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Theories of scalars and gravity, with an Einstein-Hilbert term and nonminimal interactions,
M2R=2 − αϕ2R=12, have graviton exchange-induced contact interactions. These modify the renormalization
group, leading to a discrepancy between the conventional calculations in the Jordan frame that ignore this
effect (and are found to be incorrect), and the Einstein frame in which α does not exist. Thus, the calculation
of quantum effects in the Jordan and Einstein frames does not generally commute with the transition from the
Jordan to the Einstein frame. In the Einstein frame, though α is absent, for small steps in scale δμ=μ
infinitesimal contact terms ∼δα are induced, that are then absorbed back into other couplings by the contact
terms. This modifies the β-functions in the Einstein frame. We show how correct results can be obtained in a
simple model by including this effect.
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I. INTRODUCTION

Over the years there has been considerable interest in
Brans-Dicke, scalar-tensor, and scale- or Weyl-invariant
theories. These have in common fundamental scalar fields,
ϕi, that couple to gravity through nonminimal interactions,
FðϕiÞR. Unless forbidden by a symmetry (scale/Weyl), the
Einstein term M2R and the Planck mass, M, can coexist
with these nonminimal couplings, otherwise M is gener-
ated dynamically by the vacuum expectation values
(VEVs) of some of these scalars [1]. When the theory
is prescribed with nonminimal interactions we say it is
given in a “Jordan frame”.
A key tool in the analysis of these models is the Weyl

transformation, [2]. This involves a redefinition of the
metric, g0 ¼ ΩðϕiÞg, in which g comingles with the scalars.
Ω can be chosen to lead to a new effective theory, typically
one that has a pure Einstein-Hilbert action,∼M2R, in which
the nonminimal interactions have been removed. This is
called the “Einstein frame”. Alternatively, one might use a
Weyl transformation to partially remove a subset of scalars
from the nonminimal interactions ∼M2Rþ F0ðϕiÞR, where
F0 is optimized for some particular application.
It is a priori unclear, however, how or whether the

original Jordan frame theory can be physically equivalent to
the Einstein frame form and how the Weyl transformation is
compatible with a full quantum theory [3,4]. Nonetheless,
many authors consider this to be a valid transformation and

a symmetry of Weyl invariant theories, and many loop
calculations permeate the literature which attempt to exploit
apparent simplifications offered by the Jordan frame.
It has been shown that any theory with nonminimal

couplings and a Planck mass,M, contains contact terms [5].
These are generated by the graviton exchange amplitudes
in tree approximation and they are therefore Oðℏ0Þ and
therefore classical. The contact terms occur because
emission vertices from the nonminimal interaction are
proportional to q2 of the graviton, while the Feynman
propagator is proportional to 1=q2. The cancellation of
q2 × 1=q2 therefore leads to pointlike interactions that
must be included into the effective action of the theory
at any given order of perturbation theory. The result is
that the nonminimal interactions disappear from the theory
and Planck-suppressed higher-dimension operators appear
with modified couplings.
The structural form of the theory when the contact term

interactions are included corresponds formally to a Weyl
transformation of the metric that takes the theory to the
Einstein frame. In the pure Einstein-Hilbert action there are
no classical contact terms, but at loop level they will be
generated, and must be removed as part of the renormaliza-
tion group. However, by virtue of the contact terms,
nowhere is a metric redefinition performed (hence the issue
of a Jacobian in the measure of the gravitational path
integral in going to the Einstein frame becomes moot).
This means that, provided we are interested in the theory

on mass scales belowM, the Jordan frame is an illusion and
does not really exist physically. In the Jordan frame the
contact terms are hidden, but they are always present. Ergo,
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even though the action superficially appears to have non-
minimal couplings, it does not, and remains always in an
Einstein frame.
Efforts to compute quantities, such as effective potentials

(or equivalently, β-functions), in the Jordan frame, while
ignoring the contact terms, will yield incorrect results.
Nonetheless, though the nonminimal interactions are not
present in the classical Einstein frame, they are regenerated
by loops and the potentials and Renormalization Group
(RG) equations are modified by this effect.
In a simple theory in the Jordan frame, where the

nonminimal coupling is −αϕ2R=12, this raises the question
of how to understand the fate of α?With a single scalar with
quartic and other interactions, λi, the usual naive calcu-
lation of a β-function in the Jordan frame (“naive” means
ignoring contact terms) yields the form,

∂αðμÞ
∂ lnðμÞ ¼ βαðλiÞ≡ ð1 − αÞγαðλiÞ; ð1Þ

where the factor (1 − α) reflects the fact that when M2 ¼ 0
and α ¼ 1 (conformal limit) the kinetic term of ϕ dis-
appears and ϕ becomes static parameter.
However, the contact terms (or a Weyl transformation)

remove α and leave an Einstein frame with only the
Einstein-Hilbert term, M2R and the ϕ couplings λ0i (in what
follows primed couplings refer to the Einstein frame and un-
primed to Jordan frame). This means that N couplings,
ðα; λiÞ, in the Jordan frame have become N − 1 couplings,
ðλ0iÞ, in the Einstein frame. Therefore any physical meaning
ascribed to α or the βα function is apparently lost.
Three Feynman diagrams [shown below as D1, D2, D3,

in Figs. 2–4] contribute to βα in the Jordan frame. One of
them multiplies α in the Jordan frame (D3) and yields the
(1 − α) factor in Eq. (1), but even with α ¼ 0 in the Einstein
frame, two diagrams (D1 and D2) exist and reintroduce a
perturbative δα for a small step in scale δμ=μ. This is then
removed by the contact terms, but leads to correction terms
in the renormalization of the λ0i. We are therefore sensitive
to the same scale breaking information in the Einstein
frame that one has in the Jordan frame, which is encoded
into γα. This does not, however, imply that the resulting
calculations in the Jordan and Einstein frames are then
consistent. We explicitly demonstrate the inconsistency
through calculation of effective potentials (the RG equa-
tions of the couplings can always be read off from the
effective potentials).
If we stayed in the Jordan frame, with nonzero α, and

naively computed the same effective potential (“naively”
means ignoring contact terms), into an Einstein frame, we
would obtain a different result. The difference is a term
proportional to α in the Jordan frame. Equivalently, going
initially to the Einstein frame and running with the RG,
does not commute with running initially in the Jordan
frame and subsequently going to the Einstein frame.

We turn presently to a brief discussion of contact terms in
general and review a simple toy model from [5] that is
structurally similar to the gravitational case. We then
summarize gravitational contact terms (and refer the reader
to [5,6] for details and applications). We then exemplify the
Einstein frame renormalization group compared to the
naive Jordan frame result, which ignores contact terms,
and illustrate the discrepancy.

II. CONTACT INTERACTIONS

Generally speaking “contact interactions” are pointlike
operators that are generated in the effective action of the
theory in perturbation theory. They may arise in the UV
from ultra-heavy fields that are integrated out, such as the
Fermi weak interaction that arises from integrating out the
heavy W-boson. They may also arise in the IR when a
vertex in the theory is proportional to q2 and cancels against
a 1=q2 propagator. The gravitational contact term we
discuss presently is of the IR form.

