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We discuss quantum scale invariance in (scale invariant) gauge theories with both ultraviolet (UV) and
infrared (IR) divergences. First, their Becchi-Rouet-Stora-Tyutin invariance is checked in two apparently
unrelated approaches using a scale invariant regularization (SIR). These approaches are then shown to be
equivalent. Second, for the Abelian case we discuss both UV and IR quantum corrections present in such
theories. We present the Feynman rules in a form suitable for off-shell Green’s function calculations,
together with their one-loop renormalization. This information is then used for the muon production cross
section at one-loop in a quantum scale invariant theory. Such a theory contains not only new UV poles but
also IR poles. While the UV poles bring new quantum corrections (in the form of counterterms), finite or
divergent, that we compute, it is shown that the IR poles do not bring new physics. The IR quantum
corrections, both finite and divergent, cancel out similarly to the way the IR poles themselves cancel in
the traditional approach to IR divergences (in the cross section, after summing over virtual and real
corrections). Hence, the evanescent interactions induced by the scale-invariant analytical continuation of
the SIR scheme do not affect IR physics, as illustrated at one-loop for the muon production (eþe− → μþμ−)
cross section.
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I. INTRODUCTION

In this work we study quantum scale invariance and its
implications for scale invariant gauge theories. An example
is the Standard Model (SM) with a vanishing Higgs
mass [1]. Consider such a theory in four dimensions; its
quantum corrections are usually divergent in the ultraviolet
(UV) and possibly in the infrared (IR) as well. To make the
theory well defined, a regularization is needed and this
introduces a dimensionful parameter, i.e., a mass scale,
regardless of the regularization [dimensional regularization
(DR), cutoff scheme, etc.]. Then the original theory in
d ¼ 4 that was classically scale invariant has this symmetry
broken explicitly by the regularization, e.g., by the ana-
lytical continuation to d dimensions in the DR scheme,
because the DR subtraction scale μ breaks the classical
scale symmetry.

This explicit (anomalous) breaking of scale invari-
ance can be avoided by a manifestly scale invariant regu-
larization (SIR), see Refs. [2–13], leading to a quantum scale
invariant theory. Onemotivation to study such a symmetry is
that it can naturally preserve a classical hierarchy of scales
generated by field vacuum expectation values (VEVs) [3]
(for an example see Ref. [6]). More generally, in gauge
theories of scale invariance that include Einstein gravity [14]
quantum scale symmetry becomes necessary.
In the SIR scheme an additional scalar field σ is

introduced by the analytical continuation1 to enforce the
classical scale symmetry in d ¼ 4 − 2ϵ dimensions. Here σ
is the Goldstone of (global) scale symmetry and will
generate the subtraction scale: the “usual” DR subtraction
scale is replaced by a dilaton dependent function μ ∼ zσ (z
is a dimensionless parameter) that enforces manifest scale
invariance in d dimensions at the classical and the quantum
level. When σ acquires a nonvanishing VEV hσi, the usual
subtraction scale μ0 ∼ hσi is generated via spontaneous
breaking of scale symmetry. Because of this there is no
anomalous scale symmetry breaking anymore [2,4,6,7].2
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1An exception is the case where σ is already present in the
classical theory in d ¼ 4 as a flat direction in the scalar sector.

2Nevertheless, the couplings still run with momentum [15],
information captured by dimensionless z.
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While the analytical continuation to d dimensions preserves
scale invariance, note that the spectrum may then differ
from that of the initial d ¼ 4 theory by the additional
(dynamical) field σ.
The above procedure has strong implications at the

quantum level. After quantum corrections are computed in
d dimensions, scale invariant counterterms are identified and
renormalization is performed.After doing so, the limitd → 4
is taken. Some quantum corrections depend on the dilaton
and these are solely due to quantum scale invariance.
Eventually, the theory can now be expanded about the (large)
VEV of the dilaton hσi which represents the scale of “new
physics” (above which scale invariance is restored). For a
large dilaton VEV, these corrections are actually expected to
vanish. In this way, one has a quantum scale invariant theory
that also recovers the usual quantum corrected theory
(regularized by “standard” DR) in the decoupling limit of
the dilaton i.e., at large hσi. The two theories have, however,
different UV spectrum, UV symmetry and UV behavior.
Since the Lagrangian in d ¼ 4 − 2ϵ dimensions now

depends on μϵðσÞ, where μðσÞ is a mass dimension-one
function of σ, by expanding in powers of ϵ one obtains new
“evanescent” polynomial interactions proportional to powers
of ϵ. Then there are new, scale invariant quantum corrections
that emerge from evanescent interactions ∝ ϵn hitting a pole
1=ϵm arising from loop integrals, in the cases when n ≤ m.
If n ¼ m, new finite quantum corrections (which hence
have the form of finite counterterms) are generated, whereas
if n < m, new poles are generated leading to new scale
invariant counterterms and quantum corrections, suppressed
by powers of σ. Such calculations were already performed at
the one-loop [3–8], the two-loop [9,10], and even the three-
loop level [11,12] (for a review see Ref. [13]).
Quantum scale invariance was studied in the past

especially in the scalar sector, whereas gauge theories were
less studied except in [4,6,8] and this motivated this work.
In particular, one aspect that was overlooked is the Becchi-
Rouet-Stora-Tyutin (BRST) invariance of these theories
following their analytical continuation to d ¼ 4 − 2ϵ in a
manifestly scale invariant way. Second, the scale invariant
analytical continuation for gauge theories can be performed
in two different ways, apparently unrelated, which are not
known to be equivalent. We show that both approaches lead
to the same d dimensional, BRST invariant Lagrangian and
are thus equivalent.
The third and strongest motivation of this study is related

to the fact that (scale invariant) gauge theories have not
only UV but also IR divergences which were not yet
discussed in the context of quantum scale invariance. The
SIR scheme based on the DR scheme can actually handle
the IR divergences as well. A question is whether quantum
scale invariance leads to new physical effects related to IR
divergences. We show that, while the UV poles bring new
quantum corrections due to quantum scale invariance, the
IR poles do not bring any new physics. The new infrared

quantum corrections, be they finite or divergent, cancel out,
similar to the way the IR poles themselves cancel in the
traditional approach to IR divergences (at the level of cross
sections after summing over virtual and real corrections).
Thus, evanescent interactions from the SIR do not impact
IR physics. This cancellation is a strong consistency check
for quantum scale invariant gauge theories. We illustrate
this in detail with a one-loop calculation of the cross section
of muon production, e−eþ → μ−μþ; this is evaluated and
analyzed in the framework of quantum electrodynamics
extended by the dilaton which enforces quantum scale
invariance.
The plan of the paper is as follows: Section II discusses

the BRST invariance in SIR schemes for general gauge
theories. Since gauge theories also have IR poles, we study
these in an Abelian gauge theory, derive Feynman rules
(Appendix A) and its renormalization (Appendix B). This
information is then used in Sec. III that presents the muon
production cross section and the effect of UV and IR
corrections, with technical details in Appendixes C and D.
Our conclusions are presented in the last section.

