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We consider quantum aspects of a class of generalized Gross-Neveu models, which in special cases
reduce to sigma models. We show that, in the case of gauged models, an admissible gauge is Aμ ¼ 0, which
is a direct analog of the conformal gauge in string models. Chiral anomalies are a gauge counterpart of the
Weyl anomaly, and are required to vanish. Topological effects on the worldsheet lead to an integration over
moduli spaces of connections on a Riemann surface.
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I. INTRODUCTION

Recently, a new approach to sigma models with complex
homogeneous target spaces such as CPn−1, Grassmannians,
flags etc. was proposed [1–4]. The approach, based on an
exact equivalence with gauged chiral Gross-Neveu models
involving both bosonic and fermionic fields, offers many
calculational benefits as compared to the standard formu-
lation, provides a new take on supersymmetry (SUSY)
models and should prove useful in the analysis of quantum
integrability. A somewhat analogous first-order formulation
is also helpful in 4D Yang-Mills theory [5].
Among other matters, in [1] it was observed that the one-

loop beta functions of such theories are independent of the
gauge fields, so that the same beta function may be shared
by several inequivalent models. Motivated by this curious
property, in the present paper we systematically study the
role of gauge fields in these models. The key result is that
they carry only topological degrees of freedom, parametriz-
ing moduli spaces of holomorphic vector bundles over the
worldsheet Σ (which is assumed to be a Riemann surface).
In particular, for Σ ¼ R2 one can completely eliminate the
gauge field by choosing a gauge Aμ ¼ 0. The setup is
reminiscent of string sigma models, where the worldsheet
metric may be eliminated by going to conformal gauge, and
in general one has to integrate over conformal classes of

metrics. Our models provide a gauge field version of that
gravitational setup [also studied in [6] in the case of gauged
Wess-Zumino-Novikov-Witten (WZNW) models]. The
gauge counterpart of the Weyl anomaly, which is carefully
canceled in string models [7,8], is the chiral anomaly that is
also required to vanish. The cancellation may be achieved
by including fermions in various ways.
There are several facts hinting at the integrability of the

proposed models in flat space. One piece of evidence is the
integrability of the fermionic Gross-Neveu model [9] (both
classical [10] and quantum [11,12]). Another one, perhaps
more familiar from sigma model theory [13,14], has to do
with the existence of a family of flat connections (for a
review cf. [15,16]). Finally, as is typical for integrable
models (see [17–20] for the background and [21] for the
relevant modern developments), there are canonical trigo-
nometric/elliptic deformations, and the deformed geometry
is stable under RG-flow, at least at one loop [1,3] (for earlier
developments cf. [22–27]). It was also conjectured in [1]
that the anomalies known to obstruct integrability of the
bosonic CPn−1 model [28–30] are canceled in models with
vanishing chiral anomalies.
Throughout most of the paper we treat the CPn−1 model

in detail, touching upon the non-Abelian case in the last
section. Whereas to date little has been known about the
quantum theory of integrable sigma models on curved
worldsheets, our results suggest that the theories of interest
may be consistently placed on Riemann surfaces without
spoiling some of the crucial features.

II. THE CPn− 1 SIGMA MODEL AS A
GROSS-NEVEU MODEL

Classical formulations of the CPn−1 sigma model [31,32]
are based on the Hopf fibration S2n−1 → CPn−1, with fiber
Uð1Þ. At the level of the Lagrangian this is implemented
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as follows:

L ¼
Xn
A¼1

jDμUAj2;
Xn
A¼1

jUAj2 ¼ 1: ð1Þ

The second constraint defines the sphere S2n−1, whereas the
covariant derivative DμUA ¼ ∂μUA − iAμUA ensures the
Uð1Þ quotient. On the other hand, the canonical definition
of projective space,

CPn−1 ¼ ðCn − f0gÞ=C�; ð2Þ
suggests an alternative approach to the sigma model, based
on the gauge group C�. This leads to a reformulation of the
CPn−1 model as a generalized Gross-Neveu model [1–3],
which we now recall.
Consider a column vector U ∈ Cn and a row vector

V ∈ Cn, together with a complex gauge field A, and write
down the Lagrangian

L ¼ VD̄U þ ŪDV̄ þ ϰðŪUÞðVV̄Þ; ð3Þ
where D̄U ¼ ∂̄U − iĀU. Here ∂̄ ¼ ∂

∂z̄ is the derivative
with respect to a holomorphic coordinate z on Σ and A is
the (0,1) component of a Hermitian (unitary) connection
A ¼ Adzþ Ādz̄. Grouping the U and V̄ fields in a single
Dirac spinor, one recognizes in (3) the Lagrangian of a
chiral Gross-Neveu model [33,34] in bosonic incarnation.
Classically (3) has a C� gauge symmetry (χ ∈ Cmod 2π i)

