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We investigate the effects of quantum backreaction on the Schwarzschild geometry in the semiclassical
approximation. The renormalized stress-energy tensor (RSET) of a scalar field is modeled via an order
reduction of the analytical approximation derived by Anderson, Hiscock, and Samuel (AHS). As the
resulting AHS semiclassical Einstein equations are of fourth-derivative order in the metric, we follow a
reduction of order prescription to shrink the space of solutions. Motivated by this prescription, we develop a
method that allows us to obtain a novel analytic approximation for the RSET that exhibits all the desired
properties for a well-posed RSET: conservation, regularity, and correct estimation of vacuum-state
contributions. We derive a set of semiclassical equations sourced by the order-reduced AHS-RSET in the
Boulware state. We classify the self-consistent solutions to this set of field equations, discuss their main
features and address how well they resemble the solutions of the higher-order semiclassical theory. Finally,
we establish a comparison with previous results in the literature obtained through the Polyakov
approximation for minimally coupled scalar fields.
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I. INTRODUCTION

The theory of general relativity (GR) has provided uswith
profound insights about the fate of gravitational collapse,
including the very notion of black holes [1,2], and about the
dynamics of our Universe through cosmological solutions
[3]. It is, however, generally accepted that GR fails to
provide an adequate description near spacetime singular-
ities. In this regard, it is largely expected that the incorpo-
ration of quantum physics will provide the missing pieces to
the gravitational puzzle (see, e.g., [4–6]). Nonetheless, a
definite theory of quantumgravity is yet to be discovered [7].
Probably the best motivated and most conservative

framework beyond GR is semiclassical gravity, both con-
ceptually and historically [8]. In semiclassical gravity, the
spacetime geometry remains classical, while the matter
sector of the theory is quantized. Then, one considers the
mean-value backreaction of this quantum matter onto the
background geometry. This typically comes by incorpo-
rating a semiclassical renormalized stress-energy tensor
(RSET) as a new source in the Einstein equations,

Gμν ¼ 8πðTC
μν þ ℏhT̂μνiÞ: ð1Þ

The right-hand side of this expression includes a classical
stress-energy tensor (SET) plus the RSET, which is often
represented as the vacuum expectation value of the SET

operator for some quantum fields. This quantity depends on
the selection of a vacuum state for the quantum fields and, in
general, is a complicated functional (with a numeric part) of
the metric functions. The RSET can violate the pointwise
energy conditions [9,10], thus having strong implications
for the fate of horizons [11,12], gravitational collapse
[13,14], and the big bang singularity [15,16].
Obtaining a closed form expression for the RSET of a

quantum field in specific 3þ 1 background spacetimes is a
formidable task, even for spacetimes displaying a high
degree of symmetry like static black hole spacetimes
[17,18]. Nonetheless, there have been impressive advances
with the pragmatic mode sum regularization [19] and
extended coordinate methods [20]. The problem gets worse
when seeking for RSETs on generic geometries, which is
necessary in order to construct systems of semiclassical
Einstein equations to search for their self-consistent sol-
utions. This is the principal reason behind considering
several simplifying assumptions that canmake this endeavor
tractable. For instance, in this paper we will restrict our
discussions to a single massless quantum scalar field living
in spherically symmetric backgrounds. In general, finding
the RSET in this context requires computing accurately the
modes in which the field is decomposed [21]. Even for static
and spherically symmetric spacetimes, the RSET can only
be calculated numerically, so that performing self-consistent
analyses becomes increasingly laborious. An alternative

PHYSICAL REVIEW D 107, 085005 (2023)

2470-0010=2023=107(8)=085005(19) 085005-1 © 2023 American Physical Society

https://orcid.org/0000-0001-6853-7742
https://orcid.org/0000-0002-2134-377X
https://orcid.org/0000-0002-3943-7782
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.085005&domain=pdf&date_stamp=2023-04-06
https://doi.org/10.1103/PhysRevD.107.085005
https://doi.org/10.1103/PhysRevD.107.085005
https://doi.org/10.1103/PhysRevD.107.085005
https://doi.org/10.1103/PhysRevD.107.085005


standard procedure is to resort to analytical approximations
to the RSET. A suitable approximation should resemble the
exact (numerical) RSET at least qualitatively and share its
main features.

A. The Polyakov approximation

The approximation scheme that has been most exten-
sively used in the literature is the so-called Polyakov
approximation [22–24]. It models the RSET of a massless
scalar field via a dimensional reduction to 1þ 1 dimen-
sions, where the scalar theory becomes conformally invari-
ant. Physically, it amounts to taking only the s-wave sector
and neglecting any backscattering [25]. The RSETobtained
this way has the desirable properties of being analytic,
second order, and unique.
The Polyakov approximation has an unphysical diver-

gence at the radial origin, though, a limitation that comes
from the very procedure used to construct this approxima-
tion. This makes it unsuitable for finding semiclassical
stellar configurations. However, it is possible to regularize
the Polyakov RSET using different criteria. In previous
works by the authors, we analyzed in an exhaustive manner
the set of semiclassical solutions that appear using a
regularized Polyakov approximation. We first analyzed
the vacuum solutions [26] as well as the electrovacuum
solutions [27] using a simple cutoff regularized version. We
found that the counterparts of the Schwarzschild and
subextremal Reissner-Nordström black holes are nonsym-
metric wormholes with no horizon and an internal null
singularity at a finite proper radial distance. One of the aims
of the present work consists of comparing these solutions
with the ones that will be obtained here using a different
approximation scheme.
Later on, we analyzed the semiclassical solutions for a

classical fluid of constant density [28]. We found that there
exist entire families of regularizations leading to self-
consistent relativistic stars that are much more compact
than the classical Buchdahl limit [29]. This is possible
because the semiclassical energy density becomes negative
inside these stars, in a manner that generates internal layers
in which the total energy density increases outward (thus
violating one of the central conditions of the Buchdahl
theorem [30]). This shows that semiclassical gravity is
compatible with the existence of horizonless ultracompact
objects that could mimic many of the observational proper-
ties of black holes [31,32].

B. Order-reduced Anderson, Hiscock,
and Samuel approximation

In this paper, we will explore a different analytic
approximation to the RSET based on applying a differ-
ential-order-reduction procedure to the Anderson, Hiscock,
and Samuel (AHS) RSET [18]. We will work out this
procedure in detail and use it to find vacuum semiclassi-
cal solutions. Apart from developing this alternative

approximation scheme, the purpose and central interest
of our explorations in here is not so much to find the most
precise vacuum semiclassical solution, but rather to find
robust physical conclusions that are preserved when
changing the approximation scheme. An example of such
robust conclusions could be that in static situations event
horizons disappear and get replaced by pathological sin-
gularities, as indicated by previous works [26,33,34].
In [18], Anderson et al. derived the RSETof a scalar field

of arbitrary mass and coupling in static and spherically
symmetric spacetimes, i.e., a field obeying the equation of
motion

