers [1–3]. As a consequence of such frame depend-
ence, the number of particles is generally not preserved if
one switches from one frame to another. This poses a
problem for the first quantization description of atomic
systems in noninertial frames. An accelerating atom—that
is prepared in the laboratory frame with a fixed number of
electrons—appears as made by an indefinite number of
particles in its proper frame.
In addition to fixed numbers of particles, nonrelativistic

energies are assumed for the first quantization of atomic
systems. One may wonder if, along with the number of
particles, the nonrelativistic limit is a frame dependent
feature of the quantum system. To address such a question,
in this manuscript we investigate the nonrelativistic limit of
fields in different frames.
In our previous work [11], we derived the nonrelativistic

limit of scalar and Dirac fields in curved spacetimes. Here,
we study the points of view of an inertial and a noninertial
observer. We show that the two observers do not always
agree about the nonrelativistic nature of particles.
Specifically, states that are nonrelativistic in the inertial
frame appear as a mixture of relativistic and nonrelativistic
particles if seen by the noninertial observer. We detail the
case in which the noninertial observer is uniformly accel-
erated, and we quantify the presence of nonrelativistic
particles depending on the magnitude of the acceleration α.
As a consequence of such frame dependence, accelerated

observers cannot rely on the nonrelativistic description of
atomic systems. Conversely, no problem arises when both
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observers are inertial and moving with low relative veloc-
ities. We are, hence, motivated to look for a trade-off
between noninertial (α ≠ 0) and inertial (α ¼ 0) motion,
which, respectively, produces acceleration-induced effects
and preserves nonrelativistic energies and number of
particles. We show that such a quasi-inertial condition is
met when α is sufficiently small and when both the state
and the noninertial observer are localized where the metric
is almost flat. In such quasi-inertial regime, the two
observers agree about the nonrelativistic nature and the
number of particles.
In addition, we show that wave functions describing

states in the quasi-inertial frame are approximated by the
corresponding wave functions in the inertial frame, with the
only difference coming from the coordinate transformation
relating the two frames. In other words, particle states
appear identical—i.e., with the same number of particles
and the same wave function—if seen by either observer.
We detail the results by considering Gaussian single

particles and the related quasi-inertial regime. The accel-
erated observer sees a nonrelativistic particle only when α
is sufficiently small and the wave packet in the inertial
frame is narrower than the scale length of the curvature, but
wider than any relativistic wavelength. We also show that
the wave function describing the state the accelerated frame
is approximately Gaussian.
The manuscript is organized in the following way. In

Sec. II we consider an inertial and a noninertial frame and
show that such observers generally do not agree about the
nonrelativistic nature and the number of particles. In
Sec. III we consider the specific case of a constant uniform
acceleration. The case of low acceleration and a quasiflat
metric is discussed in Sec. IV. In such a regime, the
nonrelativistic limit, number of particles and wave function
of any state are approximately the same in the two frames.
We detail these results in Sec. V for Gaussian single
particles. Conclusions are drawn in Sec. VI.

II. INERTIAL AND NONINERTIAL FRAME

Here, we consider two sets of coordinates. With ðt; x⃗Þ we
refer to an inertial frame, characterized by the Minkowski
metric

ημν ¼ diagð−c2; 1; 1; 1Þ; ð1Þ

where c is the speed of light. We also consider a coordinate
transformation ðt; x⃗Þ ↦ ðT; X⃗Þ such that the frame ðT; X⃗Þ is
noninertial and associated to a static metric gμν. The
condition of static spacetime guarantees the definition of
particles with defined real energy [11]. Moreover, we
consider a complex scalar field in the inertial (ϕ̂) and in
the noninertial (Φ̂) frame. ϕ̂ðt; x⃗Þ transforms into Φ̂ðT; X⃗Þ
as a scalar field, under the coordinate transformation
ðt; x⃗Þ ↦ ðT; X⃗Þ:

Φ̂ðT; X⃗Þ ¼ ϕ̂ðtðT; X⃗Þ; x⃗ðT; X⃗ÞÞ: ð2Þ

The aim of this section is to show that the nonrelativistic
limit in ðt; x⃗Þ is generally noncompatible with the non-
relativistic limit in ðT; X⃗Þ.
We start by decomposing ϕ̂ with respect to Klein-

Gordon modes gðθÞ and hðθÞ:�
c2ημν∂μ∂ν −

�
mc2

ℏ

�
2
�
gðθÞ ¼ 0; ð3aÞ

�
c2ημν∂μ∂ν −

�
mc2

ℏ

�
2
�
hðθÞ ¼ 0; ð3bÞ

where θ is a discrete and/or continuum collection of
quantum numbers and gðθÞ and hðθÞ have, respectively,
positive and negative frequencies:

gðθ; t; x⃗Þ ¼ g̃ðθ; x⃗Þe−iωðθÞt; hðθ; t; x⃗Þ ¼ h̃ðθ; x⃗ÞeiωðθÞt;
ð4Þ

with ℏωðθÞ as the energy of the single particle with
quantum numbers θ. The decomposition of the field ϕ̂
reads as

ϕ̂ðt; x⃗Þ ¼
X
θ

�
gðθ; t; x⃗ÞâðθÞ þ hðθ; t; x⃗Þb̂†ðθÞ

�
; ð5Þ

where
P

θ is a generalized sum, âðθÞ is the annihilation
operator for the particle with quantum numbers θ and b̂†ðθÞ
is the creation operator for the associated antiparticle.
The modes gðθÞ and hðθÞ are orthonormal with respect to

the Klein-Gordon inner product:

ðgðθÞ; gðθ0ÞÞKG ¼ δθθ0 ; ð6aÞ

ðhðθÞ; hðθ0ÞÞKG ¼ −δθθ0 ; ð6bÞ

ðgðθÞ; hðθ0ÞÞKG ¼ 0; ð6cÞ

where

ðϕ;ϕ0ÞKG ¼ i
ℏc2

Z
R3

d3x

�
ϕ�ðt; x⃗Þ∂0ϕ0ðt; x⃗Þ

−ϕ0ðt; x⃗Þ∂0ϕ�ðt; x⃗Þ
�
: ð7Þ

The deltas in Eq. (6) are generalized: they act as Kronecker
deltas for discrete indexes and as Dirac deltas for con-
tinuum variables.
We also define the vacuum state j0Mi with respect to

âðθÞ and b̂ðθÞ:
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âðθÞj0Mi ¼ 0; b̂ðθÞj0Mi ¼ 0: ð8Þ

Similar decomposition occurs for the field Φ̂:

Φ̂ðT;X⃗Þ¼
X
Θ

�
GðΘ;T;X⃗ÞÂðΘÞþHðΘ;T;X⃗ÞB̂†ðΘÞ

�
; ð9Þ

where GðΘÞ and HðΘÞ are curved Klein-Gordon modes
with real frequencies with respect to the time coordinate T:�

c2ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞ −

�
mc2

ℏ

�
2
�
GðΘÞ ¼ 0; ð10aÞ

�
c2ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
gμν∂νÞ −

�
mc2

ℏ

�
2
�
HðΘÞ ¼ 0; ð10bÞ

GðΘ; T; X⃗Þ ¼ G̃ðΘ; X⃗Þe−iΩðΘÞT; ð11aÞ

HðΘ; T; X⃗Þ ¼ H̃ðΘ; X⃗ÞeiΩðΘÞT: ð11bÞ

ÂðΘÞ (B̂ðΘÞ) is the annihilation operator associated to the
particle (antiparticle) with quantum numbers Θ.
In this case, the orthonormality of GðΘÞ and HðΘÞ

modes with respect to the curved Klein-Gordon scalar
product is

ðGðΘÞ; GðΘ0ÞÞCKG ¼ δΘΘ0 ; ð12aÞ

ðHðΘÞ; HðΘ0ÞÞCKG ¼ −δΘΘ0 ; ð12bÞ

ðGðΘÞ; HðΘ0ÞÞCKG ¼ 0: ð12cÞ

Such a scalar product reads as

ðΦ;Φ0ÞCKG ¼ −
i
ℏc

Z
R3

d3X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðT; X⃗Þ

q
g0μðT; X⃗Þ

×

�
Φ�ðT; X⃗Þ∂μΦ0ðT; X⃗Þ

−Φ0ðT; X⃗Þ∂μΦ�ðT; X⃗Þ
�
: ð13Þ

The vacuum state j0NMi of the field Φ̂ reads as

ÂðΘÞj0NMi ¼ 0; B̂ðΘÞj0NMi ¼ 0: ð14Þ

Creation and annihilation operators of particles and
antiparticles with respect to ϕ̂ and Φ̂ are related by a
Bogoliubov transformation:

âðθÞ ¼
X
Θ

�
αðθ;ΘÞÂðΘÞ þ βðθ;ΘÞB̂†ðΘÞ

�
; ð15aÞ

b̂ðθÞ ¼
X
Θ

�
γðθ;ΘÞB̂ðΘÞ þ δðθ;ΘÞÂ†ðΘÞ

�
: ð15bÞ

A general procedure to compute Eq. (15) is the follow-
ing. One starts by isolating âðθÞ and b̂†ðθÞ from Eq. (5) by
using the Klein-Gordon scalar product (7) and the ortho-
normality conditions (6):

