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We investigate the worldline quantum field theory (WQFT) formalism for scalar QED and observe that a
generating function emerges fromWQFT, from which the scattering angle ensues. This generating function
bears important similarities to the radial action in that it requires no consideration of exponentiation
of lower-order contributions. We demonstrate the computations of this generating function and the resul-
ting scattering angle of a binary system coupled to an electromagnetic field up to the third order in the
post-Minkowskian expansion.
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Recent developments in gravitational-wave physics [1–5]
call for innovations of theoretical framework that facilitate
both numerical [6–8] and analytical [9–36] high-precision
computations of the dynamics of binary black hole or neutron
star mergers.
It has proven fruitful to extract classical observables

from scattering amplitudes in perturbative quantum field
theories [37–42], thanks to modern tools based on on-shell
techniques [43–52] and effective field theory [38,53].
However, to expose the classical quantity, amplitude-based
approaches often requires a delicate analysis which
removes quantum and superclassical contributions alike
[39,40,54,55]. Alternative methods that capture classical
observables more directly are, therefore, in demand, and
several explorations in this direction [56–59] have been
shown to be beneficial.
It is in this light that the worldline quantum field theory

(WQFT) [60], in which worldline degrees of freedom are
quantized, is formulated, providing a formal link between
black hole observables extracted from scattering ampli-
tudes and time-ordered correlators in WQFT. WQFT
Feynman rules circumvent the need for the effective
potential in traditional worldline effective field theory
(EFT) methods [10,61,62] and streamline loop calculations
encountered in amplitude-based approaches to summing
over diagrams of tree topologies only, yielding classical
observables directly. Recent applications of WQFT involve

a series of work on spinning black holes [63–65] and the
state-of-the-art derivations of the conservative momentum
impulse and the spin kick up to the third order in post-
Minkowskian (3PM) expansion and quadratic order in spin
have been obtained from WQFT [66].
As established in amplitude-based approaches, conser-

vative and radiative dynamics in classical relativistic scatter-
ing can be extracted from the eikonal phase [55,67–70].
Inspired by the eikonal approximation, an amplitude-action
relation has been revealed [55], and the radial action [71–74]
serves as another generating function for the scattering angle.
Another closely related generating function is defined in the
heavy-particle EFT [59], which agrees with the radial action
in their real parts but differs in the imaginary part. One crucial
difference between these functions and the standard eikonal
exponentiation is that iterations from lower orders can be
discarded for the former.
WQFT is expected to have the potential of capturing

such generating functions, too. The classical eikonal phase
can be obtained fromWQFT in various contexts up to 2PM
or next-to-leading order [60,65,75,76]. However, the cal-
culation of the eikonal phase at 3PM and beyond in WQFT
remains somewhat ambiguous in the iϵ prescription of the
worldline propagator. On the other hand, it is conceivable
that WQFT speaks more directly to a generating function
whose classical part is readily isolated than the eikonal. In
this paper, we seek to explore the construction of such a
generating function from WQFT.
In this paper, we consider theWQFT counterpart of scalar

QED as a toy model, which is shown to be a useful play-
ground for higher PMgravitational computations [74,77,78].
We illustrate that a generating function emerges fromWQFT
in a highly streamlined fashion, which reproduces both the
conservative and radiative contributions of the scattering
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angle. This generating function bears similarities to the radial
action and the eikonal exponentiation. TheWQFTintegrands
can be made to match with those in the heavy-mass limit of
scalar QED in the comparable-masses sector and in those
diagrams responsible for the radiation reaction. We expect
these observations to carry over straightforwardly to WQFT
in a gravitational background.