U → eχU; V → e−χV; Ā → Ā − i∂̄χ: ð4Þ

Here C� ¼ Uð1Þ ×R� is the chiral symmetry on a
Riemannian worldsheet [1,35], where Uð1Þ stands for
vectorial, and R� for axial, transformations.
One can eliminate the V; V̄ variables from (3) using the

equations of motion, arriving at the geometric form of the
Lagrangian

L ≃
1

ϰ

jD̄Uj2
jUj2 : ð5Þ

Using the R� part of the gauge symmetry to set the gauge
jUj2 ¼ 1, one obtains the standard gauged linear sigma
model (GLSM) form of the CPn−1 sigma model, up to a
topological term.

III. THE GAUGE A= 0 AS ANALOG
OF CONFORMAL GAUGE

Let us first study the gauge transformations (4) for the
case of the simplest possible worldsheet Σ ¼ R2, assuming
decay conditions for A at infinity. If anomalies are absent,
somewhat surprisingly an admissible gauge is

A ¼ A ¼ Ā ¼ 0; ð6Þ

i.e., one can eliminate the gauge field altogether. Indeed,
one can explicitly solve the equation Ā − i∂̄χ ¼ 0 that
leads to (6) by the Cauchy-Green formula,

χðz; z̄Þ ¼ i
π

Z
d2w

1

z − w
Āðw; w̄Þ: ð7Þ

The gauge (6) is a direct analog of conformal gauge in
string models, where instead the metric may be completely
eliminated. Recall that imposing the conformal gauge
involves using both Diff- and Weyl-invariance. In the
gauge system at hand the analog of Diff-symmetry is
the usual G-gauge invariance, where G is a compact
reductive group [such as U(1)], and the analog of Weyl
symmetry corresponds to axial gauge transformations
related to the noncompact part GC=G (such as R�).

IV. CHIRAL ANOMALIES

Chiral gauge transformations, crucial for imposing the
gauge (6), are typically anomalous quantum mechanically,
and care should be taken to ensure the anomalies cancel.
Recall that vanishing of the Weyl anomaly leads to the
central charge being zero. Cancellation of the chiral
anomaly means that the level of the corresponding Kac-
Moody algebra should vanish, k ¼ 0.
In the present paper we only discuss the critical case,

when the anomalies cancel. Just as in string theory, the
noncritical case is more complicated, cf. [36]. Here the axial
R� part of C� symmetry may no longer be gauged and leads
to a generation of an extra (noncompact) direction in target
space, analogous to the Liouville mode. Working out the
precise mechanism of this phenomenon is left for the future.

A. BRST quantization

One way of arriving at the condition k ¼ 0 is by
performing Becchi-Rouet-Stora-Tyutin (BRST) quantiza-
tion in the gauge (6). Since the gauge transformation is
δA ¼ i∂χ̄, δĀ ¼ −i∂̄χ, the part of the action related to
gauge fixing has the form

Sgf ¼ i
Z

d2zðλ̄Aþ λĀþ b∂̄c − b̄∂c̄Þ; ð8Þ

where λ; λ̄ are Lagrange multipliers and b, c are the
ghost fields. This has the obvious off shell invariance
δĀ ¼ −iε∂̄c, δb ¼ iελ. To ensure invariance of the matter
part (3), we additionally postulate the transformation laws
δU ¼ εcU, δV ¼ −εcV.
One can eliminate the Lagrange multipliers and pass

over to on shell BRST transformations. To this end, we take
the variation of the full action with respect to the gauge
fields, which leads to λ − VU ¼ 0, so that on shell trans-
formations take the form
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δb ¼ iεVU; δU ¼ εcU; δV ¼ −εcV: ð9Þ

The BRST current is jBRST ¼ cJ, where J ¼ VU is the
U(1) chiral algebra current with operator product expansion
(OPE) JðzÞJðwÞ ¼ k

