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Oscillons in a simple, one-dimensional scalar field theory with a cubic potential are discussed. The theory
has a classical sphaleron, whose decay generates a version of the oscillon. A good approximation to the small-
amplitude oscillon is constructed explicitly using the asymptotic expansion of Fodor et al., but for larger
amplitudes a better approximation uses the discrete, unstable, and stable deformation modes of the sphaleron.
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I. INTRODUCTION

Oscillons are spatially localized, long-lived, oscillatory
solutions of the field equation(s) of classical field
theories [1–3]. The nonlinearity of the field equation is
essential. Oscillons, unlike kinks and other types of
classical solitons, have no topological charge ensuring
their stability, and it is surprising that oscillons do not
couple more strongly to radiation modes of the field,
leading to rapid decay towards the classical vacuum.
Despite oscillons being known in a variety of field theories

invarious spatial dimensions, the fundamental reason for their
existence remains somewhat mysterious. We show that, at
least for the special, simple oscillon that we consider here in
detail, the oscillon can be thought of as a decaying sphaleron
of the field theory. By a sphaleron,wemean a localized, static,
but unstable solution of the field equation [4].
For an oscillon to exist, the continuum of radiation

modes of the linearized field needs to have a frequency gap,
starting at some positive threshold frequency m. A basic
oscillon is periodic, with a fundamental frequency ω < m,
so it couples to radiation only through nonlinear terms, at
frequencies that are multiples of ω. The oscillon has an
arbitrary amplitude lying between zero and some finite,
positive value, and as the amplitude increases, the fre-
quency ω decreases away from the threshold m. Generally,
2ω and higher integer multiples of ω are in the continuum
(although some exceptions are known [5]), which under-
lines the surprise that the oscillon is so long-lived.

Nevertheless, an oscillon does slowly radiate energy away,
and as it does so its amplitude decreases and its frequency
increases.
Much of the understanding of oscillons comes from

numerical investigation. One prototype is the oscillon in ϕ4

scalar field theory, where the field potential is of the
familiar double-well form. This oscillon exists in the theory
in one, two, or three dimensions, with the field profile
depending just on radius and time (up to a spatial trans-
lation). In the one-dimensional theory, the oscillon is
reflection symmetric about the origin. An oscillon of this
type is produced by starting from generic initial conditions
of the form of a symmetric hump, such as a Gaussian shape,
superimposed on one of the vacua. Oscillon formation is
rather robust, and the initial shape is not very important.
There is usually a transient in which the field shape changes
over one or two oscillations, with pulses of energy being
radiated to the left and right, and then the field settles into
the oscillon.
A substantial theoretical analysis of oscillon structure

was given by Fodor et al. [6], for oscillons of small and
modest amplitude.1 These authors considered a rather
general scalar field theory in spatial dimension D ≤ 3,
whose potential VðϕÞ has a Taylor expansion in ϕ about a
quadratic minimum at ϕ ¼ 0. By an iterative method, using
the field equation, they systematically constructed an
oscillon as a series in an expansion parameter ϵ, related
to the amplitude. The oscillon’s existence depends on the
strength of the cubic and higher-power terms in V, but
the conditions that arise are inequalities, so oscillons are
generic for small ϵ. By construction, the oscillon depends
just on radius and time, and it is periodic (i.e., the Fourier
series with respect to time has terms that are multiples of a
unique, fundamental frequency ω).

*N.S.Manton@damtp.cam.ac.uk
†tomasz.romanczukiewicz@uj.edu.pl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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We use the method of Fodor et al. to explicitly construct
a particularly simple oscillon in one dimension. In practice,
the algebra is still quite tricky, and we only find the first
four terms of the series in ϵ. As is hardly surprising, this
series is asymptotic rather than convergent, because if the
series were convergent then there would be a strictly
periodic, exact oscillon solution, having an infinite lifetime.
In practice, for small ϵ it is useful to sum all four terms to
obtain a good approximation to the oscillon, but as ϵ and
the amplitude increase, one needs to truncate the series
after fewer terms, as is typical for asymptotic series; the
discarded terms are larger than the last retained term.
For oscillons of even larger amplitude, the method of

Fodor et al. tends to break down, but instead, the oscillon
can now be interpreted as arising from the decay of a static
sphaleron solution. The decaying sphaleron can be well
approximated using an ansatz constructed from two dis-
crete modes of the linearized deformations of the sphaleron,
one unstable and the other stable. This analysis shows
that the sphaleron can be regarded as the precursor of
the oscillon.
The study of oscillons in field theories with double-well

minima has tended to hide this proposed connection
between sphalerons and oscillons. For example, the ϕ4

theory in one dimension with a double-well potential has
no true sphaleron, but it has the configuration of a kink and
antikink at infinite separation as a “sphaleron.” If a kink
and antikink are released from a large separation at zero
velocity, and evolved numerically, then they turn into an
oscillon (often called a bion in this context). The sine-
Gordon breather [7] provides another example. This is an
oscillon that lasts indefinitely because of exact integrability.
A large-amplitude breather instantaneously comes to rest
resembling a kink and antikink at large separation. Again,
the kink-antikink configuration at infinite separation can
be thought of as a sphaleron. The sine-Gordon breather
exhibits a key property of an oscillon, namely, that its
fundamental frequency is less than the continuum threshold
for linearized waves, and as its amplitude increases, the
frequency decreases away from this threshold.
The connection between oscillons and sphalerons is

clearer if there is a genuine sphaleron of finite size in
the field theory. Here, we focus on a scalar field theory in
one dimension which has such a sphaleron. We assume that
VðϕÞ has a quadratic minimum at ϕ ¼ 0, with Vð0Þ ¼ 0.
Then, a sphaleron exists if V becomes negative for some
ϕ > 0. (It is convenient to choose this sign for the
inequality, but ϕ < 0 is equivalent.) More simply, we
assume that VðϕÞ increases to a local maximum at
ϕ ¼ ϕ1 > 0, then decreases and passes linearly through
V ¼ 0 at some ϕ2 > ϕ1. V could have further local or
global minima as ϕ increases further. Note that ϕ ¼ 0,
which is the asymptotic value of the sphaleron tail field, is a
false vacuum, because it is not the global minimum of V,
but this does not cause difficulties.