âðθÞ ¼ ðgðθÞ; ϕ̂ÞKG; b̂†ðθÞ ¼ −ðhðθÞ; ϕ̂ÞKG: ð16Þ

Then, one combines Eq. (16) with the inverse of Eq. (2) and
with Eq. (9) to obtain an equation with the form of Eq. (15).
By using Eq. ((15) in Eq. (8), one can also derive the

relation between j0Mi and j0NMi. The Minkowski vacuum
j0Mi can be written as an element of the Fock space FNM
generated by the vacuum state j0NMi and the creation
operators Â†ðΘÞ and B̂†ðΘÞ. Analogously, j0NMi can be
seen as an element of the Minkowski-Fock space FM [12].
We define the nonrelativistic limit as

ℏω
mc2

− 1≲ ϵ ð17Þ

in the Minkowski spacetime and

���� ℏΩmc2
− 1

����≲ ϵ ð18Þ

in the noninertial frame, where ϵ ≪ 1 is a parameter that is
vanishing in the nonrelativistic limit. A nonrelativistic
particle in the inertial (noninertial) frame is defined by
the quantum numbers θ (Θ) such that ωðθÞ (ΩðΘÞ) is of
order given by Eq. (17) [Eq. (18)]. Correspondingly, a
nonrelativistic Fock state in the inertial (noninertial) frame
is defined by nonrelativistic particles created in the vacuum
state j0Mi (j0NMi).
One can notice that, even if θ is nonrelativistic—i.e.,

ℏωðθÞ=mc2 − 1≲ ϵ—the sum of Eq. (15) runs over all
values of Θ, including the ones such that ΩðΘÞ is
relativistic—i.e., jℏΩðΘÞ=ðmc2Þ − 1j ≫ ϵ. This means that
the Bogoliubov transformation (15) mixes nonrelativistic
modes of one frame with relativistic modes of the other.
The effect is twofold. On one hand, the “sea” of noninertial
particles and antiparticles populating the Minkowski vac-
uum j0Mi in FNM generally includes states with relativistic
energies. On the other hand, a nonrelativistic particle
(antiparticle) creator â†ðθÞ (b̂†ðθÞ) can be responsible for
the creation and the destruction of relativistic noninertial
(anti)particles. These two facts imply that an element of
FM that is made of nonrelativistic (anti)particles, when
seen as an element of FNM, is generally made of relativistic
Minkowski (anti)particles. The other way around is also
true: not always an element ofFNM made by nonrelativistic
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(anti)particles is also made by nonrelativistic (anti)particles
in FM.
Given a frame of reference K, nonrelativistic states are

defined as elements of the Fock space of K made of
nonrelativistic particles. When seen by a different observer
K0, such states appear as a mixture of relativistic and
nonrelativistic particles. The conclusion is that the non-
relativistic limit is frame dependent.
One can also deduce from Eq. (15) the nonconservation

of particle and antiparticle number when switching from K
to K0. An element of FM with n particles and m anti-
particles is not an element of FNM with the same number of
particles and antiparticles. This occurs because j0Mi is not a
vacuum state for FNM, and Minkowski particle (antipar-
ticle) creators â†ðθÞ (b̂†ðθÞ) annihilate non-Minkowski
antiparticles (particles), besides creating noninertial par-
ticles (antiparticles).

III. INERTIAL AND ACCELERATED FRAME

In the present section, the noninertial observer is
assumed to have uniform acceleration α ¼ c2a along the
x axis. We hence consider Rindler frames, defined by the
following coordinate transformations:

actν ¼ expðsνaXÞ sinhðacTÞ; ð19aÞ

axν ¼ sν expðsνaXÞ coshðacTÞ; ð19bÞ

with ν ∈ fL;Rg and where sL ¼ −1 and sR ¼ 1. We also
assume that a > 0, so that the coordinates ðtL; x⃗LÞ cover the
left wedge defined by x < −cjtj and ðtR; x⃗RÞ cover the
region x > cjtj. It can be noticed that the two coordinate
transformations in Eq. (19) differ by a sign in front of a:
one can switch from the left to the right wedge and the other
way round by letting a ↦ −a.
The metric gμν in the right wedge reads as

gμνðT; X⃗Þ ¼ diagð−c2e2aX; e2aX; 1; 1Þ: ð20Þ

The left wedge metric is obtained by a ↦ −a in Eq. (20).
The scalar field in the Rindler frame Φ̂ν is related to ϕ̂

through Eq. (2):

Φ̂νðT; X⃗Þ ¼ ϕ̂ðtνðT; X⃗Þ; x⃗νðT; X⃗ÞÞ; ð21Þ

where the transformations tνðT; X⃗Þ, x⃗νðT; X⃗Þ are given
by Eq. (19).
Here, we consider the decomposition of the Minkowski

scalar field ϕ̂ in Klein-Gordon modes with defined
momenta. For such decomposition, the quantum numbers
θ are the vectorial components of momenta k⃗ ¼ ðk1; k2; k3Þ.
Equation (5) reads as

ϕ̂ðt; x⃗Þ ¼
Z
R3

d3k

�
fðk⃗; t; x⃗Þâðk⃗Þ þ f�ðk⃗; t; x⃗Þb̂†ðk⃗Þ

�
; ð22Þ

with

fðk⃗; t; x⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc2

ð2πÞ32ωðk⃗Þ

s
e−iωðk⃗Þtþik⃗·x⃗ ð23Þ

as the Klein-Gordon modewith momentum k and frequency

ωðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mc2

ℏ

�
2

þ ðckÞ2
s

; ð24Þ

where k ¼ jk⃗j.
Conversely, a decomposition of Φ̂R can be obtained

by considering frequency Ω and transverse momenta
components K⃗⊥ ¼ ðK2; K3Þ as quantum numbers
Θ⃗ ¼ ðΩ; K⃗⊥Þ [13]:

Φ̂RðT; X⃗Þ ¼
Z

∞

0

dΩ
Z
R2

d2K⊥

×

�
FðΩ; K⃗⊥; T; X⃗ÞÂRðΩ; K⃗⊥Þ

þF�ðΩ; K⃗⊥; T; X⃗ÞB̂†
RðΩ; K⃗⊥Þ

�
; ð25Þ

with

FðΩ; K⃗⊥; T; X⃗Þ ¼ F̃ðΩ; K⃗⊥; XÞeiK⃗⊥·X⃗⊥−iΩT; ð26aÞ

F̃ðΩ; K⃗⊥; XÞ ¼
1

2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ
a
j sinh

�
βΩ
2

�����
s

× KiΩ=ðcaÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2K2⊥ þ

�
mc2

ℏ

�
2

s
eaX

ca

�
;

ð26bÞ

β ¼ 2π

ca
; ð26cÞ

and where X⃗⊥ ¼ ðY; ZÞ are the Rindler transverse coor-
dinates. KζðξÞ appearing in Eq. (26b) is the modified
Bessel function of the second kind.
In the left wedge, Φ̂L can be decomposed as Φ̂R with

X ↦ −X. Indeed, the Klein-Gordon equation in Rindler
spacetime,�
−∂20 þ c2∂21 þ c2e2aX

�
∂
2
2 þ ∂

2
3 −
�
mc
ℏ

�
2
�	

FðΘ⃗Þ ¼ 0;

ð27Þ
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is invariant under the transformation a ↦ −a, X ↦ −X,
and the orthonormality condition

ðFðΘ⃗Þ; FðΘ⃗0ÞÞCKG ¼ δ3ðΘ⃗ − Θ⃗0Þ; ð28aÞ

ðF�ðΘ⃗Þ; F�ðΘ⃗0ÞÞCKG ¼ −δ3ðΘ⃗ − Θ⃗0Þ; ð28bÞ

ðFðΘ⃗Þ; F�ðΘ⃗0ÞÞCKG ¼ 0 ð28cÞ

also holds for the modes FðΩ; K⃗⊥; T;−X; X⃗⊥Þ in the left
wedge. Therefore, by considering both wedges, the field
Φ̂νðT; X⃗Þ is

Φ̂νðT; X⃗Þ ¼
Z

∞

0

dΩ
Z
R2

d2K⊥

×

�
FðΩ; K⃗⊥; T; sνX; X⃗⊥ÞÂνðΩ; K⃗⊥Þ

þF�ðΩ; K⃗⊥; T; sνX; X⃗⊥ÞB̂†
νðΩ; K⃗⊥Þ

�
: ð29Þ

The Bogoliubov transformations relating âðk⃗Þ and b̂ðk⃗Þ
with ÂνðΩ; K⃗⊥Þ and B̂νðΩ; K⃗⊥Þ [Eq. (15)] read as

âðk⃗Þ ¼
X

ν¼fL;Rg

Z
∞

0

dΘ1

Z
R2

d2Θ⃗⊥
�
ανðk⃗; Θ⃗ÞÂνðΘ⃗Þ

þ ανðk⃗;−Θ⃗ÞB̂†
νðΘ⃗Þ

�
; ð30aÞ

b̂ðk⃗Þ ¼
X

ν¼fL;Rg

Z
∞

0

dΘ1

Z
R2

d2Θ⃗⊥
�
ανðk⃗; Θ⃗ÞB̂νðΘ⃗Þ

þ ανðk⃗;−Θ⃗ÞÂ†
νðΘ⃗Þ

�
; ð30bÞ

where

ανðk⃗; Θ⃗Þ ¼
Z
R3

d3x
θðsνxÞ
ℏc2

�
sνΘ1

ax
þ ωðk⃗Þ

�
f�ðk⃗; 0; x⃗Þ

× F̃ðΘ⃗; sνXνðxÞÞeiΘ⃗⊥·x⃗⊥ ; ð31Þ

x⃗⊥ ¼ ðy; zÞ are Minkowski transverse coordinates, Θ⃗⊥ ¼
ðΘ2;Θ3Þ the transverse coordinates of Θ⃗ ¼ ðΘ1;Θ2;Θ3Þ
and θðxÞ the Heaviside theta function. The function XνðxÞ
appearing in Eq. (31) is the inverse of Eq. (19b) when
t ¼ T ¼ 0:

XνðxÞ ¼
sν
a
lnðsνaxÞ: ð32Þ

In Appendix A we provide an explicit proof for Eqs. (30)
and (31).

