
Dyonic matter equations, exact point-source solutions,
and charged black holes in generalized Born-Infeld theory

Yisong Yang *

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA

(Received 26 September 2022; accepted 6 March 2023; published 7 April 2023)

We derive the equations of motion governing static dyonic matters, described in terms of two real scalar
fields, in nonlinear electrodynamics of the Born-Infeld theory type. We then obtain exact finite-energy
solutions of these equations in the quadratic and logarithmic nonlinearity cases subject to dyonic point-
charge sources and construct dyonically charged black holes with relegated curvature singularities. In the
case of quadratic nonlinearity, which is the core model of this work, we show that dyonic solutions enable
us to restore electromagnetic symmetry, which is known to be broken in nondyonic situations by exclusion
of monopoles. We further demonstrate that in the context of k-essence cosmology the nonlinear
electrodynamics models possess their own distinctive signatures in light of the underlying equations of
state of the cosmic fluids they represent. In this context, the quadratic and logarithmic models are shown to
resolve a density-pressure inconsistency issue exhibited by the original Born-Infeld model k-essence action
function as well as by all of its fractional-powered extensions. Moreover, it is shown that the quadratic
model is uniquely positioned to give rise to a radiation-dominated era in the early universe among all the
polynomial models and other examples considered.

DOI: 10.1103/PhysRevD.107.085007

I. INTRODUCTION

It is well known that the motivation of Born and Infeld
[1–4] for the introduction of their nonlinear electromag-
netic field theory is to overcome the energy divergence
problem associated with a point charge source in the
original Maxwell theory, in order to model the electron
as a point charge. In its full formalism [4], the Born-Infeld
theory contains two related models, one based on a
consideration of the action principle of special relativity,
leading to the Lagrangian action density function

L ¼ b2
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

b2
ðE2 − B2Þ

r !
; ð1:1Þ

where E and B are electric and magnetic fields, respec-
tively, and b > 0 a coupling parameter, and the other on
an invariance principle consideration, giving rise to the
Lagrangian action density function,

L ¼ b2
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

b2
ðE2 −B2Þ − 1

b4
ðE · BÞ2

r !
; ð1:2Þ

which contains a higher-order mixed interaction term of the
electric and magnetic fields. These models are sometimes

referred to as the first and second Born-Infeld models,
respectively. The static equations of motion of (1.1)
accommodate finite-energy solutions representing either
an electric or magnetic point charge, or monopole [5–9]
as is commonly known, but not a dyon [10], a finite-
energy solution representing a point source carrying both
electric and magnetic charges [11–15]. In other words,
in the sense of supporting a finite-energy point charge,
the Born-Infeld model (1.1) exhibits an electromagnetic
symmetry since both electric and magnetic point charges
are permitted by (1.1). On the other hand, although the
notion of monopoles is conceptually important and
fruitful in field theory physics [7,9,16,17], monopoles
themselves have never been observed in nature or
laboratory in isolation, except for some of their simulated
condensed-matter-system realizations [18–20]. Inspired
by the extensive applications of the idea of the Born-
Infeld theory in recent development, ranging from par-
ticle physics [21], superstring theory [22], and modified
gravity theories [23], it would be interesting to pursue
the idea of the Born-Infeld theory to come up with a
nonlinear electrodynamics theory that would exclude
monopoles but only accommodate electric point charges.
In [10], such a goal is achieved for the general polynomial
model of the form

L¼pnðsÞ; pnðsÞ¼ sþ
Xn
m¼2

amsm; s¼1

2
ðE2−B2Þ; ð1:3Þ
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and it is shown that the model accommodates finite-
energy electric point charges but not monopoles for
any n ≥ 2. This phenomenon is specifically referred to
as electromagnetic asymmetry [10] associated with the
model (1.3). The model (1.3) is of broad interest and
importance because it may be regarded as to offer the
simplest nonlinearity function for the electrodynamics
theory and unlike the model (1.1) no finite-range trunca-
tion is imposed on s. Moreover, by the Stone-Weierstrass
density theorem [24,25], any continuous function over a
compact interval may uniformly be approximated by
polynomials so that polynomial type nonlinearities are
considered more elementary, although we know that in
the theory of electromagnetism the range of s is not
compact. Subsequently, it is of interest to know whether
electromagnetic symmetry may be restored in polynomial
models for dyonic point charges. Since dyons are
excluded from (1.1) but accommodated in (1.2) as shown
in [10,26], we see that the adequate question to ask is
whether dyons are supported in the polynomial model,

L ¼ pnðsÞ; pnðsÞ ¼ sþ
Xn
m¼2

amsm;

s ¼ 1

2
ðE2 −B2Þ þ κ2

2
ðE · BÞ2; ð1:4Þ

containing a higher-order mixed interaction term
spelled out in the second model of Born-Infeld based
on the invariance principle given in (1.2), where κ is a
free parameter which may be set to zero to recover the
model (1.3) as its limiting situation. A main result of this
work is to confirm this inquiry by showing that, in the
quadratic situation with n ¼ 2, the model (1.4) accom-
modates finite-energy dyons if and only if κ > 0. Thus a
broken electromagnetic symmetry may be restored at
the dyonic theory level when both electricity and magnet-
ism are present. Furthermore, an important application
of finite-energy electromagnetism is to systematically
obtain [10,26] charged black holes with relegated or
sometimes removed singularities at the centers of charge
sources as demonstrated earlier in the contexts of the
Bardeen [27,28] and Hayward [29–31] magnetically
charged black holes, respectively. The interest and
importance of dyons explored thus prompt us to carry
out a systematic derivation of the static dyonic matter
equations in the generalized Born-Infeld theory in terms
of a pair of electric and magnetic scalar potentials.
Although these equations in a general setup are rather
complicated, for some interesting specific cases we are
able to obtain their exact solutions subject to point-charge
sources in explicit forms. These include the classical
Born-Infeld model and the exponential model considered
in [26]. In this work, we obtain such dyonic solutions for
the quadratic and logarithmic models as well. It will also
be shown that these new solutions give rise to dyonically

charged black holes with relegated or ameliorated curvature
singularities as in [26]. That is, they give rise to electrically
and magnetic charged black holes with reduced curvature
singularities. The dyonic solutions of the quadratic model
are of particular interest because the model does not allow
finite-energy monopole solutions and thus exhibits electro-
magnetic asymmetry as described earlier and dyonic sol-
utions with κ > 0 serve to restore electromagnetic symmetry.
Moreover, we will see that, in the context of k-essence
cosmology, various generalized Born-Infeld models may
further be differentiated with refined cosmic fluid character-
istics and dynamics. A notable feature worth mentioning
here is that, in this context, there is a density-pressure
inconsistency issue associated with the classical Born-Infeld
action function in that, at the big-bang moment, the
k-essence fluid density is infinite but the pressure remains
finite. This property clearly violates the general consensus
that the early universe is a radiation-dominated era, for
example. We will show that both the quadratic and loga-
rithmic models resolve such an inconsistency issue so that
the fluid density and pressure both become infinite at the big-
bang moment and that the equation of state of the quadratic
model also gives rise to a radiation-dominated era in the
early universe correctly, and distinctively.
In Secs. II and III, we schematically derive the dyonic

matter equations for the generalized Born-Infeld electro-
dynamics and present some existence and nonexistence
results. In Secs. IV and V, we construct solutions to the
dyonic matter equations for the quadratic and logarithmic
models, respectively, and show how the coupling parameter
κ serves the role to switch on and off the finiteness of
energy of the dyonic solutions in the models. In Sec. VI,
we construct charged black holes with relegated curvature
singularities in the quadratic and logarithmic models and
explain that in these models electromagnetism contributes
to black hole thermodynamics. In Sec. VII, we characterize
the nonlinear dynamics models considered in the context
of k-essence cosmology. In particular, we show that the
quadratic model demonstrates a unique signature that it
gives rise to a radiation-dominated era in the early universe
in contrast against all other models considered. In Sec. VIII,
we draw conclusions.

II. GENERALIZED BORN-INFELD
ELECTROMAGNETISM AND DYONIC MATTER

EQUATIONS IN THE CLASSICAL MODEL

In this section, we consider the setup of the generalized
Born-Infeld nonlinear electrodynamics theory and develop
methods for deriving the associated dyonic matter equa-
tions and obtaining their solutions schematically.
Consider the Lagrangian action density [26]

L ¼ fðsÞ; s ¼ 1

2
ðE2 −B2Þ þ κ2

2
ðE · BÞ2 ð2:1Þ
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giving rise to a generalized nonlinear electrodynamics
theory of the Born-Infeld type, where the action density
profile function f is assumed to satisfy the condition
fð0Þ ¼ 0; f0ð0Þ ¼ 1, andE andB are electric and magnetic
fields, respectively. Let the associated electric displacement
and magnetic intensity fields be denoted by D and H,
respectively. Then they are related to E and B by the
nonlinear constitutive equations:

D ¼ f0ðsÞðEþ κ2ðE · BÞBÞ; ð2:2Þ

H ¼ f0ðsÞðB − κ2ðE · BÞEÞ: ð2:3Þ

This nonlinear theory of electromagnetism may be
viewed as describing the interaction of electromagnetic
fields in a nonlinear medium with field-dependent dielec-
trics and permeability coefficients of a mixed type. In fact,
from (2.2) and (2.3), we have

�
D

B

�
¼ ΣðE;BÞ

�
E

H

�
;

ΣðE;BÞ≡
� f0ðsÞð1þ κ4ðE ·BÞ2Þ κ2ðE ·BÞ

κ2ðE · BÞ 1
f0ðsÞ

�
; ð2:4Þ

where the matrix ΣðE;BÞ contains the dielectrics and
permeability information of the system such that the
property detðΣðE;BÞÞ ¼ 1 resembles the constraint that
the speed of light in vacuum is normalized to unity. These
relations blend the electric and magnetic interactions in the
generalized Born-Infeld electrodynamics and comprise
the main core of all technical difficulties that come along.
For this theory, the Hamiltonian energy density may be
calculated to be

H ¼ f0ðsÞðE2 þ κ2½E ·B�2Þ − fðsÞ: ð2:5Þ

This expression will be useful when we evaluate the energy
of a dyonically charged source and compute the gravita-
tional metric factor of a charged black hole.
To illustrate the method for deriving the dyonic matter

equations in terms of associated scalar potentials, we begin
by considering the classical Born-Infeld model defined by

fðsÞ ¼ 1

β

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2βs

p �
; ð2:6Þ

where β > 0 is a coupling parameter independent of the
parameter κ in (2.1). This is a relatively simpler situation to
deal with. However, the insight developed will become
useful later for us to treat general situations as we will
soon see. For this purpose, we first obtain from (2.3) the
general expressions

E · B ¼ E ·H
f0ðsÞð1 − κ2E2Þ ; ð2:7Þ

B ¼ H
f0ðsÞ þ κ2ðE ·BÞE ¼ 1

f0ðsÞ
�
Hþ κ2ðE ·HÞ

1 − κ2E2
E

�
:

