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We present a pseudoclassical mechanics model which exhibits gauge symmetry and time-
reparametrization invariance. As such, first- and second-class constraints restrict the phase space, and
the Hamiltonian weakly vanishes. We show that the Dirac conjecture does not hold—the secondary first-
class constraint is not a symmetry generator—and only the gauge fixing condition associated with the
primary first-class constraint is needed to remove the gauge ambiguities. The gauge fixed theory is
equivalent to the Fermi harmonic oscillator extended by a boundary term. We quantize in the deformation
quantization and in the Schrödinger representation approaches and observe that the boundary term prepares
the system in the state of positive energy.
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I. INTRODUCTION

Gauge theories are characterized by configuration spaces
containing arbitrary functions of time. Because these
systems are naturally nondeterministic additional con-
straints, i.e., gauge fixing conditions, are needed to elimi-
nate the dynamical ambiguities. The prescription to do so is
provided by the constrained Hamiltonian analysis intro-
duced by Dirac [1,2]. The standard procedure, as it is
usually taught, includes the strong assumption of Dirac’s
conjecture [1], which says that both primary and secondary
first-class constraints are gauge symmetry generators.
Dirac—in his own words—did not know counterexam-

ples for his conjecture [1]. However, in 1979 Cawley
provided one [3] and since then many counterexamples
have been found [2,4,5].
TheDirac conjecture implies—according to the algorithm

every gauge symmetry generator should be accompanied by
a gauge fixing condition—the elimination of the degrees of
freedomconjugate to the constrained phase space directions.
Consequently, wrongly assuming the Dirac conjecture

may lead to an incorrect counting of degrees of freedom,
and possibly to an unintended truncation of the model
at hand.
It has been recently proposed that this may be the case in

the massless Rarita-Schwinger action [6], which raises a
fundamental question about the real field content of super-
gravity: Is the spin-1

2
a pure gauge mode of simple

supergravity [7,8]? It has been known for a while that
the spin-half projection of the massless Rarita-Schwinger is
described by the Dirac action—this is the essence of the
unconventional supersymmetry approach [9–13]—which
supports an answer to that question in the negative. What
was shown in [6] is that the conclusion that the spin-half
sector of supergravity is “pure gauge” follows from
assuming the Dirac conjecture, which would demand a
gauge fixing condition in addition to the secondary first-
class constraint. This implies the elimination of one of the
two spin-half Poincaré irreps present in the vector spinor. If
the Dirac conjecture is not assumed, the massless Rarita-
Schwinger equations in the standard vanishing gamma-
trace gauge (conjugate to the primary first-class constraint)
decouple into spin-3

2
and spin-1

2
components, and an explicit

solution containing both spins can be written [6].
Since the Dirac conjecture cannot be taken for granted

and since it affects the counting of degrees of freedom, its
correct understanding becomes extremely important. Thus,
the construction of Dirac conjecture counterexamples is
relevant, either for pedagogical reasons or for research
purposes. This is the goal of this article.
More precisely, the model to be discussed here is of the

pseudoclassical mechanics type [14–16]—classical
mechanics with anticommuting variables—which exhibits
fermionic gauge symmetry and time-reparametrization
invariance. In the Hamiltonian formulation, the model
possesses first-class and second-class primary constraints,
and one first-class secondary constraint.
It has been argued [2] that the counterexamples of the

Dirac conjecture may have quantization problems, at least
in some cases. Thus, in order to show that this is not the
case here, we shall consider two quantization approaches.
In the first case, we map classical functions to operators and
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find the Hilbert space. In the second, we employ the
deformation quantization scheme started by Weyl, Wigner,
Groenewold, and Moyal [17–23], adapted to Fermi vari-
ables [24,25] (see [26–28] for applications).
We shall see that our model is equivalent to the Fermi

oscillator [29] with the secondary first-class constraint set
by a boundary term. In the quantum setting the secondary
first-class constraint sets the Fermi oscillator in a stationary
state of positive energy.

II. COUNTING DEGREES OF FREEDOM WITH
AND WITHOUT THE DIRAC CONJECTURE

Recall that the constraints in the Hamiltonian form of a
system are classified as: primary constraints, being the
ones necessary to invert the Legendre transform; secondary
constraints, appearing as consistency conditions necessary
to preserve the primary constraints; and as first-class
constraints (FCC) and second-class constraints (SCC),
depending on their algebra with respect to the Poisson
bracket product [1].
In his Lecture on quantum mechanics, Dirac stated that