We write Eq. (30) in a more compact form in the
following way:

âðk⃗Þ ¼
X

ν¼fL;Rg

Z
R3

d3Θανðk⃗; Θ⃗ÞÂνðΘ⃗Þ; ð33aÞ

b̂ðk⃗Þ ¼
X

ν¼fL;Rg

Z
R3

d3Θανðk⃗; Θ⃗ÞB̂νðΘ⃗Þ; ð33bÞ

where

ÂνðΘ⃗Þ ¼
(
ÂνðΘ⃗Þ if Θ1 > 0

B̂†
νð−Θ⃗Þ if Θ1 < 0

; ð34aÞ

B̂νðΘ⃗Þ ¼
(
B̂νðΘ⃗Þ if Θ1 > 0

Â†
νð−Θ⃗Þ if Θ1 < 0

: ð34bÞ

The Rindler vacuum state j0L; 0Ri—which is annihilated
by ÂνðΩ; K⃗⊥Þ and B̂νðΩ; K⃗⊥Þ operators—and the
Minkowski vacuum state j0Mi are related by the identity [13]

j0Mi ¼ Ŝj0L; 0Ri; ð35Þ

with the following unitary operator:

Ŝ ¼ exp

�
2

Z
∞

0

dΩ
Z
R2

d2K⃗⊥ exp

�
−
βΩ
2

�

×

�
Â†
LðΩ; K⃗⊥ÞB̂†

RðΩ;−K⃗⊥Þ

þB̂†
LðΩ; K⃗⊥ÞÂ†

RðΩ;−K⃗⊥Þ
�
A
�
; ð36Þ

and where ÔA ¼ ðÔ − Ô†Þ=2 is the anti-Hermitian part of
any operator Ô.
Equations (30) and (35) give the same results as Sec. II:

any Minkowski-Fock state jϕi ∈ FM made of nonrelativ-
istic (anti)particles can also be seen as an element of
Rindler-Fock space FLR where the Minkowski vacuum
background j0Mi is converted into a sea of Rindler
(anti)particles—including relativistic ones [Eq. (35)]—and
any â†ðk⃗Þ and b̂†ðk⃗Þ operator acting on j0Mi is converted
into creation and annihilation operators involving also
relativistic modes [Eq. (30)]. The nonrelativistic limit in
the inertial frame is nonequivalent to the nonrelativistic
limit in the accelerated frame. Moreover, the number of
(anti)particle changes in the two frames.
We wonder if we can overcome such general differences

in specific regimes. So far, we have considered an arbitrarily
large acceleration. We may expect that in a limit in which the
two frames are similar, the nonrelativistic condition and the
number of (anti)particles become approximately equivalent.
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In the following section we test the conditions for such
equivalence to occur.

IV. INERTIAL AND QUASI-INERTIAL FRAME

In the present section, we consider the case in which the
noninertial observer has a small acceleration with respect to
the nonrelativistic limit. Specifically, we require that

ℏa
mc

∼ ϵ3=2: ð37Þ

The limits (18) and (37) can also be obtained by considering
a diverging speed of light c → ∞ with finite nonrelativistic
energy E ¼ ℏΩ −mc2 ∼ c0 and finite acceleration
α ¼ ac2 ∼ c0. We remark that Eq. (37) is not a direct
consequence of the nonrelativistic limit, and it must be
considered independently of Eq. (18). Indeed, the limit c →
∞ does not specify if α has to go to infinity with finite a, or a
has to go to zero with finite α, or any other limiting
scenarios.
The acceleration a in Eq. (37) is sufficiently high for

noninertial effects to be present in the nonrelativistic limit.
Indeed, when a is such that Eq. (37) holds, noninertial
corrections to the Hamiltonian are of the same order of
nonrelativistic energies [11]. Also, a is low enough to
preserve the nonrelativistic condition and the number of
particles, as we show in the present section.
In addition to Eq. (37), we consider a further condition

that defines the quasi-inertial limit. Specifically, we assume
that quantum states are localized in a region of the right
wedge such that

jax − 1j≲ ϵ; ajXj≲ ϵ: ð38Þ

Moreover, we assume that the noninertial observer only has
access to such a region. For any X such that Eq. (38) holds,
the metric gμν is approximated by ημν [Eq. (20)]. This
motivates our choice for the name quasi-inertial observer.
The localization condition (38) defines the set of particle

states that can be detected by the quasi-inertial observer.
For instance, left-Rindler (anti)particles are excluded by
such a selection, since they are localized beyond the
Rindler horizon. The same occurs for right-Rindler
(anti)particles with frequency Ω≲ ca, which are localized
close to the horizon. Such localization is a consequence of
the fact that the FðΩ; K⃗⊥; T; X⃗Þ modes are exponentially
vanishing when Ω≲ ca and aX ≳ −1. One can see this by
knowing that

KiζðξÞ ∼
e−ξffiffiffi
ξ

p ð39Þ

when ξ → ∞, and, hence, FðΩ; K⃗⊥; T; X⃗Þ is infinitesimal
at least of order

FðΩ; K⃗⊥; T; X⃗Þ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ
a

���� sinh
�
πΩ
ca

�����
s

ϵ3=4 exp ð−ϵ−3=2Þ: ð40Þ

We define a Fock space FNQI that is generated by
left-wedge (anti)particles with any frequency Ω and by
right-wedge (anti)particles with frequency Ω≲ ca. FNQI

represents the set of states that cannot be detected by the
quasi-inertial observer. Therefore, we define the partial trace
TrNQI overFNQI. TrNQI maps any pure state jΦi ∈ FLR into
a statistical operator ρ ∈ FQI ¼ TrNQIFLR describing jΦi
from the point of view of the noninertial observer. In
practice, the quasi-inertial observer is not able to distinguish
between any element of FNQI and the vacuum state of FQI.
In the following, we show that an inertial and a quasi-

inertial observer agree about the first-quantization descrip-
tion of states that are localized in the region (38).
Specifically, we prove that any localized nonrelativistic
Minkowski-Fock state jϕi is also nonrelativistic in the
quasi-inertial frame, and that the number of (anti)particles
and the wave functions are the same.
We start by clarifying what we mean by localized

Minkowski-Fock states with respect to Eq. (38). Such a
localization condition is imposed on the wave functions of
jϕi, which are defined in the following way:

ϕnmðxÞ ¼
�
2m
ℏ2

�nþm
2

Z
R3ðnþmÞ

d3ðnþmÞkϕ̃nmðkÞ

×
Yn
i¼1

fðk⃗i; 0; x⃗iÞ
Ynþm

j¼nþ1

fðk⃗j; 0; x⃗jÞ; ð41Þ

where

x ¼ ðx⃗1;…; x⃗n; x⃗nþ1;…; x⃗nþmÞ; ð42aÞ

k ¼ ðk⃗1;…; k⃗n; k⃗nþ1;…; k⃗nþmÞ ð42bÞ

are collections of nþm vectors. ϕ̃nmðkÞ is defined from the
decomposition of jϕi with respect to the Minkowski-Fock
space FM

jϕi ¼ ĉϕj0Mi; ð43Þ

with

ĉϕ ¼
X∞
n;m¼0

Z
R3ðnþmÞ

d3ðnþmÞkϕ̃nmðkÞ
1ffiffiffiffiffiffiffiffiffiffi
n!m!

p
Yn
i¼1

â†ðk⃗iÞ

×
Ynþm

j¼nþ1

b̂†ðk⃗jÞ: ð44Þ

ϕ̃nmðkÞ is defined to be symmetric with respect to
the momenta variables k⃗1;…; k⃗n and with respect to
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k⃗nþ1;…; k⃗nþm. Given the definition of wave functions for
Minkowski states, one claims that jϕi is localized in (38) if
ϕnmðxÞ is vanishing for any position variable x⃗ outside such
a region.
We consider a nonrelativistic Minkowski-Fock state

jϕi ∈ FM that is localized in the region (38). We, hence,
assume that ϕ̃nmðkÞ and ϕnmðxÞ are nonvanishing when,
respectively, all momenta are nonrelativistic,