II. QUANTUM SCALE INVARIANCE IN GAUGE
THEORIES

We check the BRST invariance in general gauge theories
in two apparently unrelated approaches in SIR schemes and
show the equivalence of their results. Further, gauge theories
have not only UV poles, but also IR ones, the study of which
is restricted to the Abelian case, in the SIR scheme. We
thus consider an Abelian case (quantum electrodynamics
extended by the dilaton), for which we give the Feynman
diagrams and one-loop renormalization in a manifestly scale
invariant form suitable for computer implementation.

A. Non-Abelian theories and BRST

Consider the Lagrangian of a scale invariant SUðNÞ
gauge theory in d ¼ 4 given by

L ¼ Lcl þ LGF þ LGhost ð1Þ

Lcl ¼ −
1

4
Fa
μνFa;μν þ iψ̄ iðδij=∂ − ig=GaTa

ijÞψ j ð2Þ

LGF ¼ −Ba
∂
μGa

μ þ
ξ

2
BaBa ð3Þ

LGhost ¼ ∂
μc̄aDac

μ cc; ð4Þ

where Ba, ca and c̄a are Nakanishi-Lautrup fields, ghosts
and antighosts, respectively.
Apparently, there are two different ways to implement a

scale invariant regularization:
(a) Analytical continuation to d ¼ 4 − 2ϵ by rescaling

the gauge fields.—First, rescale the gauge fields in
d ¼ 4 by a factor of the gauge coupling,
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Ga
μ → Ĝa

μ ¼ gGa
μ: ð5Þ

Since the gauge parameter βa also needs to be
rescaled, the ghost ca is analogously rescaled, as
βaðxÞ ¼ θcaðxÞ, for some Grassmann number θ.
Further, it is convenient to rescale the antighost c̄a

as well in order to obtain a ghost term similar to (4).
Thus,

ca → ĉa ¼ gca; c̄a → ˆ̄ca ¼ 1

g
c̄a: ð6Þ

This leads to

L ¼ −
1

4g2
F̂a
μνF̂

a;μν þ iψ̄ =̂Dψ −
1

g
Ba

∂
μĜa

μ

þ ξ

2
BaBa þ ∂

μ ˆ̄caD̂ac
μ ĉc; ð7Þ

where the rescaled field strength tensor and covar-
iant derivative do not explicitly depend on the gauge
coupling,

F̂a
μν ¼ ∂μĜ

a
ν − ∂νĜ

a
μ þ fabcĜb

μĜ
c
ν ð8Þ

D̂μψ i ¼ ðδij∂μ − iĜa
μTa

ijÞψ j ð9Þ

D̂ac
μ ĉc ¼ ðδac∂μ þ fabcĜb

μÞĉc: ð10Þ

Lagrangian (7) can now be analytically continued
to d ¼ 4 − 2ϵ in a scale invariant way. This is
achieved by the addition of a dynamical scalar field
σ to the spectrum of the initial classical theory in
d ¼ 4, playing the role of a dilaton. When σ acquires
a VEV, the subtraction scale is generated dynami-
cally. Hence, the analytical continuation to d
dimensions modifies the spectrum of the initial
classical theory in d ¼ 4 by an extra degree of
freedom, but scale invariance is maintained in d
dimensions (and at the quantum level). This is the
“cost” of implementing quantum scale invariance.
The Lagrangian becomes

LðdÞ ¼ −
1

4g2
μ−2ϵðσÞF̂a

μνF̂
a;μν þ iψ̄ =̂Dψ

þ 1

2
ð∂μσÞð∂μσÞ −

1

g
μ−ϵðσÞBa

∂
μĜa

μ

þ ξ

2
BaBa þ ∂

μ ˆ̄caD̂ac
μ ĉc: ð11Þ

The mass dimensions of the fields and couplings are

½Ĝa
μ�¼1; ½ψ �¼3

2
−ϵ; ½σ�¼1−ϵ; ½g�¼0;

½ĉa�¼0; ½ ˆ̄ca�¼2−2ϵ; ½Ba�¼2−ϵ; ½ξ�¼0

ð12Þ

and ½β̂a� ¼ 0, ½θ� ¼ 0. Further, integrating out Ba in
(11), then

LðdÞ ¼−
1

4g2
μ−2ϵðσÞF̂a

μνF̂
a;μνþ iψ̄ =̂Dψþ1

2
ð∂μσÞð∂μσÞ

−
1

2ξg2
μ−2ϵðσÞð∂μĜa

μÞ2þ∂
μ ˆ̄caD̂ac

μ ĉc: ð13Þ

In general, the BRST transformations are given by

ψ i↦ψ iþδψ i; Ga
μ↦Ga

μþδGa
μ; ca↦caþδca;

ψ̄ i↦ ψ̄ iþδψ̄ i; Ba↦BaþδBa; c̄a↦ c̄aþδc̄a;

σ↦σ; ð14Þ

where σ transforms trivially under BRST symmetry.
One finds the following d dimensional BRST trans-
formations:

δψ i ¼ θQψ i ¼ iθĉaTa
ijψ j;

δψ̄ i ¼ θQψ̄ i ¼ −iθĉaψ̄ jTa
ji

δĜa
μ ¼ θQĜa

μ ¼ θD̂ac
μ ĉc ¼ θ∂μĉa þ θfabcĜb

μĉc

δĉa ¼ θQĉa ¼ −
1

2
θfabcĉbĉc

δ ˆ̄ca ¼ θQ ˆ̄ca ¼ −
θ

g
μ−ϵðσÞBa ¼ −

θ

ξg2
μ−2ϵðσÞ∂μĜa

μ

δBa ¼ θQBa ¼ 0; ð15Þ

where the first three transformations are given by the
infinitesimal gauge transformations, as usual, using
β̂aðxÞ ¼ θĉaðxÞ.
It is straightforward to show that the BRST

operatorQ that generates the BRST transformations
in (15) is nilpotent as it should be, i.e., Q2 ¼ 0.
Furthermore, the d dimensional Lagrangian (11) is
indeed BRST invariant, i.e., invariant under trans-
formations (15), which can be shown by direct
calculation.
Although a detailed all-orders investigation is