ðz−wÞ2 þ � � � Here k ¼ −n is the level of

the chiral algebra. Using nilpotency of cðzÞ, one finds

jBRSTðzÞjBRSTðwÞ ¼ k
c∂cðzÞ
z − w

þ…: ð10Þ

On a punctured plane one can define a BRST charge
Q ≔ 1

2πi

H
S1 dzjBRSTðzÞ. It follows from (10) that

Q2 ¼ k
2

X
j∈Z

jcjc−j; ð11Þ

where cj are the Laurent series coefficients of cðzÞ.
Nilpotency of the BRST charge requires k ¼ 0, i.e., that
the central extension in the chiral algebra of the gauge
group should vanish [37]. This is equivalent to the
vanishing of chiral gauge anomalies. The purely bosonic
model (3) is anomalous, since here k ¼ −n. Anomaly
cancellation may be achieved by adding fermions, which
make a positive contribution to the level. More generally,
assuming h is the Lie (super)algebra of the complex gauge
(super)group, the cancellation condition is

StrWðτaτbÞ ¼ 0 for τa; τb ∈ h; ð12Þ
where W is the representation of the matter fields
(bosonic and fermionic, including ghosts). This reduces
to k ¼ 0 if StrWðτaτbÞ ¼ kδab. Condition (12) is a direct
counterpart of the anomaly cancellation condition [38] for
WZNW models on Riemannian worldsheets (these are
encountered in [39–41]), extended to gauge supergroups.

B. Anomaly in the “light cone” gauge

To complete the parallel with gravitational anomalies in
string sigma models, recall that the latter manifest them-
selves in the light cone gauge via an anomaly in the (target
space) Lorentz symmetry algebra. The same phenomenon
occurs in the model (3). Here the light cone gauge is
replaced by the inhomogeneous gauge,

Un ¼ 1: ð13Þ

Generically, this can be achieved by the C� gauge sym-
metry. The remaining UA, A ¼ 1;…n − 1 coordinates are
the inhomogeneous coordinates on CPn−1.
Anomalies are related to the kinetic term in (3), which is

invariant not only under un, but also under the extended

Kac-Moody symmetry cgln. The chosen gauge explicitly

breaks un down to un−1, and accordingly cgln down todgln−1, and the question is whether the original symmetry is
realized nonlinearly.

Every Noether current has two components lz ≔ lðzÞ,
lz̄ ≔ lðzÞ but for brevity we will concentrate on the lz

parts. To write them out in the gauge (13), observe that a
variation of (3) with respect to the gauge field produces the
constraint

P
n
A¼1 U

AVA ¼ 0. Using (13), one can solve it as
Vn ¼ −

P
n−1
A¼1 U

AVA. As a result, the currents may be split
as follows (A;B ¼ 1;…n − 1):

lABðzÞ ¼ −VAUB; lnnðzÞ ¼
Xn−1
A¼1

UAVA;

lAnðzÞ ¼ −VA; lnAðzÞ ¼ UA
Xn−1
B¼1

UBVB:

The anomaly arises from the cubic generators. Ultimately
we are interested in the zero modes of the above currents,

LnA ≡ 1

2πi

I
S1
dz lnA: ð14Þ

The OPE lnAðzÞlnBðwÞ would be nonsingular in the cgln
symmetry algebra. For the zero modes this would
imply ½LnA; LnB� ¼ 0.
Here instead, using the basic OPE UAðzÞVBðwÞ ¼

δAB

z−w þ � � �, we find

lnAðzÞlnBðwÞ ¼ −
nþ 2

ðz − wÞ2U
AðzÞUBðzÞ

þ 1

z − w
ðð1þ nÞUA

∂UBðzÞ
þ UB

∂UAðzÞÞ þ…: ð15Þ

On a punctured plane we may decompose UAðzÞ ¼P
k∈Z UA

k z
k. The OPE (15) then implies the following

commutator of the zero modes:

½LnA; LnB� ¼ n
2

X
k∈Z

k

�
UA

kU
B
−k −UB

kU
A
−k

�
; ð16Þ

which is nonzero unless n ¼ 2. This means that, for n > 2,
the model (3) genuinely loses SUðnÞ symmetry in the gauge
Un ¼ 1 (the above is a proof in the limit ϰ ¼ 0).
The anomaly (15) has been observed in [42,43] in the

context of βγ-systems. It can be canceled in the special case
n ¼ 2. At the level of the zero modes this is clear from (16),
since here the indices A ¼ B ¼ 1 take only one value, and
the commutator vanishes. For the full current algebra one
additionally has to modify the generators as lnA ↦ lnA −
2∂UA (this does not affect the zero modes), which leads to

the csl2 chiral algebra at the critical level ksl2 ¼ −2 [43,44].
As it turns out, this is still problematic, since here the
Sugawara energy-momentum tensor is identically zero,
making a sigma model interpretation obscure.
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Both anomalies (10) and (16) are reminiscent of the
expressions occurring in string sigma models [45,46]. The
special case n ¼ 2 has a counterpart in the string case,
where for target space(time) of dimension D ¼ 3 the
anomaly in the Lorentz algebra cancels as well. This case
has its own pathology, namely the spins of the particles
arising in the string spectrum are irrational [47–49].
Finally, let us mention that similar anomalies in the