ℏωðk⃗Þ
mc2

− 1≲ ϵ; ð45Þ

and when all position variables are inside the region (38).
The explicit expression for jϕi as an element of FLR can

be obtained from Eqs. (33), (35), (36), (43), (44) and reads as

jϕi ¼ ĈϕŜj0L; 0Ri; ð46Þ

with

Ĉϕ ¼
X∞
n;m¼0

X
ν

Z
R3ðnþmÞ

d3ðnþmÞΘΦ̃nmðΘ; νÞ 1ffiffiffiffiffiffiffiffiffiffi
n!m!

p

×
Yn
i¼1

Â†
νiðΘ⃗iÞ

Ynþm

j¼nþ1

B̂†
νjðΘ⃗jÞ; ð47Þ

and

Φ̃nmðΘ; νÞ ¼
Z
R3ðnþmÞ

d3ðnþmÞkϕ̃nmðkÞ
Yn
i¼1

α�νiðk⃗i; Θ⃗iÞ

×
Ynþm

j¼nþ1

α�νjðk⃗j; Θ⃗jÞ; ð48Þ

where

Θ ¼ ðΘ⃗1;…; Θ⃗n; Θ⃗nþ1;…; Θ⃗nþmÞ; ð49aÞ

ν ¼ ðν1;…; νn; νnþ1;…; νnþmÞ ð49bÞ

are collections of Θ⃗ and ν variables, and where the sum
P

ν
in Eq. (47) runs over all the possible ν variables ν ∈ fL;Rg.
By using Eq. (23) in Eq. (31) and by computing the

derivative with respect to x⃗⊥, one obtains

ανðk⃗; Θ⃗Þ ¼ δ2ðk⃗⊥ − Θ⃗⊥Þχνðk⃗;Θ1Þ; ð50Þ

with

χνðk⃗;ΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

ℏc2ωðk⃗Þ

s Z
R
dxθðsνxÞ

�
sνΩ
ax

þ ωðk⃗Þ
�
e−ik1x

× F̃ðΩ; k⃗⊥; sνXνðxÞÞ ð51Þ

and k⃗⊥ ¼ ðk2; k3Þ as transverse coordinates of momentum
k⃗. As a consequence of the nonrelativistic nature of jϕi and
thanks to the Dirac delta function appearing in Eq. (50), one
deduces from Eq. (48) that Φ̃nm is vanishing when at least
one Θ⃗-variable is such that jΘ⃗⊥j ≫ ϵ1=2mc=ℏ. This leads to
the following constrain for all Θ⃗-variables:

ℏΘ⊥
mc

≲ ϵ1=2; ð52Þ

which implies that each Θ⃗⊥ must be a nonrelativistic
momentum.
Moreover, in the nonrelativistic limit (45), ανðk⃗; Θ⃗Þ can

be approximated by

ανðk⃗; Θ⃗Þ ≈
Z
R3

d3xf�ðk⃗; 0; x⃗Þα̃νðx⃗; Θ⃗Þ; ð53Þ

with

α̃νðx⃗; Θ⃗Þ ¼
θðsνxÞ
ℏc2

�
sνΘ1

ax
þmc2

ℏ

�
F̃ðΘ⃗; sνXνðxÞÞ

× eiΘ⃗⊥·x⃗⊥ : ð54Þ

The relative error of Eq. (53) is of order ϵ.
By using the relation between ϕnm and ϕ̃nm [Eq. (41)]

and between ανðk⃗; Θ⃗Þ and α̃νðx⃗; Θ⃗Þ [Eq. (53)], one can
approximate Eq. (48) with

Φ̃nmðΘ; νÞ ≈
�
2m
ℏ2

�
−nþm

2

Z
R3ðnþmÞ

d3ðnþmÞxϕnmðxÞ

×
Yn
i¼1

α̃�νiðx⃗i; Θ⃗iÞ
Ynþm

j¼nþ1

α̃�νjðx⃗j; Θ⃗jÞ; ð55Þ

with relative error of order ϵ. The locality condition can be
used in Eq. (55) by recalling the fact that the wave function
ϕnmðxÞ is vanishing outside the region defined by x⃗
variables such that Eq. (38) holds. The Heaviside theta
function appearing in Eq. (54) implies that a necessary
condition for the localization condition is that Φ̃nmðΘ; νÞ is
not vanishing only for all ν variables being equal to R.
Therefore, hereafter we only consider the right-wedge wave
function Φ̃nmðΘÞ defined by

Φ̃nmðΘÞ ¼ Φ̃nmðΘ;RÞ; ð56Þ

with

R ¼ ðR;…; R|fflfflfflffl{zfflfflfflffl}
n

; R;…; R|fflfflfflffl{zfflfflfflffl}
m

Þ: ð57Þ
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One may also introduce a cutoff δx for any integration
variable x in Eq. (55) and assume that any integration can
be approximately performed in x ∈ ½a−1 − δx; a−1 þ δx�—
with δx ∼ ϵa−1 in the nonrelativistic limit—instead of the
full real axis. By considering such approximation in
Eq. (55) and using Eq. (41), one obtains

Φ̃nmðΘÞ ≈
Z
R3ðnþmÞ

d3ðnþmÞkϕ̃nmðkÞ
Yn
i¼1

α�ðk⃗i; Θ⃗i; δxÞ

×
Ynþm

j¼nþ1

α�ðk⃗j; Θ⃗j; δxÞ; ð58Þ

with

αðk⃗; Θ⃗; δxÞ ¼ 1

ℏc2

�
Θ1 þ

mc2

ℏ

�Z
a−1þδx

a−1−δx
dx
Z
R2

d2x⊥

× f�ðk⃗; 0; x⃗ÞF̃ðΘ⃗; XRðxÞÞeiΘ⃗⊥·x⃗⊥ : ð59Þ

By using Eq. (23) and performing the integral with
respect to x⃗⊥, Eq. (59) reads as

αðk⃗; Θ⃗; δxÞ ¼ δ2ðk⃗⊥ − Θ⃗⊥Þχðk⃗;Θ1; δxÞ; ð60Þ

with

χðk⃗;Ω; δxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

ℏc2ωðk⃗Þ

s �
Ωþmc2

ℏ

�Z
a−1þδx

a−1−δx
dx

× e−ik1xF̃ðΩ; k⃗⊥; XRðxÞÞ; ð61Þ

which is the equivalent of Eq. (51) with a cutoff of δx
and ωðk⃗Þ ≈mc2=ℏ.
We are interested in the behavior of αðk⃗; Θ⃗; δxÞ with

varying Θ1, and we show that, when constraints (37), (38),
(45) and (52) hold, Eq. (59) is not vanishing only for Θ1

such that ����ℏΘ1

mc2
− 1

����≲ ϵ: ð62Þ

To this end, we perform the coordinate transformation

x̄ ¼ ax − 1

ā
; ð63Þ

with

ā ¼ 2−1=3
�
ℏa
mc

�
2=3

ð64Þ

as an acceleration-dependent adimensional variable. We
furthermore consider the following adimensional variables:

⃗k̄ ¼ ā k⃗
a

; Ω̄ ¼ ℏΘ1

mc2
; δx̄ ¼ aδx

ā
: ð65Þ

In this way, Eq. (61) reads as

χðk⃗; Θ⃗; δxÞ ¼ ā
a

ffiffiffiffiffiffiffiffiffi
mδx
ℏ

r
exp

�
−i

k1
a

�
χ̄

�
ā k⃗
a

;
ℏΘ1

mc2
;
aδx
ā

�
;

ð66Þ

with

χ̄ð ⃗k̄; Ω̄; δx̄Þ ¼
ffiffiffi
π

p ðΩ̄þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2āk̄24

p ffiffiffiffiffi
δx̄

p
Z

δx̄

−δx̄
dx̄e−ik̄1x̄ ¯̃FðΩ̄; ⃗k̄⊥; x̄Þ

ð67Þ

and

¯̃FðΩ̄; ⃗̄k⊥; x̄Þ¼
ffiffiffiffiffiffi
a
āℏ

r
F̃

�
mc2Ω̄
ℏ

;
a ⃗̄k⊥
ā

;XR

�
ā x̄ þ 1

a

��
ð68Þ

as adimensional functions. The variable ⃗k̄⊥ appearing in

Eq. (67) is made by the transverse components of ⃗k̄,

i.e.: ⃗k̄⊥ ¼ ðk̄2; k̄3Þ.
Explicitly, Eq. (67) reads as

χ̄ð ⃗k̄; Ω̄; δx̄Þ ¼ Ω̄þ 1

2π3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2āk̄24

p ffiffiffiffiffiffiffiffi
āδx̄

p
Z

δx̄

−δx̄
dx̄e−ik̄1x̄

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� sinh
�

πΩ̄ffiffiffiffiffiffiffi
2ā3

p
�����

s
KiΩ̄=

ffiffiffiffiffi
2ā3

p

×

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2āk̄2⊥

2ā3

s
ð1þ ā x̄Þ

1
CA ð69Þ

and gives the distribution of energies Ω̄ in the quasi-inertial

frame for different ⃗k̄. In Fig. 1 we plot such a function for
different values of k̄1 and Ω̄. We choose ā ∈ f0.1; 1g and
δx̄ ∈ f1; 10g to show the quasi-inertial limit (i.e., ā ≪ 1
and δx̄≲ 1).
Conditions (37), (38), (45) in the new set of coordinates

read as

ā ∼ ϵ; j ⃗k̄j≲ 1; δx̄≲ 1; ð70Þ

while Eq. (62) reads as

jΩ̄ − 1j
ā

≲ 1: ð71Þ
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In Appendix B, we show that when the coordinates j ⃗k̄j and
δx̄ are constrained by Eq. (70), χ̄ð ⃗k̄; Ω̄; δx̄Þ is not vanishing
only for Ω̄ such that Eq. (71) holds. One can see this in
Fig. 1, where the regime of low acceleration (ā ≪ 1), quasi-
flat metric (δx̄≲ 1) and nonrelativistic Minkowski momenta