beyond the scope of the present work, let us briefly
comment on the role of the BRST invariance in the
case of renormalization of the considered gauge
theories, which are nonrenormalizable due to quan-
tum scale invariance. We expect BRST invariance to
be crucial for the consistency of the quantized
theory, just as in ordinary gauge theories, which
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are strictly renormalizable and thus involve only a
finite number of operators in the Lagrangian.
At higher orders, we expect that BRST invariance

will control the structure of possible UV divergen-
ces, and required counterterms are expected to be
BRST invariant as well, even if there will be
infinitely many of these. To understand this, note
that the situation is similar to the general analysis in
the review [16], although our particular case with a
quantum scale symmetry is not covered in this
reference. However, note that in our theory the
dilaton transforms trivially under BRST transforma-
tions, i.e., behaves like a BRST singlet; quantum
scale invariance imposes additional constrains on the
theory and on the structure of its UV-counterterms.
In the broken phase of quantum scale symmetry and
the decoupling limit of the dilaton i.e., hσi → ∞, the
higher dimensional operators vanish (since they are
suppressed by the VEV of the dilaton) and one
recovers a renormalizable theory where traditional
results and BRST constraints of gauge theories
apply. These constraints extend however to the
symmetric phase of the theory since the quantum
scale symmetry is broken only spontaneously. Ulti-
mately, we expect an all-orders Slavnov-Taylor
identity to hold, establishing physical properties
such as unitarity and gauge-parameter independence
of the physical S matrix, cf. [17,18]. The unitarity of
the physical S matrix was also verified [19] in more
general theories where scale symmetry is gauged
(e.g., [14]) and quantum scale invariance is thus
automatic.

(b) A different approach to d ¼ 4 − 2ϵ.—There is a
second approach to a scale invariant regularization

of gauge theories that is somewhat “geometrical.”
First, by analytical continuation to d dimensions, the
covariant derivative changes:

Dμ → D̃μ ¼ ∂μ − igμϵðσÞGa
μTa: ð16Þ

The field strength, regarded as the curvature
tensor of the internal coordinates, is then

F̃μν ¼ F̃a
μνTa ¼ i

gμϵðσÞ ½D̃μ; D̃ν�: ð17Þ

Evaluating the commutator leads to

F̃a
μν ¼ ∂μGa

ν − ∂νGa
μ þ gμϵðσÞfabcGb

μGc
ν

þ ϵμ−1ðσÞ ∂μ
∂σ

ð∂μσGa
ν − ∂νσGa

μÞ; ð18Þ

so F̃ has received an evanescent correction (∝ ϵ).
The Lagrangian LðdÞ

cl in d ¼ 4 − 2ϵ is then

LðdÞ
cl ¼ −

1

4
F̃a
μνF̃a;μν þ iψ̄ iðδij=∂ − igμϵðσÞ=GaTa

ijÞψ j

þ 1

2
ð∂μσÞð∂μσÞ: ð19Þ

Similarly, the combination μϵðσÞGa
μ is the one

which determines the gauge fixing and ghost La-
grangian as well as the BRST transformations.3 The
gauge fixing and ghost Lagrangian is

LðdÞ
GF þ LðdÞ

Ghost ¼ Q
�
−c̄a

�
ξ

2
Ba − ∂

μGa
μ − ϵμ−1ðσÞ ∂μ

∂σ
∂
μσGa

μ

��

¼ ξ

2
BaBa − Ba

∂
μGa

μ þ ∂
μc̄aD̃ac

μ cc − ϵμ−1ðσÞ ∂μ
∂σ

∂
μσ½BaGa

μ þ c̄aD̃ac
μ cc − ∂μc̄aca�

− ϵ2μ−2ðσÞ
�
∂μ

∂σ

�
2

∂
μσ∂μσc̄aca; ð20Þ

where

D̃ac
μ ¼ δac∂μ þ gμϵðσÞfabcGb

μ: ð21Þ

It can be seen that the gauge fixing and the ghost
Lagrangian also acquire purely evanescent corrections

(∝ ϵ), analogously to the kinetic term of the gauge
field, Eq. (18). Consequently, the d dimensional
Lagrangian of the considered SUðNÞ gauge theory is
given by

LðdÞ ¼ LðdÞ
cl þ LðdÞ

GF þ LðdÞ
Ghost: ð22Þ

The d dimensional BRST transformations in this ap-
proach are found to be

3The BRST transformations also involve the combination
μϵðσÞca in an essential way; see later, Eq. (23).
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δψ i ¼ θQψ i ¼ iθgμϵðσÞcaTa
ijψ j

δψ̄ i ¼ θQψ̄ i ¼ −iθgμϵðσÞcaψ̄ jTa
ji

δGa
μ ¼ θQGa

μ ¼ θD̃ac
μ cc þ ϵθμ−1ðσÞ ∂μ

∂σ
∂μσca

¼ θ∂μca þ θgμϵðσÞfabcGb
μcc þ ϵθμ−1ðσÞ ∂μ

∂σ
∂μσca

δca ¼ θQca ¼ −
1

2
θgμϵðσÞfabccbcc

δc̄a ¼ θQc̄a ¼ −θBa

δBa ¼ θQBa ¼ 0; ð23Þ

where the first three BRST transformations in (23) are
again given by the gauge transformation, as usual, using
βaðxÞ ¼ θcaðxÞ. The new, evanescent correction to the
gauge field BRST transformation δGa

μ has its origin in the
dilaton dependent function μðσÞ. In particular, this correc-
tion originates from ∂μU, with U ¼ expðigμϵðσÞβaTaÞ, in
the derivation of δGa

μ. Again, the BRST operator Q,
generating the BRST transformations in (23), is nilpotent,
Q2 ¼ 0. Moreover, while the gauge fixing and ghost
Lagrangian may be written as a Q-exact term, as in
(20), the BRST invariance of LðdÞ

cl in (19) can again be
shown by explicit calculation. Thus, LðdÞ in (22) is BRST
invariant under (23).
The mass dimensions of the fields and parameters in (22)

are

½Ga
μ� ¼ 1− ϵ; ½ψ � ¼ 3

2
− ϵ; ½σ� ¼ 1− ϵ; ½g� ¼ 0;

½ca� ¼ −ϵ; ½c̄a� ¼ 2− ϵ; ½Ba� ¼ 2− ϵ; ½ξ� ¼ 0

ð24Þ

and ½βa� ¼ −ϵ, ½θ� ¼ 0. Compared to the previous ap-
proach, Eq. (12), notice the different dimensions of
ghost/antighost, gauge field and β̂a.