ð2:8Þ

Now, specializing on (2.6), we can insert (2.7) and (2.8)
into

1

f0ðsÞ≡R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2βs

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βðE2 − B2 þ κ2½E ·B�2Þ

q
ð2:9Þ

to obtain

R2 ¼ 1 − βE2 þ βR2

�
Hþ κ2ðE ·HÞ

1 − κ2E2
E

�
2

− βκ2R2

�
E ·H

1 − κ2E2

�
2

; ð2:10Þ

resulting in the solution

R2 ¼ 1 − βE2

1 − β
�
Hþ κ2ðE·HÞ

1−κ2E2 E
�
2 þ βκ2

�
E·H

1−κ2E2

�
2
: ð2:11Þ

Therefore, in view of (2.2), (2.3), (2.7)–(2.9), and (2.11),
we get

D ¼ E
R

þ κ2R
ðE ·HÞ
1 − κ2E2

�
Hþ κ2ðE ·HÞ

1 − κ2E2
E

�
; ð2:12Þ

B ¼ R
�
Hþ κ2ðE ·HÞ

1 − κ2E2
E

�
: ð2:13Þ

Furthermore, assume the presence of a dyonic charge
distribution given in terms of an electric charge density
function, ρe, and a magnetic one, ρm. Then, in the static
situation, the governing equations of the theory (2.1) are of
the Maxwell type [11,26]:

∇ ×E ¼ 0; ∇ ×H ¼ 0; ð2:14Þ

∇ ·D ¼ ρe; ∇ ·B ¼ ρm: ð2:15Þ

Resolving (2.14), we obtain

E ¼ ∇ϕ; H ¼ ∇ψ ; ð2:16Þ

for some real-valued scalar functions ϕ and ψ , respectively,
i.e., a pair of electric and magnetic scalar potentials.
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Consequently, inserting (2.16) into (2.11)–(2.13), we see
that (2.15) renders the equations

∇ ·

�∇ϕ
R

þκ2R
∇ϕ ·∇ψ

1−κ2j∇ϕj2
�
∇ψþκ2ð∇ϕ ·∇ψÞ

1−κ2j∇ϕj2 ∇ϕ

��
¼ρe;

ð2:17Þ

∇ ·

�
R
�
∇ψ þ κ2ð∇ϕ ·∇ψÞ

1 − κ2j∇ϕj2 ∇ϕ

��
¼ ρm; ð2:18Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − βj∇ϕj2
1 − β

�
∇ψ þ κ2ð∇ϕ·∇ψÞ

1−κ2j∇ϕj2 ∇ϕ
�
2 þ βκ2

� ∇ϕ·∇ψ
1−κ2j∇ϕj2

�
2

vuut :

ð2:19Þ

These new dyonic matter equations appear complicated. In
the limiting case of the first Born-Infeld model [1–4], with
κ ¼ 0, however, they reduce themselves into

∇ ·

 
∇ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βj∇ψ j2
1 − βj∇ϕj2

s !
¼ ρe; ð2:20Þ

∇ ·

 
∇ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βj∇ϕj2
1 − βj∇ψ j2

s !
¼ ρm; ð2:21Þ

which are the Euler-Lagrange equations of the action
functional

Aðϕ;ψÞ ¼
Z �

1

β

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βj∇ϕj2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βj∇ψ j2

q �

þ ρeϕþ ρmψ

�
dx: ð2:22Þ

As a comparison, we note that in this case the Lagrangian
action density of the Born-Infeld theory (2.6) with κ ¼ 0 is

L ¼ 1

β
ð1 −RÞ ¼ 1

β

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βj∇ϕj2
1 − βj∇ψ j2

s !
; ð2:23Þ

in view of (2.19). Consequently, the associated
Hamiltonian (2.5) becomes

H ¼ E2

R
− L ¼ 1

β

 
1 − β2j∇ϕj2j∇ψ j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − βj∇ϕj2p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βj∇ψ j2

p − 1

!
;

ð2:24Þ

using (2.16), (2.19), and (2.23). This quantity stays non-
negative since it can be examined that

1 − stffiffiffiffiffiffiffiffiffiffi
1 − s

p ffiffiffiffiffiffiffiffiffiffi
1 − t

p ≥ 1; s; t ∈ ½0; 1Þ: ð2:25Þ

As another limiting case, we consider the classical Born-
Infeld model [3,4] situation with β ¼ κ2 so that the system
of the equations (2.17)–(2.19) becomes

∇ ·

�
R0

1 − βj∇ϕj2∇ϕ

þ βð∇ϕ · ∇ψÞ
R0

�
∇ψ þ βð∇ϕ · ∇ψÞ

1 − βj∇ϕj2 ∇ϕ

��
¼ ρe;

ð2:26Þ

∇ ·

�
1

R0

½ð1 − βj∇ϕj2Þ∇ψ þ βð∇ϕ · ∇ψÞ∇ϕ�
�

¼ ρm;

ð2:27Þ

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βj∇ϕj2 − βj∇ψ j2 þ β2ð∇ϕ ×∇ψÞ2

q
: ð2:28Þ

We now study how the solutions of these dyonic matter
equations may be constructed explicitly. Interestingly,
although the governing equations (2.17)–(2.19) are derived
from exploring (2.3), their solutions may be obtained from
exploiting (2.2), on the other hand. In fact, the equations
in (2.15) indicate that the fields D and B are determined
by prescribing the electric and magnetic charge densities,
ρe and ρm, respectively. With this fact in mind, we get
from (2.2) the equations

D2 ¼ ðf0ðsÞÞ2ðE2 þ κ2ð2þ κ2B2ÞðE · BÞ2Þ; ð2:29Þ
D ·B ¼ f0ðsÞð1þ κ2B2ÞðE · BÞ: ð2:30Þ

These equations are nonlinear and nonhomogeneous equa-
tions in the unknowns E2 and E · B which may be solved
to determine the quantity s given in (2.1). Note that we
sometimes replace (2.29) by (2.2) in the above system to
solve for E, E2, and E · B. Using this result in (2.2)
and (2.3), we find E and H. Therefore the electric and
magnetic potentials ϕ and ψ given in (2.16) are obtained.
To illustrate the methodology of this construction,

assume for simplicity that the dyonic matter is that of a
point charge source, namely, ρe and ρm in (2.15) are given
by the Dirac distributions concentrated at the origin where a
dyonic point-charge source resides. Specifically, in such a
situation, the Eq. (2.15) assumes the form

∇ ·D ¼ 4πqδðxÞ; ∇ ·B ¼ 4πgδðxÞ; ð2:31Þ
where q and g are electric and magnetic charges, respec-
tively, which may be taken to be positive for definiteness.
Solving (2.31), we see that the nontrivial radial components
of D and B are simply given by

Dr ¼ q
r2
; Br ¼ g

r2
: ð2:32Þ

With (2.31) and (2.32) and the nontrivial radial components
obtained for E and H in [26] in light of the method
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described, we can integrate (2.16) to get a radially symmetric
solution to the general equations (2.17)–(2.19), fulfilling the
normalized asymptotic condition ϕ, ψ → 0 as r → ∞,
which reduces into a solution to (2.20) and (2.21) when
κ ¼ 0 and a solution to (2.26)–(2.28) when β ¼ κ2. These
explicit solutions are of independent interests and impor-
tance [3,4,10,26].
It should be noted that the formalism of the generalized

electrodynamics (2.1) requires f0ðsÞ stay nonvanishing.
This condition is usually well observed due to the under-
lying coupling properties of specific models, such as
what are seen in the classical Born-Infeld theory in which
the radical root operation imposes a natural cutoff range
for s similar to that in special relativity, and in the
polynomial model (1.4) for which all the coefficients are
all positive so that no cutoff is present, and in the
exponential model [32,33]

fðsÞ ¼ 1

β
ðeβs − 1Þ; β > 0; ð2:33Þ

for which f0ðsÞ > 0 automatically follows. In general, it is
clear that the condition f0ð0Þ ¼ 1 ensures f0ðsÞ ≠ 0 in all
weak field situations, jsj ≪ 1.

III. STATIC DYONIC MATTER EQUATIONS
IN GENERAL AND A NO-GO EXAMPLE

In this section, we use the method formulated in the
previous section to come up with a derivation of the dyonic
matter equations of the nonlinear electrodynamics in its
most general setting. We then present an example to show
that a dyonic solution in the full space may not exist. In
other words, combining the existence result in the previous
section and the nonexistence result of this section, we
conclude that whether a solution exists for the generalized
Born-Infeld dyonic matter equations depends on the under-
lying specific nonlinearity of the theory imposed.
To start, we use (2.7) and (2.8) to represent the quantity s

in (2.1) as

2s ¼ E2 −
1

ðf0ðsÞÞ2
�
Hþ κ2ðE ·HÞ

1 − κ2E2
E

�
2

þ κ2
�

E ·H
f0ðsÞð1 − κ2E2Þ

�
2

¼ E2 −
1

ðf0ðsÞÞ2
�
H2 þ κ2ðE ·HÞ2

1 − κ2E2

�
: ð3:1Þ

This is an implicit equation relating s to E and H which
are determined by a pair of scalar fields ϕ and ψ through
(2.16). Therefore, we may rewrite such a relation as

s ¼ Ωð∇ϕ;∇ψÞ: ð3:2Þ

On the other hand, in view of (2.7) and (2.8), we can
express the electric displacement field D given in (2.2) in
terms of E and H:

D ¼ f0ðsÞEþ κ2ðE ·HÞ
f0ðsÞð1 − κ2E2Þ

�
Hþ κ2ðE ·HÞ

1 − κ2E2
E

�
:

ð3:3Þ

Thus, inserting (2.16) into (2.8) and (3.3), we see that the
system (2.15) becomes

∇ ·

�
f0ðsÞ∇ϕ

þ κ2ð∇ϕ · ∇ψÞ
f0ðsÞð1 − κ2j∇ϕj2Þ

�
∇ψ þ κ2ð∇ϕ ·∇ψÞ

1 − κ2j∇ϕj2 ∇ϕ

��
¼ ρe;

ð3:4Þ

∇ ·

�
1

f0ðsÞ
�
∇ψ þ κ2ð∇ϕ · ∇ψÞ

1 − κ2j∇ϕj2 ∇ϕ

��
¼ ρm; ð3:5Þ

where s is given by (3.2). These equations appear too
complicated to solve in their general setting, although
it is clearly seen that the system consisting of the
Eqs. (2.17)–(2.19) is contained in (3.4) and (3.5) as a
limiting case.
As a nonexistence example, consider the arcsin model

proposed by Kruglov [34,35] given by

fðsÞ ¼ 1

β
arcsinðβsÞ; β > 0: ð3:6Þ

Thus (3.1) becomes

2s ¼ E2 − ð1 − ½βs�2Þ
�
H2 þ κ2ðE ·HÞ2

1 − κ2E2

�
: ð3:7Þ

Solving (3.7), we find

s ¼ 1 − κ2E2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − κ2E2Þ2 þ β2ðH2 − κ2jE ×Hj2ÞðH2 − E2 þ κ2½E4 − jE ×Hj2�Þ

p
β2ðH2 − κ2jE ×Hj2Þ ; ð3:8Þ

where E and H are given by (2.16) in terms of the scalar fields ϕ and ψ which leads to the determination of (3.2).
We now study the existence and nonexistence of a solution to (3.4) and (3.5) for the model (3.6).
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Inserting (2.32) into (2.2) and applying (3.6), we obtain
the equation that determines the nontrivial radial compo-
nent Er of the electric field E:

Dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2s2

q
¼ Erð1þ κ2½Br�2Þ;

s ¼ 1

2
ð½Er�2 − ½Br�2Þ þ κ2

2
ðBrÞ2ðErÞ2: ð3:9Þ

From (3.9), we have

½Er�4 þ 2ð2ð1þ κ2½Br�2Þ − β2½Br�2½Dr�2Þ
β2½Dr�2ð1þ κ2½Br�2Þ ½Er�2

þ β2½Br�4 − 4

β2ð1þ κ2½Br�2Þ2 ¼ 0: ð3:10Þ

The discriminant of this quadratic equation in the updated
variable ξ ¼ ½Er�2 reads