□ϕ − ðm2 þ ξRÞϕ ¼ 0; ð2Þ

where□ is the d’Alembertian operator,m is the field mass,
and ξ is the coupling to the Ricci scalar R. This exact RSET
can be decomposed into two independently conserved
parts, one of which is entirely analytical and the other
requires numerical calculation,

hT̂μ
νiren ¼ hT̂μ

νiAHS þ hT̂μ
νinum: ð3Þ

The analytical portion hT̂μνiAHS already captures the defin-
ing features of the standard vacuum states at horizons, yields
the correct trace anomaly in the conformally invariant case,
and is well defined at the center of stellar spacetimes (with a
caveat shown in Appendix B, where the explicit form of the
AHS components is provided). This last characteristic is
lacking from other RSET approximations like Polyakov’s.
Nonetheless, as a drawback, the analytical part (or AHS-
RSET in what follows) exhibits terms that have up to fourth-
order derivatives of the metric functions (these expressions
were also derived by Popov for the Boulware state [35]).
Their presence is a consequence of the quasilocal nature of
the renormalization procedure and they bring an enlarge-
ment of the space of solutions of semiclassical gravity with
respect to standard GR (a straightforward demonstration of
which is the enlargement of the initial conditions necessary
to have a well-posed initial value problem).
However, as it is clearly exposed in [15,36,37], many of

these solutions cannot be regarded as physical. On the one
hand, these higher-derivative equations exhibit nonphysical
solutions in a manner analogous to the Dirac-Abraham-
Lorentz equation of classical electrodynamics [38] (e.g.,
runaway solutions, preacceleration effects). Bear in mind
that, while such pathologies are linked to the presence of
higher-order temporal derivatives [39], higher-order spatial
derivatives can also entail the presence of nonphysical
solutions, see, e.g., Ref. [40].
On the other hand, there is the argument made by Simon

[36] that such solutions are nonperturbative in ℏ and,
therefore, inconsistent with the idea that the semiclassical
equations (1) are derived upon truncating the effective
action of the theory at linear order in ℏ [36,41]. This
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process should eliminate all nonperturbative behavior in ℏ
from the start. In addition to these problems, it is the case
that finding the self-consistent solutions to the higher-
derivative semiclassical equations by brute force, despite
being doable in some situations (see Ref. [40]), requires
exploring an enormous space of parameters and defining a
trustworthy criterion for selecting which solutions are
physical. Henceforth, it is reasonable to subject the
AHS-RSET to a procedure of order reduction so that we
are left with a second-order system of differential
equations.
We will work out in detail the method of reduction of

order in the next section but, before that, let us advance a
few observations. As we will see, the procedure of the order
reduction naturally leads to a new analytic approximation
for the RSET that satisfies all the desirable properties than a
RSET should have (as captured by Wald’s axioms [42],
which exact RSETs obtained through covariant renormal-
ization procedures satisfy). We then apply our method
toward obtaining geometries incorporating semiclassical
backreaction in absence of classical matter. In cosmological
scenarios, the order-reduced equations admit analytic
solutions [15,43,44]. On the contrary, the geometries here
obtained are found through numerical integration, but
analytic arguments allow one to constrain the form of
the various solutions that appear.
Before ending this Introduction, it is worth highlighting

the advantages and limitations of the analytic approximation
to the RSETobtained in [18]. Towhich extent the very AHS-
RSET is a good approximation to the total RSET is some-
thing that depends on the background geometry onwhich it is
evaluated and on themass of the scalar field. Dependence on
the background requires computing hT̂μ

νinum in each scenario
and checking whether the correction it entails can be safely
neglected (compared to hT̂μ

νiAHS). For conformally invariant
fields in the Schwarzschild black hole spacetime, hT̂μ

νiAHS
reduces to the Page-Brown-Ottewill RSET [45], which has
been shown to be an extremely good approximation [46]. In
Reissner-Nordström spacetimes, however, this approxima-
tion becomes progressively worse as the charge-to-mass
ratio is increased [18]. Whether something similar occurs in
other spacetimes (like regular stellar geometries) is yet to be
known.
As for the effect of the field mass, in flat spacetime the

components of the AHS-RSET reduce to

hT̂r
riAHS ¼

κ4

1440π2
−
κ2m2

96π2
þ m4

128π2
ð4 log ν − 3Þ;

hT̂t
tiAHS ¼ −

κ4

480π2
þ κ2m2

96π2
þ m4

128π2
ð4 log νþ 1Þ; ð4Þ

with hT̂θ
θiAHS ¼ hT̂φ

φiAHS ¼ hT̂r
riAHS. The first term on the

right-hand side of (4) is the thermal bath seen by a static
observer for which the field is in a state with nonzero
temperature κ=2π. For massive fields, ν can either equal

meγ=2κ or m=2λ depending on whether the field is in a
thermal or zero-temperature state, respectively (λ is a
positive parameter related to an infrared cutoff in the
otherwise divergent frequency integrals in [18] and γ is
Euler’s constant). For massless fields, ν is an arbitrary
parameter. Ambiguities present in RSET definitions have to
be ultimately fixed via experiments. Suitable RSETs must
reproduce standard results in Minkowski spacetime, where
the RSET can be renormalized to zero via normal ordering
[47]. In the zero-temperature massive case, the AHS-RSET
(4) has mass-dependent anomalous contributions in flat
spacetime that cannot be canceled in all components by a
particular choice of ν. These contributions also arise in the
context of the cosmological constant problem [48], where
massive scalar fields in Minkowski space generate non-
vanishing quantum pressures and densities. As the involved
integrals over the frequency are divergent, some regulari-
zation method must be applied. Those that violate Lorentz
invariance (like a bare cutoff in the frequency) yield an
effective quantum fluid that does not satisfy the equation of
state of vacuum energy. The infrared cutoff λ plays a similar
role here, as the components (4) describe a cosmological
constant only in the ν → 0 and ν → ∞ limits, the latter
corresponding to the absence of any infrared cutoff λ in the
renormalization procedure. In that case, the RSET compo-
nents (4) diverge, although in a way that satisfies the
equation of state of vacuum energy. As this discussion
extends beyond the scope of this article, we adopt the view
that the analytic approximation alone cannot be trusted if
the field is massive since, in black hole spacetimes, their
components will be nonvanishing in the asymptotically flat
region for the Boulware state. Consequently, we set m ¼ 0
for the remainder of this work.
The paper is organized as follows. Section II describes

the order-reduction procedure and the derivation of the
order-reduced RSET approximation in the Boulware vac-
uum state. Then, in Sec. III we solve the semiclassical
equations self-consistently using this new RSET approxi-
mation and analyze the characteristics of the solutions.
Section IV discusses the accuracy of the order-reduced
RSET by addressing how different this OR-RSET is from
the AHS-RSET for particular solutions. We compare these
results with previous analyses using the regularized
Polyakov approximation in Sec. V. In particular, we discuss
which elements are specific to the approximation and
which ones are more generic. We conclude with a summary
of our results and some final remarks.

II. REDUCING THE ORDER OF THE
AHS-RSET IN VACUUM

The order-reduction procedure did not originate in
semiclassical analyses, but is much older and emerged in
the context of the electromagnetic radiation reaction
equation [49]. The method applies to any theory where
higher-order contributions in a set of ordinary differential
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equations are multiplied by some small parameter [50,51]
in terms of which the solutions can be expanded.
In the context of semiclassical gravity, order reduction

was first applied to prove the stability of flat space [36] and
the absence of a Starobinsky inflationary phase driven by
semiclassical backreaction [43]. Then, it has been applied
as well for obtaining the dynamics of Friedmann-Lemaître-
Robertson-Walker and Kasner cosmologies [15,44,52] and
the study of averaged energy conditions [37]. Here, we
apply this method to static, spherically symmetric space-
times, the line element of which can be written, without loss
of generality, as

ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2dΩ2; ð5Þ

where dΩ2 is the line element of the unit two-sphere.
Not all components of the vacuum semiclassical Einstein

equations [i.e., Eq. (1) without the classical SET] are
independent. In fact, we can just focus on the tt and rr
components,

hð1 − hÞ − rh0

h2r2
¼ 8πℏhT̂t

tiAHS;
rf0f − fh

fhr2
¼ 8πℏhT̂r

riAHS; ð6Þ

where the right-hand side contains higher-derivative terms.
As mentioned above, this RSET was found by Anderson
et al. Its concrete and lengthy form, which is not very
illustrative, can be seen in [18]; we recall it here in
Appendix A for completeness. Neglecting terms OðℏÞ in
(6) leads to

hð1 − hÞ − rh0

h2r2
¼ OðℏÞ;

rf0 þ f − fh
fhr2

¼ OðℏÞ: ð7Þ

These expressions can be differentiated consecutively to
derive recursion relations between f, h, and their higher-
order derivatives ffðnÞg∞n¼1 and fhðnÞg∞n¼1. For h, said
relations are obtained by solving the tt equation directly,
which can then be used to derive the f relations from the rr
equation. The result is

hðnÞ ¼ ð−1Þn n!h
n

rn
ðh − 1Þ þOðℏÞ;

fðnÞ ¼ ð−1Þnþ1
n!f
rn

ðh − 1Þ þOðℏÞ: ð8Þ

Relations (8) are now inserted in the AHS-RSET
components hT̂t

tiAHS and hT̂r
riAHS [Eqs. (A1) and (A2) in

Appendix A] until they only depend on f and h. After a
lengthy but straightforward calculation using symbolic
computation software, the resulting expressions are

16π2hT̂t
tiOR ¼ −

κ4

30f2
þ κ2

�
ξ −

1

6

�
3ðh − 1Þ2
6fhr2

þ ðh − 1Þ2ðh2 þ 6hþ 33Þ
480h2r4

−
�
ξ −

1

6

� ðh − 1Þ2ðh2 þ 2hþ 5Þ
8h2r4

;

16π2hT̂r
riOR ¼ κ4

90f2
− κ2

�
ξ −

1

6

� ðh − 1Þðhþ 3Þ
6fhr2

−
ðh − 1Þ2ðh2 þ 6h − 15Þ

1440h2r4

þ
�
ξ −

1

6

� ðh − 1Þ2ðhþ 3Þ2
24h2r4

; ð9Þ

where the suffix OR stands for order reduced. Taking κ ¼ 0
selects theBoulwarevacuumstate; this is the state considered
here as it is the one consistent with staticity and asymptotic
flatness. Being a zero-temperature state for static observers,
the RSET in the Boulware state is divergent at the event
horizon [53]. On the other hand, by taking κ equal to the
surface gravity of the Schwarzschild black hole, we ensure
the finiteness of the RSET components at the horizon, thus
selecting the Hartle-Hawking vacuum state.
So far, we have applied the method of order reduction to

the tt and rr components of the RSET. If we continue and
apply the same method to the angular components of the
RSET, it turns out that the set of order-reduced field
equations do not satisfy the Bianchi identities [51]. In
other words, we find that the order-reduced RSET is not
covariantly conserved, but satisfies

∇μhT̂μ
νiOR ¼ OðℏÞ: ð10Þ

However, as it is discussed just below, we propose a
different algorithm for order reduction that leads to a
covariantly conserved RSET. This will be used in our
analysis of solutions.

A. The covariantly conserved OR-RSET
and its properties

There is a straightforward way to obtain a covariantly
conserved RSET. The idea is simple: once we have reduced
the order of the tt and rr components of the AHS-RSET,
we add the angular components needed to obtain con-
servation. This is an unambiguous procedure under the
assumptions of staticity and spherical symmetry. In fact,
the only nontrivial component of the divergence of the
OR-RSET (10) is

∇μhT̂μ
riOR ¼ ∂rhT̂r

riOR þ 2

r
ðhT̂r

riOR − hT̂θ
θiORÞ

þ f0

2f
ðhT̂r

riOR − hT̂t
tiORÞ: ð11Þ
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Using the expressions for hT̂t
tiOR and hT̂r

riOR in Eq. (9), we can deduce the angular components necessary to force this
divergence to vanish. Specifically, we find

16π2hT̂θ
θiOR ¼ 16π2hT̂φ

φiOR ¼ κ4

90f2
− κ2

�
ξ −

1

6

�
fðh2 þ 3Þ þ f0ðh − 1Þðh − 3Þ

12f2hr

−
h − 1

1440fh2r4
ff½h3ðr − 1Þ þ h2ð3r − 5Þ þ 3hðrþ 7Þ − 15ðrþ 1Þ� þ f0ðh − 1Þðh2 þ 6hþ 21Þg

þ
�
ξ −

1

6

�
h − 1

24fh2r4
ffðhþ 3Þ½h2ðr − 1Þ − 2hþ 3ðrþ 1Þ� þ rf0ðh − 1Þðh2 þ 3hþ 6Þg: ð12Þ

We have thus constructed an approximation to the RSET
valid for the study of vacuum spacetimes. The OR-RSET
approximation is divergenceless, yields the correct values
at the event horizon, and vanishes in flat spacetime in the
Boulware state. It therefore satisfies all Wald’s axioms [42].
In addition, it is not a higher-derivative quantity, which
makes it an excellent RSET candidate to address the
semiclassical backreaction problem. In principle, it is
possible to select hT̂r

riAHS and hT̂θ
θiAHS as the components

to reduce, and determine hT̂t
ti via Eq. (10). This results in a

RSET different from the OR-RSET and whose hT̂t
ti

component is of greater derivative order than (9). The
procedure followed here yields the simplest conserved,
low-order RSET among all possible choices of order-
reduction scheme.
Before turning to analyze the set of self-consistent

solutions of these semiclassical equations, let us make a
few further observations. On the one hand, the reduction of
order in the vacuum case gets rid of the ν parameter.
This allows us to give unique and unambiguous results for
the corresponding solutions and simplifies the analysis
significantly.
On the other hand, when the OR-RSET is evaluated on

the Schwarzschild spacetime fðrÞ ¼ hðrÞ−1 ¼ 1 − 2M=r,
we realize that it gives the exact result

hT̂μ
νiðSchwÞOR ¼ hT̂μ

νiðSchwÞAHS : ð13Þ

This is not surprising upon realizing that the Schwarzschild
metric is an exact solution to Eq. (7), thus the Oðℏ2Þ terms
neglected in our expansion vanish identically. Therefore,
for the Schwarzschild metric only, the reduction of order is
an exact procedure, i.e., the OR-RSET coincides with the
AHS-RSET. The AHS-RSET also returns the correct trace
anomaly for conformally invariant fields (m ¼ 0; ξ ¼ 1=6).
The trace of the OR-RSET differs from the trace anomaly,
but it is manifestly state independent in the case of
conformal coupling.
Even though in this paper we are not going to consider the

nonvacuum case, let us advance here that, in that case, the
order-reduction method shows some differences. In particu-
lar, the analog of Eqs. (8) acquires extra contributions

proportional to the classical stress-energy tensor TC
μν.

Nonetheless, using the conservation relation [analogous to
(10)] and some equation of state for the classical SET,we find
an order-reduced RSET that can be decomposed as

hT̂μ
νiMOR ¼ hT̂μ

νiOR þ hF̂ μ
νi þ Ĝμ

ν log ν; ð14Þ

where MOR stands for matter order reduced. Here, hF̂ μ
νi

(brackets indicate that this term is κ dependent) and Ĝμ
ν are

functions of the classical SETand vanish whenever the latter
vanishes, recovering the OR-RSET in vacuum. Every term
in Eq. (14) is conserved independently, since hT̂μ

νiMOR is
conserved by construction and for any ν. Finally, the
MOR-RSET is regular in any spacetime that does not exhibit
curvature singularities at r ¼ 0, solving the caveat present in
the AHS-RSET and detailed in Appendix B. This puts the
MOR-RSET on equal footing with regularized versions of
the Polyakov approximation.