(jk̄1j≲ 1) is characterized by a distribution χ̄ð ⃗k̄; Ω̄; δx̄Þ
peaked for nonrelativistic Rindler energy (Ω̄ ∼ 1).
The result is that Eq. (62), together with Eq. (52), selects

the only Θ⃗ variables for which Φ̃nmðΘÞ is not vanishing.
This means that Ĉϕ is approximately only made by creators
and annihilators of nonrelativistic right-Rindler particles.
Therefore, the transformation ĉϕ ↦ Ĉϕ conserves the
nonrelativistic nature of particles when one switches from
the inertial to the accelerated frame.
Moreover, condition (62) implies that Θ1 > 0 and,

hence, ÂνðΘ⃗Þ ¼ ÂνðΘ⃗Þ, B̂νðΘ⃗Þ ¼ B̂νðΘ⃗Þ. This leads to
the following approximation for Ĉϕ:

Ĉϕ ≈
X∞
n;m¼0

Z
d3ðnþmÞΘΦ̃nmðΘÞ 1ffiffiffiffiffiffiffiffiffiffi

n!m!
p

Yn
i¼1

Â†
RðΘ⃗iÞ

×
Ynþm

j¼nþ1

B̂†
RðΘ⃗jÞ: ð72Þ

Hereafter the integration intervals of Θ are given by Θ1 ∈
ð0;∞Þ and Θ⃗⊥ ∈ R2 for each Θ⃗ variable. Alternatively, one
may use the intervals given by Eqs. (52) and (62), since,
outside such a region, Φ̃nm vanishes.
By comparing Eq. (72) with Eq. (44) one can notice that

Ĉϕ is identical to ĉϕ, up to the wave function Φ̃nm replacing
ϕ̃nm and the right-Rindler creation operators Â†

R, B̂†
R

replacing the Minkowski operators â†, b̂†. This implies
that the number of particles and antiparticles created by Ĉϕ

is the same as ĉϕ. The conclusion is that the transformation
ĉϕ ↦ Ĉϕ conserves the number of (anti)particles, in
addition to the nonrelativistic condition.
The approximation (72) can be used in Eq. (46) together

with the following approximation for Ŝ:

Ŝ ≈ exp

�
2

Z
Λ

0

dΩ
Z
R2

d2K⃗⊥ exp

�
−
βΩ
2

�

×

�
Â†
LðΩ; K⃗⊥ÞB̂†

RðΩ;−K⃗⊥Þ

þB̂†
LðΩ; K⃗⊥ÞÂ†

RðΩ;−K⃗⊥Þ
�
A
�
; ð73Þ

where Λ is a cutoff that excludes integration for Ω ≫ ca.
Equation (73) can be derived from the fact that when
Ω ≫ ca, expð−βΩ=2Þ is exponentially small.
One can notice that the integration interval in Eq. (73) is

for Ω≲ ca ≪ mc2=ℏ [Eq. (37)], while the frequency
variables Θ1 in Eq. (72) are constrained by Θ1 ≈mc2=ℏ
[Eq. (62)]. This means that Ĉϕ and Ŝ approximately
commute:

½Ĉϕ; Ŝ� ≈ 0: ð74Þ

For the same reason, Ĉϕ is left unaffected by the partial
trace TrNQI

TrNQIðĈϕÔÞ ≈ ĈϕTrNQIðÔÞ; ð75Þ

while Ŝ satisfies the trace cyclic property

TrNQIðŜ ÔÞ ≈ TrNQIðÔ ŜÞ: ð76Þ

Indeed, the (anti)particles created by Ĉϕ do not belong to
FNQI, since Θ1 ≈mc2=ℏ ≫ ca [Eq. (37)]. On the other

FIG. 1. Distribution of Rindler energies Ω̄ (horizontal axis)
with respect to Minkowski momenta k̄1 (vertical axes). The

quantity measured here is χ̄ð ⃗k̄; Ω̄; δx̄Þ, which describes how
energy-momentum wave functions transform from inertial to
accelerated frames [Eqs. (58), (60), (66)]. For simplicity, we
ignore the transverse coordinates y and z by choosing k̄2 ¼ 0 and
k̄3 ¼ 0. The regime of low acceleration (ā ≪ 1) and quasiflat
metric (δx̄ ∼ 1) [Eq. (70)] are indicated with, respectively, blue
and purple arrows. In such a regime, nonrelativistic Minkowski
momenta are paired with nonrelativistic Rindler energies (green

arrows). Indeed, when k̄1 ≲ 1 [Eq. (70)], χ̄ð ⃗k̄; Ω̄; δx̄Þ is peaked for
Ω̄ ≈ 1 [Eq. (71)]. This means that in the quasi-inertial regime, the
accelerated observer agrees with the inertial observer about the
nonrelativistic nature of particles.
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hand, (anti)particles created and annihilated by Ŝ have
frequency Ω≲ ca and, hence, belong to FNQI.
Equations (75) and (76) can be used together with (46) to

prove that

TrNQIðjϕihϕjÞ ≈ Ĉϕj0QIih0QIjĈ†
ϕ; ð77Þ

where

j0QIih0QIj ¼ TrNQIðj0L; 0Rih0L; 0RjÞ ð78Þ

is the vacuum state of FQI. Equation (77) states that jϕi is
seen by the quasi-inertial observer through a pure state jΦi
such that

jΦi ¼ Ĉϕj0QIi: ð79Þ

In this way, we have proved that jϕi is seen by the quasi-
inertial observer as a nonrelativistic state and with the same
number of (anti)particles. Indeed, by comparing Eq. (79)
with Eq. (43) and Eq. (72) with Eq. (44), one notices that
the same number of nonrelativistic (anti)particles is created
over the respective vacuum. As said before, the map
ĉϕ ↦ Ĉϕ preserves the nonrelativistic condition and the
number of (anti)particles from the inertial to the quasi-
inertial frame. The conclusion is that the inertial and the
quasi-inertial observer agree about the first-quantization
description of states.
Moreover, we have proved that Φ̃nmðΘÞ, defined by

Eq. (48), plays the role of the wave function of jΦi with
respect to the quantum numbers Θ, analogously to ϕ̃nmðkÞ
in the inertial frame. The transformation ϕ̃nm ↦ Φ̃nm is
given by Eq. (48).
The wave function of jΦi in momentum space, instead,

can be defined by [11]

ΦnmðXÞ ¼
�
2m
ℏ2

�nþm
2

Z
d3ðnþmÞΘΦ̃nmðΘÞ

×
Yn
i¼1

FðΘ⃗i; 0; X⃗iÞ
Ynþm

j¼nþ1

FðΘ⃗j; 0; X⃗jÞ: ð80Þ

The wave function transformation ϕnm ↦ Φnm can be
derived by using Eq. (55) in Eq. (80):

ΦnmðXÞ ≈
Z
R3ðnþmÞ

d3ðnþmÞxϕnmðxÞ
Yn
i¼1

˜̃α�Rðx⃗i; X⃗iÞ

×
Ynþm

j¼nþ1

˜̃α�Rðx⃗j; X⃗jÞ ð81Þ

with

˜̃αRðx⃗; X⃗Þ ¼
Z

∞

0

dΘ1

Z
R2

dΘ⊥α̃Rðx⃗; Θ⃗ÞF�ðΘ⃗; 0; X⃗Þ: ð82Þ

As in Eq. (55), the relative error of Eq. (81) is of order ϵ.
In the nonrelativistic (45), (62) and localized (38) limit,

Eq. (54) can be approximated by

α̃Rðx⃗; Θ⃗Þ ≈
2Θ1

ℏc2ax
F̃ðΘ⃗; XRðxÞÞeiΘ⃗⊥·x⃗⊥ ; ð83Þ

which leads to

˜̃αRðx⃗; X⃗Þ ≈
Z

∞

0

dΘ1

Z
R2

dΘ⊥
2Θ1

ℏc2ax
F̃ðΘ⃗; XRðxÞÞ

× F̃ðΘ⃗; XÞeiΘ⃗⊥·ðx⃗⊥−X⃗⊥Þ: ð84Þ

The relative error of Eq. (83) is of order ϵ.
It is possible to show thatZ

∞

0

dΘ1

2Θ1

ℏc2ax
F̃ðΘ⃗; XRðxÞÞF̃ðΘ⃗; XÞ

¼ 1

4π2
δðx − xRðXÞÞ; ð85Þ

where xνðXÞ is the inverse of Eq. (32), and, hence, the
coordinate transformation (19b) with t ¼ T ¼ 0:

axν ¼ sν expðsνaXÞ: ð86Þ

A proof for Eq. (85) is provided in Appendix C.
Equations (84) and (85) lead to

˜̃αRðx⃗; X⃗Þ ≈ δðx − xRðXÞÞδ2ðx⃗⊥ − X⃗⊥Þ; ð87Þ

which can be used in Eq. (81) to obtain

ΦnmðXÞ ≈ ϕnmðxRðXÞÞ; ð88Þ

where

xRðXÞ ¼ ðx⃗RðX⃗1Þ;…; x⃗RðX⃗nÞ; x⃗RðX⃗nþ1Þ;…; x⃗RðX⃗nþmÞÞ:
ð89Þ

The function x⃗νðX⃗Þ appearing in Eq. (89) is the coordinate
transformation from the ν-Rindler to the Minkowski
spacetime when t ¼ T ¼ 0:

x⃗νðX⃗Þ ¼ ðxνðXÞ; X⃗⊥Þ: ð90Þ

Equation (88) states that the wave functions in the position
representation approximately transform as scalars: Φnm
is identical to ϕnm up to the coordinate transformation
(90) [14].
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V. GAUSSIAN SINGLE PARTICLE