B. Equivalence of the two approaches

The two approaches of (a) and (b) and their correspond-
ing Lagrangians, Eqs. (11) and (22), must be equivalent.
To see this, start with (11), then the gauge coupling
g and the subtraction function μϵðσÞ can be factored out
from the fields Ĝa

μ, ĉa and ˆ̄ca leading to Lagrangian (22).
Conversely, starting from Eq. (22), g and μϵðσÞ can be
absorbed intoGa

μ, ca and c̄a. Then, additional terms coming
from commuting derivatives and the subtraction function
must be taken into account by subtracting them, leading to
Eq. (11). Moreover, the same equivalence holds true for the
BRST transformations in (15) and (23).
For practical calculations, Lagrangian (11) takes a more

convenient form than (22) as it avoids the evanescent
corrections to the gauge kinetic term and to the gauge

fixing and ghost Lagrangians, Eqs. (18) and (20),
respectively.
Further, in approach (a), after the theory was

analytically continued to d ¼ 4 − 2ϵ a second field
redefinition can be applied where the dimensionless
gauge coupling g is “extracted” from the gauge field by
replacing4

Ĝa
μ ¼ gμϵðσÞGa

μ ¼ gḠa
μ: ð25Þ

The mass dimension of the gauge field remains ½Ḡa
μ� ¼ 1.

However, the d dimensional Lagrangian in case (a) then
looks more similar to (1) with respect to the gauge
couplings, which is useful in the presence of mixing
between the gauge fields as in the SM.

C. Abelian theories: QED+dilaton

In (scale invariant) gauge theories, one encounters not
only UV but also IR poles which remains true in our SIR
scheme. We consider here the simpler case of Abelian
gauge theories5 to illustrate how both UV and IR poles are
handled in this scheme in applications (Sec. III). Consider
then quantum electrodynamics in d ¼ 4 − 2ϵ dimensions,
analytically continued in a scale invariant way. This means
the action is “upgraded” to include the additional dilaton
field, as already discussed. In this Abelian case, the
Faddeev-Popov ghosts completely decouple and are not
shown. Using approach (a) discussed earlier, the
Lagrangian becomes6

LðdÞ ¼ −
1

4
μ−2ϵðσÞFμνFμν þ iψ̄fð=∂ − ieQf=AÞψf

þ 1

2
ð∂μσÞð∂μσÞ − yfμϵðσÞσψ̄fψf

−
1

2ξ
μ−2ϵðσÞð∂μAμÞ2: ð26Þ

The Lagrangian is scale invariant in d dimensions. Since
scale invariance is broken spontaneously, this does not
affect the ultraviolet behavior of the theory. In principle,
one can work either in the symmetric phase or in the
spontaneously broken phase obtained by an expansion
about the VEVof the dilaton but keeping all terms in such
an expansion. Then the counterterms and thus the quantum
corrections are not affected.

4In the next section we use approach (a) in terms of Ḡa
μ but the

“overbar” is not displayed, for simplicity.
5The case of IR divergences in the non-Abelian case is

significantly more difficult.
6Note that we include an additional tree-level dilaton Yukawa

interaction term. This term is gauge and scale invariant, but it was
not considered in the discussion above in Sec. II A. Furthermore,
one can in principle also have a λσ4 coupling, which is, however,
not considered here.
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For practical purposes and for Feynman diagrams derivation, LðdÞ is expanded first in powers of ϵ with every order in ϵ
(and loop order) being manifestly scale invariant. Subsequently, one can express the dilaton in terms of its fluctuations about
its nonzero VEV hσi≡ w, σ ¼ wþD and expand in powers of η ¼ D=w [11]; scale invariance is maintained by including
all terms of this second expansion. Accordingly, for the function μðσÞ ¼ zσ

1
1−ϵ in LðdÞ, one has

μkϵðσÞ ¼ μkϵ0

�
1þ ϵk

�
η−

1

2
η2 þ 1

3
η3 −

1

4
η4 þOðη5Þ

�
þ ϵ2k

�
η−

1− k
2

η2 þ 2− 3k
6

η3 −
6− 11k

24
η4 þOðη5Þ

�
þOðϵ3Þ

�
;

ð27Þ

for integer k. With this, the Lagrangian becomes7

LðdÞ ¼ −
1

4
μ−2ϵ0 FμνFμν þ iψ̄fð=∂ − ieQf=AÞψf þ

1

2
ð∂μDÞð∂μDÞ − μϵ0yfwψ̄fψf − μϵ0½1þ ϵþ ϵ2 þOðϵ3Þ�yfDψ̄fψf

−
1

2ξ
μ−2ϵ0 ð∂μAμÞ2 − μϵ0½ϵð1þ 2ϵÞ þOðϵ3Þ� yf

2w
D2ψ̄fψf þ μϵ0½ϵð1þ ϵÞ þOðϵ3Þ� yf

6w2
D3ψ̄fψf

þ μ−2ϵ0 ½ϵð1þ ϵÞ þOðϵ3Þ�D
w

�
1

2
FμνFμν þ 1

ξ
ð∂μAμÞ2

�
þ � � � : ð28Þ

While every loop order (encoded in powers of ϵ) keeps
manifest scale invariance, any truncation of the subsequent
expansion in powers of η breaks this symmetry.
Nevertheless, the Lagrangian as shown in (28) is useful
for deriving the Feynman rules that formally keep all terms
in the expansion about w. These are presented in
Appendix A and used in Sec. III.
For completeness, the renormalization of (26) at one-

loop using (28) is shown in Appendix B. Notice that, unlike
in previous literature, σ undergoes a wave function
renormalization already at one-loop, due to Yukawa
interactions.

III. APPLICATION: MUON PRODUCTION AT
ONE-LOOP

In this section we use the formalism of the previous
section for the Abelian case and discuss the effect of both
UV and IR poles in the SIR scheme. We illustrate this for
the muon production at the one-loop level based on
Lagrangian (26), for three fermion flavors, i.e.,
f ∈ fe−; μ−; τ−g, Nf ¼ 3 and Qf ¼ −1.8

A. General considerations

The scattering process e−eþ → μ−μþ is computed in the
MS scheme and Feynman gauge ξ ¼ 1. We work in the
approximation m2

f ≪ s, where s is the center-of-mass

energy, i.e., the fermions are essentially massless.9 This
approximation displays a more interesting IR-divergence
structure than the massive case as it contains not only a
simple pole but also a second order pole in ϵIR. Hence, this
leads to both new finite and also new divergent quantum
corrections induced by evanescent interactions; the latter
emerge when a term ∼ϵ “meets” a second order pole in ϵIR.
For simplicity, only the one-loop muon vertex correc-

tions contributing to the above scattering process are
considered, and thus only final state real emission needs
to be taken into account in order to cancel the IR
divergences at the level of cross sections. Despite this
simplification, the result admits nonetheless the same
general structure as the full one-loop result, meaning that
it contains a simple and a second order pole in ϵIR as well as
new finite and divergent quantum corrections; see below.
Consequently, for the present conceptual study, it is
sufficient to restrict oneself to one-loop muon vertex
corrections. All necessary Feynman diagrams, contributing
to virtual and real muon corrections up to the one-loop
level, are found in Appendix C.