Δ ¼ 4

β2ð1þ κ2½Br�2Þ2
�ð2ð1þ κ2½Br�2Þ − β2½Br�2½Dr�2Þ2

β2½Dr�4 þ 4 − β2½Br�4
�
: ð3:11Þ

Inserting (2.32) into (3.11), we have

Δ ¼ −
16ðβ2κ2q2g4 − ½β2q4 þ κ4g4 − β2q2g2�r4 − 2κ2g2r8 − r12Þr4

β4q4ðκ2g2 þ r4Þ2 ; ð3:12Þ

which becomes negative whenever r is sufficiently small if g > 0. In other words, the dyonic matter equations (3.4) and
(3.5) for the arcsin model (3.6) subject to the point-charge sources (2.31) or (2.32) have no compatible solution whatsoever
for any κ > 0.
Nevertheless, substituting (2.32) into (3.9), we can solve for Er to obtain the formal result:

Er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2q2g2 þ 2r2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 þ 2κ2g2r8 þ ðβ2q4 þ κ4g4 − β2q2g2Þr4 − β2κ2q2g4

p
− κ2g2r2 − r6Þ

q
βq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2g2 þ r4

p ; ð3:13Þ

which is ill defined when r is small if κ > 0, as expected,
although it is well defined asymptotically for large r:

Er ¼ q
r2

�
1 −

κ2g2

r4

�
þ Oðr−10Þ; r ≫ 1: ð3:14Þ

Similarly, the magnetic intensity field is ill defined too
when r is small and

Hr ¼ g
r2

�
1 −

κ2q2

r4

�
þ Oðr−10Þ; r ≫ 1: ð3:15Þ

If κ ¼ 0, we have shown in [10] that no monopole or dyon
would exist. In fact, in all situations, if q ¼ 0, then Er ¼ 0

in (3.9), which renders s ¼ ðBrÞ2
2
, which cannot stay in

the permissible interval −1 ≤ βs ≤ 1 imposed by the
model (3.6). In conclusion, the dyonic matter equa-
tions (3.4) and (3.5) for the model (3.6) have no dyonic
nor monopole solution in the point-charge situation but
only the electric point-charge solution:

Er ¼
ffiffiffi
2

p
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2q4 þ r8

pq ; ð3:16Þ

which may also be obtained by setting g ¼ 0 in (3.13).
Thus, with E ¼ ∇ϕ or Er ¼ ϕ0ðrÞ, we can insert (3.16)
to have

ϕðrÞ ¼ −
Z

∞

r

ffiffiffi
2

p
qdρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2q4 þ ρ8

pq ¼ −
ffiffiffi
2

p
q

r0
h

�
r
r0

�
;

r0 ≡ β
1
4q

1
2; ð3:17Þ

where the dimensionless function

hðxÞ ¼
Z

∞

x

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y8

pq ð3:18Þ

is one of the generalized hypergeometric functions whose
specific form does not concern us here.
In the electrostatic situation, the Eqs. (3.4) and (3.5) in

the context of the arcsin model (3.6) are reduced into a
single equation:

∇ ·

0
B@ ∇ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2

4
j∇ϕj4

q
1
CA ¼ ρe: ð3:19Þ
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It is readily verified that (3.17) is a radially symmetric
solution to (3.19) when ρeðxÞ ¼ 4πqδðxÞ since ϕðrÞ given
in (3.17) satisfies

ϕ0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

4
½ϕ0ðrÞ�4

q ¼ q
r2
: ð3:20Þ

Subsequently, we will construct some exact solutions
to (3.4) and (3.5) explicitly when the charge density
distribution functions ρe and ρm are those of dyonic point
charge sources with the nonlinearity function fðsÞ being
quadratic and logarithmic.

IV. DYONICALLY CHARGED POINT SOURCES
IN THE QUADRATIC MODEL

In this section, we obtain for the quadratic model the
exact solution representing a dyonic point charge and we
establish the roles played by the coupling parameter κ
in rendering a finite-energy solution and restoration of
electromagnetic symmetry. Specifically, we show that, in
the quadratic model, although finite-energy magnetic
monopoles and dyons do not exist when κ ¼ 0, finite-
energy dyons, but not monopoles, are present when κ > 0.
Recall that for the quadratic model [36–40], the non-

linearity in (2.1) assumes the simple form

fðsÞ ¼ sþ as2; ð4:1Þ

where a > 0 is a constant. Using (4.1) in (2.2), we have

D ¼ ð1þ a½E2 −B2 þ κ2ðE ·BÞ2�ÞðEþ κ2ðE ·BÞBÞ:
ð4:2Þ

As before, we will consider a static dyonic point charge
source given by (2.31) such that the electric displacement
field and magnetic field are radial and described by (2.32).
Thus, implementing consistency in (4.2), we see that E is
also radially symmetric whose radial component Er satis-
fies the cubic equation,

Dr

1þ κ2ðBrÞ2 þ aðBrÞ2Er ¼ ð1þ a½1þ κ2ðBrÞ2�ðErÞ2ÞEr;

ð4:3Þ

whose unique real solution, which is positive in view
of (2.32), can of course be obtained explicitly, although its
exact expression is too cumbersome to present here.
Nonetheless, we may content ourselves with an analytic
discussion. Indeed, for our purpose, we note that the left-
hand side of (4.3) represents a line in Er with a positive
vertical intercept and a positive slope and the right-hand
side of (4.3) represents a cubic concave up curve in Er

passing through the origin. As a consequence, they have a

unique intersection point in the first quadrant of the
coordinate plane which gives rise to the unique positive
solution of Eq. (4.3). Furthermore, to get more specific
information about Er, we insert (2.32) into (4.3) to obtain

qr6 þ ag2ðκ2g2 þ r4ÞEr

¼ ðκ2g2 þ r4Þða½κ2g2 þ r4�½Er�2 þ r4ÞEr: ð4:4Þ

Thus, from (4.4), we find the following asymptotic expan-
sions of Er for κ > 0:

Er ¼ 1

κ
−
ðaþ κ2Þr4
2aκ3g2

þ qr6

2aκ2g4
þ Oðr8Þ; r ≪ 1; ð4:5Þ

Er¼ q
r2
−
qða½q2−g2�þκ2g2Þ

r6
þOðr−10Þ; r≫1: ð4:6Þ

As a consequence, since the free electric charge density
induced from the electric field as a function of the radial
variable r reads

ρefreeðrÞ ¼
1

4πr2
d
dr

ðr2ErÞ; r > 0; ð4:7Þ

the total free electric charge of the dyon is

qfree ¼
Z
R3

ρefreedx ¼ ðr2ErÞr¼∞
r¼0 ¼ q; ð4:8Þ

which agrees with the prescribed electric charge q.
On the other hand, in view of (4.5), (4.6), (2.3), s in (2.1),

and (4.1), we obtain

Hr ¼ ðaþ κ2Þqr4
aκ3g3

þ q2r6

aκ2g5
þ Oðr8Þ; r ≪ 1; ð4:9Þ

Hr¼ g
r2
−
gða½g2−q2�þκ2q2Þ

r6
þOðr−10Þ; r≫1: ð4:10Þ

Hence, by the same computation, we find the total free
magnetic charge of the dyon to be

gfree ¼ ðr2HrÞr¼∞
r¼0 ¼ g; ð4:11Þ

in agreement with the prescribed magnetic charge.
We next consider the energy of a dyonic point source.

For this purpose, we insert (4.5) into s in (2.1) to obtain

s¼ðErÞ2
2

þ1

2
ðκ2½Er�2−1ÞðBrÞ2

¼−
1

2a
þ qr2

2κag2
þða2½8κ5g4−3Þ−2aκ2þ κ4Þr4

8a2κ4g2
þOðr6Þ;

r≪ 1: ð4:12Þ
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Inserting (4.12) into (2.5) and applying (4.1), we have

H ¼ q
κr2

þ a2ð8κ5g4 − 3Þ − 2aκ2 þ 2κ4

4aκ4

þ qð−3κ2 þ aÞr2
2aκ3g2

þ Oðr4Þ; r ≪ 1: ð4:13Þ

On the other hand, in view of (4.6), s given in (2.1),
and (2.32), we have

s¼ q2 − g2

2r4
−
q2

r8

�
a½q2 − g2� þ κ2g2

2

�
þOðr−12Þ; r≫ 1:

ð4:14Þ

Thus, using (4.1), (4.6), and (4.14) in (2.5), alongwith (2.32),
we obtain

H¼ q2þ g2

2r4
−
ða½q2− g2�2þ2κ2q2g2Þ

4r8
þOðr−12Þ; r≫ 1:

ð4:15Þ

Combining (4.13) and (4.15), we see that the total energy
of a dyonic point source is indeed a finite quantity,

E ¼ 4π

Z
∞

0

Hr2dr < ∞: ð4:16Þ

In view of (4.13) and (4.15), it is seen that there is a local
electromagnetic asymmetry but a global electromagnetic
symmetry exhibited in the energy density of a dyonic point
source with respect to the roles played by its electric and
magnetic charges, q and g, respectively.
The calculation above is only valid for κ > 0. The

situation where κ ¼ 0 needs to be treated separately, as
done in [10], which we now consider briefly in the present
broader context, for completeness, while viewing κ as a
“switching” parameter.
Setting κ ¼ 0 in (4.3), we have

Dr þ aðBrÞ2Er ¼ ð1þ aðErÞ2ÞEr: ð4:17Þ

Inserting (2.32) into (4.17), we may obtain Er explicitly
which is again too complicated to state here. Instead, we
write its asymptotic expressions as follows:

Er ¼ g
r2

þ ðq − gÞr2
2ag2

þ Oðr6Þ; r ≪ 1; ð4:18Þ

Er ¼ q
r2

þ aq
r6

ðg2 − q2Þ þ Oðr−8Þ; r ≫ 1: ð4:19Þ

Besides, in view of (4.18), (4.19), (2.3), s in (2.1), and (4.1),
we obtain

Hr ¼ q
r2

þ qðg − qÞr2
2ag3

þ Oðr6Þ; r ≪ 1; ð4:20Þ

Hr ¼ g
r2

þ agðq2 − g2Þ
r6

þ Oðr−10Þ; r ≫ 1: ð4:21Þ

These expressions indicate that, near r ¼ 0, the electric
field behaves like a magnetic field, and vice versa, in
leading orders, although they do appear to be purely electric
and magnetic asymptotically near infinity. As a conse-
quence, we see immediately that the free electric charge and
free magnetic charge induced from Er and Hr are

qfree ¼ q − g; gfree ¼ g − q; ð4:22Þ
respectively, which is an alternative indicator by finite
quantities that the total energy of such a dyon is necessarily
divergent [10].
In fact, in view of (2.5), (2.32), (4.1), (4.18), and (4.19),

we get

H ¼ qg
r4

þ ðq − gÞ2
4ag2

þ Oðr4Þ; r ≪ 1; ð4:23Þ

H ¼ q2 þ g2

2r4
þ Oðr−8Þ; r ≫ 1; ð4:24Þ

for the Hamiltonian density of the dyon. This expression
clearly indicates that the energy of the dyon with q, g > 0
diverges at r ¼ 0 as anticipated.