I. WQFT FORMALISM FOR SCALAR QED

The worldline action describing a charged massive
nonspinning point particle in an electromagnetic back-
ground reads [79,80]

Si ¼ −mi

Z
dσ

�
1

2
ðη−1 _x2i þ ηÞ þ ie

qi
mi

Aμ _x
μ
i

�
; ð1Þ

where the worldline coordinate xμ is parametrized by σ and
_xμ ¼ dxμ=dσ. qi and mi denote the charge and mass,
respectively, of the scalar i ¼ 1, 2. The worldline is coupled
to the electromagnetic (EM) field Aμ, and the bulk theory is
simply given by the usual EM action. For convenience, we
set the einbein ηðσÞ ¼ 1. As shown in Ref. [60], special-
izing the photon to plane waves of fixed momenta and
polarizations, the photon-dressed Feynman-Schwinger
propagator [81] can be identified with the path integral
for the WQFT correlator, with external legs amputated
through the Lehmann-Symanzik-Zimmermann reduction.
Expanding the worldline around straight-line trajectories

xμi ¼ bμi þ uμi σ þ zμi ðσÞ, the WQFT Feynman rules are
readily expressed in frequency and momentum space:
zμi ðσÞ ¼

R
ω e

−iσωzμi ðσÞ and AμðxÞ ¼
R
k e

−ik·xAμð−kÞ, where
we have used the shorthand notations

R
ω=k as introduced

in Ref. [60]. The explicit expressions of WQFT Feynman
rules for worldline-photon interactions are given in
Supplemental Material [82].
Inspired by the eikonal exponentiation [60], we consider

the phase identified with the WQFT path integral in the
classical limit:

eiδ ¼ ZWQFT ¼
Z

D½A�
Y2
j¼1

D½zj�eiðSEMþ
P

2

j¼1
SjÞ; ð2Þ

where SEM denotes the standard action for the electromag-
netic field in the bulk. We note that the identification above
is designed to hold in the classical limit. Hence, the phase δ
is a purely classical quantity. That is, δ is uniform in ℏ and
admits only an expansion in the coupling constant e2.
Taking the logarithm on both sides, we identify δ at each
order of e2 with the sum of connected WQFT diagrams,
without iteration corrections from lower orders, which sets
it apart from the eikonal approach proposed in Ref. [60]. It
may be tempting to identify it with the radial action due to
the similar definitions; but preliminary evidence suggests
that differences occur in their respective imaginary parts.

Similar to the Heavy-mass Effective Field Theory (HEFT)
phase [59], we restrict ourselves to the real parts of this
generating function and the resulting scattering angle. The
imaginary part is beyond the scope of this paper.
The evaluation of WQFT path integrals is normally

sensitive to the iϵ prescription of the worldline propagator.
We observe that only the principal-value part of the time-
symmetric propagator [60] is relevant for the construction
of this generating function. Hence, we propose the princi-
pal-value prescription for the worldline propagator, and the
propagator simply reads

ð3Þ

This treatment is reminiscent of Refs. [59,73,75,83].
The Feynman rules are given in terms of kinematic

variables bμi and u
μ
i , the interpretation of which depends on

the worldline trajectory they describe [60]. The kinematics
of the 2 → 2 scattering is given by the momenta:

p1 ¼ p̄1 þ q=2; p2 ¼ p̄2 − q=2;

p0
1 ¼ p̄1 − q=2; p0

2 ¼ p̄2 þ q=2;

with p2
i ¼ p02

i ¼ m2
i and p̄2

i ¼ m̄2
i . The initial trajectory

(σ ¼ −∞) corresponds to pμ
i ¼ miu

μ
i , and the initial

impact parameter is given by bμ ¼ bμ1 − bμ2. The in-between
trajectory (σ ¼ 0) corresponds to the “barred variable”
p̄μ
i ¼ miu

μ
i and b̄

μ. The differences between the two sets of
variables come at Oðq2Þ. Similar to the observations in
Ref. [59], the phase δ is free from iterations, and, hence, the
barred variables can be traded with the unbarred ones at
no cost.

II. 1PM AND 2PM

At the leading (1PM) and subleading (2PM) orders, the
phase δ is given by

ð4Þ

where we have adopted the notations in Ref. [60] for
the integration measure, �δðxÞ ≔ 2πδðxÞ, γ ¼ u1 · u2, and

D denotes the spacetime dimension. The integral Gð1Þ
i in

D ¼ 4 − 2ϵ reads
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Gð1Þ
i ¼

Z
l1

�δðl1 · uiÞ
l2
1ðq − l1Þ2

¼ ð4πÞϵ−3
2Γð1

2
− ϵÞ2Γð1

2
þ ϵÞ

ð−q2Þ12þϵΓð1 − ϵÞ : ð5Þ

Note that both the impact parameter bμ and the total
momentum transfer qμ are spacelike and the Fourier
transform is performed in (D − 2) dimensions due to the
two δ functions as follows:

Z
q

eiq·b

ð−q2Þα ¼
ð−b2Þα−1þϵΓð1 − α − ϵÞ
4απ1−ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
ΓðαÞ

: ð6Þ

Fourier transforming to the impact parameter space, we
obtain

δð0Þ ¼ αq1q2
γffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p Γð−ϵÞ

π−ϵ
ðb2Þϵ; ð7Þ

δð1Þ ¼ −ðαq1q2Þ2
πðm1 þm2Þ

2m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
b
; ð8Þ

where b ¼ jbj ¼
ffiffiffiffiffiffiffiffi
−b2

p
and α ¼ e2=ð4πÞ.1

Moving on to the next-to-next-to-leading order (3PM),
we consider the comparable-masses sector (m1 ∼m2) and
the probe-limit sector (m1 ≪ m2 or m1 ≫ m2). The former
contributes to both the conservative and the radiative parts
of the scattering angle, whereas the latter contributes
only to the conservative part. In addition, the scattering
angle begins to receive the so-called radiation reactions
at 3PM [74,84–89], and we shall consider them separately.

III. 3PM COMPARABLE MASSES

The conservative contribution from this sector is com-
puted by the following diagrams:

ð9Þ

where we have removed the tadpole terms from the
integrand.2 Here, we note that the two diagrams in the

first line agree with the “zigzag” diagrams of the QED
counterpart of HEFT.3 Using LiteRed [90], Eq. (9) is cast by
integration-by-parts (IBP) relations in the basis of master
integrals as follows4:

iδð2Þjm1m2
¼ ie6q21q

3
2

2m1m2

Z
q
eib·q

Y2
i¼2

�δðq · uiÞ½a1G0;0;0;0;1;1;1

þ a2G0;0;0;0;1;2;1 þ a3G0;0;0;0;2;1;1

þ a4G1;1;0;0;1;1;1�: ð10Þ
The integrals are defined as

Gn1n2…n7 ¼
Z
l1l2

�δðl1 · u2Þ�δðl2 · u1Þ
ρn11 ρn22 …ρn77

; ð11Þ

where the propagators are

ρ1 ¼ l1 ·u1; ρ2 ¼ l2 ·u2; ρ3 ¼ l2
1; ρ4 ¼ l2

2;

ρ5 ¼ ðq−l1−l2Þ2; ρ6 ¼ ðq−l1Þ2; ρ7 ¼ ðq−l2Þ2:
ð12Þ

We list the coefficients in D ¼ 4 − 2ϵ below:

a1 ¼ −
2ϵðγ4ð4ϵ2 − 2ϵ − 1Þ þ γ2ð2ϵþ 3Þ − 3Þ

γðγ2 − 1Þð1 − 2ϵÞ ; ð13Þ

a2 ¼
ð2ϵþ 1Þðγ4ð2ϵð6ϵ − 5Þ − 1Þ þ γ2ð6ϵþ 3Þ − 3Þq2

3γðγ2 − 1Þ2ð1 − 2ϵÞϵ ;

ð14Þ

a3 ¼ −
ðγ4ð2ϵð6ϵ − 1Þ − 5Þ þ γ2ð6ϵ − 3Þ þ 3Þq2

3γðγ2 − 1Þð1 − 2ϵÞ ; ð15Þ

a4 ¼ −
γ2ð2γ2ϵþ 3Þq2

3ðγ2 − 1Þ : ð16Þ

These integrals are extensively studied in the literature
[59,66,67,87,91] using differential equations [92–96]. We
display the explicit expressions for the real parts of
the master integrals present in Eq. (10) in Supplemental
Material [82], and Eq. (10) is readily evaluated. Fourier
transforming to the impact parameter space and taking
ϵ → 0, we obtain

1We multiply a factor of i
ð4πÞ2 ð4πe−γEÞϵ per loop in the end to

restore the proper normalization [66,68].
2Tadpole terms are those that do not have all three massless

poles l2
1, l

2
2, and ðq − l1 − l2Þ2 simultaneously, which integrate

to zero.