B. The cross section at one-loop

The scattering amplitude and the cross section were
calculated in the above setup by using standard methods
andMathematica [20]. In particular, all Feynman diagrams
have been generated using FeynArts [21], with FeynArts model
files generated by FeynRules [22,23]. The generated7Note that the counterterm Lagrangian (see Appendix B) must

be expanded accordingly.
8In principle, the corrections that we find can be used to set

bounds on the scale of new physics represented by hσi, provided
one considered a full scale invariant SM (see Refs. [6,10] for the
Lagrangian and Veff ).

9Practically, this scenario is realized by setting mf ¼ 0 in
the free Lagrangian, i.e., in (A1), but keeping yf and w nonzero
in the interaction Lagrangian, i.e., in (A2) and (A3), despite
mf ¼ μϵ0yfw.
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Feynman diagrams and their amplitudes have been com-
puted using FeynCalc [24–26] and Package-X [27], connected
to FeynCalc using FeynHelpers [28].
The results for the considered one-loop contributions to

the cross section as well as for the 2 → 3 cross sections
have the general structure

σk ¼ σ
1=ϵ2IR
k þ σ1=ϵIRk þ ΔIRσ

1=ϵIR
k þ σfink

þ ΔUVσ
fin
k þ ΔIRσ

fin
k þOðϵÞ; ð29Þ

where ΔUV and ΔIR denote new quantum corrections
arising from evanescent interactions canceling UV and
IR divergences,10 respectively.
The tree-level cross section (in four dimensions) is

σtreeðee → μμÞ ¼ e4

12πs
þ y2ey2μ
16πs

: ð30Þ

The one-loop contribution to the cross section, containing
only muon vertex corrections, is given in (D2)–(D7) in the
MS scheme and having used decomposition (29).
The tree-level cross sections of muon production with

real photon and real dilaton emission, i.e., for e−eþ →
μ−μþγ and e−eþ → μ−μþD, respectively, arranged as in
(29), are provided in Appendix D as well.
The total cross section, considering virtual and real

corrections only to the muon vertex, has a form given in
(D20). The corresponding one-loop contribution to this
total cross section in the MS scheme may be written as

σtotal;1Lμðee → μμÞ ¼ σoldtotal;1Lμðee → μμÞ
þ ΔUVσtotal;1Lμðee → μμÞ ð31Þ

with the standard11 one-loop contribution

σoldtotal;1Lμðee → μμÞ

¼ 1

512π3s
ð8e6 − 4e4y2μ þ 34e2y2ey2μ − 17y2ey4μÞ

−
1

256π3s
½6e2y2ey2μ − 3y2ey4μ� log

�
s
μ20

�
ð32Þ

and the new, finite quantum correction that emerged from
UV divergences,

ΔUVσtotal;1Lμðee → μμÞ ¼ −
1

128π3s
y2ey2μðy2e þ 4y2μ þ y2τÞ;

ð33Þ

with s being the center-of-mass energy. Thus, the consid-
ered one-loop contribution to cross section (31), that
contains virtual and real corrections, is UV and IR finite,
as expected. Therefore, the IR poles do cancel in the SIR
scheme. We can summarize the main results of this section
as follows:

(i) The one-loop contribution (31) contains the regular
contribution (32) that would also be obtained in the
usual massless QED with an additional scalar field
coupling to the fermions, and an additional con-
tribution (33) which is a new quantum correction
(from the UV sector) due to evanescent inter-
actions.

(ii) The one-loop contribution (31) to the cross section
of e−eþ → μ−μþ scattering is IR finite after sum-
ming over the contributing final state real emis-
sions. Thus, all IR divergences, even the new ones,
cf. (D4), emerging as a result of evanescent
interactions (due to quantum scale invariance),
cancel after summing over the virtual and real
corrections to the cross section. This is an impor-
tant consistency check of theories with quantum
scale invariance.

(iii) All new, finite quantum corrections to the cross
section, arising from evanescent interactions (∝ ϵn)
that cancel IR poles, see Eq. (D7), cancel as well.
Therefore, quantum corrections due to the UV
poles given in Eq. (D6), are the only new finite
contributions to the cross section that remain, as
shown in (33). The essential reason for this can-
cellation is that the standard IR poles cancel
between real and virtual diagrams of the same
orders in all coupling constants. The new IR
quantum corrections then arise from the same
evanescent interactions ∝ ϵn in both real and virtual
contributions hitting 1=ϵm IR poles; hence they
cancel simultaneously with the IR poles.

Results (ii) and (iii) are the main results of this
section.

(iv) The remaining new, finite quantum correction to the
cross section ΔUVσtotal;1Lμ, given in (33), is an effect
from the Yukawa sector. Hence, the gauge sector
does not give rise to new quantum corrections at
one-loop, but these are expected at the two-
loop level.

(v) Note that the new quantum correction (33) is sup-
pressed by Yukawa couplings to power 6, i.e., it is
suppressed by w6, where w is the dilaton VEV
(using yf ¼ mf=w).

(vi) Since μ0 ¼ μðhσiÞ≡ μðwÞ ¼ zw
1

1−ϵ and supposing
that the VEV of the dilaton hσi≡ w scales in the
same way as

ffiffiffi
s

p
, it can be seen that the tree-level

cross section (30) and the one-loop contribution (31)
scale as ∼1=s, as expected on dimensional argu-
ments for the cross section.

10The IR divergences are regularized dimensionally, not with a
small mass as IR regulator.