A. Contact terms in nongravitational physics

Contact terms arise in a number of phenomena.
Diagrammatically they can arise in the IR when a vertex
for the emission of, e.g., a massless quantum, of momen-
tum qμ, is proportional to q2. This vertex then cancels the
1=q2 from a massless propagator when the quantum is
exchanged. This q2=q2 cancellation leads to an effective
pointlike operator from an otherwise single-particle reduc-
ible diagram.
For example, in electroweak physics a vertex correction

by aW-boson to a massless gluon emission induces a quark
flavor changing operator, e.g., describing s → dþ gluon,
where sðdÞ is a strange (down) quark. This has the form of a
local operator [7,8],

gκs̄γμTAdLDνGAμν; ð2Þ

where GAμν is the color-octet gluon-field strength and
κ ∝ GFermi.
This implies a vertex for an emitted gluon of

4-momentum q and polarization and color, ϵAμ, of the form
gκs̄γμTAdLϵAμ × q2 þ…. However, the gluon propagates,
∼1=q2, and couples to a quark current ∼gϵAμq̄γμTAq. This
results in a contact term

g2κ

�
q2

q2

�
s̄γμTAdLq̄γμTAq ¼ g2κs̄γμTAdLq̄γμTAq: ð3Þ

The result is a 4-body local operator which mediates
electroweak transitions between, e.g., kaons and pions [7],
also known as “penguin diagrams” [8]. Note the we can
rigorously obtain the contact term result by use of the
gluon field equation within the operator of Eq. (2),
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DνGAμν ¼ gq̄γμTAq: ð4Þ

This is justified as operators that vanish by equations of
motion, known as “null operators”, will generally have
gauge noninvariant anomalous dimensions and are
unphysical [9].
Another example occurs in the case of a cosmic

axion, described by an oscillating classical field, θðtÞ ¼
θ0 cosðmatÞ, interacting with a magnetic moment, μ⃗ðxÞ · B⃗,
through the electromagnetic anomaly κθðtÞE⃗ · B⃗. A static
magnetic moment emits a virtual spacelike photon of
momentum ð0; q⃗Þ. The anomaly absorbs the virtual photon
and emits an on shell photon of polarization ϵ⃗, inheriting
energy ∼ma from the cosmic axion. The Feynman diagram,
with the exchanged virtual photon, yields an amplitude,
∝ ðθ0μiϵijkqjÞð1=q⃗2ÞðκϵklhqlmaϵhÞ ∼ ðκθ0maq⃗2=q⃗2Þμ⃗ · ϵ⃗.
The q⃗2 factor then cancels the 1=q⃗2 in the photon propa-
gator, resulting in a contact term which is an induced, parity
violating, oscillating electric dipole interaction: ∼κθðtÞμ⃗ · E⃗.
This results in cosmic axion-induced electric dipole radiation
from any magnet, including an electron [10].

B. Illustrative toy model of contact terms

To illustrate the general IR contact term phenomenon,
consider a single massless real scalar field ϕ and operators
A and B, which can be functions of other fields, with the
action given by

S ¼
Z

1

2
∂ϕ∂ϕ − A∂2ϕ − Bϕ; ð5Þ

where A and B are functions of other fields.
Here ϕ has a propagator i=q2, but the vertex of a diagram

involving A has a factor of ∂2 ∼ −q2. This yields a pointlike
interaction, ∼q2 × ði=q2Þ, in a single particle exchange of
ϕ, and therefore implies contact terms.
At lowest order in perturbation theory consider the

diagram with ϕ exchange in Fig. 1. This involves two
time-ordered products of interaction operators,

T i
Z

A∂2ϕ × i
Z

Bϕ →
iq2

q2
AB ¼ i

Z
AB;

1

2
T i

Z
A∂2ϕ × i

Z
A∂2ϕ →

iðq2Þ2
2q2

A2 ¼ i
2

Z
A∂2A; ð6Þ

where d4x is understood in the integrals and the 1
2
factor in

the A∂2A term comes from the second order in the
expansion of the path integral expði R A∂2ϕÞ. Note that
we also produce a nonlocal interaction −iB2=2q2.
We thus see that we have diagrammatically obtained a

local effective action,

S ¼
Z

1

2
∂ϕ∂ϕþ 1

2
A∂2Aþ ABþ long distance: ð7Þ

Of course, we can see this straightforwardly by “solving the
theory” by defining a shifted field,

ϕ ¼ ϕ0 −
1

∂
2
ð∂2Aþ BÞ: ð8Þ

Substituting this into the action S and integrating by
parts yields,

S ¼
Z

1

2
∂ϕ0

∂ϕ0 þ 1

2
A∂2Aþ ABþ 1

2
B

1

∂
2
B: ð9Þ

An equivalent effective local action that describes both
short and large distance is then,

S ¼
Z

1

2
∂ϕ∂ϕþ 1

2
A∂2Aþ AB − Bϕ: ð10Þ

The contact terms have become pointlike components of the
effective action, while the remaining long distance effects
are produced by the usual massless ϕ exchange. Note that
the derivatively coupled operator A has no long distance
interactions due to ϕ exchange. Moreover, in the effective
action of Eq. (10) we have implicitly integrated out the
A∂2ϕ, which is no longer part of the action and is replaced
by new operators 1

2
A∂2Aþ AB. We will see that this is

exactly what happens with gravity, where the A∂2ϕ term is
schematically the nonminimal FðϕÞRðgÞ ∼ FðϕÞ∂2h term
in a weak-field expansion of gravity g ¼ ηþ h.
One can also adapt the use of equations of motion to

obtain Eq. (10) from the action Eq. (5) but this requires
care. For example, the insertion of the ϕ equation of
motion, into A∂2ϕ correctly gives the AB term but misses
the factor of 1=2 in the A∂2A term. We can therefore do a

FIG. 1. Contact terms in the toy model are generated by
diagrams with exchange of ϕ (dashed). In gravity, with non-
minimal term ∼

R ffiffiffiffiffiffi−gp
FðϕÞR and matter field Lagrangian

∼
R ffiffiffiffiffiffi−gp

LðϕÞ then A is replaced by FðϕÞ and B is replaced
by LðϕÞ, and the dashed line is a graviton propagator.

RENORMALIZATION GROUP FOR NONMINIMAL ϕ2R … PHYS. REV. D 107, 085013 (2023)

085013-3



trick of defining a modified equation of motion where we
supply a factor of 1=2 on the term A∂2A, e.g., substitute

∂
2ϕ ¼ −∂2A − B → −

1

2
∂
2A − B ð11Þ

in place of the ∂
2ϕ in the second term of Eq. (5) to

obtain Eq. (10).