The existence of a time-independent sphaleron solution
in one dimension can be easily understood using the
standard trick of identifying the static field equation
as the equation for a particle rolling in the inverted
potential −V. In the inverted potential, the particle starts
at rest from ϕ ¼ 0, rolls through the potential minimum at
ϕ ¼ ϕ1, and ascends the potential to ϕ2. As the potential is
linear here, the particle stops instantaneously, then rolls
back to the starting point at ϕ ¼ 0. Because V is quadratic
around ϕ ¼ 0, the whole process takes infinite time.
Spatially, one obtains a hump-shaped sphaleron profile
which has field values lying in the range 0 < ϕ ≤ ϕ2, with
tails approaching ϕ ¼ 0 exponentially fast.
The connection between oscillons and sphalerons in a

potential of this type has been noted in Ref. [8], and in the
context of phase transitions in Refs. [2,9], but here we
explore the connection more systematically. We work with
the simplest potential of the required form: the purely cubic
potential VðϕÞ ¼ 1

2
ϕ2 − 1

3
ϕ3. V has a quadratic local

minimum at ϕ ¼ 0, with value zero, a local maximum at
ϕ1 ¼ 1, and passes through zero linearly at ϕ2 ¼ 3

2
. The

sphaleron has a simple analytical form, and we can
calculate its unstable mode, its translation zero mode,
and its single discrete vibrational mode—its shape mode.
At the same time, this potential allows for explicit
calculation of a small-amplitude oscillon as a series,
using the method of Fodor et al., and we analytically
calculate the terms up to fourth order in the expansion
parameter ϵ. Importantly, we show numerically that if the
sphaleron is perturbed by its unstable mode, in the
direction of decreasing ϕ, then it evolves into the oscillon.
(If it is perturbed in the opposite direction, then the field
values quickly become very large, and the field becomes
singular.)
This sphaleron in one dimension, arising from a cubic

potential, is not new. It is an example of a “bounce” as
analysed by Callan and Coleman [10] and was discussed in
detail by Avelar et al. [11]. These authors noted that
because its translation zero mode has a node, there must
be a mode with negative squared frequency, i.e., an
instability. Avelar et al. also found the positive-frequency
shape mode. However, the connection to oscillons appears
not to have been investigated before.
Clearly, at the linearized level, the instability and shape

oscillation of the sphaleron can be modeled by combining
the sphaleron with the two relevant discrete modes. As we
only consider the sphaleron and oscillon with their
centers of mass at rest, we can ignore the translation
zero mode. The perturbed sphaleron, like the oscillon, is
then reflection symmetric. We then make a bold leap,
and consider the sphaleron deformed by these two modes
with arbitrarily large, time-dependent amplitudes.
This is a collective coordinate ansatz for the evolution
of the sphaleron. The reduced, collective coordinate
Lagrangian, obtained by substituting this ansatz into

N. S. MANTON and T. ROMAŃCZUKIEWICZ PHYS. REV. D 107, 085012 (2023)

085012-2



the field-theoretic Lagrangian, is nonlinear but rather
simple. We show that its resulting dynamics gives another
good approximation to the oscillon, which is particularly
useful when the oscillon has a rather large amplitude and
the series of Fodor et al. breaks down.
We should clarify here that the oscillon constructed

by the method of Fodor et al. has just one degree of
freedom—its amplitude—and its shape and frequency
depend on this. Numerically, however, one typically finds
that an oscillon appears to be quasiperiodic, although by
careful adjustment of initial conditions, the periodic
version can be found too. To model quasiperiodic
behavior one needs to have a system with at least two
degrees of freedom, and the two mode amplitudes of the
deformed sphaleron provide these. This issue was also
recently raised by Blaschke and Karpíšek [12], who
studied a mechanized model of an oscillon with two
internal degrees of freedom (in addition to the center-
of-mass position). In fact, a nonintegrable Lagrangian
system with two degrees of freedom (and a four-
dimensional phase space) has more complicated dynam-
ics than quasiperiodic motion, but we have not been able
to observe this in the oscillon. The issue of quasiperiodic
or chaotic behavior of the oscillon is complicated,
because the reduced system is only an approximation
to the field theory with its infinitely many degrees of
freedom, and does not couple to radiation.
It is surprising that a model using the sphaleron’s two

linearized modes is quantitatively useful, because there
are no values of the two mode amplitudes giving the
vacuum field configuration ϕ≡ 0 exactly (although, for
optimal values, it gets quite close). Consequently, this
rather crude model cannot accurately describe oscillons of
small amplitude.
In the following, we introduce the scalar field theory

with a cubic potential, and then construct the first four
terms in the series for the small-amplitude oscillon solution,
following Fodor et al. Next, we recall the sphaleron
solution and its discrete modes, and use these to construct
and test our collective coordinate dynamics modeling an
oscillon of larger amplitude. Finally, we describe in further
detail some features of the oscillon that we have uncovered
numerically, and present our conclusions.