11This is the usual result found without imposing scale
invariance at quantum level (QED with dilaton Yukawa couplings
but employing DR instead of SIR).
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IV. CONCLUSIONS

We studied scale invariance at the quantum level in (scale
invariant) gauge theories that have both UV and IR
divergences. The interest in quantum (global) scale invari-
ant theories is that they can naturally preserve an initial,
classical hierarchy of scales generated by field VEVs; this
hierarchy could be arranged e.g., by one initial classical
fine-tuning of dimensionless coupling constants. More
generally, quantum scale symmetry becomes necessary
in gauge theories of scale invariance that include
Einstein gravity. Quantum scale invariance is achieved
by implementing a scale invariant regularization and
renormalization, in which the traditional subtraction scale
is generated (dynamically) by the VEV of the dilaton, the
Goldstone of the (global) scale symmetry. The VEVof this
field can be regarded, in a sense, as the scale of new
physics. In the limit of a large dilaton VEV, when this field
decouples, the quantum scale invariant theory recovers the
traditional quantum theory obtained without respecting
scale invariance at the quantum level (anomalous breaking).
Above this scale, however, the two quantum theories can
differ in their UV completion, UV spectrum and quantum
symmetry.
We first checked the BRST invariance of quantum scale

invariant theories. This can be done in two apparently
different formulations of scale invariant regularizations
(SIR); we showed that the two approaches are equivalent
and that the BRST symmetry is maintained.
Further, gauge theories have not only UV poles but also

IR ones and one should check their fate in quantum scale
invariant theories using the SIR scheme.We illustrated their
analysis in an Abelian gauge theory (quantum electrody-
namics extended by a dilaton field). While the UV poles do
bring new quantum corrections (counterterms), finite or
divergent, beyond those of the traditional approach, and
which we computed, it was shown that the IR poles do not
bring any new physics. The infrared quantum corrections,
both finite and divergent, cancel out similar to the way the
IR poles themselves cancel in the traditional approach. The
cancellation is at the cross section level, after summing over
the virtual and real corrections. Therefore, the evanescent
interactions due to analytical continuation to d dimensions
(SIR approach) do not affect the IR physics. This was

illustrated for the muon production cross section e−eþ →
μ−μþ for the aforementioned Abelian theory. This result is
a strong consistency check of quantum scale invariance in
gauge theories.
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APPENDIX A: FEYNMAN RULES

The Feynman rules for Lagrangian (28) are shown
below, for the propagators:

ðA1Þ

vertices:

ðA2Þ

and evanescent vertices:
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ðA3Þ

APPENDIX B: RENORMALIZATION OF THE ABELIAN CASE

The quantum scale invariant Abelian case (QEDþ dilaton) of (26) is renormalized as follows:

L → LðdÞ
0 ¼ LðdÞ

ren þ LðdÞ
ct

A → A0 ¼
ffiffiffiffiffiffi
ZA

p
A

ψf → ψf;0 ¼
ffiffiffiffiffiffiffiffi
Zψf

q
ψf

σ → σ0 ¼
ffiffiffiffiffiffi
Zσ

p
σ

e → e0 ¼ μϵð
ffiffiffiffiffiffi
Zσ

p
σÞZee

yf → yf;0 ¼ μϵð
ffiffiffiffiffiffi
Zσ

p
σÞZyfyf

λ → λ0 ¼ μ2ϵð
ffiffiffiffiffiffi
Zσ

p
σÞZλλ

ξ → ξ0 ¼ Zξξ; ðB1Þ
where Zξ ¼ ZA due to the Ward identity. Despite setting λ≡ 0 at tree level, as done in Eq. (26), the associated counterterm
δλ must be taken into account for the complete one-loop renormalization of the considered model.12

The one-loop counterterms13 of (26) in the MS scheme are generated by the poles below:

δZψf
¼ −

1

16π2

�
e2 þ yf

2

�
1

ϵ
; δZyf ¼

1

16π2

�
3

2
y2f þ

X
l

y2l − 3e2
�
1

ϵ
;

δZA ¼ −
1

16π2
4Nfe2

3

1

ϵ
; δZe ¼ −

1

2
δZA ¼ 1

16π2
2Nfe2

3

1

ϵ
;

δZσ ¼ −
1

16π2
2
X
l

y2l
1

ϵ
; δλ ¼ −

1

16π2
24
X
l

y4l
1

ϵ
; ðB2Þ

where f; l ∈ fe−; μ−; τ−g.

12Note that δλ does not contribute to the one-loop muon production considered in Sec. III.
13These counterterms are scale invariant.
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Note the nonvanishing wave function renormalization
δZσ. In contrast to the two-scalar model, discussed in
[5,7,9,10,13,29], where the scalar field wave function
renormalization vanishes at the one-loop level, here the
renormalization of σ in μðσÞ needs to be taken into account
as it can give rise to new finite quantum corrections of the
form ϵδZσ.

14 Indeed, such a correction contributes to the
new finite quantum correction of the one-loop cross section
given in (33). In particular,

ΔUVσtotal;1Lμðee → μμÞ

¼ −
3

128π3s
y2ey4μ þ σYuktree ðee → μμÞϵδZσ

¼ −
3

128π3s
y2ey4μ þ

y2ey2μ
16πs

ϵδZσ

¼ −
1

128π3s
y2ey2μðy2e þ 4y2μ þ y2τÞ; ðB3Þ

with σYuktree ðee → μμÞ ¼ y2ey2μ=ð16πsÞ being the tree-level
contribution of the Yukawa sector.

APPENDIX C: FEYNMAN DIAGRAMS FOR
MUON PRODUCTION

In the theory considered in (28), there are two Feynman
diagrams contributing to the scattering process e−eþ →
μ−μþ at tree level:

ðC1Þ

At the one-loop level, there are ten Feynman diagrams
containing a one-loop muon vertex correction, four of them
with a photon mediator as illustrated in (C2),

ðC2Þ

and the other six with a dilaton mediator as shown below
in (C3):

ðC3Þ

For the scattering process e−eþ → μ−μþγ there are six
tree-level Feynman diagrams of which three are photon
mediated as in (C4):

ðC4Þ

and the remaining three are dilaton mediated, as illus-
trated in (C5):

ðC5Þ

Additionally, for the scattering process e−eþ → μ−μþD
there are six tree-level Feynman diagrams. Three of them
are photon mediated as shown in (C6),

14This is seen after expanding the Lagrangian with respect to ϵ,
w and ℏ for a given loop order.
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ðC6Þ

whereas the remaining three of them are dilaton mediated,
shown below in (C7):

ðC7Þ

APPENDIX D: MUON PRODUCTION: CROSS
SECTIONS

In the following, explicit results for the cross section of
muon production are provided at the one-loop level
including virtual and real corrections to the muon ver-
tex only.