III. CLASSIFICATION OF VACUUM SOLUTIONS

Equipped with the OR-RSET from Eqs. (9) and (12), we
are now prepared to address the backreaction problem. In
principle, the domain of consistency of the order reduction
à la Simon [36] is limited to solving the order-reduced
equations (expressions displayed below) perturbatively
[37]. This requires assuming from the onset that the
Einstein tensor and the OR-RSET admit perturbative
expansions in ℏ and then solving the expanded equations
order by order. Whereas entirely consistent, this logic
eliminates the possibility of any nonperturbative back-
reaction effect associated with the Boulware state (recall
that this state is singular at event horizons), which any
proper RSET should capture as well. We adopt a modified
gravity perspective hereafter and solve the semiclassical
equations in a self-consistent fashion, that is, determining
the spacetime geometry and the sources that generate it
simultaneously. We will elaborate on the logic behind this
approach and on the comparison between results derived
with different RSET approximations in Sec. V. For the
moment, it just necessary to keep in mind that, regardless of
its origin, the OR-RSET satisfies all the requirements for a
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legitimate semiclassical source, and in the following we are
treating it as such.
In this section, we will classify the self-consistent semi-

classical solutions in vacuum for arbitrary coupling ξ and
Arnowitt-Deser-Misner (ADM) mass M. The geometries
here depicted also describe, forM > 0, the spacetime exterior
to any static stellar configuration in this approximation.
The tt and rr components of the semiclassical equations

with the OR-RSET in Eq. (9) can be cast in the form of a
dynamical system

h0 ¼ −
ðh − 1Þh

r
þ l2P
r3

ðh − 1Þ2
�
ðξ − ξcÞh2

þ 2

�
ξ − ξc þ

1

30

�
hþ 5

�
ξ −

83

300

��
; ð15Þ

f0

f
¼ ðh − 1Þ

r
þ l2P
3hr3

ðh − 1Þ2
�
ðξ − ξcÞh2

þ 6ðξ − ξcÞhþ 9

�
ξ −

25

3

��
; ð16Þ

where l2P ¼ ℏ=16π and ξc ¼ 11=60. We have solved this
system of equations numerically by imposing asymptoti-
cally flat boundary conditions at some distant radius,
namely, requiring that

fðrÞ ¼ hðrÞ−1 ¼ 1 −
2M
r

; ð17Þ

in the limit r → ∞ (in practice, we are considering r ≫ M).
Depending on the sign of the ADM mass M, we find two
distinct types of solutions. The most interesting regime for
us isM > 0, which corresponds to the Schwarzschild black
hole in the classical theory. Furthermore, for M > 0, there
is a critical value of the coupling

ξc ¼ 11=60; ð18Þ

which denotes a separatrix between two regimes of
solutions. The special value ξc appears as a correction
(originated by the trace anomaly) to the conformal coupling
ξ ¼ 1=6 for which Eq. (2) becomes invariant under
conformal transformations.
In what follows, we turn to describe the main features of

the numerical solutions we have obtained, while also
providing analytical arguments to constrain the form of
the solutions whenever possible.

A. Positive asymptotic mass (M > 0)

1. Coupling ξ < ξc
Starting from the asymptotic expressions (17), it is

possible to constrain the form of the solutions to
Eqs. (15) and (16) for the case ξ < ξc through simple

analytic arguments. First, we turn our attention to Eq. (15).
It is straightforward to check that its right-hand side is
always negative. Conditions (17) guarantee that h > 1
asymptotically, so h increases inward with no turning
points. In principle, the function h could adopt one of
the following behaviors: (i) reaching a finite value at r ¼ 0,
(ii) diverging at r ¼ 0, or (iii) diverging at r > 0. As for
possibility (i), the semiclassical equations enforce the
conditions hð0Þ ¼ 1 and h0ð0Þ ¼ 0. Let us prove this
statement by assuming that the following expansions hold
for the metric functions around r ¼ 0:

h ¼
X∞
n¼0

hnrn; f ¼
X∞
n¼0

fnrn: ð19Þ

By replacing them in Eqs. (15) and (16), we obtain the
following values for the lowest-order expansion parameters:

h0 ¼ 1; h1 ¼ f1 ¼ h3 ¼ f3 ¼ 0;

h2 ¼
3

2l2Pð4ξ − 1Þ ; f2 ¼
ð90ξ − 17Þ
15ð4ξ − 1Þ f0; ð20Þ

with f0 > 0 a constant denoting the value of the redshift at
the origin. Under these conditions, r ¼ 0 is a regular point of
the solution. Now, sincewe have h > 1 asymptotically and h
cannot have turning points, possibility (i) is discarded, as a
finite value of h at r ¼ 0must be a maximum (or minimum).
Regarding the behavior (ii), an infinite hð0Þ is inconsistent
with Eq. (15) which, at leading order, would take the form

h0 ∝
h4

r3
: ð21Þ

Solutions are inconsistent with assuming a divergent h at
r ¼ 0. Thus, we must discard possibility (ii) as well. In
conclusion, (iii) holds and h must diverge at some radius
r ¼ rD > 0.
Let us highlight that the OR-RSET is finite for spheri-

cally symmetric spacetimes that are regular at r ¼ 0, even
under the fact that the OR-RSET is derived assuming the
absence of any classical matter, with vacuum classical
solutions being all singular (excluding flat spacetime, for
which the RSET vanishes in the Boulware state). This
characteristic is appealing because it suggests that our
method is well defined for stellar spacetimes, a character-
istic absent from the Polyakov [54] and s-wave approx-
imations [25]. This regularity is essential for the
construction of complete semiclassical stellar models.
See Appendix B for a discussion on the regularity of the
AHS-RSET.
We now turn our attention to the differential equation for

f, Eq. (16). In virtue of (17) we have, asymptotically, f > 0
and f0 > 0. Again, the term between brackets on the right-
hand side of the equation is negative. Thus, if h increases
monotonically as r decreases, these negative terms will
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eventually compensate the positive contribution from the
first term on the right-hand side, generating a turning point
in the f function.
We analyze now the divergent behavior of h at some

radius r ¼ rD > 0. Close to rD, Eqs. (15) and (16) are
approximated by

h0 ≃
l2P
r3D

ðξ − ξcÞh4;

f0

f
≃

l2P
3r3D

ðξ − ξcÞh3: ð22Þ

The differential equation for h can be integrated directly,
yielding

h ≃ rD½3l2Pðξc − ξÞx�−1=3; ð23Þ

where x ¼ r − rD. Replacing this expression in the equa-
tion for f returns

f ≃
fD
x1=9

; ð24Þ

where fD is a positive integration constant bearing a
relation with the ADM mass M, not relevant here.
The curvature scalar adopts the expression

R ¼ 2

r2

�
1 −

1

h

�
þ 2

hr

�
h0

h
−
f0

f
þ rf0h0

4fh

�

þ 1

2h

��
f0

f

�
2

−
2f00

f

�
: ð25Þ

Near r ¼ rD, where the approximate solutions (23) and (24)
hold, the curvature scalar (25) becomes

R ≃ −χ0x−5=3; ð26Þ

with

χ0 ¼
8

9rD

�
l2Pðξc − ξÞ

9

�
1=3

: ð27Þ

In view of Eq. (26), the metric has a curvature singularity
at r ¼ rD. This is a consequence of allowing the Boulware
state to backreact onto the background geometry in a self-
consistent (and nonperturbative) way.
The reader can consult Fig. 1(a) for plots of the metric

functions in terms of r. As numerical integrations of
Eqs. (15) and (16) reveal, rD is a surface located slightly
above the classical Schwarzschild radius 2M. The radial
distance ΔD ¼ rD − 2M depends on the ADM mass of the
geometry for every fixed value of the coupling ξ. Figure 2
contains some example cases for various ξ. AsM increases,
ΔD tends to the ξ-dependent constant Δ∞. Figure 3 shows

that Δ∞ decreases as ξ increases, vanishing in the ξ → ξc
limit, i.e., the configuration with the highest ξ belonging to
this family.