II. SIMPLE SCALAR FIELD THEORY

Consider the theory for a real scalar field ϕðt; xÞ in one
dimension, with the Lagrangian

L½ϕ� ¼
Z

∞

−∞

�
1

2
ϕ2
t −

1

2
ϕ2
x −

1

2
ϕ2 þ 1

3
ϕ3

�
dx: ð1Þ

This has the simple nonlinear field equation

ϕtt − ϕxx þ ϕ − ϕ2 ¼ 0: ð2Þ

Figure 1 shows the potential

VðϕÞ ¼ 1

2
ϕ2 −

1

3
ϕ3; ð3Þ

which is unbounded below but has a local quadratic
minimum at ϕ ¼ 0 with Vð0Þ ¼ 0, and a local maximum
at ϕ ¼ 1 with Vð1Þ ¼ 1

6
. Additionally, V passes linearly

through zero at ϕ ¼ 3
2
.

III. SMALL-AMPLITUDE OSCILLON

Following the method of Fodor et al. [6] to construct an
oscillon solution of Eq. (2), we expand the field in powers
of a small parameter ϵ,

ϕ ¼
X∞
k¼1

ϵkϕkðt; xÞ: ð4Þ

We denote the truncated series as ΦN ¼ P
N
k¼1 ϵ

kϕkðt; xÞ.
We also introduce rescaled space and time variables,

ζ ¼ ϵx; τ ¼ ωt; ð5Þ

and assume that

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
; ð6Þ

which locks the expansion parameter ϵ to the oscillon
frequency. We assume the oscillon is instantaneously at rest
at τ ¼ 0, so it is symmetric in τ. The oscillon will also
be symmetric in ζ, and we can identify its amplitude asP∞

k¼1 ϵ
kϕkð0; 0Þ, or the truncated version of this. In terms

of these new variables the field equation (2) takes the form

ð1 − ϵ2Þϕ̈ − ϵ2ϕ00 þ ϕ − ϕ2 ¼ 0; ð7Þ

where overdots and primes denote derivatives with respect
to τ and ζ, respectively. Expanding in powers of ϵ, we

FIG. 1. Potential VðϕÞ ¼ 1
2
ϕ2 − 1

3
ϕ3.
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obtain an infinite set of coupled equations, of which the
first five are

ϕ̈1 þ ϕ1 ¼ 0; ð8Þ

ϕ̈2 þ ϕ2 ¼ ϕ2
1; ð9Þ

ϕ̈3 þ ϕ3 ¼ ϕ̈1 þ ϕ00
1 þ 2ϕ1ϕ2; ð10Þ

ϕ̈4 þ ϕ4 ¼ ϕ̈2 þ ϕ00
2 þ 2ϕ1ϕ3 þ ϕ2

2; ð11Þ

ϕ̈5 þ ϕ5 ¼ ϕ̈3 þ ϕ00
3 þ 2ϕ1ϕ4 þ 2ϕ2ϕ3: ð12Þ

These can be regarded as an iterative sequence of ordinary,
linear differential equations for ϕ1;ϕ2;ϕ3;…, whose
sources on the right-hand side depend on the previously
determined functions. [Note that in Ref. [6], Eqs. (11)
and (12) are not given explicitly, and their version of
Eq. (10) has a typo; their explicit −ϕ̈1 should be left out, as
it is present in the term ω2ϕ̈1.]
The solution of Eq. (8), symmetric in τ, is

ϕ1 ¼ p1ðζÞ cos τ; ð13Þ

where p1 is yet to be determined. Equation (9) now
becomes ϕ̈2 þ ϕ2 ¼ 1

2
p2
1ðζÞð1þ cos 2τÞ, whose solution,

combining the particular integral with a homogeneous
function symmetric in τ, is

ϕ2 ¼ p2ðζÞ cos τ þ
1

6
p2
1ðζÞð3 − cos 2τÞ: ð14Þ

The two unknown functions, p1 and p2, are determined
by considering Eqs. (10) and (11) for ϕ3 and ϕ4. First, for
the oscillon to be periodic, there is a condition of no
resonance, i.e., the right-hand side of Eq. (10) should have
no cos τ term. This condition reduces to

p00
1 − p1 þ

5

6
p3
1 ¼ 0; ð15Þ

whose solution, symmetric in ζ and decaying for
large jζj, is

p1ðζÞ ¼
ffiffiffiffiffi
12

5

r
1

cosh ζ
: ð16Þ

Second, one finds that it is consistent to set p2 ≡ 0. This
can be argued in more than one way. After solving for ϕ3, it
is found that the no-resonance condition for ϕ4 implies that
p2 obeys a linear differential equation whose solution is
an antisymmetric function of ζ, whereas we require the
oscillon to be symmetric in ζ. Setting p2 ≡ 0 also means
that the oscillon can be symmetric under the combined
transformations ϵ → −ϵ, τ → τ þ π. More generally,

the latter symmetry requires that ϕk only has terms
cos nτ, with n even/odd when k is even/odd. In summary,
we have established that the leading terms in the series for
the oscillon are

ϕ1 ¼
ffiffiffiffiffi
12

5

r
cos τ
cosh ζ

; ϕ2 ¼
2

5

3 − cos 2τ
cosh2 ζ

: ð17Þ

Equation (10) now simplifies, and its solution is

ϕ3 ¼ p3ðζÞ cos τ þ
ffiffiffiffiffi
12

5

r
1

20

cos 3τ
cosh3 ζ

; ð18Þ

where p3, the homogeneous contribution, is as yet arbitrary
and will not be zero. It is then straightforward to substitute
for ϕ1;ϕ2, and ϕ3 in Eq. (11), and integrate to find that