III. GRAVITATIONAL CONTACT TERMS

Consider a general theory involving scalar fields ϕi, an
Einstein-Hilbert term and a nonminimal interaction,

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
M2RðgμνÞ þ

1

2
FðϕiÞRðgμνÞ þ LðϕiÞ

�

¼ S1 þ S2 þ S3; ð12Þ
where we use the metric signature and curvature tensor
conventions of [11]. S1 is the kinetic term of gravitons

S1 ¼
1

2
M2

Z ffiffiffiffiffiffi
−g

p
R ð13Þ

and becomes the Fierz-Pauli action in a weak-field
expansion.
S2 is the nonminimal interaction, and takes the form

S2 ¼
1

2

Z ffiffiffiffiffiffi
−g

p
FðϕiÞRðgμνÞ; ð14Þ

where F is polynomial in fields.
S3 is the matter action with couplings to the gravitational

weak field,

S3 ¼
Z ffiffiffiffiffiffi

−g
p

LðϕiÞ: ð15Þ

The Lagrangian takes the form

LðϕiÞ ¼
1

2
gμν∂μϕi∂νϕi −WðϕiÞ ð16Þ

with potential WðϕiÞ. The matter Lagrangian has stress
tensor and stress-tensor trace,

Tμν ¼ ∂μϕi∂νϕi − gμν

�
1

2
gρσ∂ρϕi∂σϕi −WðϕiÞ

�

T ¼ −∂σϕi∂σϕi þ 4WðϕiÞ: ð17Þ
There are then three ways to obtain the contact term:

(1) Graviton exchange contact term

In Ref. [5] the corresponding Feynman diagrams of Fig. 1
are evaluated, arising from a single graviton exchange
between the interaction terms.

We treat the theory perturbatively, expanding around flat
space. Hence we linearize gravity with a weak field hμυ,

gμυ ≈ ημυ þ
hμυ
M

: ð18Þ

The scalar curvature is then

R ¼ R1 þ R2;

MR1 ¼ ð∂2h − ∂
μ
∂
νhμνÞ;

M2R2 ¼ −
3

4
∂
ρhμν∂ρhμν −

1

2
hμν∂2hμν þ � � � ; ð19Þ

(see [5] for the complete expression for R2). S1 then
becomes

S1 ¼
1

2
M2

Z ffiffiffiffiffiffi
−g

p
R ¼ 1

2
M2

Z �
R1 þ R2 þ

1

2

h
M

R1

�

¼ 1

2

Z
hμν

�
1

4
∂
2ημνηρσ −

1

4
∂
2ημρηνσ −

1

2
∂ρ∂σημν

þ 1

2
∂μ∂ρηνσ

�
hρσ: ð20Þ

Note that the leading term,
R
R1, is a total divergence and is

therefore zero in the Einstein-Hilbert action, and what
remains of Eq. (20) is the Fierz-Pauli action. This is key to
the origin of the contact terms. The nonminimal interaction,
S2, then takes the leading form,

S2 ¼
1

2

Z ffiffiffiffiffiffi
−g

p
FðϕÞRðgÞ → 1

2

Z
FðϕÞR1ðgÞ

¼
Z

1

2M
FðϕÞΠμνhμν; ð21Þ

where it is useful to introduce the transverse derivative,

Πμν ¼ ∂
2ημν − ∂

μ
∂
ν: ð22Þ

S2 involves derivatives, since R1 is now active, and is the
analog of the A∂2ϕ term in Eq. (5). It will therefore generate
contact terms in the gravitational potential due to single
graviton exchange. S3 is the analog of the Bϕ term in
Eq. (5), and this situation will closely parallel the toy model.
In [5] we developed the graviton propagator, following

the nice lecture notes of Donoghue et al.,[12]. We remark
that we found a particularly useful gauge choice,

∂μhμν ¼ w∂νh ð23Þ

where w defines a single parameter family of gauges. The
familiar De Donder gauge corresponds to w ¼ 1

2
, while the

choice w ¼ 1
4
is particularly natural in this application, and

the gauge invariance of the result is verified by the w
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independence (we verify the Newtonian potential from
graviton exchange between static masses in w gauge;
see [5]).
We can then compute single graviton exchange between

the interaction terms of the theory. A diagram with a single
S2 vertex and single S3 vertex is the analog of AB in the toy
model and yields,

−ihTS2S3i ¼
Z

d4x
FðϕiÞ
2M2

TðϕiÞ: ð24Þ

Also we have the pair hS2S2i which corresponds to 1
2
A∂2A

in the toy model and yields

−ihT S2S2i ¼ −
Z

d4x
3

4M2
FðϕiÞ∂2FðϕiÞ: ð25Þ

The action becomes

S ¼ S1 þ S3 þ SCT; ð26Þ

where

SCT ¼
Z

d4x

�
−

3

4M2
F∂2F þ 1

2M2
FT

�
: ð27Þ

Note the sign of the F∂2F is opposite (repulsive) to that of
the toy model A∂2A.

(2) Weyl transformation

Define

Ω2 ¼
�
1þ FðϕiÞ

M2

�
ð28Þ

and perform a Weyl transformation on the metric,

gμνðxÞ → Ω−2gμνðxÞ; gμνðxÞ → Ω2gμνðxÞ;ffiffiffiffiffiffi
−g

p
→

ffiffiffiffiffiffi
−g

p
Ω−4;

RðgÞ → Ω2RðgÞ þ 6Ω3
□Ω−1; ð29Þ

and the action of Eq. (12) becomes

S →
Z ffiffiffiffiffiffi

−g
p �

1

2
M2RðgÞ

− 3M2
∂μ

�
1þ F

M2

�
1=2

∂
μ

�
1þ F

M2

�
−1=2

þ 1

2

�
1þ F

M2

�
−1
∂μϕi∂

νϕi −
�
1þ F

M2

�
−2
WðϕiÞ

�
:

ð30Þ

Keeping terms to Oð1=M2Þ and integrating by parts
we have

S ¼ S1 þ S3 þ
Z

d4x

�
−
3FðϕiÞ∂2FðϕiÞ

4M2
þ FðϕiÞTðϕiÞ

2M2

�
:

ð31Þ

The Weyl transformed action is identically consistent with
the contact terms of Eq. (27) above, to first order in 1=M2.
Hence, contact terms arise in gravity with nonminimal

couplings to scalar fields due to graviton exchange. Their
form is equivalent to a Weyl redefinition of the theory to the
Einstein frame action and reinforces their role as induced
components of the effective action. Hence any theory with a
nonminimal interaction ∼FðϕÞR will lead to contact terms
at order 1=M2.
The Weyl transformation is non-perturbative. It is

technically simpler than the gravitational potential calcu-
lation, and it confirms the tricky normalization factors and
phases in the graviton exchange calculation. As the Weyl
transformation makes no reference to a gauge choice, a
calculation of the contact terms in other gauges should
yield the equivalent results. To check the invariance we turn
now to a calculation in an alternative gauge which sheds
further light on the origin of their structure.

(3) Use of modified R equation of motion

A trick can be used to simplify the calculations below.
The Einstein equation with the nonminimal term is

M2Gαβ ¼ −Tαβ −∇μð∇νFðϕiÞÞ þ gμν∇2FðϕiÞ;
M2R ¼ T − 3∇2FðϕiÞ: ð32Þ

To use a modified “equation of motion” we first supply a
factor of 1=2 in the last term which is the analog of the ∂2A
term as in Eq. (11),

R0 ¼ 1

M2

�
T −

3

2
∇2FðϕiÞ

�
: ð33Þ

Then substitute R0 for R in the nonminimal term FR of the
action of Eq. (12)

S →
Z ffiffiffiffiffiffi

−g
p �

1

2
M2RðgμνÞ þ

1

2
FðϕiÞR0ðgμνÞ þ LðϕiÞ

�

¼ S1 þ S3 þ
Z

d4x

�
−
3FðϕiÞ∂2FðϕiÞ

4M2
þ FðϕiÞTðϕiÞ

2M2

�
:

ð34Þ

In the RG calculation we will only need the exact equation
of motion for R in the Einstein frame (without the pseudo
−3∇2F=2 term), so this ambiguity does not arise.