3More detailed discussions on the connections between the
WQFTand HEFTapproaches are given in Supplemental Material
[82].

4In all three sectors, only the principal-value parts of the time-
symmetric propagators contribute to the real part of the phase δ.
Take the zigzag diagrams, for example. The master integral
G1;1;0;0;1;1;1 needs to be dealt with in four sectors G��

1;1;0;0;1;1;1
separately, depending on their respective iϵ prescriptions for the
two worldline propagators. However, rewriting 1=ðx� iϵÞ ¼
pvð1=xÞ ∓ iπδðxÞ, the imaginary part drops out.
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Reδð2Þjm1m2
¼ −

2ðαq1q2Þ3ðγ4 − 3γ2 þ 3Þ
3m1m2b2ðγ2 − 1Þ5=2

þ 2ðαq1q2Þ3γ2ðγ
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
− arccoshγÞ

m1m2b2ðγ2 − 1Þ5=2 :

ð17Þ

The two terms are identified with the conservative and
radiative contributions, because they result from boundary
values computed in different regions. The first term comes
purely from the potential region identified in Ref. [59]
while the second from the radiative region. As will be
demonstrated shortly, they reproduce the conservative and
radiative parts of the scattering angle, respectively.

IV. 3PM PROBE LIMIT

Similarly, in the probe limit we consider the following
diagrams:

ð18Þ

Here, we have symmetrized the diagrams by labeling the
momenta universally in all three diagrams. This symmet-
rization helps to reproduce all the pole structures expec-
ted explicitly in the classical limit of the corresponding
Feynman diagrams in this sector. The two probe-limit
sectors are simply related by relabeling m1 ↔ m2.
After IBP reduction using LiteRed, the integrand in

Eq. (18) is simplified to one single master integral:

ie6q31q
3
2ð6ϵ − 1Þγðγ2ð6ϵ − 2Þ þ 3Þ

6m2
1ðγ2 − 1Þ2 Gð2Þ

2 ; ð19Þ

where the master integral in D ¼ 4 − 2ϵ reads

Gð2Þ
i ¼

Z
l1l2

�δðl1 · uiÞ�δðl2 · uiÞ
l2
1l

2
2ðq − l1 − l2Þ2

¼ −
ð4π2Þ−3þ2ϵ

ð−q2Þ2ϵ
Γð1

2
− ϵÞ3Γð2ϵÞ
Γð3

2
− 3ϵÞ : ð20Þ

That only one master integral contributes is also observed
in the context of gravity [59,73]. We note that the matching
with the heavy-mass limit of scalar QED in the probe limit
is less manifest. The two integrands can be shown to be
equal after IBP reduction. Fourier transforming to impact
parameter space, we have

Reδð2Þjm2
2
¼ ðαq1q2Þ3γð2γ2 − 3Þ

m2
1b

2ðγ2 − 1Þ5=2 : ð21Þ

We will see shortly that this reproduces the conservative
part of the scattering angle in the probe limit.

V. 3PM RADIATION REACTION

The radiation reaction is accounted for by the following
diagrams:

ð22Þ

We again apply IBP reductions to the expression above,
which leads to one single master integral G0;0;1;0;1;1;0 as
defined in Eq. (11). Hence, the radiation reaction contri-
bution reads

Reδð2Þjrr ¼
−2ðαq1q2Þ3γ2

3m1m2b2ðγ2 − 1Þ
�
q1=m1

q2=m2

þ q2=m2

q1=m1

�
: ð23Þ

VI. SCATTERING ANGLE

It is straightforward to compute the scattering angle in
the center of mass frame via

χ ¼ −
∂δ

∂J
; ð24Þ

where J denotes the total angular momentum and we have
J ¼ pb with

p ¼ m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
E

; E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 þ 2m1m2γ

q
:

ð25Þ
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Plugging in Eqs. (7) and (8), we obtain the scattering angle
at 1PM and 2PM:

χð0Þ ¼ 2αq1q2Eγ
m1m2bðγ2 − 1Þ ; ð26Þ

χð1Þ ¼ −
ðαq1q2Þ2πEðm1 þm2Þ

2m2
1m

2
2b

2ðγ2 − 1Þ : ð27Þ

The conservative part of the 3PM scattering angle
follows from the first term of the comparable-mass (17)
and the two probe-limit sectors (21):