ϕ4 ¼
ffiffiffiffiffi
12

5

r
1

3

p3ðζÞ
cosh ζ

ð3 − cos 2τÞ þ 24

5

1

cosh2 ζ

−
1

75

426þ 39 cos 2τ þ cos 4τ
cosh4 ζ

: ð19Þ

There couldbean additional homogeneous termp4ðζÞ cos τ,
but the symmetry mentioned above requires ϕ4 to only
have terms proportional to cos nτ, with n even, so we can
set p4 ≡ 0.
Finally, we impose the no-resonance condition for ϕ5,

i.e., that there is no cos τ term on the right-hand side of
Eq. (12). This gives an ordinary differential equation for p3,
of the Pöschl-Teller form with a source, whose acceptable
solution is

p3ðζÞ ¼
ffiffiffiffiffi
12

5

r
1

60

�
94

cosh ζ
−

119

cosh3 ζ

�
: ð20Þ

Combined with the earlier results (18) and (19), this gives
the final form for ϕ3 and ϕ4,

ϕ3 ¼
ffiffiffiffiffi
12

5

r
1

60

�
94 cos τ
cosh ζ

−
119 cos τ − 3 cos 3τ

cosh3 ζ

�
;

ϕ4 ¼
1

75

�
642 − 94 cos 2τ

cosh2 ζ
−
783 − 80 cos 2τ þ cos 4τ

cosh4 ζ

�
:

ð21Þ

We do not calculate ϕ5 as this will involve yet another
nonzero arbitrary function p5 that can only be determined
by a no-resonance condition in the equation for ϕ7.
The truncated approximate oscillon, ΦN , is the sum of

the first N terms of the expansion (4), where ϕ1;…;ϕ4 are
as in Eqs. (17) and (21). Figure 2 shows this truncated
oscillon at τ ¼ 0 for N ¼ 1;…; 4, and for amplitude
parameters ϵ ¼ 0.1 and ϵ ¼ 0.5. Figure 3(a) shows the
combined strength of the contributing terms, evaluated at
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ζ ¼ τ ¼ 0. It is clear that for ϵ≳ 0.6, the higher-order terms
are no longer small compared to the lower-order terms, as is
typical for an asymptotic series, so it is better to truncate the
series after two or three terms, obtaining Φ2 or Φ3. The
pronounced double hump of the oscillon profile for large ϵ
in Fig. 3(b) appears therefore to be exaggerated, and not a
reliable feature.
The truncated oscillon has just one degree of freedom, ϵ,

and it is periodic with t-period 2π=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
. This is because

of the symmetry assumptions that have been imposed.
There were opportunities to include less symmetric terms
in the construction, so a larger family of oscillons could
probably be found, although more algebraic work would
be required. There is therefore no inconsistency with the
approach discussed below, where the oscillon is generally
quasiperiodic.
To show the quality of the truncated oscillon, we

numerically solve the field equation (using variables t, x)
with the initial condition ΦNð0; xÞ for N ¼ 1;…; 4 and a
wide range of ϵ ∈ ½0.1; 0.8�. We measure the loss of energy
from the spatial interval −100 < x < 100 during the time
interval 0 < t < T ¼ 300. For smaller intervals the tails of
the oscillon for small values of ϵ are of the same order as the

radiation and disturb the measurement. The energy loss ΔE
is the time-integrated energy flux through the ends, which
is equal on the left and right, so

ΔE ¼ 2

Z
T

0

ϕtðt; 100Þϕxðt; 100Þdt; ð22Þ

and is shown in Fig. 4. In the range ϵ ∈ ½0.1; 0.5�, Φ3 is the
best initial condition. For larger ϵ, the initial configuration
Φ4 loses energy faster, and the approximate oscillon
Φ4ðt; xÞ breaks down. Φ4 is probably a better approxima-
tion to the numerical solution than Φ3 for small values of ϵ,
but this is not clear from the figure because of possible
numerical errors.

IV. SPHALERON

There exists a nontrivial, lump-like static solution of the
field equation (2),

ϕSðxÞ ¼
3

2

1

cosh2 1
2
x
: ð23Þ

FIG. 3. (a) Value of the field profile ΦN at the center ζ ¼ 0, τ ¼ 0 for varying ϵ. (b) Profile of the truncated oscillon Φ4 for larger
values of ϵ.

FIG. 2. Profiles of the oscillons at τ ¼ 0 for truncation ordersN ¼ 1;…; 4 of the Fodor et al. series, where (a) ϵ ¼ 0.1 and (b) ϵ ¼ 0.5.
x is the unscaled spatial variable.

SIMPLEST OSCILLON AND ITS SPHALERON PHYS. REV. D 107, 085012 (2023)

085012-5



This is expressed in terms of the unscaled spatial variable x
and satisfies the boundary conditions ϕS → 0 as x → �∞,
like the oscillon. The solution can be translated, but as
given, it is reflection symmetric in x. Its energy is E ¼ 6

5
.

A small perturbation δϕ ¼ eiωtηðxÞ of ϕS, with fre-
quency ω, obeys the linearized equation

−η00ðxÞ þUðxÞηðxÞ ¼ ω2ηðxÞ; ð24Þ

where

UðxÞ ¼ V 00ðϕSðxÞÞ ¼ 1 −
3

cosh2 1
2
x
: ð25Þ

U is a Pöschl-Teller potential, so the solutions of Eq. (24)
are well known. There are three (normalized) discrete
modes,