2. Coupling ξ = ξc
Now we turn to analyze the particular case where ξ ¼ ξc.

In this situation, similar analytical arguments as the ones
exhibited above apply to Eq. (15); that is, h grows
monotonically inward until it diverges at some finite radius
rD as above. The f function, however, does not reach a
turning point, since the Oðh2Þ and OðhÞ terms between
brackets on the right-hand side in (16) vanish and theOðh0Þ
terms are suppressed by l2P with respect to the Oðl0PÞ terms.
Close to rD, the field equations admit the expansions

h0 ≃ −
l2P

15r3D
h3;

f0

f
≃
ð15r2D þ 2l2PÞ

15r3D
h: ð28Þ

Integrating them and expanding the solution for f in
powers of x ¼ r − rD, we have

h ≃

ffiffiffiffiffiffiffiffiffiffi
15r3D
2l2P

s
x−1=2;

f ≃ fc

�
1þ 60r2D þ 8l2Pffiffiffiffiffiffiffiffi

2r3D
p

lP
x1=2

�
; ð29Þ

with fc > 0. The critical solution ξ ¼ ξc has divergent h
but vanishing redshift function f at rD. This results again in
a curvature singularity at r ¼ rD such that the curvature
scalar

R ≃ −
15r2D þ 2l2P

60rD
x−1 ð30Þ

diverges slower than in Eq. (26).

3. Coupling ξ > ξc
Increasing the coupling beyond its critical value ξc

results in geometries of a drastically different nature.
We draw attention to Eq. (15) first. At large r there is an

initial tendency of h to increase inward, which will
eventually be reverted by the (now positive) contribution
coming from theOðh4Þ term on the right-hand side of (15).
Hence, h cannot diverge toward positive infinity at finite
radius. Similarly, h cannot vanish at some positive r since
that would necessarily imply h ¼ 1 there. Because of (15),
h is bounded from below by the value h ¼ 1, which
corresponds to a minimum for h. The only remaining
possibility is that h goes to a constant value at r ¼ 0. Recall
that the only value of hð0Þ consistent with Eq. (15) is
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FIG. 2. Radial distance ΔD ¼ rD − 2M as a function of the
ADM mass M for different values of the coupling ξ. The green,
orange, and blue curves correspond to ξ ¼ f1=6; 0;−1=2g,
respectively. The distance ΔD vanishes in the M → 0 limit and
quickly reaches a constant value as M increases.
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FIG. 1. (a),(b) Self-consistent semiclassical solutions withM ¼ 1 for fields of coupling ξ ¼ 0 and ξ ¼ 1, respectively (the values have
been chosen for illustrative purposes). The geometry with ξ ≤ ξc (in particular, ξ ¼ 0) is a timelike naked singularity, whereas for ξ > ξc
(in particular, ξ ¼ 1) we have a regular geometry with Planckian curvatures. (c),(d) Self-consistent semiclassical solutions withM ¼ −1
for fields of coupling ξ ¼ 0 and ξ ¼ 1, respectively. For ξ < 83=300 (in particular, ξ ¼ 0), the geometry describes a core of negative
Misner-Sharp mass mðrÞ, at whose center the redshift can be maximal (if ξ ≤ ξc) or minimal (if ξc < ξ ≤ 83=300). For ξ > 83=300
(in particular, ξ ¼ 1) the geometry has a null singularity at the surface where h and f vanish.
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FIG. 3. Asymptotic value of the radial distance Δ∞ obtained as
M is increased. This quantity diverges as ξ → −∞ and decreases
with increasing ξ, vanishing in the ξ → ξc limit.
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hð0Þ ¼ 1 [see Eqs. (19) and (20)], which corresponds to a
finite Ricci scalar at r ¼ 0. On the other hand, the f
function decreases monotonically from the asymptotic
region inward, reaching a finite value at r ¼ 0, as the
term within brackets in Eq. (16) is everywhere positive
for ξ > ξc.
The metric functions obtained from numerical integra-

tion of Eqs. (15) and (16) are displayed in Fig. 1(b). Despite
being regular, these spacetimes are not well defined from a
semiclassically consistent perspective, as their curvature
scalars have Planckian magnitudes. Indeed, inserting
Eqs. (19) and (20) into Eq. (25), we obtain

R ¼ 45ðξ − 16=75Þ
8l2Pðξ − 1=4Þ2 þOðr2Þ; ð31Þ

close to the origin.
The metrics from Figs. 1(a) and 1(b) are similar for

r ≫ 2M, i.e., the region where semiclassical corrections are
perturbative. Thus, within their regimes of validity, these
geometries approximate well the exterior spacetime of any
semiclassical stellar object for any field coupling ξ to the
curvature. We will define a criteria to estimate the closeness
between solutions to the order-reduced and higher-order
systems in the next section.
So far we have classified the space of vacuum solutions

with positive ADM mass. For couplings ξ ≤ ξc we find
geometries where the event horizon gets replaced by a
naked curvature singularity. For couplings ξ > ξc we obtain
regular spacetimes with curvatures that become Planckian
below the region where the event horizon would have
appeared. This drastic change of behavior can be traced
back to which pointwise energy conditions [55] the OR-
RSET violates depending on the coupling near the would-
be event horizon: for ξ ≤ ξc the null energy condition is
violated and the strong energy condition holds, whereas for
ξ > ξc both the null and strong energy conditions are
violated.

B. Negative asymptotic mass (M < 0)

For the sake of completeness, we provide here detailed
descriptions of the geometries obtained when Eqs. (15) and
(16) are integrated for negative ADM mass. In the classical
theory, M < 0 corresponds to a naked singularity. In some
situations, the semiclassical backreaction can even regu-
larize these singularities. This characteristic is of interest to
the study of stellar spacetimes for reasons that will become
clear in what follows.
We first address the case ξ ≤ ξc. For M < 0 we have, by

virtue of Eq. (17), that h < 1, h0 > 0, f > 1, and f0 < 0
asymptotically. By inspection of Eq. (15), we observe the
RSET contribution (i.e., the terms within brackets) is
everywhere negative for ξ ≤ ξc. As the equations are
integrated inward, these contributions will decrease, can-
celing the Oðl0PÞ term, until h reaches a minimum.

Afterward, consistency of Eq. (15) indicates that h can
only grow inward until reaching h ¼ 1 at r ¼ 0, where the
resulting solution is described by the expansions (20)
derived previously (which hold for M < 0 as well). On
the other hand, f must increase monotonically inward
[since the right-hand side of (16) is always negative] and it
can only reach a finite value at r ¼ 0 [again obeying
Eq. (20)], while h lies always below h ¼ 1 for r > 0, which
would correspond to a maximum.
Near r ¼ 0, the expansion of the metric functions (20)

now enforces h2 < 0 and f2 > 0. Numerical integration of
the semiclassical equations is displayed in Fig. 1(c). This
solution has a clear interpretation in terms of the Misner-
Sharp mass mðrÞ ¼ rð1 − h−1Þ=2 [56,57], which is neg-
ative everywhere. In the classical solution, this mass would
be mðrÞ ¼ −M and would inevitably generate a curvature
singularity at r ¼ 0. Here, the zero-point energies from the
scalar field provide a (positive) contribution to this negative
mass that balances it exactly at r ¼ 0. The Ricci scalar is
negative and Planckian at r ¼ 0.
The semiclassical equations in an order-reduced version

accommodate solutions that display whole regions of
negative mass that get regularized at r ¼ 0 by semiclassical
effects. This is a characteristic that we observed in ultra-
compact stellar configurations using a regularized version
of the Polyakov RSET [28]. So far, these results look
appealing in the sense that, if the innermost layers of a
semiclassical star with a negative-mass interior generate
relevant semiclassical contributions, these can contribute
toward the regularization of such negative-mass core, thus
making the interior geometry entirely regular. A detailed
analysis of stellar geometries using an order-reduced RSET
will appear in a forthcoming publication.
Moving on to the regime where ξc < ξ < 83=300, we

obtain solutions with a similar behavior to that where ξ ≤
ξc for the h function as in Fig. 1(c), but the redshift f now
has a maximum at some r > 0 and reaches a minimum at
r ¼ 0. This is because the contributions within brackets in
(16) change sign for ξ > ξc.
For ξ > 83=300 we have a change in the behavior of h.