“I think it may be that all the first-class secondary
constraints should be included among the transformations
which don’t change the physical state, but I haven’t been
able to prove it. Also, I haven’t found any example for
which there exists first-class secondary constraints which
do generate a change in the physical state”
Though it is clear that first-class primary constraints are

gauge symmetry generators, the Dirac conjecture implies
that secondary constraints should also be regarded as such.
According to this logic, all first-class constraints must be
accompanied by gauge fixing conditions, hence:

N∘ gauge fixing conditions ¼ N∘ 1st class constraints:

Thus the number of phase space directions that are removed
is twice the number of FCC. It follows that the gauge
strikes twice. However, if the Dirac conjecture does not
hold, only primary FCC need gauge fixing conditions, and
the secondary FCCs do not strike a second time.
The test of the Dirac conjecture consists of verifying

whether or not the equations of motion are invariant under
the transformation generated solely by secondary FCC.
Another way to test the Dirac conjecture is to verify if
imposing only gauge fixing conditions for primary FCC the
system becomes deterministic, i.e., free of gauge ambi-
guities. Recall that gauge fixing conditions are external
inputs imposed, by hand, to remove the arbitrary functions
of time which make the system’s dynamics nondetermin-
istic. Hence, it is reasonable to minimize the number of
external inputs, imposing only those that are necessary to
obtain a deterministic result.
Castellani’s formal analysis [30] shows that secondary

FCCs do not generate independent gauge symmetries, but
they are needed as part of the true gauge generator,

G ¼
Xk
n¼0

ϵðk−nÞGn; ϵðlÞ ≔
dlϵ
dtl

; ð1Þ

here referred to as the Castellani chain. This a linear
combination starting with primary FCCs, G0, followed by
secondary FCC,G1, and subsequent descendants for k > 1,
with coefficients given by the time-derivatives of the gauge
parameters ϵ.
The number of independent Castellani chains can be less

than the total number of FCCs since secondary FCC are
discounted as independent symmetry generators. Hence,
the number of gauge fixing conditions—necessary to
intersect the independent gauge orbits—may be less than
the total number of FCC. In those cases, the assumption of
the Dirac conjecture might lead to imposing unnecessary
external constraints misinterpreted as gauge fixing con-
ditions, which remove physical degrees of freedom instead
of pure gauge modes. We shall see next that this is the case
in the model introduced next.

III. LAGRANGIAN FORMULATION

Consider the following system,

L ¼ iðθζ − _λζÞ; ð2Þ

for three real Grassmann-odd anticommuting functions of
time θðtÞ, λðtÞ, ζðtÞ.
The action can be spelled out in the form,

S ¼ i
Z
ðΩζ − dλζÞ; ð3Þ

where Ω ≔ dtθ and d ¼ dt∂t, is explicitly invariant regard-
ing time reparametrizations,

t → t0ðtÞ; θ → θ0 ¼
�
∂t0

∂t

�
−1
θ; ð4Þ

while ζ and λ do not transform.
The Euler-Lagrange equations are given by:

_λ − θ ¼ 0; ζ ¼ 0; _ζ ¼ 0: ð5Þ

Hence ζ is auxiliary. Equations (5) are left invariant with
respect to the time reparametrization (4) up to ∂t0ðtÞ=∂t ≠ 0
factors.
The system has the gauge symmetry,

δθ ¼ _ϵ; δλ ¼ ϵ; δζ ¼ 0: ð6Þ

We can fix the gauge imposing the relation:

θ þ iωλ ≈ 0: ð7Þ
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It describes a one-dimensional subspace in the ðλ; θÞ plane.
The gauge is reachable since one can perform a trans-
formation with the parameter

ϵ ¼ −
Z

dsΘðt − sÞe−iωðt−sÞðθðsÞ þ iωλðsÞÞ; ð8Þ

where Θ is the Heaviside function, such that (7) is satisfied.
Going back to (5), the gauge fixed θ yields

_λþ iωλ ¼ 0; ð9Þ

and the solution is given by,

λðt;ωÞ ¼ λ0e−iωt; ð10Þ

with λ0 an anticommuting constant.
A different gauge choice, with θ þ iω0λ ≈ 0 yields

equivalent physics, since

_λþ iω0λ ¼ w0

w

�
w
w0

dλ
dt
þ iωλ

�
ð11Þ

amounts to reparametrization of time in (7) with lapse
function

∂t
∂t0
¼ ω

ω0
: ð12Þ

Therefore we can always set ω constant. Once the function
ω is specified, both, gauge symmetry and the time
reparametrization invariance cease. The freedom in the
choice of ω does not represent a redundancy of the degrees
of freedom; it just reflects the freedom on the definition
of time.