η−1ðxÞ ¼
ffiffiffiffiffi
15

32

r
1

cosh3 1
2
x
; ω2

−1 ¼ −
5

4
; ð26Þ

η0ðxÞ ¼
ffiffiffiffiffi
15

8

r
sinh 1

2
x

cosh3 1
2
x
; ω2

0 ¼ 0; ð27Þ

η1ðxÞ ¼
ffiffiffiffiffi
3

32

r
4 cosh2 1

2
x − 5

cosh3 1
2
x

; ω2
1 ¼

3

4
: ð28Þ

The presence of a unique unstable mode η−1 with
negative squared frequency means that the lump is a
sphaleron. It is the saddle point in field configuration
space between the false vacuum ϕ≡ 0 (with zero energy)
and configurations with negative energy, whose field ϕ is
large and positive in some region of physical space. After
being perturbed in the unstable direction towards the false
vacuum, the sphaleron’s evolution connects it with the
oscillon. The sphaleron’s discrete shape mode η1, whose
positive frequency ω1 is below the continuum threshold at

ω ¼ 1, is also important. It is the source of a second degree
of freedom for the oscillon. η0 is the translation zero mode,
and can be ignored here, because it has the opposite
reflection symmetry to the other modes, and does not
contribute to an oscillon whose center of mass is at rest.
It is instructive to compare the truncated oscillon

profiles ΦNð0; xÞ for varying ϵ with the sphaleron
profile (Fig. 5). Φ1ð0; 0Þ matches the sphaleron central

amplitude ϕSð0Þ ¼ 3
2
for ϵ ¼ 3

2

ffiffiffiffi
5
12

q
≈ 0.9682. This corre-

sponds to an oscillon frequency ω ¼ 1
4
. However, the L2

norm kϕSðxÞ −Φ1ð0; xÞk2 ≈ 0.1776 shows that the match
of profiles is not good. The second truncation matches
much better. The condition Φ2ð0; 0Þ ¼ 3

2
is a quadratic

equation with solutions

ϵ1 ¼
15− 5

ffiffiffi
3

p

4
ffiffiffi
5

p ≈ 0.7088; ϵ2 ¼
−15− 5

ffiffiffi
3

p

4
ffiffiffi
5

p ≈−2.6453:

ð29Þ

The second solution is outside the acceptable range,
−1 < ϵ < 1, but the first gives a profile very close to the
sphaleron with kϕSðxÞ −Φ2ð0; xÞk2 ≈ 0.0138. The corre-
sponding oscillon frequency is ω ≈ 0.7054.Φ3 has a profile
with a dip for large ϵ and matches much worse, as does Φ4.

V. COLLECTIVE COORDINATE MODEL
BASED ON THE SPHALERON

Reflection-symmetric field evolution around the spha-
leron, including the (normalized) unstable and shape modes
η−1 and η1, can be modeled by the ansatz

ϕðt; xÞ ¼ ϕSðxÞ þ AðtÞη−1ðxÞ þ BðtÞη1ðxÞ: ð30Þ

At the linearized level, B oscillates and A tends to grow
exponentially, suggesting that the ansatz will be valid for only
a limited time. Rather surprisingly, this ansatz has an
extended approximate validity. A and B can be assumed

FIG. 5. Match between the sphaleron ϕSðxÞ and the profiles
ΦNð0; xÞ for optimal ϵ.

FIG. 4. Oscillon energy loss from the spatial interval
½−100; 100� during time 0 < t < 300, starting from the truncated
series ΦNð0; xÞ as the initial configuration.
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to have unconstrained magnitudes, and can be treated as
collective coordinates of the field ϕ. Their nonlinear time
evolution gives an approximate model for the oscillon. To
find the model equations, we substitute the ansatz (30) into
the field Lagrangian (1). After evaluating the derivatives and
integrating over space (and discarding boundary terms), we
obtain a reduced, effective Lagrangian whose nonlinear equa-
tions of motion define the collective coordinate dynamics.
Because the discrete modes are localized, they provide a

useful approximation to the oscillon. This is especially true
for oscillons whose amplitude is not too small. Recall that
an oscillon of small amplitude has a large spatial extent
(since in the Fodor et al. analysis it was a function of the
scaled spatial variable ζ ¼ ϵx). Oscillons of larger ampli-
tude have a shape closer to that obtained by deforming the
sphaleron by its discrete modes.
The reduced Lagrangian is of the form

Leff ½A;B� ¼
1

2
_A2 þ 1

2
_B2 − VeffðA;BÞ; ð31Þ

where overdots are now unscaled time derivatives and

VeffðA;BÞ ¼
6

5
−
5

8
A2 þ 3

8
B2 − C1A3

− C2A2B − C3AB2 − C4B3; ð32Þ
with the constants C1;…; C4 given below. To establish this,
some integration by parts is needed, together with the use of
the nonlinear equation satisfied by ϕS and the linearized
equations for the retained modes. The kinetic terms have a
simple Euclidean form because the modes are orthonormal.
The first three coefficients in the potential Veff are the
energy of the sphaleron and half the (negative and positive)
squared frequencies of the retained modes. The coefficients
of the cubic terms are the integrals

C1 ¼
1

3

Z
∞

−∞
η3−1ðxÞdx ¼

ffiffiffiffiffi
15

2

r
175π

8192
;

C2 ¼
Z

∞

−∞
η2−1ðxÞη1ðxÞdx ¼ −

ffiffiffi
3

2

r
225π

8192
;

C3 ¼
Z

∞

−∞
η−1ðxÞη21ðxÞdx ¼

ffiffiffiffiffi
15

2

r
129π

8192
;