We now provide an example of the Minkowski single-
particle state jϕi to probe the results that we obtained. We
assume that ϕ̃nm is vanishing for any n and m, except for
n ¼ 1 and m ¼ 0. We also assume that the wave function
ϕ̃10ðk⃗Þ has a Gaussian form along the x axis:

ϕ̃10ðk⃗Þ ¼ 2πϕ̃ðk1Þδðk⃗⊥Þ; ð91Þ

with

ϕ̃ðk1Þ ¼
ffiffiffi
σ

p
π1=4

exp

�
−
σ2k21
2

− ik1x0

�
: ð92Þ

In the position representation, the wave function ϕ10

[Eq. (41)] reads as

ϕ10ðx⃗Þ ¼ ϕðxÞ; ð93Þ

with

ϕðxÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z
R
dk1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2

ℏωðk1e⃗1Þ

s
ϕ̃ðk1Þeik1x ð94Þ

and e⃗1 ¼ ð1; 0; 0Þ. The nonrelativistic limit leads to

ϕðxÞ ≈ 1

π1=4
ffiffiffi
σ

p exp

�
−
ðx − x0Þ2

2σ2

�
; ð95Þ

which is a Gaussian wave function with variance σ.
Conversely, in the accelerated frame, the wave functions

Φ̃10 [Eqs. (48)] and Φ10 [Eq. (80)], respectively, read as

Φ̃10ðΩ; K⃗⊥Þ ¼ 2πΦ̃ðΩÞδ2ðK⃗⊥Þ; Φ10ðX⃗Þ ¼ΦðXÞ; ð96Þ

with

Φ̃ðΩÞ ¼
Z
R
dk1ϕ̃ðk1Þχ�Rðk1e⃗1;ΩÞ; ð97aÞ

ΦðXÞ ¼ 2π
ffiffiffiffiffiffiffi
2m

p

ℏ

Z
∞

0

dΩΦ̃ðΩÞF̃ðΩe⃗1; XÞ: ð97bÞ

In order for jϕi to be nonrelativistic in the inertial frame
[Eq. (45)], we have to assume that

ℏ
mcσ

≲ ϵ1=2; ð98Þ

which, together with Eq. (37), reads as

aσ ≳ ϵ: ð99Þ

The localized condition (38), instead, requires

jax0 − 1j ≲ ϵ ð100aÞ

aσ ≲ ϵ: ð100bÞ

Hereafter we assume

x0 ¼
1

a
; ð101Þ

in order to meet condition (100a). On the other hand, we
consider different values of σ, which are constrained by
Eqs. (99) and (100b):

aσ ∼ ϵ: ð102Þ

We consider the adimensional variables defined by
Eqs. (63), (64), and (65), together with

σ̄ ¼ aσ
ā
; X̄ ¼ aX

ā
ð103Þ

and the following adimensional wave functions

¯̃ϕðk̄1Þ ¼
ffiffiffi
a
ā

r
exp

�
i
k̄1
ā

�
ϕ̃

�
ak̄1
ā

�
; ð104aÞ

ϕ̄ðx̄Þ ¼
ffiffiffī
a
a

r
ϕ

�
ā x̄ þ 1

a

�
; ð104bÞ

¯̃ΦðΩ̄Þ ¼
ffiffiffiffiffiffiffiffi
mc2

ℏ

r
Φ̃
�
mc2Ω̄
ℏ

�
; ð104cÞ

Φ̄ðX̄Þ ¼
ffiffiffī
a
a

r
Φ
�
ā X̄
a

�
: ð104dÞ

In this way Eqs. (92), (94), and (97) read as

¯̃ϕðk̄1Þ ¼
ffiffiffī
σ

p

π1=4
exp

�
−
σ̄2k̄21
2

�
; ð105aÞ

ϕ̄ðx̄Þ ¼ 1ffiffiffiffiffiffi
2π

p
Z
R
dk̄1

eik̄1x̄ ¯̃ϕðk̄1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2āk̄21

4

q ; ð105bÞ

¯̃ΦðΩ̄Þ ¼ 1ffiffiffī
a

p
Z
R
dk̄1

¯̃ϕðk̄1Þχ̄�Rðk̄1e⃗1; Ω̄Þ; ð105cÞ

Φ̄ðX̄Þ ¼ 2πffiffiffī
a

p
Z

∞

0

dΩ̄ ¯̃ΦðΩ̄Þ ¯̃FðΩ̄e⃗1; x̄RðX̄ÞÞ; ð105dÞ

where

x̄RðX̄Þ ¼
1

ā

�
axR

�
ā X̄
a

�
− 1

�
ð106Þ
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is the coordinate transformation between the adimensional
variables x̄ and X̄, and where χ̄ν is defined as the adimen-
sional equivalent of χνðk⃗;ΩÞ by the following identity:

χνðk⃗;ΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ℏ

mc2a

r
exp

�
−i

k1
a

�
χ̄ν

�
ā k⃗
a

;
ℏΩ
mc2

�
: ð107Þ

Moreover, condition (102) now reads as

σ̄ ∼ 1: ð108Þ

The explicit form of χ̄Rðk̄1e⃗1; Ω̄Þ appearing in Eq. (105c)
can be obtained by performing the integral in Eq. (51),
which leads to [13]

χRðk⃗;ΩÞ ¼
�
4πaωðkÞ

���� sinh
�
βΩ
2

�����
�
−1=2

× exp

�
βΩ
4

− i
Ω
2ca

ln

�
ωðk⃗Þ þ ck1
ωðk⃗Þ − ck1

��
: ð109Þ

The adimensional equivalent of Eq. (109) reads as

χ̄Rð ⃗̄k;Ω̄Þ¼
�
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2āk̄2

p ����sinh
�

πΩ̄ffiffiffiffiffiffiffi
2ā3

p
�����
�
−1=2

×exp

 
πΩ̄

ð2āÞ3=2þ i
k̄1
ā

− i
Ω̄

ð2āÞ3=2 ln
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2āk̄2
p

þ ffiffiffiffiffiffi
2ā

p
k̄1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2āk̄2
p

−
ffiffiffiffiffiffi
2ā

p
k̄1

!!
ð110Þ

and can be used in Eq. (105c) to derive the explicit form

of ¯̃ΦðΩ̄Þ.
By using Eqs. (26b), (68), and (110) in Eq. (105), one is

able to compute the wave functions ¯̃ΦðΩ̄Þ and Φ̄ðX̄Þ in the
accelerated frame. The results are drawn in Fig. 2.
In Fig. 2(a), we show that under condition (108) and

ā ≪ 1, ¯̃ΦðΩ̄Þ is not vanishing only for nonrelativistic
frequencies (Ω̄ ≈ 1). This is in agreement with the results
of Sec. IV: in the quasi-inertial regime (σ̄ ≲ 1, ā ≪ 1), the
accelerated observer detects nonrelativistic particles
(Ω̄ ∼ 1) when the state is also nonrelativistic in the inertial
frame (σ̄ ≳ 1). Conversely, when conditions (108) and
ā ≪ 1 are not met, relativistic energies are present in the
accelerated frame.
In Fig. 2(b), we plot the wave function Φ̄ðX̄Þ. We choose

a configuration in which condition (108) and ā ≪ 1 are
met. One can see that in such a case, Φ̄ðX̄Þ is approximated
by ϕ̄ðx̄Þ, up to the coordinate transformation (106). Such a
result confirms the prediction of Eq. (88) for the case of a
single Gaussian particle.

VI. CONCLUSIONS

We have shown the frame dependence of the non-
relativistic limit. Specifically, we have shown that by
switching from an inertial to a noninertial frame, the

FIG. 2. Inertial Gaussian single-particle wave functions in
accelerated frames. In panel (a), we plot the distribution of
Rindler frequencies Ω̄ with respect to different acceleration ā and

different variance σ̄. If ā ¼ 0.1, σ̄ ¼ 1, the wave function ¯̃ΦðΩ̄Þ is
peaked in Ω̄ ≈ 1, and hence, the state is populated by non-
relativistic energies in the accelerated frame [Eq. (71)]. Con-
versely, relativistic energies appear for other configurations. The
reasons are the following: when σ̄ ¼ 5, the particle is not well
localized in the region where the metric is almost flat [Eq. (100b)];
when σ̄ ¼ 0.5 the state is populated by relativistic Minkowski
momenta [Eq. (99)]; when ā ¼ 0.5 the acceleration is not
sufficiently low for the quasi-inertial approximation [Eq. (37)].
In panel (b), we show the wave function in the position
representation Φ̄ðX̄Þ (gray solid line) for the state seen by the
accelerated observer. We chose ā ¼ 0.1 and σ̄ ¼ 1 for the
nonrelativistic and quasi-inertial approximation. In such a re-
gime, Φ̄ðX̄Þ can be approximated by the Minkowski wave
function ϕ̄ðx̄RðX̄ÞÞ (orange dashed line) under the coordinate
transformation x̄RðX̄Þ.