CPn−1-model in 4D spacetime have been claimed in [50]. It
is an interesting question whether all of the mentioned facts
are related in some way.

C. The linear axion

One way of canceling the Weyl anomaly in string
models is by introducing a linear dilaton. An Abelian
gauge anomaly may be canceled by a similar mechanism.
Indeed, Schwinger’s effective action for the gauge field
in (3) [51] has the form

Seff ¼ −
n
4π

Z
d2zF

1

△
F; ð17Þ

where F ¼ ið∂̄A − ∂ĀÞ. This can be canceled by an addi-
tional scalar field ϕ with the linear axion action,

Sϕ ¼ 1

2π

Z
d2z

�
1

2
ð∂αϕÞ2 þ n

1
2ϕ · F

�
ð18Þ

Elimination of ϕ via its equations of motion provides a
contribution equal to (17) but with an opposite sign.
Alternatively, one can fermionize Sϕ [52] arriving at
the action of a single Dirac fermion with charge
Q ¼ n

1
2. Therefore, this is another application of the

anomaly cancellation mechanism by fermions (we have
Strðτ2Þ ¼ 1 × n −Q2 × 1 ¼ 0, in line with (12). This type
of coupling features in the model arising in a limit of the
AdS4 × CP3 superstring [52,53].

V. CURVED WORLDSHEET

As a next step, we wish to couple the Gross-Neveu model
to a (fixed) worldsheet metric on a Riemann surface Σ. The
classical action S ¼ R

d2zL with Lagrangian (3) then
defines the theory in conformal coordinates. For it to make
sense in this extended setup, VUdz should be a section of
the canonical bundle KΣ. Therefore, we may take U and V
as sections of Ngrav ⊗ Ngauge and KΣ ⊗ N−1

grav ⊗ N−1
gauge,

respectively, where Ngrav is a line bundle over Σ character-
izing the spin of the matter field, andNgauge is the line bundle
corresponding to the gauge field A.

A. The mixed anomaly

Upon coupling the theory to a worldsheet metric, one
should make sure that no mixed gauge-gravitational

anomaly arises. Denote by J the matrix of integer-
normalized gravitational charges (spins) characterizing
the bundle Ngrav for various fields. J ¼ 0 corresponds
to spin-1=2 fields, and spins of the dual fields are related
by J → −J . We assume J commutes with the gauge
generators τa and with any global symmetry that one wants
to keep. The condition for the vanishing of the mixed
anomaly reads (cf. [54]),

StrWðJ τaÞ ¼ 0 for τa ∈ h: ð19Þ

In the language of the conformal field theory (CFT) system
discussed earlier, this is tantamount to requiring that the
current JðzÞ be a primary operator.
The two conditions (12) and (19) form a set of anomaly

cancellation conditions; (12) is a condition on the theory in
flat space, whereas (19) restricts the ways how it could
couple to the worldsheet metric. It was shown in [2] that in
several important cases (the SUSY case and the case of
minimally coupled fermions) StrWðτaÞ ¼ 0 holds, so that
J ¼ q1 (q ∈ Z) would satisfy the constraint (19). This
means that bosons and fermions inW have the same gravity
couplings, which corresponds to the A-type topological
twist [55–57].

B. Global aspects

When the topology of Σ is nontrivial, the gauge (6)
cannot be imposed. First, observe that the degree p ≔
1
2π

R
Σ dA is gauge-invariant, since δp ¼ 1

2π

R
Σ d � dReðχÞ ¼

0 as integral of a total derivative (for bounded χ). We may
decompose A ¼ Að0Þ þ Â, where Að0Þ is a fixed background
gauge field satisfying 1

2π

R
Σ dA

ð0Þ ¼ p, and 1
2π

R
Σ dÂ ¼ 0.