χð2Þcon ¼ −
4ðαq1q2Þ3Eðγ4 − 3γ2 þ 3Þ

3m2
1m

2
2b

3ðγ2 − 1Þ3

þ 2ðαq1q2Þ3Eðm2
1 þm2

2Þγð2γ2 − 3Þ
3m3

1m
3
2b

3ðγ2 − 1Þ3 : ð28Þ

Likewise, the radiative part at 3PM follows from the second
line in Eq. (17) and the radiation reaction term (23):

χð2Þrad ¼
4ðαq1q2Þ3Eγ2

m2
1m

2
2b

3

�
γ

ðγ2 − 1Þ5=2 −
arccoshγ
ðγ2 − 1Þ3

�

−
4ðαq1q2Þ3Eγ2

3m2
1m

2
2ðγ2 − 1Þ3=2

�
q1=m1

q2=m2

þ q2=m2

q1=m1

�
: ð29Þ

For Eqs. (28) and (29), we find agreement with known
results in the literature [74,89].

VII. DISCUSSIONS

We have demonstrated a highly streamlined method for
obtaining both the conservative and radiative contributions
of the scattering angle in the WQFT formalism for scalar

QED. The scattering angle is computed from a generating
function that naturally arises from the WQFT path integral.
This generating function is constructed to be purely
classical by virtue of WQFTand coincides with the recently
proposed “HEFT phase,” although the precise connection
between the two remains to be clarified. Its real part also
agrees with the radial action, while the differences between
their respective imaginary parts are yet to be investigated.
These observations are expected to hold in other WQFTs,
especially those in a gravitational background, which we
leave to future work. It is also interesting to further clarify
the relation between this generating function and the
eikonal phase in the context of WQFT. Another immediate
followup is to study higher PM orders. In particular, the
probe limit involves only one diagram (up to symmetriza-
tion) at any order, for which the vertices are known on
closed forms. In this limit, it is promising to obtain all-loop
results from WQFT.
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Vanhove, Post-Minkowskian radial action from soft limits
and velocity cuts, J. High Energy Phys. 03 (2022) 071.

[74] Zvi Bern, Juan Pablo Gatica, Enrico Herrmann, Andres
Luna, and Mao Zeng, Scalar QED as a toy model for higher-
order effects in classical gravitational scattering, J. High
Energy Phys. 08 (2022) 131.

[75] Canxin Shi and Jan Plefka, Classical double copy of
worldline quantum field theory, Phys. Rev. D 105, 026007
(2022).

[76] Fiorenzo Bastianelli, Francesco Comberiati, and
Leonardo de la Cruz, Light bending from eikonal in
worldline quantum field theory, J. High Energy Phys. 02
(2022) 209.

BINARY DYNAMICS FROM WORLDLINE QFT FOR SCALAR QED PHYS. REV. D 107, 085011 (2023)