In this case, Eq. (15) now ensures that there will be no
turning points in h for any r. The function f encounters
again a turning point as the term within brackets in Eq. (15)
is positive. Assuming h vanishes at some radius r0 as

h ¼ h1ðr − r0Þ þOðr − r02Þ ð32Þ

and replacing this equation in Eq. (15) yields

h1 ¼
5l2P
r30

�
ξ −

83

300

�
: ð33Þ

With the expansion (33), Eq. (16) can be approximated by

f0 ≃ χ1fðr − r0Þ−1; ð34Þ
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with

χ1 ¼
3ðξ − 5=36Þ
5ðξ − 83=300Þ : ð35Þ

Solving Eq. (34) yields

f ≃ ðr − r0Þχ1 : ð36Þ
Finally, the curvature scalar (25) diverges at r0 as

R ≃
ð3 − χ1Þχ1
2h1ðr − r0Þ3

: ð37Þ

Figure 1(d) shows a particular example of a solution
belonging to this branch. For ξ > 83=300, the resulting

geometries display a null singularity. Since the ADM mass
of the spacetime is negative, this singularity does not have
the same physical relevance as the one that appeared in the
positive ADM mass case from Fig. 1(a).

IV. ACCURACY OF THE OR-RSET

An important aspect at this stage of the analysis is to
what extent the solutions to the order-reduced system are
good approximations. We undertake this analysis in what
follows.
First, we need to establish criteria that define the

“proximity” between solutions to the order-reduced system

Gμ
ν ¼ 8πℏhT̂μ

νiOR ð38Þ
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FIG. 4. Plots of log jHr
r=hT̂r

riORj, a quantity measuring the deviation of the reduced-order solutions with respect to the exact solutions
to the higher-order semiclassical equations. Panels A and B correspond to solutions with M ¼ 1 and ξ ¼ f0; 1g, respectively, whereas
panels C and D correspond to solutions with M ¼ −1 and ξ ¼ f0; 1g, respectively. As the AHS-RSET displays a free parameter ν, we
set ν ¼ f1; 10−5; 1010g for the green, orange and blue curves (the small oscillatory behavior in panel B corresponds to numerical noise).
We see that the validity of the solutions is not drastically affected by the value of ν. The validity of these solutions gets progressively
worse as r diminishes, but the mismatch between solutions tends to the constant value c ≃ 3.17 in the region of perturbative
semiclassical corrections.
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and solutions to the higher-derivative system (1). We do so
by defining

Hμ
ν ¼ Gμ

ν − 8πℏhT̂μ
νiAHS; ð39Þ

where Gμ
ν and hT̂μ

νiAHS are calculated replacing the sol-
utions f, h from (38) and measuring the size ofHμ

ν . As long
as Hμ

ν ¼ Oðℏ2Þ, the terms Oðℏ2Þ neglected in the expan-
sions (7) will correspond to subdominant contributions.
Therefore, the solutions to Eq. (38) will amount to
perturbative corrections of the solutions to Eq. (39), the
discrepancy being given by the magnitude of the trun-
cated terms.
We have examined the validity of solutions belonging to

the regimes described in Sec. III by plotting, in Fig. 4, the
relative magnitude log jHr

r=hT̂r
riORj. The choice of the rr

component mitigates the error in numerically differentiat-
ing the solutions f and h, since the highest-order terms in
this quantity are proportional to fð3Þ. Results show that the
relative difference between the order-reduced solutions
and the higher-order ones approaches a constant value at
large distances, indicating that Hr

r decreases at the same
rate as the component hT̂r

riOR, with a relative proportion-
ality constant. The value of this constant is independent
of the arbitrary renormalization scale ν appearing in the
expressions from Appendix A, but the quotient initially
increases inward for ν < 1 and decreases inward for ν > 1.
This is related to the change in sign of the log ν terms
appearing in the AHS-RSET. The quotient diverges at
spacetime singularities or r ¼ 0, independently of whether
the spacetime is singular or regular. In the case of positive
ADM mass geometries with ξ ≤ ξc, the quotient
approaches a divergence at rD, precisely where the OR-
RSET has dominant nonperturbative contributions. This is
consistent with what we would expect from an order-
reduced prescription.

V. COMPARISON BETWEEN APPROXIMATIONS

The present work belongs to a broader investigation
revolving around semiclassical backreaction effects in
spherical symmetry. As a proxy to the study of more
complicated field contents, it is customary to consider the
propagation of a single massless and minimally coupled
scalar field. Throughout the years, different approaches to
modeling the RSET of minimal scalar fields have been
developed [18,25,26,54]. Given the difficulties in handling
a potentially exact RSET, most of the approaches involve
making approximations. All standard approximations prop-
erly capture effects associated with vacuum states at an
event horizon (e.g., singularities at the event horizon in the
zero-temperature state and thermal fluxes in nonzero-
temperature ones). Preference of one over another depends
on the specifics of the problem under consideration.

However, despite their resemblance in what refers to
nonlocal contributions, these approximations differ in their
way of estimating purely local, curvature-dependent con-
tributions. For example, the Polyakov approximation,
coming from a dimensional reduction, lacks information
about the behavior of field modes at r ¼ 0. This missing
information has to be provided by fixing the form of a free
radial function [see Eq. (40) below]. The AHS-RSET and
the OR-RSET, on the other hand, are regular at r ¼ 0 (in
the first case, under certain parity conditions for the metric,
see Appendix B) and from this viewpoint can be considered
an improvement with respect to Polyakov’s approximation.
However, as opposed to the Polyakov approximation, the
AHS-RSET exhibits the free parameter ν (which accom-
panies purely local contributions) that affects the sign and
magnitude of the RSET components.
Another discrepancy between these approximations

(perhaps more crucial than the ambiguity in estimating
local contributions) is that, given a fixed spacetime geom-
etry, they can give place locally to more than one value for
the RSET, even beyond the ambiguity in renormalization
parameters. As it is the case, then, the semiclassical
equations can have branches of solutions that are not
perturbatively connected to the classical solutions of the
theory (the RSET does not go to zero in the ℏ → 0 limit).
These are what we call additional branches of solutions.
The introduction of additional branches is rooted to the
differential structure of the RSET. To exemplify this point,
consider the regularized Polyakov RSET in [29]

hT̂t
ti ¼ F

l2P
24πh

�
2f0h0

fh
þ 3

�
f0

f

�
2

−
4f00

f

�
;

hT̂r
ri ¼ −F

l2P
24πh

�
f0

f

�
2

;

hT̂θ
θi ¼ −

l2P
48πh

ð2F þ rF0Þ
�
f0

f

�
2

; ð40Þ

where F is an arbitrary function of the radius that has to be
fixed. These expressions exhibit a higher differential
order than the OR-RSET (9) in the temporal and radial
components.
Now, the rr semiclassical equation (1) sourced by the