Using chiral gauge transformations, we may then set
dÂ ¼ 0 [58]. The flat connection leads to additional gauge
invariants—the holonomies exp ði Hγ ÂÞ for γ ∈ π1ðΣÞ.
In the Abelian case these invariants parametrize the

moduli space of line bundles N over Σ, which is

PicðΣÞ ≃ Z × JacðΣÞ; ð20Þ

where Z corresponds to the degree of N and (assuming the
surface is of genus g) JacðΣÞ ≃ T2g is the Jacobian of Σ
(cf. [51]). Holonomies may be thought of as coordinates on
JacðΣÞ. An explicit description of elements of (20) involves
the theory of theta functions [59].
Additional insight comes from the analysis of ghost zero

modes. The zero modes of c correspond to residual gauge
transformations preserving the gauge A ¼ 0. These are
holomorphic functions on Σ (constant for compact Σ).
Since bðzÞdz is a one form on Σ, the zero modes of b are
holomorphic one forms. On a surface of genus g there are
exactly g of those, and they parametrize the tangent space
to JacðΣÞ.
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C. Σ= S2: Bundles of nonzero degree

Let us illustrate the meaning of the discrete part Z
in (20), taking the simplest case Σ ¼ S2. Here all holon-
omies are zero and a line bundle is characterized by its
degree p ∈ PicðS2Þ ¼ Z. The connection is not flat for
p ≠ 0, but we can still find a suitable gauge, such as

A ¼ i
p
2

zdz̄ − z̄dz
1þ jzj2 : ð21Þ

Recall that, for a sphere, KΣ ¼ Oð−2Þ. Assuming the
background bundle is Ngrav ¼ OðqÞ, we find the following
gauge transformations for the fields under the change of
variables z → z−1 (here φ ¼ argðzÞ):

U → z−qe−ipφU; V → z2þqeipφV: ð22Þ

Although the gauge field (21) is not flat for p ≠ 0, one finds
iĀ ¼ − p

2
∂̄ log ð1þ jzj2Þ, so that each component can be

gauged away by U → ð1þ jzj2Þ−p
2U, V → ð1þ jzj2Þp2V. In

the new variables the gauge transformations are purely
holomorphic,

U → z−p−qU; V → z2þpþqV: ð23Þ

As a result, U and V are sections of Oðpþ qÞ and
Oð−2 − p − qÞ, respectively. It follows that, once all gauge
line bundles Ngauge are included, there is no invariant
meaning of Ngrav; summing over gauge bundles is the same
as summing over all spins.
Quantum mechanically one should take into account the

anomaly cancellation conditions. To give an example where
they play a role, recall that the central charge of the free CFT
system is (cf. [45]) c ¼ StrWð3J 2 − 1Þ. Now, consider the
change of the gravitational couplings by elements from the
center of h (sa are constants), J → J þP

τa∈ZðhÞ saτa.
This is a generalization of the shift from Ngrav ¼ OðqÞ to
Ngrav ¼ Oðpþ qÞ in (22) and (23). One sees that the
conditions (12) and (19) ensure invariance of c under this
shift.
Finally, bundles of nonzero degree p exist on arbitrary

Riemann surfaces. In that case one can take A ¼ ip
2
∂Ωdz −

ip
2
∂̄Ωdz̄ for the connection (Ω being the potential). One can

again get rid of the gauge field by the transformation
U → epΩU, V → e−pΩU and assume that U and V are
sections of the relevant line bundles. Similar questions have
been discussed in the context of the quantum Hall effect on
Riemann surfaces, cf. [60–62].
In the following sections we will analyze the role of the

Jacobian in (20). As a first example we take up the case
when the worldsheet is a cylinder.

D. Σ=R × S1: The Hilbert space interpretation

On a cylinder Σ ¼ R × S1 we regard R as the “space”
direction and S1 as the compactified Euclidean time
direction (of circumference β). We assume decay con-
ditions for the curvature F at infinity, so that the integralsH
S1 Aj�∞ are independent of the contours. The gauge
invariants are the degree p¼ 1

2π ð
H
S1 Ajþ∞ −

H
S1 Aj−∞Þ ∈R

and the holonomy h ≔ exp ði HS1 Ajþ∞Þ ∈ Uð1Þ. A particu-
larly simple interpretation exists for the sector p ¼ 0. In this
case we may eliminate the gauge field at the expense of
imposing h-twisted boundary conditions along the circle S1

(cf. [4]). This leads to the following expression for the
partition function in an external gauge field A: Zp¼0ðAÞ ¼
Trðhe−βHÞ, where H is the Hamiltonian of the theory on R.
Integrating over the gauge field is tantamount to averaging
over the twist,

Zp¼0 ¼
Z

dhTrðhe−βHÞ ¼ Trinvðe−βHÞ; ð24Þ

i.e., the Hilbert space is projected to the subspace of states
invariant with respect to the gauge group.