V. DYONIC POINT CHARGES IN THE
LOGARITHMIC MODEL

In this section, we consider the logarithmic model as a
companion case for comparison and obtain an exact dyonic
point-charge solution of finite energy as well when κ > 0.
We also show that when κ ¼ 0, although finite-energy
electric and magnetic point charges are still present,
indicating the same electromagnetic symmetry as in the
classical Born-Infeld model, a dyon of finite energy is
excluded or turned off. As a by-product, we show that,
when κ > 0, fine electromagnetic structures of the dyon
indicate local asymmetry near the point-charge source and
global symmetry away from the source.
Recall that the well-studied logarithmic Born-Infeld

nonlinear electrodynamics model [41–45] is defined by

fðsÞ ¼ −
1

β
ln ð1 − βsÞ; β > 0: ð5:1Þ

Inserting (5.1) into (2.2) and using s in (2.1), we have

D

�
1 −

β

2
ðE2 −B2Þ − βκ2

2
ðE ·BÞ2

�
¼ Eþ κ2ðE · BÞB:

ð5:2Þ
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In the dyonic point charge situation where the radial components of D and B are as given in (2.32), we can solve for the
nontrivial radial component of E in (5.2) as before to obtain

Er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2g2 þ r4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2q2g2 þ ð2βq2 þ κ2g2Þr4 þ r8

p
− ðκ2g2 þ r4Þr2

βqðκ2g2 þ r4Þ : ð5:3Þ

This clumsy looking expression actually enjoys rather
simple asymptotic properties of our concern, which are

Er ¼ 1

κ
−

r2

βq
þ ðβq2½2κ2 − β� þ κ4g2Þr4

2β2κ3q2g2
þ Oðr8Þ; r ≪ 1;

ð5:4Þ

Er ¼ q
r2

−
q
r6

�
βðq2 − g2Þ

2
þ κ2g2

�
þ Oðr−10Þ; r ≫ 1:

ð5:5Þ
Thus, we see that the electric field is finite near the point
source and the presence of the parameter κ is essential.
Moreover, near infinity, in leading order the electric field
follows a Coulomb law of that of a pure electric charge as if
no magnetism is present but exhibits its magnetic charge
component only in higher-order terms.
We may insert the result (5.3) into (2.3) to obtain the

nontrivial radial component Hr of the magnetic intensity
field H whose explicit expression appears complicated
and thus omitted here. Instead, like (5.4) and (5.5), we
content ourselves with listing the asymptotic expressions
for Hr below:

Hr ¼ 2r2

βg
þ qðβ − 2κ2Þr4

βκ3g3
þ Oðr6Þ; r ≪ 1; ð5:6Þ

Hr¼ g
r2
−
g
r6

�
βðg2−q2Þ

2
þκ2q2

�
þOðr−10Þ; r≫1: ð5:7Þ

As a consequence of (5.4)–(5.7), we obtain the same
conclusions for the free electric and magnetic charges as
those for the quadratic model, qfree ¼ q and gfree ¼ g. It is

interesting to note that, in leading terms, the induced
electric field and magnetic intensity field depend on the
prescribed electric and magnetic charges only, both locally
near the center of the dyonic charge source and asymp-
totically near infinity.
To estimate the dyonic energy, we use (2.5) to get the

asymptotic properties of the Hamiltonian density:

H ¼ q
κr2

þ 1

β

�
ln
κg2

qr2
− 1

�
þ Oðr2Þ; r ≪ 1; ð5:8Þ

H¼ðq2þg2Þ
2r4

−
ðβ½q2−g2�2þ4κ2q2g2Þ

8r8
þOðr−12Þ; r≫1:

ð5:9Þ

These results lead to the finiteness of the total energy of a
dyonic point-charge source. As a by-product, we observe
that there is a local asymmetry near the center of the dyonic
charge sources between the electric and magnetic sectors
demonstrated through the induced electric and magnetic
fields as well as its energy density profile, and that
electromagnetic symmetry prevails again asymptotically
away from the charge sources.
It will be of interest to derive the governing equations

describing a static dyonic matter distribution. To this end,
we insert (5.1) into (3.1) to get

2s ¼ E2 − ð1 − βsÞ2
�
H2 þ κ2ðE ·HÞ2

1 − κ2E2

�
: ð5:10Þ

Solving for s in (5.10), we obtain

s ¼ κ2E2 þ βH2 − βκ2jE ×Hj2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2E2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð2 − βE2Þðκ2jE ×Hj2 −H2Þ − κ2E2 þ 1

p
− 1

β2ðH2 − κ2jE ×Hj2Þ : ð5:11Þ

Using (2.16) in (5.11), we can determine (3.2), and then
derive the governing equations (3.4) and (3.5). Here we
omit the details but only note that the dyonic matter
equations beyond the classical Born-Infeld model (2.6)
are generally much more complicated since inserting (2.6)
into (3.1) gives us

s ¼ E2ð1 − κ2E2Þ þ κ2jE ×Hj2 −H2

2ð1 − κ2E2Þ − βðH2 − κ2jE ×Hj2Þ ; ð5:12Þ

which is relatively much simpler, in contrast with (3.8)
and (5.11), for example.
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Setting κ ¼ 0 in (5.11), we have

s ¼ 1

β
−

2 − βE2

β
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βH2ð2 − βE2Þ

p � : ð5:13Þ

In view of (5.1) and (5.13), we have

f0ðsÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βH2ð2 − βE2Þ

p
2 − βE2

: ð5:14Þ

Inserting (5.14) into (3.4) and (3.5) (with κ ¼ 0) and
using (2.16), we arrive at

∇ ·

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βj∇ψ j2ð2 − βj∇ϕj2Þ

p
2 − βj∇ϕj2 ∇ϕ

�
¼ ρe; ð5:15Þ

∇ ·

�
2 − βj∇ϕj2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βj∇ψ j2ð2 − βj∇ϕj2Þ

p ∇ψ

�
¼ ρm; ð5:16Þ

which is another new set of dyonic matter equations. In the
point-charge source case with (2.31) and (2.32), we may set
κ ¼ 0 in (5.3) to get

Er ¼ qð2r4 þ βg2Þ
r2
�
r4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r8 þ βq2ð2r4 þ βg2Þ

p � : ð5:17Þ

As a consequence, we get the radial component of the
magnetic intensity field as well,

Hr ¼
g
�
r4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r8 þ βq2ð2r4 þ βg2Þ

p �
r2ð2r4 þ βg2Þ ; ð5:18Þ

which gives rise to the radial solution to (5.15) and (5.16)
through Er ¼ ϕ0ðrÞ and Hr ¼ ψ 0ðrÞ in the present dyonic
point-charge source situation. In [10], we showed that
the dyonic energy in this case diverges at r ¼ 0. Such a
property is also clearly exhibited in (5.17) and (5.18) when
g ≠ 0. In other words, when κ ¼ 0, a finite-energy dyonic
point-charge source is tuned off, which is turned back on
when κ > 0.

VI. DYONICALLY CHARGED BLACK HOLES IN
QUADRATIC AND LOGARITHMIC MODELS

In [26], dyonic point charges of finite energies in the
generalized Born-Infeld theory that generate charged black
holes with relegated curvature singularities are explicitly
constructed for the classical Born-Infeld model [3,4] and
the exponential model [32,33], with ameliorated and
removed curvature singularities, respectively. In this sec-
tion, we construct dyonically charged black holes with
such relegated curvature singularities in the quadratic and
logarithmic models, based on the results obtained in

Secs. IV and V. We shall see that, although electromag-
netism of the generalized Born-Infeld theory does not
contribute to the Arnowitt-Deser-Misner (ADM) energy
as in the Reissner-Nordström charged black hole situation
based on the Maxwell theory, it does to black hole
thermodynamics.
In order to obtain dyonically charged black hole sol-

utions generated from the Einstein equations coupled
with the Born-Infeld type nonlinear electrodynamics of
the form (2.1), consider the spacetime line element
in the ordered spherical coordinates ðt; r; θ;ϕÞ of the
Schwarzschild form:

dτ2 ¼ AðrÞdt2 − dr2

AðrÞ − r2ðdθ2 þ sin2 θdϕ2Þ: ð6:1Þ

In the Appendix, we show that the line element (6.1) is
the most general static spherically symmetric one for the
construction of a dyonically charged black hole solution in
the generalized Born-Infeld theory. Within the ansatz (6.1),
it has been shown [26] that the Einstein equations may be
reduced into the single equation,

ðrAÞ0 ¼ 1 − 8πGr2HðrÞ; ð6:2Þ
which directly relates the metric factor A to the energy
density of the electromagnetic sector through an integration,

AðrÞ ¼ 1 −
2GM
r

þ 8πG
r

Z
∞

r
HðρÞρ2dρ; ð6:3Þ

whereM is an integration constant which may be taken to be
positive to represent a mass. Since the energy of the dyonic
point charge is given by

E ¼
Z

H
ffiffiffiffiffiffi
−g

p
drdθdϕ ¼ 4π

Z
∞

0

Hr2dr; ð6:4Þ

thus if this quantity is finite, we may rewrite (6.3) as

AðrÞ ¼ 1 −
2GðM − EÞ

r
−
8πG
r

Z
r

0

HðρÞρ2dρ: ð6:5Þ

For the quadratic model (4.1), the quantity in (6.4) is
finite. Hence, inserting (4.13) into (6.5), we get

AðrÞ ¼ 1 −
2GðM − EÞ

r

− 8πG

�
q
κ
þ ða2½8κ5g4 − 3� − 2aκ2 þ 2κ4Þr2

12aκ4

þ qð−3κ2 þ aÞr4
10aκ3g2

�
þ Oðr6Þ; r ≪ 1: ð6:6Þ

With (6.6), we can examine the curvature singularity of
the dyonic black hole solution at the mass and charge
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center, r ¼ 0. In fact, recall that the usual Kretschmann
invariant [47,48] of the metric (6.1) is given by

K ¼ ðr2A00Þ2 þ 4ðrA0Þ2 þ 4ðA − 1Þ2
r4

: ð6:7Þ

As a consequence of (6.6), we see that a finite-energy
dyonic black hole shares the same curvature singularity as
that of the Schwarzschild black hole, K ∼ r−6, and that,
under the critical mass-energy condition,

M ¼ E; ð6:8Þ

the singularity is relegated to K ∼ r−4. This feature is
known to be also enjoyed by the charged black hole
solutions arising in the classical Born-Infeld theory [10,26].
Furthermore, applying (4.15) in (6.3), we obtain

AðrÞ ¼ 1 −
2GM
r

þ 4πG
r2

�
q2 þ g2

−
ða½q2 − g2�2 þ 2κ2q2g2Þ

10r4

�
þ Oðr−10Þ; r ≫ 1;

ð6:9Þ

which in leading orders is of the form of the classical
Reissner-Nordström charged black hole metric.
For the logarithmic model (5.1), we can insert (5.8)

into (6.5) to obtain

AðrÞ¼ 1−
2GðM−EÞ

r
−8πG

�
q
κ
þ r2

3β

�
ln
κg2

q
−
1

3
−2 ln r

��
þOðr4Þ; r≪ 1; ð6:10Þ

which is seen to be slightly more singular at r ¼ 0 than
that of the quadratic model due to the presence of the factor
ln r but significantly improved upon that of the Reissner-
Nordström charged black hole again. Furthermore,
inserting (5.9) into (6.3), we get

AðrÞ¼1−
2GM
r

þ4πG
r2

�
q2þg2−

ðβ½q2−g2�2þ4κ2q2g2Þ
20r4

�
þOðr−10Þ; r≫1: ð6:11Þ

Recall that, in terms of the metric (6.1), we may use the
Brown-York quasilocal energy formula [46] to compute the
ADM energy [47,49–53] of the system in the full space and
confirm that it agrees with the Schwarzschild black hole
mass such that the electromagnetic energy in the general-
ized Born-Infeld theory does not contribute to the ADM
gravitational energy [26] as in the Reissner-Nordström
charged black hole situation. In contrast, electromagnetism
in the generalized Born-Infeld theory does contribute to
black hole thermodynamics, as we now see below.