RICCARDO FALCONE and CLAUDIO CONTI PHYS. REV. D 107, 085016 (2023)

085016-12



relativistic nature of quantum states may change: non-
relativistic particles of one frame can be relativistic for the
other observer. Also the number of particles may change.
This can be problematic in the context of noninertial

detectors—e.g., Unruh-DeWitt detectors [3,5,6]. For in-
stance, an atomic detector—that is prepared in the labo-
ratory frame as a nonrelativistic n-particle state and then
accelerated—cannot be described as a fixed number of
nonrelativistic particles in its proper noninertial frame. The
familiar first-quantization description of atomic systems
breaks down when one switches from the inertial to the
accelerated frame.
We have proposed a solution to such a problem by

considering a quasi-inertial frame. The observer is defined
to have low acceleration in the nonrelativistic limit—but
high enough to see noninertial effects—and can only have
access to a region in which the metric is quasiflat. We have
shown that nonrelativistic states in the inertial frame are
also nonrelativistic in the quasi-inertial frame, as opposed
to the case of arbitrarily large accelerations. Moreover, the
number of particles is preserved when switching from one
frame to the other. This provides a solution to the problems
mentioned above.
Also, we have shown how particles’ wave functions

transform from the inertial to the quasi-inertial frame.
Specifically, we have proved that such functions approx-
imately transform as scalar fields under the coordinate
transformation.
We believe that these results may be useful in future

works about nonrelativistic particles seen by inertial and
noninertial observers, such as accelerated Unruh-DeWitt
detectors.

APPENDIX A

We prove Eqs. (30) and (31). We use the procedure
shown in Sec. II that led to Eq. (15) through Eqs. (2), (9)
and (16).
An explicit decomposition of the field in Minkowski

spacetime is given by Eq. (22). Therefore, the equivalent of
Eq. (16) reads as

âðk⃗Þ ¼ ðfðk⃗Þ; ϕ̂ÞKG; b̂†ðk⃗Þ ¼ −ðf�ðk⃗Þ; ϕ̂ÞKG; ðA1Þ

which explicitly reads as

âðk⃗Þ ¼ i
ℏc2

Z
R3

d3x

�
f�ðk⃗; t; x⃗Þ∂0ϕ̂ðt; x⃗Þ

−ϕ̂ðt; x⃗Þ∂0f�ðk⃗; t; x⃗Þ
�
; ðA2aÞ

b̂†ðk⃗Þ ¼ −
i

ℏc2

Z
R3

d3x

�
fðk⃗; t; x⃗Þ∂0ϕ̂ðt; x⃗Þ

− ϕ̂ðt; x⃗Þ∂0fðk⃗; t; x⃗Þ
�
: ðA2bÞ

The transformation between fields Φ̂ν ↦ ϕ̂ when
t ¼ T ¼ 0 is given by the inverse of Eq. (21):

ϕ̂ð0; x⃗Þ ¼
(
Φ̂Lð0; X⃗Lðx⃗ÞÞ if x < 0

Φ̂Rð0; X⃗Rðx⃗ÞÞ if x > 0
; ðA3Þ

where X⃗νðx⃗Þ is the coordinate transformation from the
Minkowski to the ν-Rindler spacetime when t ¼ T ¼ 0:

X⃗νðx⃗Þ ¼ ðXνðxÞ; x⃗⊥Þ: ðA4Þ

Analogously, ∂0ϕ̂ðt; x⃗Þ can be obtained from Φ̂νðT; X⃗Þ by
considering the following chain rule:

∂

∂T
¼ ∂tν

∂T
∂

∂t
þ ∂xν

∂T
∂

∂x
þ ∂yν

∂T
∂

∂y
þ ∂zν

∂T
∂

∂z
; ðA5Þ

which in the Rindler spacetime reads as

∂

∂T
¼ sνax

∂

∂t
þ sνac2t

∂

∂x
: ðA6Þ

By using Eq. (A6) in Eq. (21) and choosing t ¼ T ¼ 0, one
obtains

∂0ϕ̂ð0; x⃗Þ ¼
(
−ðaxÞ−1∂0Φ̂Lð0; X⃗Lðx⃗ÞÞ if x < 0

ðaxÞ−1∂0Φ̂Rð0; X⃗Rðx⃗ÞÞ if x > 0
: ðA7Þ

In a more compact way, Eqs. (A3) and (A7) read,
respectively,

ϕ̂ð0; x⃗Þ ¼
X

ν¼fL;Rg
θðsνxÞΦ̂νð0; X⃗νðx⃗ÞÞ ðA8Þ

and

∂0ϕ̂ð0; x⃗Þ ¼
X

ν¼fL;Rg
θðsνxÞ

sν
ax

∂0Φ̂νð0; X⃗νðx⃗ÞÞ: ðA9Þ

By choosing t ¼ 0 and using Eqs. (A8) and (A9) in
Eq. (A2) one obtains
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âðk⃗Þ ¼ i
ℏc2

X
ν¼fL;Rg

Z
R3

d3xθðsνxÞ

×

�
sν
ax

f�ðk⃗; 0; x⃗Þ∂0Φ̂νð0; X⃗νðx⃗ÞÞ

− Φ̂νð0; X⃗νðx⃗ÞÞ∂0f�ðk⃗; 0; x⃗Þ
�
; ðA10aÞ

b̂†ðk⃗Þ ¼ −
i

ℏc2
X

ν¼fL;Rg

Z
R3

d3xθðsνxÞ

×

�
sν
ax

fðk⃗; 0; x⃗Þ∂0Φ̂νð0; X⃗νðx⃗ÞÞ

− Φ̂νð0; X⃗νðx⃗ÞÞ∂0fðk⃗; 0; x⃗Þ
�
: ðA10bÞ

Equation (29) can be used in Eq. (A10) to obtain

âðΘ⃗Þ ¼
X

ν¼fL;Rg

Z
∞

0

dΘ1

Z
R2

d2Θ⊥
�
ανþðk⃗; Θ⃗ÞÂνðΘ⃗Þ

þ αν−ðk⃗; Θ⃗ÞB̂†
νðΘ⃗Þ

�
; ðA11aÞ

b̂†ðΘ⃗Þ ¼
X

ν¼fL;Rg

Z
∞

0

dΘ1

Z
R2

d2Θ⊥
�
α�νþðk⃗; Θ⃗ÞB̂†

νðΘ⃗Þ

þ α�ν−ðk⃗; Θ⃗ÞÂνðΘ⃗Þ
�
; ðA11bÞ

with

ανþðk⃗; Θ⃗Þ ¼
i

ℏc2

Z
R3

d3xθðsνxÞ

×

�
sν
ax

f�ðk⃗; 0; x⃗Þ∂0FðΘ⃗; 0; sνX⃗νðx⃗ÞÞ

−FðΘ⃗; 0; sνX⃗νðx⃗ÞÞ∂0f�ðk⃗; 0; x⃗Þ
�
; ðA12aÞ

αν−ðk⃗; Θ⃗Þ ¼
i

ℏc2

Z
R3

d3xθðsνxÞ

×

�
sν
ax

f�ðk⃗; 0; x⃗Þ∂0F�ðΘ⃗; 0; sνX⃗νðx⃗ÞÞ

−F�ðΘ⃗; 0; sνX⃗νðx⃗ÞÞ∂0f�ðk⃗; 0; x⃗Þ
�
: ðA12bÞ

By using Eqs. (23), (26a) and the fact that F̃ is real,
Eq. (A12) reads as

αν�ðk⃗; Θ⃗Þ ¼
1

ℏc2

Z
R3

d3xθðsνxÞ
�
� sνΘ1

ax
þ ωðk⃗Þ

�
× f�ðk⃗; 0; x⃗ÞF̃ðΘ⃗; sνXνðxÞÞe�iΘ⃗⊥·x⃗⊥ : ðA13Þ

By knowing that F̃ðΘ⃗; XÞ is invariant under Θ⃗ ↦ −Θ⃗
[Eq. (26b)], Eq. (A13) reads as

αν�ðk⃗; Θ⃗Þ ¼ ανðk⃗;�Θ⃗Þ; ðA14Þ

with αν defined by Eq. (31).
Equations (A11) and (A14) finally prove Eq. (30).

APPENDIX B

We assume that Eq. (70) holds. We prove that χ̄ð ⃗k̄; Ω̄; δx̄Þ
is vanishing when jΩ̄ − 1j ≫ ā. We start by considering
the case jΩ̄j≲ ā3=2, which is a sufficient condition for
jΩ̄ − 1j ≫ ā. The limit jΩ̄j≲ ā3=2 is equivalent to
jΘ1j≲ ca, and, hence, leads to exponentially vanishing

Rindler modes ¯̃FðΩ̄; ⃗k̄⊥; x̄Þ appearing in Eq. (67), as we
have already shown in Eq. (40).