IV. HAMILTONIAN FORMULATION

The Hamiltonian description of the system (2) occurs in
the phase space of canonical variables ðθ; πθ; λ; πλ; ζ; πζÞ.
The Legendre transform,

πθ ¼
∂L

∂_θ
≈ 0; πλ ¼

∂L

∂_λ
≈ 0; πζ ¼

∂L

∂_ζ
¼ −iλ; ð13Þ

produces the primary constraints

πθ ≈ 0; χ1 ¼ πζ ≈ 0; χ2 ¼ πλ þ iζ ≈ 0; ð14Þ

which describes the phase space submanifold containing
the physical degrees of freedom.
The unconstrained phase space comes with the Poisson

bracket,

ff; gg ¼ ð−1Þjfj
�
∂f
∂θ

∂g
∂πθ
þ ∂f
∂πθ

∂g
∂θ
þ ∂f

∂λ

∂g
∂πλ

þ ∂f
∂πλ

∂g
∂λ
þ ∂f

∂ζ

∂g
∂πζ
þ ∂f
∂πζ

∂g
∂ζ

�
; ð15Þ

where jfj ¼ 0; 1, is the even, odd, Grassmann parity of the
function f.
It turns out that the constraints χi; i ¼ 1, 2 are of second-

class,

fχi; χjg ¼ Cij; Cij ≔ −i
�
0 1

1 0

�
; ð16Þ

since Cij is invertible,

C−1ij ¼ i

�
0 1

1 0

�
: ð17Þ

The constraint πθ ≈ 0 is first-class since fπθ; χjg ≈ 0.
The canonical Hamiltonian,H0 ¼ _θπθ þ _λπλ þ _ζπζ − L,

H0 ¼ −iθζ;

must be complemented with the primary constraints,

HT ≔ H0 þ πθνþ χiμ
i; ð18Þ

which defines the total Hamiltonian. Here ν and μi are
Lagrange multipliers. In Hamiltonian form, the action
principle is equivalent to

SH ¼
Z

dtð_θπθ þ _λπλ þ _ζπζ −HTÞ; ð19Þ

which is stationary for field configurations satisfying
differential equations equivalent to (5), and we recover
the Lagrangian action (3) on the surface of the primary
constraints. Indeed, the variational principle (18) yields

_λ ¼ −μ2; _ζ ¼ −μ1; π ¼ 0; ð20Þ

_θ ¼ −ν: ð21Þ

The evolution of the classical observables is given by,

_f ¼ ∂tf þ ff;HTg;

which produces the consistency conditions,

_πθ ¼ iζ ≈ 0; ð22Þ

_χ1 ¼ 0 ⇒ μ2 ¼ −θ; _χ2 ¼ 0 ⇒ μ1 ¼ 0: ð23Þ
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From (20), (22) and (23), we recover the Euler-Lagrange
equations (5), while ν and θ should still be determined.

A. Gauge symmetry generator

The gauge symmetry transformation of the Hamiltonian
system of equations (20)–(23), and of the action (19), is
generated by (6) together with,

δν ¼ −̈ϵ; δμ2 ¼ −_ϵ: ð24Þ

Note that the secondary constraint ζ ≈ 0 and χ2 imply
that πλ ≈ 0. Thus we obtain two first-class constraints

πθ ≈ 0; πλ ≈ 0; ð25Þ

since they have a trivial Poisson bracket with χi and among
themselves.
None of the constraints (25) generate independent

symmetries of the action (19), and of the field equations.
Indeed, it can be verified that with different parameters ϵ, ϵ0,

Gðϵ; ϵ0Þ ¼ ϵ0πθ þ ϵπλ; ð26Þ

the variation

δf ¼ ff;Gðϵ; ϵ0Þg; ð27Þ

does not generate any symmetry. We must set ϵ0 ¼ _ϵ
complemented with (24) to obtain a true symmetry gen-
erator, which turns out to be the Castellani chain [30],

GðϵÞ ¼ _ϵπ þ ϵπλ: ð28Þ

Hence πλ is not a symmetry generator, and the Dirac
conjecture does not hold.

V. REDUCTION AND GAUGE FIXING

First, let us pass to the phase space submanifold defined
by the SCC χi ¼ 0 (14). There the momentum variables πζ
and ζ can be removed and the Dirac brackets ff; ggD ≔
ff; gg − ff; χigC−1ijfχj; gg reduces to

ff; ggD ¼ ð−1Þf
�
∂f
∂θ

∂g
∂πθ
þ ∂f
∂πθ

∂g
∂θ
þ ∂f

∂λ

∂g
∂πλ
þ ∂f
∂πλ

∂g
∂λ

�
;