Consider the dyonically charged black holes generated
from the logarithmic model (5.1) for instance. For sim-
plicity, we assume a supercritical condition, M < E, in
order to include the Maxwell theory limit, E ¼ ∞.
Then (6.10) implies AðrÞ → ∞ as r → 0. From (6.11),
we have AðrÞ → 1 as r → ∞. Thus we encounter the
possibilities that AðrÞ > 0 for all r > 0, giving rise to a
naked singularity at r ¼ 0, AðrÞ vanishes at exactly one
spot, say r0 > 0, leading to the extremal event horizon
at r ¼ r0, and AðrÞ vanishes at multiple spots among
which there is a rightmost one, rþ > 0, rendering the outer
event horizon at r ¼ rþ where the black hole resides so
that A0ðrþÞ ≥ 0 holds necessarily, which determines the
Hawking radiation temperature through the formula [54,55]

TH ¼ A0ðrþÞ
4π

; ð6:12Þ

where if rþ is relatively large then it may be solved by
setting (6.11) to zero to arrive at the approximate equation:

AðrÞ ¼ 1 −
2GM
r

þ 4πG
r2

�
q2 þ g2 −

ðβ½q2 − g2�2 þ 4κ2q2g2Þ
20r4

�
¼ 0:

ð6:13Þ

Using (6.13) with r ¼ rþ, we have the following dyonic-
charge dependent Hawking temperature:

TH ¼ 1

2πrþ

�
1 −

GM
rþ

�
þ Gðβ½q2 − g2�2 þ 4κ2q2g2Þ

5r7þ
;

ð6:14Þ

by (6.12). Although it is impractical to determine rþ by
(6.13) explicitly, this equation gives us the estimate

rþ > rRN ≡GM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGMÞ2 − 4πGðq2 þ g2Þ

q
;

GM2 > 4πðq2 þ g2Þ; ð6:15Þ

where rRN denotes the classical Reissner-Nordström black
hole radius. Using rRN to approximate rþ, we have the
approximation

TH ≈
1

2πrRN

�
1 −

GM
rRN

�
þGðβ½q2 − g2�2 þ 4κ2q2g2Þ

5r7RN
:

ð6:16Þ

In theweak charge limit, rRN≈2GM¼ rS (the Schwarzschild
radius), the expression (6.16) is further reduced into

TH ≈
1

8πGM
þ βðq2 − g2Þ2 þ 4κ2q2g2

640G6M7
; ð6:17Þ
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where the first term on the right-hand side is the classical
Hawking temperature. This result clearly exhibits the dyonic
charge correction to the Hawking temperature arising from
the logarithmic Born-Infeld model (5.1). For the quadratic
model (4.1), similar results follow from (6.9). For example,
the expression (6.17) is now replaced by the formula

TH ≈
1

8πGM
þ aðq2 − g2Þ2 þ 2κ2q2g2

320G6M7
: ð6:18Þ

VII. CHARACTERIZATION BY K-ESSENCE
COSMOLOGY AND SIGNATURE

OF QUADRATIC MODEL

In this section, we show that k-essence cosmology may
be considered in the individual cases of the generalized
Born-Infeld formalism to understand their shared similar-
ities and distinctions. For example, both the quadratic and
logarithmic models describe a big-bang universe and have
the same curvature singularity initially in time. On the other
hand, we show that they interpolate different cosmic fluid
matters and possess different equations of state such that
their associated adiabatic squared speeds of sound are
confined in different physical ranges. More importantly,
we shall see that these generalized models may be used to
resolve a density-pressure inconsistency issue associated
with the classical Born-Infeld model that the induced
k-essence fluid density is infinite but the pressure remains
finite at the big-bang moment. In particular, unlike the
classical Born-Infeld model and all of its fractional-
powered extensions, the quadratic model is shown to give
rise to an equation of state describing a radiation-dominated
era for the early evolution of the universe correctly, in
addition to the rejection of the model against the presence
of a finite-energy monopole. Furthermore, we show that
the quadratic model is the unique choice among all the
polynomial models that may lead to a k-essence model
giving rise to an early-universe radiation-dominated era.
Consequently, the features obtained indicate that, with
regard to electromagnetic asymmetry (exclusion of monop-
oles [10]) and symmetry restoration (inclusion of dyons,
Sec. IV) and k-essence cosmology (onset of radiation-
dominated era in the early universe, this section), the
quadratic model is uniquely positioned.
Specifically, we have seen earlier that, in the context

of point-charge sources, the quadratic model (4.1) and the
logarithmic model (5.1) behave rather differently from the
classical Born-Infeld model (2.6), although they all give
rise to finite-energy electric point charges. A sharp differ-
ence arises, however, in the quadratic model, as well as in
the general polynomial model [10], that a finite-energy
magnetic point charge is no longer allowed, a distinctive
mechanism referred to as electromagnetic asymmetry [10]
which is not observed in models (2.6) and (5.1). Interesting,
we have shown in the preceding sections that the lost

electromagnetic symmetry is restored at the dyonic point
charge level in the sense that finite-energy dyonic point
charges are now allowed in all three models. Moreover,
with regard to acquiring finite-energy electric, magnetic,
and dyonic point charges, the models (2.6) and (5.1) are
nondistinguishable. In order to understand the distinctions
and similarities of the generalized models (4.1) and (5.1) in
comparison with the classical model (2.6), here we consider
the cosmological characterizations of these models. We
shall focus our attention on the relation between the matter-
wave density and pressure arising from the k-essence
formalism of these models. We will see that, although
these models all give rise to big-bang cosmology, they
lead to drastically different density-pressure relations: The
classical model (2.6) renders an infinite density but a finite
pressure at the big-bang moment, which indicates a
discrepancy or inconsistency issue, but the generalized
models (4.1) and (5.1) accommodate both infinite density
and pressure at that moment, thereby resolving such a
discrepancy, surprisingly. More note worthily, we show that
the classical model leads to a dust-dominated era in the
early universe, which violates the general consensus that
the early universe is radiation dominated instead, but the
quadratic model gives rise to a radiation-dominated era
correctly, with explicit precision in the associated equation
of state.
In order to study the cosmological expansion of a

universe propelled by a Born-Infeld type k-essence scalar
field, we consider the Lagrangian action density of the
general form [56–65]

L ¼ fðXÞ − VðφÞ; ð7:1Þ

where X ¼ 1
2
∂μφ∂

μφ ¼ 1
2
gμν∂μφ∂νφ, φ being a real-valued

scalar field and gμν the gravitational metric tensor, and V is
a potential density function, aimed to compare the simi-
larities and differences of various nonlinear electro-
dynamics models discussed. We consider an isotropic
and homogeneous universe governed by the Robertson-
Walker line element

ds2 ¼ dt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ; ð7:2Þ

expressed in Cartesian coordinates, ðt; x; y; zÞ, where
aðtÞ > 0 is the scale factor or radius of the universe to
be determined. With the notation _a ¼ da

dt , etc., and assuming
that the scalar field is also only time dependent, the
equation of motion of (7.1) reads

ða3f0ðXÞ _φÞ_¼ −a3V 0ðφÞ; ð7:3Þ

giving rise to the effective energy density ρ and pressure P,

ρ¼ _φ2f0ðXÞ−ðfðXÞ−VðφÞÞ; P¼fðXÞ−VðφÞ; ð7:4Þ
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and the Einstein equations are reduced into the single
Friedmann equation�
_a
a

�
2

¼ 8πG
3

ρ ¼ 8πG
3

ð2Xf0ðXÞ − fðXÞ þ VðφÞÞ: ð7:5Þ

See [10] for details. A simple but highly relevant special
situation is when the potential density function V is
constant, say V0 ≥ 0. In this case, the Eq. (7.3) leads to
the result

f0
�
1

2
_φ2

�
_φ ¼ c

a3
; ð7:6Þ

where c is taken to be a nonzero constant to avoid
triviality, which may be set to be positive for convenience.
Solving (7.6), we get

X ¼ h

�
c
a3

�
; ð7:7Þ

say. Hence (7.5) reads�
_a
a

�
2

¼8πG
3

�
2h

�
c
a3

�
f0
�
h

�
c
a3

��
−f

�
h

�
c
a3

��
þV0

�
;

ð7:8Þ

which is a closed-form equation in a rendering the dynamic
evolution of the universe.
We now specialize on the quadratic model (4.1), by

replacing the constant a there with α here in order to avoid
a conflict with the standard notation of the scale factor
a ¼ aðtÞ given in (7.2), with setting

fðXÞ ¼ X þ αX2; α > 0: ð7:9Þ

See also [36,38,66–68]. In this case, the mass density
assumes the form

ρ ¼ X þ 3αX2 þ V0; ð7:10Þ

which is positive definite and gives rise to an expanding
universe. Solving (7.6) or

_φþ α _φ3 ¼ c
a3

; ð7:11Þ

we find

X ¼ 1

2
_φ2 ¼

12
2
3

�h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a6 þ 81αc2

p
þ 9

ffiffiffi
α

p
c
i2
3 − 12

1
3a2
�
2

72αa2
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12a6 þ 81αc2
p

þ 9
ffiffiffi
α

p
c
i2
3

¼ h

�
c
a3

�
: ð7:12Þ

In view of (7.10) and (7.12), the Friedmann equation (7.5)
appears rather complicated. However, in leading-order
approximations, we have

ρ ¼ 3c
4

�
c
α

�1
3 1

a4
−
1

2

�
c
α

�2
3 1

a2
þ 1

6α
þV0 þOða2Þ; a≪ 1;

ð7:13Þ

ρ ¼ c2

2a6
þ Oða−12Þ þ V0; a ≫ 1: ð7:14Þ

Using (7.13) in (7.5) and the big-bang initial condition
að0Þ ¼ 0, we get

aðtÞ ∼ t
1
2; t → 0: ð7:15Þ

Besides, if V0 ¼ 0, then using (7.14) in (7.5), we obtain the
power growth law

aðtÞ ∼ t
1
3; t → ∞; ð7:16Þ

if V0 > 0, then using (7.14) in (7.5), we get the familiar
exponential growth law

aðtÞ ∼ e
ffiffiffiffiffiffiffiffi
8πGV0

3

p
t; t → ∞; ð7:17Þ

unsurprisingly. Both situations give rise to the same big-
bang cosmological expansion scenario, að0Þ ¼ 0, _aðtÞ > 0
for t > 0, and aðtÞ → ∞ as t → ∞. Moreover, since the
Kretschmann scalar of the line element (7.2) assumes
the form

K ¼ 3ð _a4 − 2a _a2äþ 2a2ä2Þ
2a4

; ð7:18Þ

we arrive at the properties

KðtÞ ∼ t−4; t → 0; ð7:19Þ

KðtÞ ∼ t−4; t → ∞; V0 ¼ 0;

lim
t→∞

KðtÞ ¼ 32π2G2V2
0

3
; V0 > 0: ð7:20Þ

The property (7.19) indicates that the big-bang moment
t ¼ 0 is inevitably a curvature singularity.
The discussion here, especially the result (7.17), suggests

that the potential VðφÞ may well be identified with a field-
dependent cosmological constant, Λ¼ΛðφÞ¼8πGVðφÞ,
so that (7.4) gives rise to the matter density ρm and matter
pressure Pm with