IV. CONTACT TERM IN A SIMPLE MODEL

Consider the following action for a single real scalar
field ϕ:
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SJordan ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
∂ϕ∂ϕ −

λ1
4
ϕ4 −

λ2
12M2

ϕ6

−
λ3

12M2
ϕ2

∂ϕ∂ϕ −
α

12
ϕ2Rþ 1

2
M2R

�
; ð35Þ

∂
2ϕ∂2ϕ terms can be dealt with by adding a k4 term in the
kinetic term of ϕ̂. It is then possible to see this does not
modify the present operator basis in the loops, and it would
be equivalent to using the equations of motion ∂

2ϕ ¼ λ1ϕ
3

which can be absorbed into a redefinition of λ2.
This is the most general action for ϕ with a Z2 symmetry

ϕ → −ϕ valid to OðM−2Þ with Einstein gravity and
assuming ϕ is massless, m2 ¼ 0. We will study this model
to leading order 1=M2 and one loop,Oℏ. Hence, we do not
include a term ϕ4R=M2 since, after use of equations of
motion, R ∼M−2 such a term would enter the physics
at OðM−4Þ. Also note that, by integration by parts,R
ϕ2

∂
2ϕ2 ¼ ð−4Þ R ϕ2ð∂ϕÞ2 and R ϕ3

∂
2ϕ ¼ −3

R
ϕ2ð∂ϕÞ2.

The matter Lagrangian has stress tensor and stress tensor
trace

Tμν ¼
�
1 −

λ3ϕ
2

6M2

�
∂μϕ∂νϕ − gμν

�
1

2
ð∂ϕÞ2 −WðϕÞ

�
:

T ¼ −ð∂ϕÞ2 þ 4WðϕÞ

W ¼ λ1
4
ϕ4 þ λ2

12M2
ϕ6 þ λ3

12M2
ϕ2ð∂ϕÞ2 ð36Þ

and we have

F ¼ −
α

6
ϕ2; ð37Þ

which leads to the contact terms

−
3F∂2F
4M2

¼ α2ðϕ∂ϕÞ2
12M2

;

FT
2M2

¼ αϕ2

12M2
ðð∂ϕÞ2 − λ1ϕ

4Þ: ð38Þ

Therefore, the effect of single graviton exchange to
Eq. (35) yields the Einstein frame action to order M−2,

SEinstein ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
∂ϕ∂ϕ −

λ01
4
ϕ4 −

λ02
12M2

ϕ6

−
λ03

12M2
ϕ2

∂ϕ∂ϕþ 1

2
M2R

�
; ð39Þ

where

λ03 ¼ λ3 − α − α2;

λ01 ¼ λ1;

λ02 ¼ λ2 þ αλ1: ð40Þ

Thus, the Planck-suppressed terms in Jordan frame (of
couplings λ2;3) that are usually ignored to a leading
approximation, are actually of same order (1=M2) to the
nonminimal term (ϕ2R) when written in the Einstein frame.
We see that to first order in M−2 in SEinstein we have three
interaction terms, though the original action SJordan displayed
four interaction terms. In the latter action we see that α has
disappeared having been absorbed into redefining the
primed coupling constants. This indicates that the non-
minimal term in SJordan with coupling α is unphysical.

A. Effective action

To compute the effective action for a classical back-
ground field ϕ0 we expand the action with a shifted field,

ϕ → ϕ0 þ
ffiffiffi
ℏ

p
ϕ̂ ð41Þ

to Oðϕ̂2Þ. We will integrate out the quantum fluctuations
and can therefore drop terms odd in ϕ̂, so we have1

SEinstein ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
∂ϕ0∂ϕ0þ

1

2
∂ϕ̂∂ϕ̂−

1

2
B0ϕ̂

2−V0

þ 1

2
M2R−

λ03
12M2

ðϕ̂þϕ0Þ2ð∂ðϕ̂þϕ0ÞÞ2
�
; ð42Þ

where

B0 ¼
�
3λ01ϕ

2
0 þ

5λ02
2M2

ϕ4
0

�
;

V0 ¼
λ01
4
ϕ4
0 þ

λ02
12M2

ϕ6
0: ð43Þ

To treat the λ03 term in the shifted fields we use
integration by parts and the identity 2ϕ∂ϕ ¼ ∂ðϕ2Þ. We
obtain the terms to Oϕ̂2,

Z
ðϕ̂þ ϕ0Þ2ð∂ðϕ̂þ ϕ0ÞÞ2 →

Z
ϕ2
0ð∂ϕ0Þ2 − ϕ2

0ϕ̂∂
2ϕ̂

þ ϕ̂2

�
∂ϕ0∂ϕ0 −

1

2
∂
2ðϕ2

0Þ
�
:

ð44Þ

For the Oð1=M2Þ terms we can then use the equation of
motion,

ϕ2
0ϕ̂∂

2ϕ̂ ≈ −B0ϕ
2
0ϕ̂

2 ≈ −3λ01ϕ4
0ϕ̂

2: ð45Þ

1This corresponds to using a source term, Jϕ, to compute SðJÞ,
then performing a Legendre transformation to obtain the effective
action as a function of ϕ0 ¼ δSðJÞ=δJ as in [13].
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This is a bit tricky, but can be seen by consideration of
Feynman diagrams that contribute lnðΛ2Þ.2 Then we have

SEinstein ¼ Sc þ ℏSq;

Sc ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
∂ϕ0∂ϕ0 − V 0 þ 1

2
M2R

�
;

Sq ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
∂ϕ̂∂ϕ̂ −

1

2
B0ϕ̂2

�
; ð46Þ

where

B0 ¼ 3λ01ϕ
2
0þ

5λ02
2M2

ϕ4
0þ

λ03
6M2

�
3λ01ϕ

4
0þð∂ϕ0Þ2−

1

2
∂
2ðϕ2

0Þ
�
;

V 0 ¼ λ01
4
ϕ4
0þ

λ02
12M2

ϕ6
0þ

λ03
12M2

ϕ2
0ð∂ϕ0Þ2: ð47Þ

First consider the noncurvature terms, with the flat
Minkowski space metric gμν ¼ ημν. We obtain the effective
potential from the log of the path integral discussed in the
Appendix [Eq. (A6)],

Γ0 ¼ −
1

2
B02LþO

�
B3

Λ2

�
ð48Þ

and we define the log as (see the Appendix)

L ¼ 1

32π2
ln
Λ2

μ2
; ð49Þ

with a generic infrared cutoff mass scale, μ. Hence,
squaring B0, the resulting potential is to Oð1=M2Þ,

Γ0 ¼−
�
9λ021
2

ϕ4
0þ

15λ02λ
0
1

2M2
ϕ6
0

þ λ03λ
0
1

2M2
ϕ2
0

�
3λ01ϕ

4
0þð∂ϕ0Þ2−

1

2
∂
2ðϕ2

0Þ
��

L

¼−
�
9λ021
2

ϕ4
0þ

15λ02λ
0
1þ 3λ03λ

02
1

2M2
ϕ6
0þ

3λ03λ
0
1

2M2
ϕ2
0ð∂ϕ0Þ2

�
L;

ð50Þ

where we integrated by parts the ϕ2
0ð∂2ϕ2

0Þ term.