VI. NON-ABELIAN GAUGE GROUPS

The simple case of the CPn−1 model has a generalization
[3] related to quiver varieties [63,64]. The gauge groups
would then generally be non-Abelian—an example is
provided by the Grassmannian Grk;n target space with
(complexified) gauge group GLðk;CÞ. The gauge trans-
formation law (4) is then replaced by

Ā → gĀg−1 − i∂̄gg−1; g ∈ GLðk;CÞ: ð25Þ

Equivalence classes of connections with respect to these
transformations define equivalence classes of rank-k
holomorphic vector bundles over Σ. As is typical for
complex quotients, there is an alternative description as a
symplectic quotient, if one considers the natural symplec-
tic form ω ¼ R

Σ TrðδA ∧ δAÞ (see [65,66] for a review).
The corresponding moment map equation is

dA − iA ∧ A ¼ p
k
volΣ1k; ð26Þ

where volΣ is the 2π-normalized volume form on Σ. One
may think of (26) as a partial gauge for the GLðk;CÞ gauge
symmetry (25), whose residual gauge transformations are
the (standard) unitary ones acting on A.
The right-hand side of (26) involves a central Fayet-

Iliopoulos term, and the coefficient p
k is chosen so that the

integral of the trace of the curvature, 1
2π

R
TrðFÞ ¼ p is equal

to the degree of the bundle. For fixed p the space of
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solutions to (26) may be described via representations of the
central extension of π1ðΣÞ [65,67] (again assuming g is the
genus),

MðpÞ ¼
(Yg

i¼1

AiBiA−1
i B−1

i ¼ e
2πip
k

�
=UðkÞ; ð27Þ

Here Ai;Bi are UðkÞ-valued matrices representing holon-
omies P exp ði H AÞ along the A- and B-cycles of Σ. We may
as well get rid of the non-Abelian part of the gauge
connection at the expense of imposing twisted boundary
conditions; for example, one has U → AiU as one moves
around the A-cycle on Σ. The remaining Abelian part may
be included in the spin of the fields, as in the Σ ¼ S2 case
studied above.
Calculating the partition function of the theory should

therefore proceed in the following steps:
(i) For instanton number p ∈ Z, calculating the parti-

tion function with fixed twists along each cycle.
(ii) Integrating over the moduli space MðpÞ of such

twists (the torus JacðΣÞ ¼ T2g in the Abelian case).
(iii) Summing over all instanton numbers p.

This is the generalization to an arbitrary Riemann surface of
the procedure encountered in (24) in the case of a cylinder.
Calculation of the partition function with generic twists
should rely on integrability-related methods, tailored to the
case of Riemann surface worldsheets. Curiously, this again
leads to the study of flat connections, namely the ones
encoding the spectrum (i.e., Lax connections).

VII. OUTLOOK

We have shown that, classically, the gauge sector in the
Gross-Neveu reformulation of familiar sigma models (such

as CPn−1) is topological. Although this is also true for pure
Yang-Mills theory in 2D [68,69], from the point of view of
general 2D gauge-matter models this is rather exceptional,
cf. [70]. Besides, the mechanism of how this happens is
rather different in our case; here we have the complex
quotient (25), whereas in 2D Yang-Mills theory one
naturally arrives at flat connections. These are of course
related by the theorem of [67], but they represent two
opposite endpoints thereof.
Upon quantization, the topological nature of the gauge

fields may be violated by gauge anomalies. Cancellation
of these anomalies imposes conditions on the target space
of the sigma model. In this regard our GLSM-based
analysis is as well applicable to βγ-systems that arise in
the limit ϰ → 0. It would thus be interesting to relate the
anomalies found in [42,43] to the ones of the present
paper. Applications to the pure spinor formulation of the
superstring [71,72], where such βγ-systems arise, are
worth studying as well.
In the gauge A ¼ Ā ¼ 0 the model (3) (or rather

its anomaly-free completion) admits a well-defined
perturbative expansion in ϰ, valid for any n. In particular,
no 1

n-expansion is necessary, as compared to the standard
approach. This direct perturbative expansion has already
been applied to the calculation of β-function in [73] and is
expected to yield more results in the future.
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