Polyakov RSET (40) is

f þ rf0 − fh
fhr2

¼ −F
l2P
3h

�
f0

f

�
2

; ð41Þ

which can be recast into

f0 ¼ −
3f

2l2PrF

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l2PFðh − 1Þ=3

q �
: ð42Þ

Here, the branchwith a negative sign (or unconcealed branch
following the terminology in [26]) has a well-defined lP → 0
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limit, therefore encoding both perturbative and nonpertur-
bative corrections to the classical solutions. The branch with
the positive sign (or concealed branch) does not have a well-
defined classical limit and could be responsible for non-
perturbative quantumeffects.An important point is that these
branches are not totally disconnected from each other. We
showed in [27] that jumps between branches take place in
vacuum solutions à la Polyakov (although we did not find
such jumps when dealing with stellar solutions [29]); an
integration that begins in theunconcealedbranch can connect
with the concealed one under certain conditions.
The clearest example of this situation is the semiclassical

Schwarzschild counterpart found in [26] using the regu-
larized Polyakov approximation with F ¼ 1=ðr2 þ αl2PÞ
and α > 1. This is an asymmetric wormhole whose neck
connects an asymptotically flat region with a new (singular)
asymptotic region (note that to generate wormhole sol-
utions with large necks one does not even need to regularize
the Polyakov RSET [33]). The asymptotically flat side
of the wormhole lives within the unconcealed branch,
whereas the singular side lives in the concealed one.
Both branches are connected at the neck. The curvature
singularity is null and located at finite affine distance from
the neck (see Ref. [26] for a detailed analysis). In the more
elaborate s-wave approximation that incorporates back-
scattering effects, the solution is also an asymmetric
wormhole but the singularity is now timelike [33] (although
appears to be at infinite radial distance as well [58]), which
enhances the pathological nature of eternal vacuum sol-
utions in semiclassical gravity. Recently, a similar analysis
was done under a RSET approximation for conformally
invariant fields [59], showing remarkable agreement with
the results obtained through Polyakov’s approximation. In
this case, the Schwarzschild counterpart also turns out to be
an asymmetric wormhole displaying a null curvature
singularity.
The AHS-RSET also contains plenty of nonperturbative

branches of solutions. The only example we know of a
nonperturbative solution to the semiclassical equations
sourced by the AHS-RSET is [40], where symmetric
wormholes are obtained. These wormholes are not asymp-
totically flat, hence they cannot be compared with the
asymptotically flat spacetimes that we obtained with the
Polyakov approximation. On the contrary, the OR-RSET
(9) cannot introduce nonperturbative branches of solutions
as they have been eliminated in the order reduction.
For instance, in the situation explored in the present work,

we did not find wormhole solutions of any kind in the ξ ¼ 0
case. The geometry instead reaches a timelike (naked)
singularity just abovewhere the Schwarzschild radiuswould
have been located [see Figs 1(a) and 2]. The same can be
shown to happen by applying an order reduction to the
Polyakov approximation. The resulting vacuum solution
would result in a naked curvature singularity without the
appearance of a wormhole neck. What these analyses reveal

is that the characteristics of self-consistent solutions in
regions where nonperturbative effects kick in depends
strongly on the physical content of the RSETapproximation
under consideration and its derivative order. Nonetheless,
different approximations to the RSET all lead to static
vacuum solutions with positive ADM mass in which the
event horizon has been substituted by a singularity of one
type or another.
It is interesting to note here that preliminary explorations

suggest that the situation is different when considering
the more physical nonvacuum solutions. In [29], we
found semiclassical stellar configurations surpassing the
Buchdahl compactness limit [30]. These solutions are all
found using just the perturbative (or unconcealed) branch.
Preliminary analyses tell us that, in this case, very similar
solutions are found using the OR-AHS. Confirmation of
this idea would reinforce the robustness of said solutions.
Our philosophy in here is not to argue for a particular

approximation scheme as the best one; it is more to put all
the possibilities on the table to see what they can offer. By
adopting the view that the only trustable semiclassical self-
consistent solutions are those perturbatively connected to a
classical solution, the resulting solutions could turn out not
to be very interesting, as these could not display any new
qualitative behaviors. Instead, in this article our point of
view is more heuristic and closer to the phenomenological
philosophy underneath modified theories of gravity: moti-
vating a possible form for some modifications of general
relativity and then analyzing the new equations without
caring how these equations might show up hierarchically
from an even deeper description of spacetime.

VI. CONCLUSIONS AND FURTHER DISCUSSION

In this work, we have addressed the problem of semi-
classical backreaction by reducing the order of the semi-
classical equations in spherically symmetric vacuum
situations. If said equations were tackled in full glory,
solving them self-consistently would prove to be an
extremely time consuming task due to their large space
of solutions. In addition, there is no definite method for
disregarding solutions based solely on their physical
consistency.
Inspired by previous works in the literature [15], we have

developed a procedure for obtaining regular, order-reduced
RSET approximations that satisfy all the properties
expected from a suitable RSET. We used this procedure
to find the solutions to the semiclassical equations in
vacuum. The results here obtained are consistent with
previous analyses that make use of the Polyakov [26]
and s-wave [60] approximations for the minimally coupled
and massless scalar field in the region where semiclassical
corrections are perturbative and the case ξ ¼ 0. Instead, in
the region in which the semiclassical corrections are
nonperturbative, these works agree in the fact that the
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event horizon gets replaced by a curvature singularity in the
Polyakov, s-wave, and order-reduced approximations.
For completion, we have analyzed what happens for

other ξ couplings. When the coupling is increased beyond
its separatrix value ξc ¼ 11=60, the spacetime becomes
regular and horizonless. However, curvature invariants
become Planckian inside the region where the classical
event horizon would have been located. For negative values
of the ADM mass, there are both regular and irregular
spacetimes depending on ξ. The regular ones could
resemble the innermost regions of semiclassical relativistic
stars that display negative-mass interiors generated by the
effects of quantum vacuum polarization.
Following the procedure outlined in Sec. II, it is possible

to obtain RSET approximations in various situations. The
most straightforward extensions of this work would imply
adding a classical electromagnetic field and/or a cosmo-
logical constant. In doing so, the validity of the very same
AHS-RSET (from which the OR-RSET is constructed)
requires careful evaluation [18]. Ideally, any application of
the AHS-RSET (or its order-reduced counterpart) should
come along with a detailed analysis of the complete RSET
incorporating the numerical part hT̂μ

νinum, but this is
technically challenging and escapes the scope of the current
work.
The reduction of order that we have followed here is

maximal in the sense that it eliminates all additional
branches of solutions. However, a window remains open
for the construction of partially order-reduced RSETs that,
while yielding second-order equations of motion, still
retain terms proportional to f0; h0; f00, and h00, in a similar
fashion to the Polyakov approximation (40). Is it possible to
find a way to reduce the order of the AHS-RSET while
retaining physically meaningful branches of solutions? If
so, how would this affect singularities? Presumably, while
the nonperturbative characteristics revealed in vacuum
solutions would be modified significantly, solutions that

involve regular fluid spheres are more robust as the addi-
tional branches are not necessarily explored.
We have paved the path for the forthcoming analysis of

semiclassical solutions incorporating a classical perfect fluid.
The authors have proved that semiclassical effects in the form
of a modified Polyakov approximation allow for the exist-
ence of regular stars that surpass the Buchdahl compactness
limit [28]. Preliminary investigations indicate that approx-
imations to the RSET based on a reduction of order also
generate configurations with akin characteristics. The fact
that different modelings of the semiclassical equations end
up describing similar physical scenarios provides an extra
degree of robustness to semiclassical analyses.
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APPENDIX A: THE ANDERSON-HISCOCK-
SAMUEL RSET

Below we show the components of the AHS-RSET for a
massless field with arbitrary coupling ξ (temperature-
dependent terms are retained). Comparing these expres-
sions with those of the OR-RSET, we observe that the
simplification is dramatic,