B. Inclusion of a gravitationally induced contact term
in the Einstein frame

Consider a weak-field approximation to gravity where
the metric becomes

gμυ ≈ ημυ þ
hμυ
M

; gμυ ≈ ημυ −
hμυ

M
;

ffiffiffiffiffiffi
−g

p
≈ 1þ 1

2

h
M

; where h ¼ ημυhμυ;

R ¼ gμβRμβ ¼
1

M
ð∂2h − ∂

ν
∂ρh

ρ
νÞ þOðh2Þ: ð51Þ

We choose w gauge (this gauge is developed in [5];
w ¼ 1=2 corresponds to the familiar “de Donder gauge”,
see [12]),

∂αhαβ ¼ w∂βh; R ¼ ð1 − wÞ∂2h=M; ð52Þ

and up to linear terms in hμνϕ̂
2=M, Eq. (46) becomes

Sq →
Z �

1

2
∂μϕ̂∂

μϕ̂þ 1

4

h
M

∂μϕ̂∂
μϕ̂ −

hμυ

2M
∂μϕ̂∂νϕ̂

−
1

2

�
1þ 1

2

h
M

�
B0ϕ̂2

�
: ð53Þ

If we now include effects of gravity we see that the action
in Eq. (53) generates two diagrams of Figs. 2 and 3 that are
linear in the curvature R (other diagrams contribute

ffiffiffiffiffiffi−gp
factors for the resulting potential). We use the Wick-
rotated, Euclidean loop momentum with cutoff Λ and
we thus have for D1

Tðhμυ∂μϕ̂∂νϕ̂Þðϕ̂2Þ

¼ ð2hμυÞ
Z

d4l
ð2πÞ4

i
ðlþ qÞ2

i
ðlÞ2 ððqþ lÞμðlÞνÞ

¼ i
ð1þ 2wÞ

3
ð∂2hÞL; ð54Þ

where the quadratic divergence is projected away by a
factor P2 as discussed in the Appendix. For D2 we have

FIG. 2. Diagram D1.

FIG. 3. Diagram D2.

2If we restrict ourselves to constant ϕ0, as in Coleman-
Weinberg [13] we can considerably simplify the analysis and
just drop any terms with ∂ϕ0 and Eq. (44) becomes ϕ2

0ð∂ϕ̂Þ2 and
can be absorbed into a wave function renormalization of ϕ̂; this
yields the result we obtain below when ∂ϕ0 ¼ 0.
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Tðhημυ∂μϕ̂∂νϕ̂Þðϕ̂2Þ ¼ 6q2h
Z

1

0

dx
Z

d4l
ð2πÞ4

1

l4
xð1 − xÞ

¼ ið2∂2hÞL: ð55Þ

Hence, the contributions to the potential are

ΓD1 ¼ i
B0

4M
hTðhμυ∂μϕ̂∂νϕ̂Þðϕ̂2Þi

¼ −
ð1þ 2wÞ
12M

B0
∂
2hL;

ΓD2 ¼ −i
B0

8M
hTðhημν∂μϕ̂∂νϕ̂Þðϕ̂2Þi

¼ B0

4M
∂
2hL: ð56Þ

The diagrams hT hB0ϕ̂2 B0ϕ̂2i generate the covariantffiffiffiffiffiffi−gp Γ terms and do not lead to curvature. Note that

B0

4M
∂
2h −

ð1þ 2wÞB0

12M
∂
2h ¼ ð1 − wÞB0

6M
∂
2h ¼ B0

6
R: ð57Þ

Hence, we have the potential from D1þD2,

Γα ≡ ΓD1 þ ΓD2 ¼
1

6
B0RL ≈

λ01ϕ
2
0

2
RL; ð58Þ

We thus see there is a nonminimal term ðδα=12Þϕ2
0R in

the potential generated by the loops, of the form
δα ¼ 6λ01δL, from the 3λ01 term in B0, where we only keep
leading terms in 1=M2 since R ∼ 1=M2.
We remove this term by using the contact term. To

implement the contact term we use, in Eq. (58), the leading
order R equation of motion in the Einstein frame from Sc,

R ¼ 1

M2
T ¼ 1

M2
ð−ð∂ϕ0Þ2 þ λ01ϕ

4
0Þ: ð59Þ

Here we omit the λ2 term in B0 which is suppressed byM−2,
and the Oℏ, λ21L term which would lead to a L2 ∼ ℏ2

contribution. We then have

Γα ¼
1

2
λ01ϕ

2
0RL → −

λ01
2M2

ϕ2
0ð∂ϕ0Þ2Lþ λ021

2M2
ϕ6
0L: ð60Þ

Therefore, combining all effects the effective action becomes
our final result,

S ¼
Z

1

2
ð∂ϕ0Þ2 þ

1

2
M2R − Γðϕ0Þ;

ΓEðϕ0Þ≡ λ01
4
ϕ4
0 þ

λ02
12

ϕ6
0

M2
þ λ03
12M2

ϕ2
0ð∂ϕ0Þ2

−
�
9λ021
2

ϕ4
0 þ

15λ01λ
0
2 þ 3λ021λ

0
3 − ½λ021 �

2M2
ϕ6
0

þ 3λ03λ
0
1

2M2
ϕ2
0ð∂ϕ0Þ2 þ

λ01
2M2

ϕ2
0ð∂ϕ0Þ2

�
L; ð61Þ

where the term in ½…� comes from the gravitational effects of
D1 and D2.
From Eq. (61) we can read off the RG equations,

Dλ01 ¼ 18λ021 ;

Dλ02 ¼ 90λ01λ
0
2 þ 18λ03λ

02
1 − 6½λ021 �;

Dλ03 ¼ 18λ03λ
0
1 þ 6½λ01�; D ¼ 16π2

d
d ln μ

; ð62Þ

where terms in ½…� come from the OðℏÞ gravitationally
induced contact term diagrams, D1 and D2.
The RG equations represent the differential inclusion

of a loop induced nonminimal coupling of Eq. (58), δα ¼
ð6λ1ÞδL occurring in the Einstein frame, back into the
βλi functions of the other couplings. Thus, it maintains
the reduction from N to N − 1 couplings (without α) in the
Einstein frame. The only relevant parameters are the λi in the
Einstein frame and they have a closed set of RG equations. It
is not surprising that such effects occur exclusively in the
Planck-suppressed operators. One might think that these are
not large effects, but they could be relevant when λ2 ≫ λ1.
The main point here is that the gravitational effects are
present and must be included in Planck-suppressed terms,
but the calculation should be done in the Einstein frame with
implementation of the contact terms.