ρ ¼ ρm þ Λ
8πG

; P ¼ Pm −
Λ

8πG
: ð7:21Þ
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Therefore, we are led to the expressions

ρm ¼ 2Xf0ðXÞ − fðXÞ; Pm ¼ fðXÞ; ð7:22Þ

which is a kind of parametrized form of the equation of state
of the cosmic fluid relating ρm and Pm. Specifically, for the
quadratic model (7.9), we have

ρm ¼ X þ 3αX2; ð7:23Þ

by the first equation in (7.22). Solving this equation, we have

X ¼ 1

6α

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12αρm

p
− 1
�
: ð7:24Þ

Inserting (7.24) into the second equation in (7.22), we obtain
the equation of state

Pm ¼
�
1

3
þ 4

3ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12αρm þ 1

p þ 1Þ
�
ρm; ð7:25Þ

explicitly. Since

lim
t→0

ρmðtÞ ¼ ∞; lim
t→∞

ρmðtÞ ¼ 0; ð7:26Þ

in view of (7.13) and (7.14), we arrive at the limits

lim
t→0

wmðtÞ ¼
1

3
; lim

t→∞
wmðtÞ ¼ 1; ð7:27Þ

where

wm ¼ Pm

ρm
¼ 1

3
þ 4

3ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12αρm þ 1

p þ 1Þ : ð7:28Þ

This result indicates that the quadratic model monotonically
interpolates two classical linear equations of state, radiation-
dominated matter with wm ¼ 1

3
and stiff matter with wm ¼ 1,

respectively.
As an analog with the classical Newtonian mechanics,

the equation of state (7.25) renders us the adiabatic squared
speed of sound c2s to be

c2s ¼
dPm

dρm

¼ 2

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12αρm þ 1

p þ 1Þ2
�
1þ 2αρm þ 8αρm þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12αρm þ 1
p

�
:

ð7:29Þ

This is a monotone decreasing function of ρm such that

lim
ρm→0

c2s ¼ 1; lim
ρm→∞

c2s ¼
1

3
: ð7:30Þ

In particular, we have 1
3
< c2s < 1 at any time t > 0,

regardless of the value of the positive parameter α. Since
the permissible range for the adiabatic squared speed of
sound is [0, 1), we conclude that the quadratic model (7.9)
is of relevance in giving rise to a meaningful cosmic fluid.
We now briefly consider the logarithmic model (5.1)

such that the k-essence nonlinearity is given by

fðXÞ¼−
1

β
lnð1−βXÞ; β>0; 0≤X<

1

β
: ð7:31Þ

Inserting (7.31) into (7.6), we have

X
ð1 − βXÞ2 ¼

c2

2a6
: ð7:32Þ

Solving for X in (7.32) and observing the range of X stated
in (7.31), we get

X ¼ h

�
c
a3

�
¼ 1

β2c2

�
a6 þ βc2 − a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a6 þ 2βc2

q �

¼ c2

a6 þ βc2 þ a3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a6 þ 2βc2

p : ð7:33Þ

On the other hand, inserting (7.31) into (7.5), we find the
density of the cosmic fluid defined by the k-essence to be

ρðXÞ ¼ 2X
1 − βX

þ 1

β
lnð1 − βXÞ þ V0: ð7:34Þ

It is clear that ρ0ðXÞ > 0 and

ρð0Þ ¼ V0; lim
X→1

β

ρðXÞ ¼ ∞; ð7:35Þ

corresponding to a ¼ ∞ and a ¼ 0, respectively. In par-
ticular, ρ > V0 ≥ 0, which ensures a forever expanding
universe. In view of (7.33) and (7.34), we have

ρ ¼
ffiffiffi
2

p
cffiffiffi

β
p

a3
þ 1

β

�
ln

ffiffiffi
2

p
a3ffiffiffi
β

p
c
− 1

�
þ V0

−
ffiffiffi
2

p
a3

4β
3
2c

þ Oða6Þ; a ≪ 1; ð7:36Þ

ρ ¼ c2

2a6
−

βc4

8a12
þ V0 þ Oða−18Þ; a ≫ 1: ð7:37Þ

From (7.36) and (7.5), we see that the big-bang initial
condition að0Þ ¼ 0 gives us the behavior

aðtÞ ∼ t
2
3; KðtÞ ∼ t−4; t → 0; ð7:38Þ

of the scalar factor and the Kretschmann invariant (7.18),
respectively, near the start of time. Furthermore,
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comparing (7.37) with (7.14), we see that the behavior (7.20)
holds asymptotically near time infinity. Following (7.22),
we may express the matter density ρm and pressure Pm of the
logarithmic model (7.31) as

ρm¼ 2X
1−βX

þ1

β
lnð1−βXÞ; Pm¼−

1

β
lnð1−βXÞ; ð7:39Þ

resulting in the equation of state

ρm ¼ 2

β
ðeβPm − 1Þ − Pm: ð7:40Þ

Besides, using (7.33), we have

lim
t→0

X ¼ 1

β
; lim

t→∞
X ¼ 0: ð7:41Þ

Hence, applying (7.41) to (7.39), we have

lim
t→0

ρmðtÞ ¼ ∞; lim
t→0

PmðtÞ ¼ ∞;

lim
t→∞

ρmðtÞ ¼ 0; lim
t→∞

PmðtÞ ¼ 0; ð7:42Þ

which are all expected in cosmology. In view of (7.40) and
L’Hôpital’s rule, we obtain

lim
t→0

Pm

ρm
¼ 0; lim

t→∞

Pm

ρm
¼ 1; ð7:43Þ

indicating that the logarithmic k-essence model interpolates
between the dust-matter and stiff-matter models. The adia-
batic squared speed of sound is

c2s ¼
dPm

dρm
¼ 1

2eβPm − 1
; ð7:44Þ

which decreases in Pm ∈ ½0;∞Þ and satisfies

lim
Pm→0

c2s ¼ 1; lim
Pm→∞

c2s ¼ 0: ð7:45Þ

In particular, the range 0 < c2s < 1 suggests that the loga-
rithmic k-essence model (7.31) could serve as a relevant
cosmic fluid model governing an expanding universe.
Finally, it will be instructive to compare these results with

those of the classical Born-Infeld model (2.6) within our
formalism, which in this context gives rise to the corre-
sponding k-essence Lagrangian action density (7.1) with

fðXÞ ¼ 1

β

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2βX

p �
: ð7:46Þ

Inserting (7.46) into (7.6), we find

X ¼ c2

2ða6 þ βc2Þ ; ð7:47Þ

which leads to the density function

ρðXÞ ¼ 2Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2βX

p −
1

β

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2βX

p �
þ V0

¼ 2Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2βX

p ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2βX

p Þ þ V0; ð7:48Þ

implicating an expanding universe. On the other hand, in
view of (7.47) and (7.48), we have

ρ ¼ cffiffiffi
β

p
a3

−
1

β
þ V0 þ

a3

2cβ
3
2

þ Oða6Þ; a ≪ 1; ð7:49Þ

ρ ¼ c2

2a6
−

βc4

8a12
þ V0 þ Oða−18Þ; a ≫ 1: ð7:50Þ

Note that (7.49) is similar to (7.36) but (7.50) is identical
to (7.37). As a result, we have similar time evolution
descriptions for various quantities. Besides, we have the
following nonlinear equation of state [10,69]:

Pm ¼ ρm
1þ βρm

; ð7:51Þ

which renders the limiting behavior (7.43), the bound
0 < c2s < 1, and the limits

lim
ρm→∞

c2s ¼ 0; lim
ρm→0

c2s ¼ 1; ð7:52Þ

corresponding to t ¼ 0 and t ¼ ∞, respectively. Note that
in (7.52) we use ρm to describe the limits of the adiabatic
squared speed of sound instead because by virtue of (7.47)
or (7.51) the matter pressure Pm stays bounded and enjoys
the limits

lim
t→0

PmðtÞ ¼
1

β
; lim

t→∞
PmðtÞ ¼ 0: ð7:53Þ

In other words, unlike that in the quadratic and logarithmic
models, the matter pressure of the classical Born-Infeld
model stays bounded even at the big-bang time t ¼ 0,
although its matter density tends to infinity there. This is
certainly a less desirable, physically unnatural or discrepant,
feature. Therefore, we conclude that, as cosmic fluids,
both the quadratic model (7.9) and the logarithmic model
(7.31) significantly deviate from the classical Born-Infeld
model (7.46), in view of k-essence cosmology, in addition to
their shared common features. These detailed fine points are
summarized as follows.
(a) In the context of k-essence cosmology, the classical

Born-Infeld model, the quadratic model, and the
logarithmic model all give rise to a big-bang scenario
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for the evolution of the universe such that at the initial
moment the matter density in each model is infinite
and in far future it vanishes.

(b) The matter pressure in the classical Born-Infeld model
remains finite at the initial moment despite the fact that
the matter density is infinite then. However, in both the
quadratic and logarithmic models, the matter pressures
become infinite initially at the big-bang moment as
well, which is consistent with the infinite matter-
density property, and thus may be considered physi-
cally more natural or agreeing.

(c) In terms of the equations of state, the classical Born-
Infeld model and the logarithmic model both inter-
polate between the dust-matter and stiff-matter fluids,
but the quadratic model interpolates between the
radiation-dominated matter and stiff matter.

(d) In either the classical Born-Infeld model or the
logarithmic model, the adiabatic squared speed of
sound is confined in the unit interval (0,1), but in the
quadratic model, it stays more restrictively in ð1

3
; 1Þ,

reflecting the fact that the associated fluid links the
radiation-dominated matter and stiff matter ones.

(e) The three models also share the common property that
their equations of state in each case define the
associated fluid pressure as a concave down function

of the density, d
2Pm
dρ2m

< 0, such that the adiabatic squared

speed of sound c2s decreases as ρm increases. This
property is consistent with the classical Newton-
Laplace sound speed formula [70–72] for fluids.

In Fig. 1, these points are further illustrated graphically.
Regarding property (b) stated above, the equations of

state (7.25), (7.40), and (7.51), for the quadratic, logarith-
mic, and the classical Born-Infeld models, respectively,
clearly describe the dependence relations between the fluid
density and pressure in each case; in particular, why the
pressure in the last case stays finite even though the density
approaches infinity as t → 0. Mathematically, such a
feature is exhibited in the nonlinearity function (7.46) in
that when the quantity X given in (7.47) goes to its
threshold value 1

2β as a → 0 the function fðXÞ given
by (7.46) goes to a finite limiting value. On the other
hand, the function fðXÞ given by (7.31), for example, tends
to infinity as X goes to its threshold value 1

β as a → 0 as
shown in (7.33). As for the quadratic model (7.9), the
quantity X has no threshold value and X → ∞ as a → 0 so
that both fluid density and pressure go to infinity at the big-
bang moment. Such a consistency property has also been
established in several other models [10], although it is
lacking in the original Born-Infeld model as observed.
It will be of interest to consider various energy con-

ditions [73–79] in our context, which are
(i) weak energy condition: ρm ≥ 0; ρm þ Pm ≥ 0,
(ii) dominant energy condition: ρm ≥ jPmj, and
(iii) strong energy condition: ρmþPm≥0;ρmþ3Pm≥0.