C4 ¼
1

3

Z
∞

−∞
η31ðxÞdx ¼

ffiffiffi
3

2

r
201π

8192
: ð33Þ

From the reduced Lagrangian (31) we obtain the
equations of motion

d2A
dt2

¼ 5

4
Aþ 3C1A2 þ 2C2ABþ C3B2; ð34aÞ

d2B
dt2

¼ −
3

4
Bþ C2A2 þ 2C3ABþ 3C4B2; ð34bÞ

and the conserved energy

Eeff ½A; B� ¼
1

2
_A2 þ 1

2
_B2 þ VeffðA; BÞ: ð35Þ

Figure 6 shows a contour plot of Veff . There is a saddle
point at A ¼ B ¼ 0 corresponding to the sphaleron,
and a local minimum at A ¼ −2.40501; B ¼ −0.40325
corresponding to an approximation to the (false) vacuum
ϕ≡ 0, whose energy is 0.01532 and whose field
configuration (30) is shown in Fig. 7. In the reduced
dynamics, diagonalized small perturbations around the
approximate vacuum have frequencies ω̃1 ¼ 1.02216 and
ω̃2 ¼ 1.37920, which are above the continuum threshold
frequency ω ¼ 1. This is partly because the minimum is not
the exact vacuum, but mainly because the perturbations are
linear combinations of the localized modes η−1 and η1,
which do not have the large wavelengths of radiation modes
close to the threshold.
We now explore the extent to which important features of

a solution ϕðt; xÞ of the field equation (2) are captured by
this reduced model. To do this it is useful to follow the

FIG. 6. Effective potential VeffðA; BÞ. The white contour
corresponds to the energy 1.2 of the sphaleron and the pair of
red contours to energy 0.016, slightly above that of the approxi-
mate (false) vacuum. The orange line is a trajectory of a solution
discussed in Sec. VI and Fig. 13.

FIG. 7. Optimal approximation to the (false) vacuum configu-
ration using the sphaleron plus modes expansion (30).

SIMPLEST OSCILLON AND ITS SPHALERON PHYS. REV. D 107, 085012 (2023)

085012-7



amplitudes of the projection of ϕ onto the modes η−1
and η1,

ApðtÞ ¼
Z

∞

−∞
ðϕðt; xÞ − ϕSðxÞÞη−1ðxÞdx;

BpðtÞ ¼
Z

∞

−∞
ðϕðt; xÞ − ϕSðxÞÞη1ðxÞdx: ð36Þ

Because the modes are orthogonal to each other and to the
radiation, this method is equivalent to the usual least-
squares fit of ϕ to the function (30), but it is numerically
faster and more stable. Figure 8 illustrates this approach
for the numerical field evolution of a perturbed sphale-
ron, with initial condition ϕð0; xÞ ¼ ϕSðxÞ − 0.001η−1ðxÞ,
decaying to an oscillon, and Fig. 9 is for the evolution from
the truncated Fodor et al. series ϕð0; xÞ ¼ Φ4ð0; xÞ with
ϵ ¼ 0.5 as the initial condition. The upper-left plots show
the values of the projected mode amplitudes Ap; Bp and the
L2 norm of the remainder kδϕk2. The upper-right plots
show the comparison between the field value ϕðt; 0Þ at the
center (orange line) and its approximation Φ4ðt; 0Þ (blue
line). The lower-left plots show the energy Eðjxj < 8Þ
within the interval −8 < x < 8 of the solution ϕðt; xÞ
and the energy of the reduced model EðAp; BpÞ for the
fitted ApðtÞ; BpðtÞ values. The lower-right plots compare
the field profiles ϕðt; xÞ at the time t ¼ Tmax of the last
maximum of ϕðt; 0Þ before t ¼ 50 (green) and its projec-
tion (red).
In the case of sphaleron decay (Fig. 8), the oscillon is

initially generated with a large amplitude, but this soon

decreases. The field is accurately approximated only until
ϕðt; 0Þ crosses zero for the first time. Then the remainder
grows and the energy in the projected modes starts to
decrease (unlike in the reduced model itself). Energy starts
to escape from the interval −8 < x < 8 in less than 20 time
units, and converts to radiation. This is confirmed by the
field profile at the latest maximum where radiation with an
amplitude of approximately 0.1 is clearly visible.
Starting from the Fodor et al. configuration Φ4 with a

smaller initial amplitude (Fig. 9), substantially less energy
is lost and all of the parameters are much better approxi-
mated. The energy decreases by about 5% within the
simulation time, compared to over 20% during sphaleron
decay. We expect that at a later stage of oscillon evolution,
or from more carefully prepared initial conditions, radiation
would be even less. This is confirmed below.

VI. COMPARISON OF OSCILLON MODELS

It is particularly interesting to look at the trajectory of the
reduced dynamics that starts just slightly perturbed from
the sphaleron saddle point in either direction of the unstable
mode. This is shown in Fig. 10. A positive perturbation
leads to field blow-up, and a negative perturbation leads to
oscillon formation. In both cases, starting from the same
initial conditions, the full field dynamics (solid lines) is
captured well by the reduced model (dashed lines) in its
initial stages. In the case of oscillon formation, however,
radiation production results in a separation of trajectories.
The reduced dynamics is quasiperiodic and almost returns
to the initial amplitude ϕð0; 0Þ ¼ 1.499 at t ≈ 60. The full

FIG. 8. Evolution from the initial condition ϕð0; xÞ ¼ ϕSðxÞ − 0.001η−1ðxÞ compared with the projected mode parameters of the
effective model.
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field dynamics near x ¼ 0 becomes almost quasiperiodic
from t ≈ 15 onwards, but it has a smaller amplitude
oscillating between 0.55 and 0.7, and a higher basic
frequency ω ¼ 0.9024. Both solutions for longer times
are shown in Fig. 11. The difference is particularly visible
for initial data for which an oscillon does not form. An
example of such evolution is shown in Fig. 12. Again, at
the initial stage, during the first oscillation, the field and
reduced dynamics are very similar. But later the field
dynamics is dominated by radiation.
The best match between the field dynamics and the

dynamics of the reduced model occurs for initial data
where a true oscillon is produced with minimal transient
radiation. We find such an oscillon for Að0Þ ¼ −3.4247,
Bð0Þ ¼ −1.0218. The evolution is shown in Fig. 13. The

FIG. 10. Solutions of the field equation (PDE) and reduced
equations (ODE) for initial conditions ϕð0;xÞ¼ϕSðxÞþAη−1ðxÞ.