085011-7

https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://doi.org/10.1103/PhysRevD.106.056007
https://doi.org/10.1103/PhysRevD.106.056007
https://doi.org/10.1016/0550-3213(94)90179-1
https://doi.org/10.1016/0550-3213(94)00488-Z
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://doi.org/10.1007/JHEP02(2014)111
https://doi.org/10.1007/JHEP03(2018)044
https://doi.org/10.1016/0550-3213(86)90362-7
https://doi.org/10.1016/0550-3213(86)90362-7
https://doi.org/10.1103/PhysRevD.78.085011
https://doi.org/10.1103/PhysRevD.78.085011
https://doi.org/10.1103/PhysRevLett.105.061602
https://doi.org/10.1103/PhysRevD.85.105014
https://arXiv.org/abs/1909.01358
https://doi.org/10.1103/PhysRevD.67.084033
https://doi.org/10.1103/PhysRevD.67.084033
https://doi.org/10.1103/PhysRevD.71.069903
https://doi.org/10.1103/PhysRevD.104.065014
https://doi.org/10.1103/PhysRevD.104.065014
https://doi.org/10.1103/PhysRevLett.126.171601
https://doi.org/10.1007/JHEP02(2019)137
https://doi.org/10.1007/JHEP02(2019)137
https://doi.org/10.1007/JHEP12(2019)156
https://doi.org/10.1007/JHEP07(2021)047
https://doi.org/10.1007/JHEP07(2021)047
https://doi.org/10.1007/JHEP10(2021)118
https://doi.org/10.1007/JHEP10(2021)118
https://doi.org/10.1007/JHEP02(2021)048
https://doi.org/10.1007/s10714-006-0345-7
https://doi.org/10.1088/0264-9381/25/14/145011
https://doi.org/10.1088/0264-9381/25/14/145011
https://doi.org/10.1103/PhysRevLett.126.201103
https://doi.org/10.1103/PhysRevLett.126.201103
https://doi.org/10.1103/PhysRevLett.128.011101
https://doi.org/10.1103/PhysRevLett.128.011101
https://doi.org/10.1007/JHEP01(2022)027
https://doi.org/10.1007/JHEP01(2022)027
https://doi.org/10.1103/PhysRevLett.128.141102
https://doi.org/10.1007/JHEP11(2020)023
https://doi.org/10.1007/JHEP07(2021)169
https://doi.org/10.1007/JHEP07(2021)169
https://doi.org/10.1103/PhysRevD.104.046016
https://doi.org/10.1007/JHEP07(2022)039
https://doi.org/10.1007/JHEP07(2022)039
https://doi.org/10.1007/JHEP11(2021)213
https://doi.org/10.1007/JHEP03(2022)141
https://doi.org/10.1007/JHEP03(2022)141
https://doi.org/10.1007/JHEP03(2022)071
https://doi.org/10.1007/JHEP08(2022)131
https://doi.org/10.1007/JHEP08(2022)131
https://doi.org/10.1103/PhysRevD.105.026007
https://doi.org/10.1103/PhysRevD.105.026007
https://doi.org/10.1007/JHEP02(2022)209
https://doi.org/10.1007/JHEP02(2022)209


[77] Konradin Westpfahl, High-speed scattering of charged and
uncharged particles in general relativity, Fortschr. Phys. 33,
417 (1985).

[78] Alessandra Buonanno, Reduction of the two-body dynamics
to a one-body description in classical electrodynamics,
Phys. Rev. D 62, 104022 (2000).

[79] Christian Schubert, Perturbative quantum field theory in the
string inspired formalism, Phys. Rep. 355, 73 (2001).

[80] James P. Edwards and Christian Schubert, Quantum
mechanical path integrals in the first quantised approach
to quantum field theory, arXiv:1912.10004.

[81] R. P. Feynman, Mathematical formulation of the quantum
theory of electromagnetic interaction, Phys. Rev. 80, 440
(1950).

[82] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.107.085011 for explicit
expressions for WQFT Feynman rules for scalar-QED,
explicit expressions for the master integrals used in the
paper, and detailed comparison between WQFT and HEFT
for scalar QED at the level of diagrams.

[83] Zvi Bern, Julio Parra-Martinez, Radu Roiban, Michael S.
Ruf, Chia-Hsien Shen, Mikhail P. Solon, and Mao Zeng,
Scattering Amplitudes, the Tail Effect, and Conservative
Binary Dynamics at OðG4Þ, Phys. Rev. Lett. 128, 161103
(2022).

[84] Thibault Damour, Radiative contribution to classical gravi-
tational scattering at the third order in G, Phys. Rev. D 102,
124008 (2020).

[85] Paolo Di Vecchia, Carlo Heissenberg, Rodolfo Russo, and
Gabriele Veneziano, Universality of ultra-relativistic gravi-
tational scattering, Phys. Lett. B 811, 135924 (2020).

[86] Paolo Di Vecchia, Carlo Heissenberg, Rodolfo Russo, and
Gabriele Veneziano, Radiation reaction from soft theorems,
Phys. Lett. B 818, 136379 (2021).

[87] Enrico Herrmann, Julio Parra-Martinez, Michael S. Ruf, and
Mao Zeng, Radiative classical gravitational observables at
OðG3Þ from scattering amplitudes, J. High Energy Phys. 10
(2021) 148.

[88] N. Emil J. Bjerrum-Bohr, Poul H. Damgaard, Ludovic
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