(i) Tree level.—The tree-level cross section, in four
dimensions, is provided by

σtreeðee → μμÞ ¼ e4

12πs
þ y2ey2μ
16πs

: ðD1Þ

(ii) One-loop.—Using (29), the one-loop cross section
for e−eþ → μ−μþ, containing only one-loop muon
vertex corrections, in the MS scheme, is the sum of
the following contributions:

σ
1=ϵ2IR
1L;μ ðee → μμÞ ¼ −

μ2ϵ0
192π3s

ð4e6 þ 3e2y2ey2μÞ
1

ϵ2IR

ðD2Þ

σ1=ϵIR1L;μ ðee → μμÞ ¼ −
μ2ϵ0

2304π3s

�
104e6 − 12e4y2μ þ 126e2y2ey2μ − 9y2ey4μ − 24ð4e6 þ 3e2y2ey2μÞ log

�
s
μ20

��
1

ϵIR
ðD3Þ

ΔIRσ
1=ϵIR
1L;μ ðee → μμÞ ¼ −

μ2ϵ0
16π3s

e2y2ey2μ
1

ϵIR
ðD4Þ

σfin1L;μðee → μμÞ ¼ μ2ϵ0
3456π3s

½ð60π2 − 464Þe6 þ 30e4y2μ þ 9ð5π2 − 48Þe2y2ey2μ − 27y2ey4μ�

þ μ2ϵ0
2304π3s

½208e6 − 24e4y2μ þ 198e2y2ey2μ þ 9y2ey4μ� log
�
s
μ20

�
−

μ2ϵ0
96π3s

½4e6 þ 3e2y2ey2μ� log2
�
s
μ20

�
ðD5Þ

ΔUVσ
fin
1L;μðee → μμÞ ¼ −

μ2ϵ0
128π3s

y2ey2μðy2e þ 4y2μ þ y2τÞ ðD6Þ

ΔIRσ
fin
1L;μðee → μμÞ ¼ μ2ϵ0

384π3s
½4e4y2μ − 84e2y2ey2μ þ 9y2ey4μ� þ

μ2ϵ0
8π3s

e2y2ey2μ log

�
s
μ20

�
−

5μ2ϵ0
32π3s

e2y2ey2μ: ðD7Þ

(iii) Real photon emission.—The contributions to the tree-level cross section for e−eþ → μ−μþγ, arranged as in (29), are

σ
1=ϵ2IR
tree ðee → μμγÞ ¼ μ2ϵ0

192π3s
ð4e6 þ 3e2y2ey2μÞ

1

ϵ2IR
ðD8Þ

σ1=ϵIRtree ðee → μμγÞ ¼ μ2ϵ0
1152π3s

�
52e6 þ 63e2y2ey2μ − 12ð4e6 þ 3e2y2ey2μÞ log

�
s
μ20

��
1

ϵIR
ðD9Þ
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ΔIRσ
1=ϵIR
tree ðee → μμγÞ ¼ μ2ϵ0

16π3s
e2y2ey2μ

1

ϵIR
ðD10Þ

σfintreeðee → μμγÞ ¼ −
μ2ϵ0

6912π3s
½4ð30π2 − 259Þe6 þ 9ð10π2 − 147Þe2y2ey2μ�

−
μ2ϵ0

576π3s
½52e6 þ 63e2y2ey2μ� log

�
s
μ20

�
þ μ2ϵ0
96π3s

½4e6 þ 3e2y2ey2μ�log2
�
s
μ20

�
ðD11Þ

ΔUVσ
fin
treeðee → μμγÞ ¼ 0 ðD12Þ

ΔIRσ
fin
treeðee→ μμγÞ ¼ 7μ2ϵ0

32π3s
e2y2ey2μ −

μ2ϵ0
8π3s

e2y2ey2μ log

�
s
μ20

�

þ 5μ2ϵ0
32π3s

e2y2ey2μ: ðD13Þ

(iv) Real dilaton emission.—Similarly, the tree-level
cross section for e−eþ → μ−μþD is the sum of
the following terms:

σ
1=ϵ2IR
tree ðee → μμDÞ ¼ 0 ðD14Þ

σ1=ϵIRtree ðee → μμDÞ ¼ −
μ2ϵ0

768π3s
ð4e4y2μ þ 3y2ey4μÞ

1

ϵIR

ðD15Þ

ΔIRσ
1=ϵIR
tree ðee → μμDÞ ¼ 0 ðD16Þ

σfintreeðee → μμDÞ

¼ −
μ2ϵ0

4608π3s
ð76e4y2μ þ 117y2ey4μÞ

þ μ2ϵ0
384π3s

½4e4y2μ þ 3y2ey4μ� log
�
s
μ20

�
ðD17Þ

ΔUVσ
fin
treeðee → μμDÞ ¼ 0 ðD18Þ

ΔIRσ
fin
treeðee → μμDÞ ¼ −

μ2ϵ0
384π3s

ð4e4y2μ þ 9y2ey4μÞ
ðD19Þ

(v) Total cross section.—Finally, the total cross section,
considering only virtual and real corrections to the
muon vertex, is given by

σtotal;μðee → μμÞ ¼ σtreeðee → μμÞ þ σ1L;μðee → μμÞ þ σtreeðee → μμγÞ þ σtreeðee → μμDÞ þOðα4i Þ
¼ σtreeðee → μμÞ þ σtotal;1Lμðee → μμÞ þOðα4i Þ; ðD20Þ

where αi are the fine structure constants for e and yi. The full tree-level cross section is to be found in (D1), whereas the
considered one-loop contribution in the MS-scheme and in four dimensions is given by

σtotal;1Lμðee → μμÞ ¼ σoldtotal;1Lμðee → μμÞ þ ΔUVσtotal;1Lμðee → μμÞ ðD21Þ

with the standard one-loop contribution

σoldtotal;1Lμðee → μμÞ ¼ 1

512π3s
ð8e6 − 4e4y2μ þ 34e2y2ey2μ − 17y2ey4μÞ −

1

256π3s
½6e2y2ey2μ − 3y2ey4μ� log

�
s
μ20

�
ðD22Þ

and the new finite quantum correction that emerged from UV divergences, quoted in Eq. (33):

ΔUVσtotal;1Lμðee → μμÞ ¼ −
1

128π3s
y2ey2μðy2e þ 4y2μ þ y2τÞ: ðD23Þ

WEIßWANGE, GHILENCEA, and STÖCKINGER PHYS. REV. D 107, 085008 (2023)

085008-12



[1] W. A. Bardeen, On naturalness in the Standard Model,
Report No. FERMILAB-CONF-95-391-T, 1995.

[2] F. Englert, C. Truffin, and R. Gastmans, Conformal invari-
ance in quantum gravity, Nucl. Phys. B117, 407 (1976).

[3] M. Shaposhnikov and D. Zenhausern, Quantum scale
invariance, cosmological constant and hierarchy problem,
Phys. Lett. B 671, 162 (2009).