Conversely, if jΩ̄j ≫ ā3=2, ¯̃FðΩ̄; ⃗k̄⊥; x̄Þ can be approxi-
mated by [15,16]

¯̃FðΩ̄; ⃗k̄⊥; x̄Þ ≈
1

2π

ffiffiffiffiffiffi
2

Ω̄2

6

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζðzðΩ̄; ⃗k̄⊥; x̄ÞÞ
1 − z2ðΩ̄; ⃗k̄⊥; x̄Þ

4

vuut
× Ai

�
−
1

ā

ffiffiffiffiffiffi
Ω̄2

2

3

r
ζðzðΩ̄; ⃗k̄⊥; x̄ÞÞ

�
; ðB1Þ

with

zðΩ̄; ⃗k̄⊥; x̄Þ ¼
1

jΩ̄j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2āk̄2⊥

q
ð1þ ā x̄Þ; ðB2aÞ

8>><
>>:

2
3
ζ3=2ðzÞ¼ ln

�
1þ

ffiffiffiffiffiffiffi
1−z2

p
z

�
−

ffiffiffiffiffiffiffiffiffiffiffi
1− z2

p
; if 0≤ z≤ 1;

2
3
½−ζðzÞ�3=2¼

ffiffiffiffiffiffiffiffiffiffiffi
z2−1

p
− arccos

�
1
z

�
; if z≥ 1

ðB2bÞ

and where AiðξÞ is the Airy function.
When conditions (70) hold and when jjΩ̃j − 1j ∼ ā, the

variables zðΩ̄; ⃗k̄⊥; x̄Þ and ζðzÞ can be approximated by the
following expansion [16]:

zðΩ̄; ⃗k̄⊥; x̄Þ ≈ 1þ āðk̄2⊥ þ x̄Þ − ðjΩ̄j − 1Þ; ðB3aÞ

ζðzðΩ̄; ⃗k̄⊥; x̄ÞÞ ≈ −
ffiffiffi
2

3
p

½āðk̄2⊥ þ x̄Þ − ðjΩ̄j − 1Þ�: ðB3bÞ

If jjΩ̃j − 1j ≫ ā, instead, zðΩ̄; ⃗k̄⊥; x̄Þ and ζðzÞ can be
approximated by

zðΩ̄; ⃗k̄⊥; x̄Þ ≈
1

jΩ̄j ½1þ āðk̄2⊥ þ x̄Þ�; ðB4aÞ
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jζðzðΩ̄; ⃗̄k⊥; x̄ÞÞj3=2 ≈
����ζ
�

1

jΩ̄j
�����3=2

− signðjΩ̄j− 1Þ3
2
ā

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΩ̄2 − 1j

q
ðk̄2⊥þ x̄Þ:

ðB4bÞ

Condition jjΩ̃j − 1j ≫ ā ensures that the Taylor expan-
sion (B4b) is performed sufficiently far from the singularity
z ¼ 1 of the derivatives of jζðzÞj3=2.
If jjΩ̄j − 1j ∼ ā, Eq. (B3) leads to ζðzðΩ̄; ⃗k̄⊥; x̄ÞÞ ∼ ā,

which means that the argument of the Airy function in
Eq. (B1) does not diverge. Specifically, Eq. (B1) can be
approximated by

¯̃FðΩ̄; ⃗k̄⊥; x̄Þ ≈
1

2π
Ai
�
k̄2⊥ þ x̄ −

jΩ̄j − 1

ā

�
; ðB5Þ

which has already been proved for nonrelativistic modes in
the Rindler frame [11].
If jjΩ̄j − 1j ≫ ā, divergences in the argument of the Airy

function of Eq. (B1) appear. Specifically, if jΩ̄j − 1 ≪ −ā,
then jΩ̄j < 1 and jζð1=jΩ̄jÞj ≫ ā. This means that the
argument of the Airy function diverges at þ∞, leading to

AiðξÞ ∼ 1ffiffiffi
ξ4

p exp

�
−
2

3
ξ3=2
�

ðB6Þ

and, hence, leading to an exponentially vanishing ¯̃FðΩ̄; ⃗k̄⊥; x̄Þ.
Conversely, if jΩ̄j − 1 ≫ ā, the argument of AiðξÞ diverges at
ξ → −∞, leading to a rapidly oscillating Airy function.
Indeed, modulus and phase of AiðξÞ have the following
asymptotic leading terms:

AiðξÞ ≈ 1ffiffiffi
π

p ffiffiffiffiffiffi−ξ4
p sin

�
π

4
þ 2

3
ð−ξÞ3=2

�
: ðB7Þ

Because of this rapidly oscillating behavior, the integral of
Eq. (67) vanishes.
To explicitly show that Eq. (67) is vanishing in the

regime of jΩ̄j − 1 ≫ ā, we use Eqs. (B1) and (B7) in
Eq. (67):

χ̄ð ⃗k̄; Ω̄; δx̄Þ≈ Ω̄þ 1

2π
ffiffiffiffiffiffiffiffiffiffiffi
jΩ̄jδx̄

p Z
δx̄

−δx̄
dx̄

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ā

ð1þ 2āk̄2Þ½1− z2ðΩ̄; ⃗k̄⊥; x̄Þ�
4

s

× e−ik̄1x̄ sin

�
π

4
þ

ffiffiffi
2

p
Ω̄

3

�
ζðzðΩ̄; ⃗k̄⊥; x̄ÞÞ

ā

�3=2�
;

ðB8Þ

which can be furthermore approximated by

χ̄ð ⃗̄k; Ω̄;δx̄Þ≈ Ω̄þ 1

2π
ffiffiffiffiffi
δx̄

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ā
jΩ̄j2 − 1

4

s Z
δx̄

−δx̄
dx̄e−ik̄1x̄

× sin

�
π

4
þ

ffiffiffi
2

p
Ω̄

3

�
ζðzðΩ̄; ⃗̄k⊥; x̄ÞÞ

ā

�3=2�
: ðB9Þ

By working in the regime (70), one can use Eq. (B4b) in
order to see Eq. (B9) having the following form:

χ̄ð ⃗k̄; Ω̄; δx̄Þ ≈ Ω̄þ 1

2π
ffiffiffiffiffi
δx̄

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ā
jΩ̄j2 − 1

4

s Z
δx̄

−δx̄
dx̄e−ik̄1x̄

× sinð−κðΩ̄Þx̄þ φð ⃗k̄⊥; Ω̄ÞÞ; ðB10Þ

with

κðΩ̄Þ ¼ Ω̄ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω̄2 − 1

ā

s
; ðB11aÞ

φð ⃗k̄⊥; Ω̄Þ ¼
π

4
þ Ω̄ffiffiffi

2
p
�
2

3

�
1

ā
ζ

�
1

jΩ̄j
��

3=2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω̄2 − 1

ā

s
k̄2⊥
	
: ðB11bÞ

One can finally see that χ̄ð ⃗k̄; Ω̄; δx̄Þ in Eq. (B10) is
vanishing because of an infinitely rapidly oscillating Airy
function integrated over a finitely oscillating function.
Indeed, the two frequencies are respectively κðΩ̄Þ and
k̄1. While k̄1 is finite (k̄1 ≲ 1), κðΩ̄Þ diverges when
jΩ̄j − 1 ≫ ā.
We proved that when jjΩ̄j − 1j ≫ ā, χ̄ð ⃗k̄; Ω̄; δx̄Þ van-

ishes. One can consider the following two remaining cases:
jΩ̄ − 1j ≲ ā and j − Ω̄ − 1j ≲ ā. The case j − Ω̄ − 1j≲ ā
has to be excluded because of the Ω̄þ 1 factor appearing in

Eq. (67), which makes χ̄ð ⃗k̄; Ω̄; δx̄Þ vanishing when Ω̄ ≈ −1.
The only nonvanishing case is jΩ̄ − 1j≲ ā. This concludes
our proof of Eq. (71).

APPENDIX C

We prove Eq. (85). Such a proof follows from consid-
ering any function φðξÞ in ξ > 0 and the following integral:

FRAME DEPENDENCE OF THE NONRELATIVISTIC LIMIT OF … PHYS. REV. D 107, 085016 (2023)

085016-15



Z
∞

0

dx
Z

∞

0

dΘ1

2Θ1

ℏc2ax
F̃ðΘ⃗; XRðxÞÞF̃ðΘ⃗; XÞφ
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By using the coordinate transformation

ζ ¼ Θ1

ca
; ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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mc2
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�
2

s
x
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; ðC2Þ

Eq. (C1) reads asZ
∞

0

dx
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Equation (C3) can also be written in the following way:Z
∞

0

dx
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∞

0
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where

K½φ�ðζÞ ¼ 2ζ

π2
sinhðπζÞ

Z
∞

0

dξ
ξ
KiζðξÞφðξÞ ðC5Þ

is the Kontorovich–Lebedev transform and

K−1½φ�ðξÞ ¼
Z

∞

0

dζKiζðξÞφðζÞ ðC6Þ

its inverse. Since K−1 is the inverse of K, Eq. (C4) reads as

Z
∞

0

dx
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Since Eq. (C7) holds for any φ, we have proven Eq. (85).
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