C. Comparison to a conventional calculation of βα
in Jordan frame neglecting contact terms

We now compute the effective potential in the Jordan
frame where we naively neglect the contact term, which is
often seen in the literature. After evolving the theory in the
Jordan frame we can then perform the Weyl transformation
to compare with the previous Einstein frame result. As
expected, these are found to be inconsistent.
In the Jordan action we shift ϕ → ϕ0 þ

ffiffiffi
ℏ

p
ϕ̂ and expand

to Oϕ̂2 The result is analogous to the Einstein case, but
includes the −αϕ2R=12 term and becomes to order ℏ,
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SJordan ¼ SJc þ ℏSJq;

SJc ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
∂ϕ0∂ϕ0 − VJ −

α

12
ϕ2
0Rþ 1

2
M2R

�
;

SJq ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
∂ϕ̂∂ϕ̂ −

1

2
BJϕ̂

2 −
α

12
ðϕ̂2ÞR

�
; ð63Þ

where

BJ ¼ 3λ1ϕ
2
0þ

5λ2
2M2

ϕ4
0þ

λ3
6M2

�
3λ1ϕ

4
0þð∂ϕ0Þ2−

1

2
∂
2ðϕ2

0Þ
�
;

VJ ¼
λ1
4
ϕ4
0þ

λ2
12M2

ϕ6
0þ

λ3
12M2

ϕ2
0ð∂ϕ0Þ2: ð64Þ

Expanding to linear terms in hμν=M in weak-field gravity
the action Eq. (63) becomes

SJq →
Z �

1

2
∂μϕ̂∂

μϕ̂þ h
4M

ημν∂μϕ̂∂νϕ̂ −
hμυ

2M
∂μϕ̂∂νϕ̂

−
α

12
Rϕ̂2 −

1

2
BJϕ̂

2 − BJ
h
4M

ϕ̂2

�
: ð65Þ

Neglecting the contact terms we see, in addition to the
non-curvature potential obtained previously in Eq. (50), the
action Eq. (65) now (naively) generates three diagrams
linear in the curvature, D1, D2, and D3 of Figs. 2–4. The
additional D3 diagram (which is absent in the Einstein
frame) is

ΓD3 ¼ i

�
T

�
−i

1

2
Aϕ̂2R

��
−i

1

2
BJϕ̂

2

��

¼ −ABJRL ¼ −
α

6
BJRLþO

R
M2

; ð66Þ

where A ¼ α=6. Hence we have from Eqs. (58) and (66) for
(D1+D2+D3),

ΓD3 þ Γα ¼ −
1

6
ðα − 1ÞBJRL

¼ −
1

6
ðα − 1Þ

�
3λ1ϕ

2
0 þO

1

M2

�
RL: ð67Þ

Combining all effects at this point we have the potential,

ΓJordan ≡ λ1
4
ϕ4
0þ

λ2
12M2

ϕ6
0þ

λ3
12M2

ϕ2
0ð∂ϕ0Þ2

−
�
9λ21
2

ϕ4
0þ

15λ1λ2þ3λ21λ3
2M2

ϕ6
0þ

3λ3λ1
2M2

ϕ2
0ð∂ϕ0Þ2

�
L

−
1

6
ðα−1Þð3λ1ϕ2

0ÞRLþ α

12
ϕ2
0R: ð68Þ

This then contains the radiative correction and renormal-
ization group running of α

α → αþ 6λ1ð1 − αÞL;

Dα ¼ −6λ1ð1 − αÞ; D ¼ 16π2
d

d ln μ
: ð69Þ

To compare to the Einstein frame we now implement the
contact terms directly from the action,

CT ¼
Z

d4x

�
−
3F∂2F
4M2

þ FTðϕiÞ
2M2

�
; ð70Þ

where

T ¼ −ð∂ϕ0Þ2 þ ðλ1 − 18λ21LÞϕ4
0;

F ¼ −
α

6
ϕ2
0 þ ðα − 1Þλ1ϕ2

0L; ð71Þ

which leads to the contact term correction in the potential

−CT ¼ −
1

12M2
ððαþ α2Þϕ2

0ð∂ϕ0Þ2 − αλ1ϕ
6
0

þ ð6αþ 6 − 12α2Þλ1ϕ2
0ð∂ϕ0Þ2L

þ 6ð4α − 1Þλ21ϕ6
0LÞ ð72Þ

and combining all effects the potential becomes

Γ ¼ λ1
4
ϕ4
0 þ

λ2
12M2

ϕ6
0 þ

λ3
12M2

ϕ2
0ð∂ϕ0Þ2

−
�
9λ21
2

ϕ4
0 þ

15λ1λ2 þ 3λ21λ3
2M2

ϕ6
0 þ

3λ3λ1
2M2

ϕ2
0ð∂ϕ0Þ2

�
L

−
1

12M2
ððαþ α2Þϕ2

0ð∂ϕ0Þ2 − αλ1ϕ
6
0

þ ð6αþ 6 − 12α2Þλ1ϕ2
0ð∂ϕ0Þ2Lþ ð24α − 6Þλ21ϕ6

0LÞ:
ð73Þ

Converting to the Einstein frame variables,

λ03 ¼ λ3 − α − α2;

λ01 ¼ λ1;

λ02 ¼ λ2 þ αλ1; ð74Þ

we obtain after a somewhat tedious calculation,FIG. 4. Diagram D3.
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Γ ¼ ΓE þ
�ð8 − 3αÞα

2M2
λ021ϕ

6
0 −

ð4þ αÞα
2M2

λ01ϕ
2
0ð∂ϕ0Þ2

�
L;

where ΓEðϕ0Þ is given in Eq. (61).
Comparing to Eq. (61) we therefore see an inconsistency

between the actions SEinstein and SJordan at OðℏÞ (opposite
sign for potentials). Hence we obtain the “frame anomaly”,

SJordan − SEinstein ¼ −
Z ð8 − 3αÞα

2M2
λ021ϕ

6
0L

þ
Z ð4þ αÞα

2M2
λ01ϕ

2
0ð∂ϕ0Þ2L: ð75Þ

We emphasize that the rhs of Eq. (75) represents the
mistake of not including the contact term in the initial
action of Eq. (63). For nonvanishing α, the quantum actions
obtained in the two approaches agree if the quartic scalar
interaction is absent (λ1 ¼ 0).

V. CONCLUSIONS

The Weyl transformation acting on the Jordan frame, to
remove nonminimal interactions, leading to the minimal
Einstein frame, is identical to implementing the contact
terms [5]. If one didn’t know about the Weyl transformation
one might discover it in the induced contact terms in the
single graviton exchange potential involving nonminimal
couplings. TheWeyl transformation is powerful as it is fully
nonperturbative. Technically, it can provide a useful check
on the normalization and implementation of the graviton
propagators in various gauges, but the contact term stipu-
lates that the mapping to the Einstein frame is dynamical
and inevitable and does not involve field redefinitions.
Hence, there is no Jacobian in the path integral associated
with going to the Einstein frame action and it uniquely
describes the theory.
In a model with nonminimal coupling −αϕ2R=12 this

implies that the parameter α does not exist physically,
unless demanded by a symmetry such as Weyl invariance.
Computing β-functions in a Jordan frame without imple-
menting the contact term will yield incorrect results.
Implementing the contact term yields the Einstein frame
and results computed there will have no contact term
ambiguities.
Nonetheless, Einstein frame will have a loop-induced