FIG. 11. Longer-time solutions of the field equation (PDE)
and reduced equations (ODE) for initial conditions ϕð0; xÞ ¼
ϕSðxÞ − 0.001η−1ðxÞ.

FIG. 9. Evolution from the initial condition ϕð0; xÞ ¼ Φ4ð0; xÞ for ϵ ¼ 0.5 compared with the projected mode parameters of the
effective model.

FIG. 12. Solutions of the field equations (PDE) and reduced
equations (ODE) for initial conditions corresponding to a sub-
stantially deformed sphaleron with Að0Þ ¼ −1; Bð0Þ ¼ −0.5.
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field and reduced dynamics are very close, except for a
small difference in frequencies. However, at later times it is
clear that the field and reduced dynamics do differ. The
field dynamics is almost periodic with ω ¼ 0.9024 and
minimum field value ϕmin ¼ −0.5211, whereas the reduced
dynamics is visibly quasiperiodic (bottom-center panel)
with the field minimum oscillating between −0.59 and
−0.53. This is because the field dynamics always produces
some radiation, especially early on, so the oscillon settles
into a slightly different state. But by analyzing solutions of
the reduced model we find initial conditions where the
solution ϕ is periodic with amplitude ϕmin ¼ −0.5485 and
frequency ω� ¼ 0.8967, very similar to the oscillon in the
field theory. This periodic solution is also shown in Fig. 13,
and shown in the ðA; BÞ plane in Fig. 6 (orange line).
By following sphaleron decay in the field theory for an

even longer time, we see that the beats persist with slightly
smaller amplitude (Fig. 14). The main frequency increases
to ω ≈ 0.913 at t ≈ 2000. The field shape remains lump-
like but grows slightly wider (Fig. 15). Figure 16 shows the
power spectrum of the field ϕðt; xÞ. It reveals the main
frequency at ω ¼ 0.9075 and its harmonics. The higher
harmonics are widened due to the frequency drift with time.
Around each main peak there is a family of equidistant
smaller peaks. Their positions correspond very well with
jn1ωþ n2j, which shows that there is another basic
frequency near the threshold m ¼ 1. These peaks are
generated by resonances due to the nonlinearity of the
field equation. Recall that the reduced model has quasi-
periodic solutions but neither of the frequencies is very
close to 1.

Not all initial conditions of the sphaleron modes
ansatz (30) give oscillons immediately, as we have seen;
one needs to minimize the energy loss to radiation
[Eq. (22)]. We find the values of A and B achieving this
for a range of initial central amplitudes ϕ0 ¼ ϕð0; 0Þ. We
also investigate the subsequent energy loss as a function of
ϕ0. For ϕ0 > 0.8 the ansatz (30) gives as good an initial
condition as the best initial condition Φ2 from the Fodor
et al. expansion. Moreover, the reduced model reproduces
the amplitude decay very well, at least up to the first
minimum of the field profile, whereas Φ2 evolves strictly
periodically. The reduced model has more degrees of
freedom and has other types of solutions, one example
of which will be presented in the following section.

FIG. 13. Solutions of the field equation (PDE) and reduced equations (ODE) for initial conditions corresponding to the sphaleron
modes ansatz with Að0Þ ¼ −3.4247, Bð0Þ ¼ −1.0218. The red line (ODE�) is the periodic solution of the reduced equations with
A�ð0Þ ¼ −3.4287, B�ð0Þ ¼ −0.9605.

FIG. 14. Approximately quasiperiodic oscillon arising
from sphaleron decay with initial condition ϕð0; xÞ ¼ ϕSðxÞ−
0.001η−1ðxÞ.
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Further evidence that there is an overlap between these
two approximations is shown in Fig. 17, where in the
ðA;BÞ plane we plot the points corresponding to the
minimal energy loss ΔE and the projection coefficients
of Φ2 onto the modes η−1 and η1. Note that these
projections do not make much sense for small values
of ϵ because the oscillon is much wider than the sphaleron
and its discrete modes. An interesting observation can be
made regarding Φ2 which lies very close to the points
of minimal energy loss. Its evolution for ϵ ¼ 0.728 passes
close (A ¼ −0.016; B ¼ −0.027) to the sphaleron with
A ¼ B ¼ 0. Some points obtained by minimizing the
energy loss also lie very close to the line corresponding
to the vibrating sphaleron, which we discuss next.

VII. VIBRATING SPHALERON

At the linearized level of the reduced model, with
the Lagrangian (31), the shape mode η1 of the sphaleron

oscillates indefinitely with constant amplitude B and
frequency ω1 ¼

ffiffiffiffiffiffiffiffi
3=4

p
. However, the nonlinear coupling

of B to A leads to an excitation of the unstable mode η−1 as
well. In Eq. (34a), the term C3B2 can cause exponential
growth of A. We see this in more detail by solving
Eqs. (34a)–(34b) to low order in B. Assume that at linear
order only the shape mode is excited, so

AðtÞ ¼ 0; BðtÞ ¼ B cosðω1tÞ: ð37Þ

At quadratic order,

d2A
dt2

¼ 5

4
Aþ C3B2 ¼ 5

4
Aþ 1

2
C3B2 þ 1

2
C3B2 cosð2ω1tÞ;

ð38Þ

FIG. 15. Decomposition of a field profile (colored lines) into a sphaleron and its modes (dashed lines) (a) at the initial stage of
evolution and (b) at a much later time.