From (7.9), (7.22), (7.23), (7.39), and (7.51), it is clear
that the quadratic, logarithmic, and classical Born-Infeld
models given by (7.9), (7.31), and (7.46) satisfy all these
energy conditions.
More generally, we can extend (7.46) to consider the

fractional-powered model [10]

fðXÞ ¼ 1

β

�
1 −

�
1 −

βX
p

�
p
�
; 0 < p < 1; ð7:54Þ

as in [80–82] in the context of nonlinear electrodynamics.
Thus, using (7.22), we obtain the bound Pm ≤ 1

β and the
equation of state

ρm ¼ ð2p − 1ÞPm þ 2p
β

�
½1 − βPm�−ð

1
p−1Þ − 1

�
: ð7:55Þ

FIG. 1. Illustrative plots of the curves of the equations of state of
the k-essence cosmic fluids described by the classical Born-Infeld,
the logarithmic, and the quadratic models, as labeled respectively.
At the far future corresponding to t ¼ ∞ (the coordinate origin on
the left), the fluid density ρm and pressure Pm of each model both
vanish with unit limiting pressure-and-density ratio, wm ¼ Pm

ρm
¼ 1,

and adiabatic squared speed of sound, c2s ¼ 1. At the initial big-
bang moment, t ¼ 0 (far right), however, these models behave
rather differently. For the classical Born-Infeld model, although the
fluid density becomes infinite as t → 0, the fluid pressure stays
finite and in fact approaches its limiting value, 1

β, as t → 0,
indicating a discrepancy. In the quadratic and logarithmic models,
such a discrepancy is resolved in the sense that in either of the
models the fluid pressure also approaches infinity as t → 0.
Moreover, as t → 0, the adiabatic squared speeds of sound of
the classical Born-Infeld and logarithmic models both approach
zero, implying a dust-matter fluid, but that of the quadratic model
tends to 1

3
, indicating a radiation-dominated-matter fluid.
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As a consequence, we have

dρm
dPm

¼ð2p−1Þþ 2ð1−pÞ
ð1−βPmÞ

1
p

≥1; Pm<
1

β
; ð7:56Þ

resulting in the physically desired bounds 0 < c2s < 1 for
all t > 0 again. Furthermore, combining (7.55) and (7.56),
we arrive at

lim
ρm→∞

Pm ¼ 1

β
: ð7:57Þ

In other words, the density-pressure inconsistency univer-
sally occurs in the fractional-powered model (7.54) as in
the classical Born-Infeld model (7.46) as depicted in Fig. 1.
In particular, we see that the consensus that the early
universe is a radiation-dominated era [52,83,84] charac-
terized by the equation of state

Pm ¼ 1

3
ρm ð7:58Þ

is violated by the model (7.54), as well as by the models
(7.31) and (7.46). In contrast, it is fortunately observed
by the quadratic model (7.9), as described by (7.27), or
more precisely by (7.28).
The above study prompts us to compare the quadratic

model in contrast with some other extended models with
respect to the preservation of the equation of state (7.58) in
the early universe limit t → 0. For this purpose and for
convenience, we rewrite (7.6) as

f0ðXÞ
ffiffiffiffiffiffi
2X

p
¼ c

a3
; c > 0; ð7:59Þ

so that the dynamic quantity X ¼ 1
2
_φ2 depends on the

metric factor a monotonically. Now set

X0 ¼ lim
a→0

X ¼ lim
t→0

X: ð7:60Þ

We are to consider the limiting ratio

w0
m ≡ lim

X→X0

wmðXÞ ¼ lim
X→X0

PmðXÞ
ρmðXÞ

¼ lim
X→X0

fðXÞ
2Xf0ðXÞ − fðXÞ ;

ð7:61Þ

in view of (7.22).
Indeed, for the polynomial model [10]

fðXÞ¼Xþ
Xn
m¼2

amXm; a2;…;an >0; n≥2; ð7:62Þ

it is clear that X0 ¼ ∞, so that (7.61) renders

w0
m ¼ lim

X→∞

X þPn
m¼2 amX

m

X þPn
m¼2ð2m − 1ÞamXm ¼ 1

2n − 1
: ð7:63Þ

So, to observe a radiation-dominated era with w0
m ¼ 1

3
, the

unique choice is n ¼ 2, namely, the quadratic model (7.9).
It is interesting that (7.63) is independent of the values of
the coefficients a2;…; an which define the polynomial
model (7.62).
As another example, we consider the exponential

model [32,33]

fðXÞ ¼ 1

β
ðeβX − 1Þ; β > 0: ð7:64Þ

Inserting (7.64) into (7.59), we see again that X0 ¼ ∞
in (7.60). Hence, substituting (7.64) into (7.61), we have

w0
m ¼ lim

X→∞

eβX − 1

ð2βX − 1ÞeβX þ 1
¼ 0; ð7:65Þ

which cannot realize a radiation-dominated era in the early
universe, regardless of the value of the parameter β.
Moreover, it is clear that the exponential model (7.64) is

the large-p limit of the fractional-powered model [10]

fðXÞ¼1

β

��
1þ β

p
X

�
p
−1

�
; p≥1; β>0: ð7:66Þ

For this model, we also have X0 ¼ ∞ so that (7.61) yields

w0
mðpÞ ¼ lim

X→∞

fðXÞ
2Xf0ðXÞ − fðXÞ

¼ lim
X→∞

1 − ð1þ β
p XÞ−p

2βXð1þ β
p XÞ−1 − 1þ ð1þ β

p XÞ−p

¼ 1

2p − 1
: ð7:67Þ

Consequently, (7.65) is the large-p limit of (7.67) as well.
Furthermore, the condition of realizing a radiation-
dominated era in the early universe, or w0

mðpÞ ¼ 1
3
, singles

out the quadratic model p ¼ 2 again. Incidentally, when the
power p in (7.66) is an integer, p ¼ 2; 3;…, the fractional-
powered model (7.66) is contained in the polynomial
model (7.62).
Thus we conclude that, through k-essence cosmology,

the quadratic model distinguishes itself further in giving
rise to a correct early-universe equation of state for the
wave-matter cosmic fluid it generates.

VIII. CONCLUSIONS

The main contributions of this work are the derivation of
the equations of motion governing static dyonic matters,
described in terms of two real scalar fields, in nonlinear
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electrodynamics of the Born-Infeld theory type, construc-
tion of exact finite-energy solutions of these equations in
the quadratic and logarithmic models in light of electro-
magnetic symmetry and asymmetry, subject to dyonic
point-charge sources, construction of dyonically charged
black holes with relegated curvature singularities in these
models, and cosmological differentiation of the nonlinear
models under consideration with regard to the associated
k-essence dynamics. Specifically, put in perspective, these
new results are summarized and commented on as follows.

(i) We have considered the nonlinear electrodynamics
of the Born-Infeld theory in its most general for-
malism and derived its equations of motion de-
scribed in terms of two scalar potential fields which
govern a static dyonic matter distribution and con-
tain two independent coupling parameters, β and κ.
The first limiting case, κ ¼ 0, corresponds to the first
Born-Infeld model arising from special relativity.
The second limiting case, β ¼ κ2, corresponds to the
second Born-Infeld model based on an invariance
principle.

(ii) As important examples, static dyonic matter equa-
tions in the classical Born-Infeld model, the quad-
ratic model, and the logarithmic model are presented
and their exact solutions subject to point-charge
sources are obtained explicitly. These solutions
demonstrate the crucial role played by the coupling
parameter κ as a switch to turn on and off the
finiteness of the energy carried by a solution.

(iii) Of particular interest is the quadratic model situa-
tion. In an earlier study, we have seen that a finite-
energy electric point charge is accommodated in all
nonlinear electrodynamics models with polynomial
type nonlinearity but a magnetic point charge is
excluded, within the first Born-Infeld theory context
characterized with κ ¼ 0, which is a phenomenon
referred to as electromagnetic asymmetry. In the
present study with κ > 0, the obtained finite-energy
dyonic point-charge solutions indicate that electro-
magnetic symmetry may be restored in the quadratic
model by dyons which accommodate electricity and
magnetism simultaneously, although in terms of the
fine structures of electromagnetism both field-wise
and energy-wise there is local asymmetry near the
center of the dyonic point-charge source but sym-
metry restoration asymptotically near spatial infin-
ity. This phenomenon of local asymmetry and
asymptotic symmetry of electromagnetism of dyons
is further exhibited transparently in the logarithmic
model as well.

(iv) As for the dyonically charged black hole obtained
earlier in the classical Born-Infeld model, the
charged black holes in the quadratic and logarithmic
models have relegated curvature singularities at
the center of the charges, r ¼ 0, measured by the

Kretschmann invariant, K, which are of the same
order as that of the Schwarzschild black hole,
K ∼ r−6, in general, as a result of the finiteness
of the associated electromagnetic energy of the
dyonic point-charge sources. This singularity may
further be ameliorated to K ∼ r−4 under a critical
mass-energy condition, as in the classical Born-
Infeld model.

(v) For both the quadratic and logarithmic models,
the gravitational metric factors of the dyonically
charged black holes are indistinguishable and be-
have like the Reissner-Nordström black hole up to
the order of r−6 for r ≫ 1, although they possess
different fine local structures electromagnetically
and energetically for r ≪ 1. Up to the order r−2,
these black holes have the same Brown-York qua-
silocal energy within the radial coordinate distance
r ≫ 1 such that they possess the same ADMmass to
which the electromagnetic energy makes no con-
tribution. However, in these models, electromagnet-
ism contributes to black hole thermodynamics
through the Hawking radiation.

(vi) In the context of k-essence cosmology, the quadratic
and logarithmic models both give rise to the same
big-bang universe scenario and initial curvature
singularities, although as cosmic fluids these models
follow different equations of state and interpolate
different limiting states. In particular, the associated
adiabatic squared speeds of sound of the models take
different physically meaningful ranges during the
evolution of the universe.

(vii) In terms of k-essence cosmology, the quadratic and
logarithmic models are shown to distinguish them-
selves against the classical Born-Infeld model in that
the former give rise to a consistent description for the
expansion of the universe in a big-bang scenario
such that in these two former models both fluid
density and pressure blow up at the initial moment
but the latter third model renders a finite limit of
the pressure despite the initial blowup of the fluid
density, which signals a physical discrepancy or
inconsistency in the classical model in contrast.
More importantly and interestingly, the quadratic
model gives rise to a radiation-dominated era in the
early universe, and in contrast, the classical model,
and more generally, the fractional-powered model,
the logarithmic model, as well as the exponential
model, all fail to do so, but instead, give rise to a
dust-dominated era, rendering another inconsistency
against the commonly accepted consensus. In this
regard, the quadratic model seems more favorable
and advantageous, in addition to its exclusion of a
finite-energy monopole, and stands out uniquely
among other polynomial models, beyond the quad-
ratic model, which all exclude monopoles but give
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rise to incorrect pressure-density ratios in the
early universe.