infinitesimal α which can then be absorbed back into the
potential terms of the Einstein frame by the contact terms
(equivalently, a mini-Weyl transformation, or use of the
modified R equation of motion). The use of the modified R
equation of motion on the nonminimal term is analogous to
the use of the gluon field equation for the electroweak
penguin. It is likely that the Deans and Dixon [9] constraints
on null operators apply to gravity as well.
We emphasize that our analysis applies strictly to a theory

with a Planck mass. AWeyl invariant theory, whereM ¼ 0,

is nonperturbative and our analysis is then inapplicable, and
the Jordan frame is then physically relevant. Indeed, there is
no conventional gravity in this limit since the usual M2R
(Fierz-Pauli) graviton kinetic term does not then exist. Hence
in this limit one would have to appeal to a UV completion,
e.g., string theory, R2 gravity, Weyl conformal geometry, etc.
Contact-term effects will disappear if we can go “on

shell.” This is demonstrated by the approach of Ruf and
Steinwachs [4] (see also [14]), which employs an on
shell calculational procedure. However, the calculation
of β-functions and effective actions is intrinsically an off
shell problem, since an action is generally a functional of
fields that are unconstrained by equations of motion. The
contact terms must be implemented for consistency.
In the case of an R2 UV completion theory we view the

formation of the Planck mass by, e.g., inertial symmetry
breaking, i.e., as a dynamical phase transition, similar to a
disorder-order phase transition in a material medium [15].
It is interesting that in a RμνRμν UV completion of gravity
such as in Ref. [16], the propagator becomes 1=q4, none-
theless the contact term effective interactions exists above
the Planck scale for fields that couple nonminimally. These
then become q2 × ð1=q4Þ ∼ 1=q2. Given the sign of FðϕiÞ
in Eq. (12) there may exist an inverse square law,
pseudogravitational force that can be repulsive. This is
one of many issues to develop further in this context.
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APPENDIX: PROJECTION-REGULATED
FEYNMAN LOOPS

The loop-induced effective potential for ϕ0 provides a
useful way to extract all of the β-functions of the various
coupling constants. The potential Γðϕ0Þ is the log of the
path integral; Γ ¼ i lnP. In the case of a real scalar field
with mass term we consider the free action,

1

2

Z
d4xð∂ϕ∂ϕ −m2ϕ2Þ ðA1Þ

and we have for the path integral,

P ¼
Y
k

ðk2 −m2Þ−1=2 ¼ detðk2 −m2Þ−1=2; ðA2Þ
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where k ¼ ðk0; k⃗Þ is the 4-momentum. Hence, we have

Γ ¼ i lnP ¼ −
i
2

Z
d4k
ð2πÞ4 lnðk

2 −m2 þ iϵÞ: ðA3Þ

This can be evaluated with a Wick rotation to a Euclidean
momentum, k → kE ¼ ðik0; k⃗Þ, and a Euclidean momen-
tum space cutoff Λ,

Γ ¼ 1

2

Z
Λ

0

d4kE
ð2πÞ4 ln

�
k2E þm2

Λ2

�

¼ 1

64π2

�
Λ4 ln

Λ2 þm2

Λ2
−m4 ln

Λ2 þm2

m2

−
1

2
Λ4 þ Λ2m2

�
þ ðirrelevant constantsÞ; ðA4Þ

where we inserted Λ−2 in the arguments of the logs to
preserve zero-scale dimension. The cutoff can be viewed as
a spurious parameter, introduced to make the integral finite
and arguments of logs dimensionless, but it is not part of
the defining action. The only physically meaningful
dependence upon Λ is contained in the logarithm, where
it reflects scale symmetry breaking by the quantum trace
anomaly. Powers of Λ, e.g., Λ4;Λ2m2, spuriously break
classical scale symmetry and are not part of the classical
action [17].
It is therefore conceptually useful to have a definition of

the loops in which the spurious powers of Λ do not arise.

This can be done by defining the loops applying projection
operators on the integrals. The projection operator

Pn ¼
�
1 −

Λ
n

∂

∂Λ

�
ðA5Þ

removes any terms proportional to Λn. Since the defining
classical Lagrangian has mass dimension 4 and involves no
terms with Λ2m2 or Λ4, we define the regularized loop
integrals as

Γ →
1

2
P2P4

Z
Λ

0

d4kE
ð2πÞ4 ln

�
k2E þm2

Λ2

�

¼ −
1

64π2
m4

�
ln
Λ2

m2

�
þO

�
m6

Λ2

�
; ðA6Þ

where we then take the limit Λ ≫ m to suppress Oðm6=Λ2Þ
terms and we are interested only in the log term (not additive
constants) This means that the additive, nonlogarithmic
terms, e.g., c0m2, are undetermined, and the only physically
meaningful result is the lnðΛ2=m2Þ term. Λ can be swapped
for a running renormalization scale μ. Interestingly, if we
define the integral as

R
dX → P1P2P3…P∞

R
dX, the

action on the logs will lead to the Euler constant that arises
in dimensional regularization, hinting at a mapping to the
dimensionally-regularized result.

[1] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961); S. W.
Hawking, Commun. Math. Phys. 25, 167 (1972); Y. Fujii,
Phys. Rev. D 9, 874 (1974); G.W. Horndeski, Int. J. Theor.
Phys. 10, 363 (1974); K. A. Bronnikov, Acta Phys. Pol. B 4,
251 (1973); M. Reuter and H. Weyer, Phys. Rev. D 69,
104022 (2004); For a recent review of Weyl invariant
theories, see: C. Wetterich, arXiv:1901.04741, and
references therein; A partial list of relevant papers on
Weyl invariant theories: C. Wetterich, Nucl. Phys. B302,
668 (1988); M. Shaposhnikov and D. Zenhausern, Phys.
Lett. B 671, 162 (2009); D. Blas, M. Shaposhnikov, and D.
Zenhausern, Phys. Rev. D 84, 044001 (2011); J. Garcia-
Bellido, J. Rubio, M. Shaposhnikov, and D. Zenhausern,
Phys. Rev. D 84, 123504 (2011); I. Quiros,
arXiv:1405.6668; arXiv:1401.2643; A. Strumia, J. High
Energy Phys. 05 (2015) 065; G. K. Karananas and J. Rubio,
Phys. Lett. B 761, 223 (2016); D. M. Ghilencea, Phys. Rev.
D 93, 105006 (2016); D. M. Ghilencea, Z. Lalak, and P.
Olszewski, Eur. Phys. J. C 76, 656 (2016); K. Kannike, M.
Raidal, C. Spethmann, and H. Veermae, J. High Energy
Phys. 04 (2017) 026; A. Karam, T. Pappas, and K.

Tamvakis, Phys. Rev. D 96, 064036 (2017); J. Rubio and
C. Wetterich, Phys. Rev. D 96, 063509 (2017); E.
Guendelman, E. Nissimov, and S. Pacheva, Bulgarian
Journal of Physics 45, 152 (2018); J. Kubo, M. Lindner,
K. Schmitz, and M. Yamada, Phys. Rev. D 100, 015037
(2019); T. Katsuragawa, S. Matsuzaki, and E. Senaha, Chin.
Phys. C 43, 105101 (2019); D. Benisty and E. I.
Guendelman, Classical Quantum Gravity 36, 095001
(2019); D. M. Ghilencea and H. M. Lee, Phys. Rev. D
99, 115007 (2019); D. M. Ghilencea, J. High Energy Phys.
10 (2019) 209; Phys. Rev. D 101, 045010 (2020); J. High
Energy Phys. 03 (2019) 049; Eur. Phys. J. C 82, 23 (2022);
L. Smolin, Nucl. Phys. B160, 253 (1979).