FIG. 16. Power spectrum of the field at the center for
100 < t < 2000. Red lines indicate harmonics of the primary
frequency ω ¼ 0.9075, and the thin green lines indicate some of
the combinations jn1ωþ n2j for −3 ≤ n2 ≤ 3. The widening of
the peaks is due to a slow frequency drift.

FIG. 17. Comparison of the initial conditions leading to the
lowest energy loss for a given ϕ0 (black dots) and the Φ2

approximation for ϵ ∈ ½−0.95; 0.95� (red line), projected onto the
sphaleron modes. Static solutions for the sphaleron and approxi-
mate vacuum are also marked along with the solution corre-
sponding to the vibrating sphaleron.
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whose general solution is

AðtÞ ¼ F1ejω−1jt þ F2e−jω−1jt

− C3B2

�
2

5
þ 2

5þ 16ω2
1

cosð2ω1tÞ
�
; ð39Þ

where jω−1j ¼
ffiffiffiffiffiffiffiffi
5=4

p
.

Generally, F1 is nonzero and the solution grows expo-
nentially. However, for the initial conditions

dA
dt

ð0Þ ¼ 0;

Að0Þ ¼ −C3B2

�
2

5
þ 2

5þ 16ω2
1

�
¼ −

44

85
C3B2 ð40Þ

there are no exponential terms in the solution, and only
constant and oscillatory terms remain. Motivated by this,
we fine-tune the initial conditions in the field theory and
obtain an almost periodic, vibrating sphaleron with a
varying amplitude of oscillation, as shown in Fig. 18.
For initial conditions we take

ϕtð0; xÞ ¼ 0;

ϕð0; xÞ ¼ ϕSðxÞ − α
44

85
C3B2η−1ðxÞ þ Bη1ðxÞ; ð41Þ

where α is chosen to suppress exponential growth for as
long as possible. α ¼ 1.024 for B ¼ 0.2 and α decreases to
1 as B approaches 0. Similar vibrating sphaleron solutions
were considered earlier at linear order in Ref. [13].

VIII. CONCLUSIONS

We have considered a simple one-dimensional scalar field
theory with a cubic potential, having a long-lived oscillon
solution as well as a static, unstable sphaleron solution. We
have explicitly constructed the Fodor et al. expansion for the
oscillon up to fourth order in the oscillon’s amplitude
parameter. As this parameter increases, the oscillon fre-
quency decreases. The expansion is asymptotic rather than
convergent, so the fourth-order truncation Φ4ðt; xÞ is only

valid for small amplitudes. A larger-amplitude oscillon is
better approximated by the second-order truncationΦ2ðt; xÞ.
When the oscillon is instantaneously at rest, its shape is

similar to that of the sphaleron, but the sphaleron has a
larger amplitude and more energy. The sphaleron, slightly
perturbed, decays into the oscillon. During its first couple
of oscillations it radiates a significant fraction of its
energy, but then settles into an oscillon of relatively large
amplitude.
The Fodor et al. oscillon is periodic, with a single

fundamental frequency. However, the decaying sphaleron
approaches an oscillon whose amplitude is itself slightly
oscillating. This suggests that oscillon solutions are best
modeled by a truncation of the field theory having two
degrees of freedom. The sphaleron naturally provides these,
as it has a single unstable mode and a further discrete mode
of oscillation whose frequency is below the threshold
frequency for the continuum of radiation modes.
We have considered the field ansatz obtained by

linearly deforming the sphaleron by these two modes,
with amplitudes A and B. Substituting this ansatz into
the full field-theory Lagrangian, we obtained a reduced,
nonlinear dynamical Lagrangian for A and B, whose
nonlinearity arises from the cubic potential term. This
dynamics is decoupled from the field radiation modes.
Because the ansatz gets quite close to the vacuum
configuration for particular values of A and B, it provides
a useful interpolation between the sphaleron and the
vacuum. The dynamical equations for A and B have
solutions describing sphaleron decay as well as oscillons
of relatively large amplitude. However, oscillons of small
amplitude, which have a larger spatial extent than the
sphaleron and its discrete modes, are not well described
by the ansatz.
By carefully adjusting the initial conditions of A and B,

we can find oscillatory solutions of the reduced dynamics
that are almost exactly periodic. We can also use these
initial conditions as initial conditions for the field theory
itself, to generate oscillons with minimal radiation. We then
found close similarities between the field theory dynamics
and the reduced dynamics of A and B. The comparison is
effected by projecting the field dynamics onto the two
discrete modes.
In summary, we have found similar oscillon solutions

from several points of view: through the Fodor et al. small-
amplitude expansion, through the decay of the sphaleron
and oscillating versions of the sphaleron, and from our
truncation of the field theory to a dynamical system with
two degrees of freedom. This dynamical system appears to
be a useful extension of the truncation to one degree of
freedom implied by the Fodor et al. analysis. However, all
of these approaches are only approximate. The Fodor et al.
expansion is asymptotic and needs to be truncated; the
decaying sphaleron emits considerable radiation in its
initial few oscillations; finally, our linearized field ansatz

FIG. 18. Nearly periodic evolution of the vibrating sphaleron
with fine-tuned initial data.
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exploiting the sphaleron’s discrete modes misses the
vacuum and small-amplitude oscillons.
Numerically, there is overwhelming evidence for the

existence of long-lived, topologically trivial, localized oscil-
latory solutions of the field theory—oscillons—but the
precise mathematical status of oscillons remains elusive.
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