The data that supports the findings of this study are
available within the article.
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APPENDIX: METRIC FACTORS

In this Appendix, we elaborate on the metric factor
problem associated with dyonically charged black holes
generated from the nonlinear electrodynamics of the
Born-Infeld type considered in Sec. VI. Recall that, with
spherical symmetry, the most general static spacetime line
element assumes the form [47,52]

dτ2 ¼ gμνdxμdxν

¼ PðrÞdt2 −QðrÞdr2 − r2ðdθ2 þ sin2 θdϕ2Þ; ðA1Þ
where P and Q are positive-valued functions of the radial
variable r only. It is well known that, in the situations of
the vacuum Einstein equations and the Einstein equations
coupled with the Maxwell equations so that the solutions
are the Schwarzschild massive black hole and the Reissner-
Nordström charged black hole, respectively, it can be
shown that P and Q must satisfy the normalized condition

PQ ¼ 1: ðA2Þ
In the context of the generalized nonlinear electrodynamics,
it continues to be consistent to assume the condition (A2).
That is, it is consistent to work with the line element (6.1) as
an ansatz. On the other hand, it will be interesting and
important to study whether the condition (A2) is dictated, as
in the classical situations, by nonlinear electrodynamics as
well. In this Appendix, we show, indeed, that (A2) must hold
for dyonically charged black hole solutions as a necessary
condition, regardless of the form of the function fðsÞ in the
nonlinear electrodynamics theory (2.1). In other words, the
line element (6.1) is the most general line element to bring
forth static spherically symmetric dyonically charged black
hole solutions to the Einstein equations coupled with non-
linear electrodynamics of the Born-Infeld type.
To proceed, we shall relate the Ricci tensor of the line

element (A1) to the energy-momentum tensor of the
nonlinear electrodynamics defined by (2.1) through the
Einstein equations. We see that the governing equations of
electromagnetism impose some constraints to the energy-
momentum tensor, hence to the Ricci tensor as well, which
inevitably results in (A2). As a by-product of this

formalism, we also show that electric and magnetic charges
arise as integration constants, rather than prescribed
quantities, naturally giving rise to dyonically charged
black holes. This property is an interesting aspect for its
own sake.
First, with (A1), the nontrivial and independent compo-

nents of the Ricci tensor are given by the expressions

R00 ¼ −
P00

2Q
þ P0

4Q

�
P0

P
þQ0

Q

�
−

P0

rQ
; ðA3Þ

R11 ¼
P00

2P
−

P0

4P

�
P0

P
þQ0

Q

�
−
Q0

rQ
; ðA4Þ

R22 ¼ −1þ 1

Q
þ r
2Q

�
P0

P
−
Q0

Q

�
; ðA5Þ

R33 ¼ sin2 θR22: ðA6Þ
Next, since the electromagnetic tensor now is also

radially symmetric [26], we see that the nontrivial and
independent components of Fμν are

F01 ¼ −X; F23 ¼ −Y; ðA7Þ
in which X and Y may be regarded as the radial components
of the underlying electric and magnetic fields sustained
by a dyonic charge, respectively, whose properties will
become clearer later. Thus, using ðgμνÞ ¼ diagðP;−Q;−r2;
−r2 sin2 θÞ and ðgμνÞ¼diagðP−1;−Q−1;−r−2;−r−2 sin−2θÞ
to lower and raise indices, respectively, we see that
the nontrivial and independent components of Fμν; F̃μν,
and F̃μν are

F01 ¼ PQX; F23 ¼ −r4 sin2 θY; ðA8Þ

F̃01 ¼
ffiffiffiffiffiffiffi
PQ

p
r2 sin θY; F̃23 ¼

ffiffiffiffiffiffiffi
PQ

p
r2 sin θX; ðA9Þ

F̃01 ¼ −
r2 sin θYffiffiffiffiffiffiffi

PQ
p ; F̃23 ¼

ffiffiffiffiffiffiffi
PQ

p
X

r2 sin θ
; ðA10Þ

respectively. Here F̃μν is the Hodge dual of Fμν with respect
to the metric ðgμνÞ given by

F̃μν ¼ 1

2
εμναβFαβ; ε0123 ¼ 1ffiffiffiffiffiffi−gp : ðA11Þ

With these results, we have

FμνF̃μν ¼ −4r2 sin θ
ffiffiffiffiffiffiffi
PQ

p
XY: ðA12Þ

Moreover, recall that the curved-spacetime Born-Infeld
electromagnetic field equations of (2.1) now read

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
PμνÞ ¼ 0; ðA13Þ
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Pμν ¼ f0ðsÞ
�
Fμν −

κ2

4
½FαβF̃αβ�F̃μν

�
; ðA14Þ

where the quantity s in (2.1) and (A14) assumes the form

s ¼ −
1

4
FμνFμν þ κ2

32
ðFμνF̃μνÞ2

¼ 1

2
ðPQX2 − r4 sin2 θY2Þ þ κ2

2
r4 sin2 θPQðXYÞ2;

ðA15Þ

by (A7), (A8), and (A12). Similarly, in view of (A7), (A10),
and (A12), we obtain the nontrivial and independent
components of the tensor field Pμν given in (A14) to be

P01 ¼ −f0ðsÞð1þ κ2r4 sin2 θY2ÞX; ðA16Þ

P23 ¼ −f0ðsÞð1 − κ2PQX2ÞY: ðA17Þ

On the other hand, from (A10), we see that the Bianchi
identity

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
F̃μνÞ ¼ 0 ðA18Þ

has only two independent nontrivial components at ν ¼ 0
and ν ¼ 3, respectively, which can be reduced into

ðr4 sin2 θYÞr ¼ 0; ðA19Þ

Xθ ¼ 0; ðA20Þ

since
ffiffiffiffiffiffi−gp ¼ ffiffiffiffiffiffiffi

PQ
p

r2 sin θ. As a consequence of (A20), we
find that X depends on r only. Moreover, within spherical
symmetry, the quantity (A15) depends on r only. With this
fact in mind, we obtain from the ν ¼ 3 component of
Eq. (A13) the result

ðsin θYÞθ ¼ 0; ðA21Þ

which implies the conclusion

Y ¼ Z
sin θ

; ðA22Þ

where Z depends on r only. Hence, in terms of the
r-dependent functions X and Z, we have

F̃01 ¼
ffiffiffiffiffiffiffi
PQ

p
r2Z; F̃23 ¼

ffiffiffiffiffiffiffi
PQ

p
r2 sin θX; ðA23Þ

F̃01 ¼ −
r2Zffiffiffiffiffiffiffi
PQ

p ; F̃23 ¼
ffiffiffiffiffiffiffi
PQ

p
X

r2 sin θ
; ðA24Þ

FμνF̃μν ¼ −4r2
ffiffiffiffiffiffiffi
PQ

p
XZ; ðA25Þ

s ¼ 1

2
ðPQX2 − r4Z2Þ þ κ2

2
r4PQX2Z2: ðA26Þ

Inserting (A8) and (A23)–(A26) into the energy-
momentum tensor given by

Tμν ¼ −f0ðsÞ
�
FμαgαβFνβ −

κ2

4
ðFμ0ν0F̃μ0ν0 ÞFμαgαβF̃νβ

�
− gμνfðsÞ; ðA27Þ

we see that its nontrivial components are

T00 ¼ P2Qf0ðsÞð1þ κ2r4Z2ÞX2 − PfðsÞ; ðA28Þ

T11 ¼ −PQ2f0ðsÞð1þ κ2r4Z2ÞX2 þQfðsÞ; ðA29Þ

T22 ¼ r6f0ðsÞð1 − κ2PQX2ÞZ2 þ r2fðsÞ; ðA30Þ

T33 ¼ sin2 θT22: ðA31Þ

Using (A28)–(A31), we find the trace of the energy-
momentum tensor to be

T ¼ 2f0ðsÞðPQX2 þ 2κ2r4PQX2Z2 − r4Z2Þ − 4fðsÞ:
ðA32Þ

We are now ready to derive the anticipated reduction
of the line element (A1), as stated in (A2). To this end, we
use (A3), (A4), (A28), (A29), and (A1) to arrive at

1

r

�
P0

P
þQ0

Q

�
¼ −

Q
P
R00 − R11

¼ 8πG

�
Q
P
T00 þ T11

�

− 4πG

�
Q
P
g00 þ g11

�
T ¼ 0; ðA33Þ

in view of the Einstein equations

Rμν ¼ −8πG
�
Tμν −

1

2
gμνT

�
: ðA34Þ

Note that the vanishing of the second term on the right-hand
side of (A33) is actually independent of the details of T.
As a consequence of (A33), we have

ðPQÞ0 ¼ 0; ðA35Þ

which leads to PQ ¼ constant. Since we are interested
in an asymptotically flat metric, we should impose the
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condition PðrÞ; QðrÞ → 1 as r → ∞. This establishes (A2)
so that we arrive at the line element (6.1).
As a consequence, with P ¼ A and Q ¼ 1

A, we see
that (A3)–(A6) and (A28)–(A32) become

R00 ¼ −
A
2r2

ðr2A0Þ0; R11 ¼
1

2r2A
ðr2A0Þ0;

R22 ¼ ðrAÞ0 − 1; R33 ¼ sin2 θR22; ðA36Þ

and

T00 ¼ Af0ðsÞð1þ κ2r4Z2ÞX2 − AfðsÞ; ðA37Þ

T11 ¼ −
f0ðsÞ
A

ð1þ κ2r4Z2ÞX2 þ fðsÞ
A

; ðA38Þ

T22 ¼ r6f0ðsÞð1− κ2X2ÞZ2 þ r2fðsÞ; T33 ¼ sin2 θT22;

ðA39Þ

T ¼ 2f0ðsÞðX2 þ 2κ2r4X2Z2 − r4Z2Þ − 4fðsÞ; ðA40Þ

respectively. Therefore, in view of (A36)–(A40), we see
that the Einstein equations (A34) are reduced into

ðr2A0Þ0 ¼ 16πGr2ðr4f0ðsÞðZ2 − κ2½XZ�2Þ þ fðsÞÞ; ðA41Þ

ðrAÞ0 ¼1−8πGr2ðf0ðsÞðX2þκ2r4½XZ�2Þ−fðsÞÞ; ðA42Þ

which are overdetermined. We now show that (A41) is
necessarily contained in (A42). In fact, in terms of A, X, Z,
the ν ¼ 0 component of (A13) becomes

ðr2f0ðsÞð1þ κ2r4Z2ÞXÞr ¼ 0: ðA43Þ

Thus, applying (A43), we see that (A41) and (A42) lead to

ðr2A0Þ0 − rðrAÞ00 ¼ 16πGr6Zf0ðsÞð1 − κ2X2Þ
�
2Z þ rZ0

2

�
;

ðA44Þ

in view of

ds
dr

¼ ð1þ κ2r4Z2ÞXX0 þ r4ð−1þ κ2X2ÞZZ0

þ 2r3ð−1þ κ2X2ÞZ2; ðA45Þ

because (A26) is updated into

s ¼ 1

2
ðX2 − r4Z2Þ þ κ2

2
r4X2Z2: ðA46Þ

Since consistency requires ðr2A0Þ0 − rðrAÞ00 ¼ 0, we are led
to imposing the equation

rZ0 ¼ −4Z ðA47Þ

in (A44). However, it is clear that (A47) must hold in
view of (A19) and (A22). Hence, we have verified that
(A41) is contained in (A42). In other words, the Einstein
equations (A34) are reduced into the single equation (A42).
Besides, the solution to (A47) reads

Z ¼ g
r4
; ðA48Þ

which represents a magnetic point charge. In fact,
applying (A48) to (A43), we have

f0ðsÞ
�
1þ κ2

g2

r4

�
X ¼ q

r2
; ðA49Þ

where the constant q may naturally be interpreted as a
prescribed electric charge. In view of (2.32), we see that
(A49) is the radial version of the constitutive equation (2.2)
with setting

Dr ¼ q
r2

; Er ¼ X; Br ¼ r2Z ¼ g
r2

; ðA50Þ

so that (A37)–(A40) and (A46) all assume their expected
radially symmetric forms in terms of the prescribed
electric charge q and magnetic charge g, respectively.
Consequently, we arrive at the formulation carried out in
Sec. VI as described.
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