[4] R. Armillis, A. Monin, and M. Shaposhnikov, Spontane-
ously broken conformal symmetry: Dealing with the trace
anomaly, J. High Energy Phys. 10 (2013) 030.

[5] D. M. Ghilencea, Manifestly scale-invariant regularization
and quantum effective operators, Phys. Rev. D 93, 105006
(2016).

[6] D. M. Ghilencea, Z. Lalak, and P. Olszewski, Standard
Model with spontaneously broken quantum scale invari-
ance, Phys. Rev. D 96, 055034 (2017).

[7] Z. Lalak and P. Olszewski, Vanishing trace anomaly in flat
spacetime, Phys. Rev. D 98, 085001 (2018).

[8] S. Mooij, M. Shaposhnikov, and T. Voumard, Hidden and
explicit quantum scale invariance, Phys. Rev. D 99, 085013
(2019).

[9] D. M. Ghilencea, Z. Lalak, and P. Olszewski, Two-loop
scale-invariant scalar potential and quantum effective oper-
ators, Eur. Phys. J. C 76, 656 (2016).

[10] M. Weißwange, Scale invariant quantum field theories,
Master thesis, Technische Universität Dresden, 2021.

[11] D. M. Ghilencea, Quantum implications of a scale invariant
regularization, Phys. Rev. D 97, 075015 (2018).

[12] F. Gretsch and A. Monin, Perturbative conformal symmetry
and dilaton, Phys. Rev. D 92, 045036 (2015).

[13] T. Kugo, Necessity and insufficiency of scale invariance
for solving cosmological constant problem, Proc. Sci.
CORFU2019 (2020) 071 [arXiv:2004.01868].

[14] D. M. Ghilencea, Spontaneous breaking of Weyl quadratic
gravity to Einstein action and Higgs potential, J. High
Energy Phys. 03 (2019) 049; Standard Model in Weyl
conformal geometry, Eur. Phys. J. C 82, 23 (2022).

[15] C. Tamarit, Running couplings with a vanishing scale
anomaly, J. High Energy Phys. 12 (2013) 098.

[16] G. Barnich, F. Brandt, and M. Henneaux, Local
BRST cohomology in gauge theories, Phys. Rep. 338,
439 (2000).

[17] T. Kugo and I. Ojima, Manifestly covariant canonical
formulation of Yang-Mills field theories: Physical state
subsidiary conditions and physical S matrix unitarity, Phys.
Lett. 73B, 459 (1978).

[18] T. Kugo and I. Ojima, Local covariant operator formalism of
non-Abelian gauge theories and quark confinement prob-
lem, Prog. Theor. Phys. Suppl. 66, 1 (1979).

[19] I. Oda and P. Saake, BRST formalism of Weyl conformal
gravity, Phys. Rev. D 106, 106007 (2022).

[20] S. Wolfram, Mathematica by Wolfram, https://www
.wolfram.com.

[21] T. Hahn, Generating Feynman diagrams and amplitudes
with FeynArts 3, Comput. Phys. Commun. 140, 418
(2001).

[22] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B.
Fuks, FeynRules 2.0—A complete toolbox for tree-level
phenomenology, Comput. Phys. Commun. 185, 2250
(2014).

[23] N. D. Christensen and C. Duhr, FeynRules—Feynman rules
made easy, Comput. Phys. Commun. 180, 1614 (2009).

[24] R. Mertig, M. Bohm, and A. Denner, FEYN CALC:
Computer algebraic calculation of Feynman amplitudes,
Comput. Phys. Commun. 64, 345 (1991).

[25] V. Shtabovenko, R. Mertig, and F. Orellana, FeynCalc 9.3:
New features and improvements, Comput. Phys. Commun.
256, 107478 (2020).

[26] V. Shtabovenko, R. Mertig, and F. Orellana, New develop-
ments in FeynCalc 9.0, Comput. Phys. Commun. 207, 432
(2016).

[27] H. H. Patel, Package-X: A Mathematica package for the
analytic calculation of one-loop integrals, Comput. Phys.
Commun. 197, 276 (2015).

[28] V. Shtabovenko, FeynHelpers: Connecting FeynCalc to FIRE

and Package-X, Comput. Phys. Commun. 218, 48 (2017).
[29] P. Olszewski, Scale symmetry without the anomaly, Proc.

Sci. CORFU2016 (2017) 065.

QUANTUM SCALE INVARIANCE IN GAUGE THEORIES AND … PHYS. REV. D 107, 085008 (2023)

085008-13

https://doi.org/10.1016/0550-3213(76)90406-5
https://doi.org/10.1016/j.physletb.2008.11.041
https://doi.org/10.1007/JHEP10(2013)030
https://doi.org/10.1103/PhysRevD.93.105006
https://doi.org/10.1103/PhysRevD.93.105006
https://doi.org/10.1103/PhysRevD.96.055034
https://doi.org/10.1103/PhysRevD.98.085001
https://doi.org/10.1103/PhysRevD.99.085013
https://doi.org/10.1103/PhysRevD.99.085013
https://doi.org/10.1140/epjc/s10052-016-4475-0
https://doi.org/10.1103/PhysRevD.97.075015
https://doi.org/10.1103/PhysRevD.92.045036
https://doi.org/10.22323/1.376.0071
https://doi.org/10.22323/1.376.0071
https://arXiv.org/abs/2004.01868
https://doi.org/10.1007/JHEP03(2019)049
https://doi.org/10.1007/JHEP03(2019)049
https://doi.org/10.1140/epjc/s10052-021-09887-y
https://doi.org/10.1007/JHEP12(2013)098
https://doi.org/10.1016/S0370-1573(00)00049-1
https://doi.org/10.1016/S0370-1573(00)00049-1
https://doi.org/10.1016/0370-2693(78)90765-7
https://doi.org/10.1016/0370-2693(78)90765-7
https://doi.org/10.1143/PTPS.66.1
https://doi.org/10.1103/PhysRevD.106.106007
https://www.wolfram.com
https://www.wolfram.com
https://www.wolfram.com
https://doi.org/10.1016/S0010-4655(01)00290-9
https://doi.org/10.1016/S0010-4655(01)00290-9
https://doi.org/10.1016/j.cpc.2014.04.012
https://doi.org/10.1016/j.cpc.2014.04.012
https://doi.org/10.1016/j.cpc.2009.02.018
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2015.08.017
https://doi.org/10.1016/j.cpc.2015.08.017
https://doi.org/10.1016/j.cpc.2017.04.014
https://doi.org/10.22323/1.292.0065
https://doi.org/10.22323/1.292.0065