[2] Hermann Weyl, Raum, Zeit, Materie (Space, Time, Matter),
Lectures on General Relativity (Springer, Berlin, 1921).

[3] See, e.g., M. J. Duff and P. van Nieuwenhuizen, Phys. Lett.
94B, 179 (1980); M. J. Duff, Inconsistency of quantum field
theory in curved space-time, Report No. ICTP/79-80/38; R.
Jackiw (private communication).

[4] M. S. Ruf and C. F. Steinwachs, Phys. Rev. D 97, 044050
(2018).

RENORMALIZATION GROUP FOR NONMINIMAL ϕ2R … PHYS. REV. D 107, 085013 (2023)

085013-11

https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1007/BF01877518
https://doi.org/10.1103/PhysRevD.9.874
https://doi.org/10.1007/BF01807638
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevD.69.104022
https://doi.org/10.1103/PhysRevD.69.104022
https://arXiv.org/abs/1901.04741
https://doi.org/10.1016/0550-3213(88)90193-9
https://doi.org/10.1016/0550-3213(88)90193-9
https://doi.org/10.1016/j.physletb.2008.11.041
https://doi.org/10.1016/j.physletb.2008.11.041
https://doi.org/10.1103/PhysRevD.84.044001
https://doi.org/10.1103/PhysRevD.84.123504
https://arXiv.org/abs/1405.6668
https://arXiv.org/abs/1401.2643
https://doi.org/10.1007/JHEP05(2015)065
https://doi.org/10.1007/JHEP05(2015)065
https://doi.org/10.1016/j.physletb.2016.08.037
https://doi.org/10.1103/PhysRevD.93.105006
https://doi.org/10.1103/PhysRevD.93.105006
https://doi.org/10.1140/epjc/s10052-016-4475-0
https://doi.org/10.1007/JHEP04(2017)026
https://doi.org/10.1007/JHEP04(2017)026
https://doi.org/10.1103/PhysRevD.96.064036
https://doi.org/10.1103/PhysRevD.96.063509
https://doi.org/10.1103/PhysRevD.100.015037
https://doi.org/10.1103/PhysRevD.100.015037
https://doi.org/10.1088/1674-1137/43/10/105101
https://doi.org/10.1088/1674-1137/43/10/105101
https://doi.org/10.1088/1361-6382/ab14af
https://doi.org/10.1088/1361-6382/ab14af
https://doi.org/10.1103/PhysRevD.99.115007
https://doi.org/10.1103/PhysRevD.99.115007
https://doi.org/10.1007/JHEP10(2019)209
https://doi.org/10.1007/JHEP10(2019)209
https://doi.org/10.1103/PhysRevD.101.045010
https://doi.org/10.1007/JHEP03(2019)049
https://doi.org/10.1007/JHEP03(2019)049
https://doi.org/10.1140/epjc/s10052-021-09887-y
https://doi.org/10.1016/0550-3213(79)90059-2
https://doi.org/10.1016/0370-2693(80)90852-7
https://doi.org/10.1016/0370-2693(80)90852-7
https://doi.org/10.1103/PhysRevD.97.044050
https://doi.org/10.1103/PhysRevD.97.044050


[5] C. T. Hill and G. G. Ross, Phys. Rev. D 102, 125014 (2020).
[6] C. T. Hill and G. G. Ross, Phys. Rev. D 104, 025002 (2021).
[7] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.

Phys. B120, 316 (1977).
[8] J. R. Ellis, M. K. Gaillard, D. V. Nanopoulos, and S. Rudaz,

Nucl. Phys. B131, 285 (1977); 132, 541(E) (1978).
[9] W. S. Deans and J. A. Dixon, Phys. Rev. D 18, 1113

(1978); an explicit example is given in: C. T. Hill, Nucl.
Phys. B156, 417 (1979).

[10] C. T. Hill, Phys. Rev. D 91, 111702 (2015); 93, 025007
(2016); arXiv:1606.04957.

[11] C. G. Callan, Jr., S. R. Coleman, and R. Jackiw, Ann. Phys.
(N.Y.) 59, 42 (1970).

[12] J. F. Donoghue, arXiv:gr-qc/9512024; see also arXiv:2009
.00728; J. F. Donoghue, M. M. Ivanov, and A. Shkerin,
arXiv:1702.00319.

[13] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888
(1973); R. Jackiw, Phys. Rev. D 9, 1686 (1974).

[14] N. Ohta, Prog. Theor. Exp. Phys. 2018, 033B02 (2018).
[15] P. G. Ferreira, C. T. Hill, and G. G. Ross, Phys. Lett. B 763,

174 (2016); Phys. Rev. D 95, 043507 (2017); 98, 116012
(2018); C. T. Hill, arXiv:1803.06994.

[16] K. S. Stelle, Phys. Rev. D 16, 953 (1977); Gen. Relativ.
Gravit. 9, 353s (1978).

[17] W. A. Bardeen, On naturalness in the standard model,
Report No. FERMILAB-CONF-95-391-T.

DUMITRU GHILENCEA and CHRISTOPHER T. HILL PHYS. REV. D 107, 085013 (2023)

085013-12

https://doi.org/10.1103/PhysRevD.102.125014
https://doi.org/10.1103/PhysRevD.104.025002
https://doi.org/10.1016/0550-3213(77)90046-3
https://doi.org/10.1016/0550-3213(77)90046-3
https://doi.org/10.1016/0550-3213(77)90374-1
https://doi.org/10.1016/0550-3213(78)90477-7
https://doi.org/10.1103/PhysRevD.18.1113
https://doi.org/10.1103/PhysRevD.18.1113
https://doi.org/10.1016/0550-3213(79)90201-3
https://doi.org/10.1016/0550-3213(79)90201-3
https://doi.org/10.1103/PhysRevD.91.111702
https://doi.org/10.1103/PhysRevD.93.025007
https://doi.org/10.1103/PhysRevD.93.025007
https://arXiv.org/abs/1606.04957
https://doi.org/10.1016/0003-4916(70)90394-5
https://doi.org/10.1016/0003-4916(70)90394-5
https://arXiv.org/abs/gr-qc/9512024
https://arXiv.org/abs/2009.00728
https://arXiv.org/abs/2009.00728
https://arXiv.org/abs/1702.00319
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.9.1686
https://doi.org/10.1093/ptep/pty008
https://doi.org/10.1016/j.physletb.2016.10.036
https://doi.org/10.1016/j.physletb.2016.10.036
https://doi.org/10.1103/PhysRevD.95.043507
https://doi.org/10.1103/PhysRevD.98.116012
https://doi.org/10.1103/PhysRevD.98.116012
https://arXiv.org/abs/1803.06994
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1007/BF00760427
https://doi.org/10.1007/BF00760427