1440π2hT̂t
tiAHS ¼ −

3κ4
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and

hT̂φ
φiAHS ¼ hT̂θ

θiAHS: ðA4Þ

APPENDIX B: REGULARITY OF THE
ANDERSON-HISCOCK-SAMUEL RSET

The expressions (A1)–(A3) give rise to a covariantly
conserved RSET obtained directly by taking the analytical
byproduct of following the point-splitting renormalization
procedure (as in [18]) or the Hadamard renormalization
prescription (see Ref. [61] for the application of this
method to lukewarm black hole spacetimes). The higher-
derivative terms naturally arise upon isolating and sub-
tracting all the ultraviolet divergent terms that appear in the
field propagator from which the RSET is constructed. Thus,
these expressions are purely geometrical and invoke no
additional assumptions about the spacetime over which
they are obtained, resulting in a RSET that is regular at the
center of spherical symmetry, with one caveat that we detail
in the following. It is straightforward to check that
regularity of the Kretschmann invariant

K ¼ RμνρσRμνρσ ðB1Þ

of the metric at r ¼ 0 enforces the metric functions to obey
the expansions

fðrÞ ¼ a0 þ a2r2 þ a3r3 þ a4r4 þOðr5Þ;
hðrÞ ¼ 1þ b2r2 þ b3r3 þ b4r4 þOðr5Þ: ðB2Þ

These conditions ensure the finiteness at r ¼ 0 of all other
invariants constructed from contractions of the Ricci and

Riemann tensors and the Ricci scalar. Notice how the
Kretschmann invariant constrains the value of the coef-
ficients in (B2) up to second-order terms in r because it
only involves up to second-order derivatives of the metric
functions (notice the absence of linear terms in r in the
expansion). However, in replacing the expansions (B2) in
the AHS-RSET, we obtain for the hT̂t

tiAHS component

1440π2hT̂t
tiAHS¼

12a3
a0r

�
1þ logða0ν2Þþ60

�
ξ−

1

6

�

þ180logða0ν2Þ
�
ξ−

1

6

�
2
�

þ4b3
r

�
2þ logða0ν2Þþ60

�
ξ−

1

6

�

−360 logða0ν2Þ
�
ξ−

1

6

�
2
�
þOðr0Þ: ðB3Þ

Notice the divergence at r ¼ 0 when the terms a3 and b3
are nonzero. Here we omit the remaining RSET compo-
nents, as they show similar divergences.
The presence of higher-derivative terms of the metric in

the RSET imposes more restrictive conditions for regularity
than those given by the finiteness of curvature invariants
themselves. This adds an extra degree of nonphysicality to
RSET approximations that exhibit higher-derivative terms
due to these terms becoming singular at r ¼ 0 on geom-
etries that are entirely regular in classical general relativity.
The OR-RSET is hT̂μ

νiOR ¼ Oðr0Þ over any metric whose
curvature invariants are finite, while also diverging at the
regions where the state in which it is evaluated becomes
singular, so here we advocate its use over the AHS-RSET in
scenarios where the point r ¼ 0 belongs to the spacetime.
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Poincaré-invariant gravitational field and equations of
motion of two pointlike objects: The postlinear approxima-
tion of general relativity, Gen. Relativ. Gravit. 13, 963
(1981).

[51] L. Bel and H. Sirousse Zia, Regular reduction of relativistic
theories of gravitation with a quadratic Lagrangian, Phys.
Rev. D 32, 3128 (1985).

ARRECHEA, BARCELÓ, CARBALLO-RUBIO, and GARAY PHYS. REV. D 107, 085005 (2023)

085005-18

https://doi.org/10.3390/universe2020007
https://doi.org/10.1103/PhysRevD.96.082004
https://doi.org/10.1103/PhysRevD.96.082004
https://doi.org/10.1103/PhysRevD.47.1339
https://doi.org/10.1103/PhysRevD.47.1339
https://doi.org/10.1134/S0202289318040060
https://doi.org/10.1103/PhysRevD.14.2490
https://doi.org/10.1103/PhysRevD.14.2490
https://doi.org/10.1103/PhysRevD.51.4337
https://doi.org/10.1103/PhysRevD.51.4337
https://doi.org/10.1103/PhysRevLett.117.231101
https://doi.org/10.1103/PhysRevD.106.065023
https://doi.org/10.1103/PhysRevD.106.065023
https://doi.org/10.1103/PhysRevLett.53.403
https://doi.org/10.1103/PhysRevLett.53.403
https://doi.org/10.1103/PhysRevLett.73.2805
https://doi.org/10.1103/PhysRevLett.73.2805
https://doi.org/10.1007/JHEP06(2015)192
https://doi.org/10.1007/JHEP06(2015)192
https://doi.org/10.1103/PhysRevLett.120.061102
https://doi.org/10.1103/PhysRevD.101.064059
https://doi.org/10.1103/PhysRevD.101.064059
https://doi.org/10.1088/1361-6382/abf628
https://doi.org/10.1088/1361-6382/abf628
https://doi.org/10.1103/PhysRevD.104.084071
https://doi.org/10.1103/PhysRevD.104.084071
https://doi.org/10.1038/s41598-022-19836-8
https://doi.org/10.1038/s41598-022-19836-8
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRevD.98.124009
https://doi.org/10.1103/PhysRevD.98.124009
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1103/PhysRevD.73.10
https://doi.org/10.1103/PhysRevD.73.10
https://doi.org/10.1016/j.physletb.2018.09.027
https://doi.org/10.1103/PhysRevD.67.044021
https://doi.org/10.1103/PhysRevD.43.3308
https://doi.org/10.1103/PhysRevD.43.3308
https://doi.org/10.1103/PhysRevD.54.6233
https://doi.org/10.1119/1.1286430
https://doi.org/10.1119/1.1286430
https://doi.org/10.1007/JHEP02(2018)136
https://doi.org/10.1103/PhysRevLett.78.2050
https://doi.org/10.1103/PhysRevD.21.1445
https://doi.org/10.1007/BF01609833
https://doi.org/10.1007/BF01609833
https://doi.org/10.1103/PhysRevD.45.1953
https://doi.org/10.1103/PhysRevD.45.1953
https://doi.org/10.1007/BF02105827
https://doi.org/10.1103/PhysRevD.33.2840
https://doi.org/10.1103/PhysRevD.30.2532
https://doi.org/10.1016/j.crhy.2012.04.008
https://doi.org/10.1007/BF00756073
https://doi.org/10.1007/BF00756073
https://doi.org/10.1103/PhysRevD.32.3128
https://doi.org/10.1103/PhysRevD.32.3128


[52] Grazyna Siemieniec-Ozieblo and Andrzej Woszczyna,
Order reduction in semiclassical cosmology, Phys. Rev.
D 59, 083504 (1999).

[53] David G. Boulware, Quantum field theory in Schwarzschild
and Rindler spaces, Phys. Rev. D 11, 1404 (1975).

[54] Alexander M. Polyakov, Quantum geometry of bosonic
strings, Phys. Lett. 103B, 207 (1981).

[55] Matt Visser, Gravitational vacuum polarization. II. Energy
conditions in the Boulware vacuum, Phys. Rev. D 54, 5116
(1996).

[56] Charles W. Misner and David H. Sharp, Relativistic equa-
tions for adiabatic, spherically symmetric gravitational
collapse, Phys. Rev. 136, B571 (1964).

[57] Jr. Hernandez, Walter C., and Charles W. Misner, Observer
time as a coordinate in relativistic spherical hydrodynamics,
Astrophys. J. 143, 452 (1966).

[58] Pei-Ming Ho and Yoshinori Matsuo, Static black holes with
back reaction from vacuum energy, Classical Quantum
Gravity 35, 065012 (2018).

[59] Pau Beltrán-Palau, Adrián del Río, and José Navarro-Salas,
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