ð29Þ

on functions of fðθ; πθ; λ; πλÞ. Consequently, the relevant
canonical relations are given by,

fθ; πθgD ¼ −1; fλ; πλgD ¼ −1: ð30Þ

Then the reduced Hamiltonian reads,

HR ≔ θπλ þ πθν: ð31Þ

This Hamiltonian yields equations of motion

df
dt
¼ ∂f

∂t
− θ

∂f
∂λ
þ ν

∂f
∂θ

; πθ ≈ 0; πλ ≈ 0; ð32Þ

which yields (20)–(21) with Lagrange multipliers (23)
μ1 ¼ 0, μ2 ¼ −θ.
The apparently undetermined functions of time are given

by θ, ν, and λ. However, there are two linear equations
relating them,

_λ − θ ¼ 0; _θ þ ν ¼ 0; ð33Þ

and hence adding one more constraint suffices in order to
determine the system completely. The missing equation is
the gauge condition associated with the primary first-class
constraint πθ ≈ 0, a restriction on θ. We choose the gauge
condition (7), with constant ω. It follows from (33) and (7)
that λ must satisfy the wave equation (9), whose solution is
given by (10), and ν ¼ iωθ ¼ ω2λ ceases to be arbitrary.
Therefore, there is no need to add a new external condition
conjugate to the secondary FCC πλ ≈ 0 in order to obtain a
deterministic set of equations.
Note that the most general gauge fixing consists of θ

expanded as a function of ðλ; πλ; πθÞ. However, the terms
containing πλ ≈ 0 ≈ πθ weakly vanish and can be dis-
carded. Thus the expansion of θ reduces to a linear function
of λ.
Setting the constraints πθ ¼ 0 and θ ¼ iωλ strongly, the

Dirac bracket is reduced to,

ff; ggR ¼ ð−1Þf
�
∂f
∂λ

∂g
∂πλ
þ ∂f
∂πλ

∂g
∂λ

�
: ð34Þ

The gauge-fixed Hamiltonian corresponds to the Fermi
oscillator,

Hfix ¼ −iωλπλ; ð35Þ

and the observables evolve according to,

_f ¼ −iωλ
∂f
∂λ

; πλ ≈ 0: ð36Þ

We conclude that the Dirac conjecture does not apply to
our model, since the secondary first-class constraint πλ does
not generate an independent gauge symmetry, and since a
single gauge fixing condition suffices in order to determine
all arbitrary functions of time present in the system. Note
that the wrong assumption of the Dirac conjecture would
imply the elimination of λðtÞ, since this is the conjugate of
the secondary first-class constraint πλ ≈ 0.
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A. The secondary first-class constraint
as an initial condition

Since the equations of motion of λ and πλ are first-order,
only one boundary condition is enough to determine the
integration constants. This suggests that the gauge fixed
theory can be expressed with the first-class constraint
πλ ≈ 0 imposed as a boundary condition, instead of writing
it together with the equations of motion as in (36).
This is, without the constraint πλ ≈ 0, we would find that

the equations of motion, obtained from _f ¼ ff;HTg,
_λþ iωλ ¼ 0; _πλ − iωπλ ¼ 0: ð37Þ

have general solutions,

λðtÞ ¼ λ∘e−iωt; πλðtÞ ¼ πλ∘eiωt; ð38Þ

with integration constants ðλ∘; πλ∘Þ. Setting

λð0Þ ¼ λ∘; πλ∘ð0Þ ¼ 0; ð39Þ

for λ∘ ≠ 0, we would obtain the same result as in (36), since
for all t we have that πλðtÞ ¼ 0.
This suggests the following effective theory,

Seff ¼
Z

tf

ti

dtð_λπλ þ iωλπλÞ þ ρfπλðtfÞ; ð40Þ

is equivalent to (19).
In the interval ðti; tfÞ, the variation of the action vanishes

if the field equations (37) are satisfied. At the ends of the
intervals the boundary term,

δλðtfÞπλðtfÞ − δλðtiÞπλðtiÞ þ δρfπλðtfÞ þ ρfδπλðtfÞ ¼ 0;

ð41Þ

must also vanish. It follows that for given nonvanishing
initial condition λðtiÞ, δλðtiÞ ¼ 0, πλ must vanish at t ¼ tf
(from the variation of ρf) and consequently πλðtÞ ¼ 0 for
all times. The evolution of λðtÞ is determined by its field
equation and initial value. The role of the boundary term
ρfπλðtfÞ is to enforce the boundary condition πλðtfÞ ¼ 0,
by variation of the Lagrange multiplier ρf. Since the
system first-order, we cannot simultaneously fix λðtÞ at
both extremes, t ¼ ti and t ¼ tf. Thus λðtfÞ is free
and πλðtfÞ ¼ 0.

VI. QUANTIZATION

There are many counterexamples to the Dirac conjecture.
It is argued [2], however, that without the assumption of the
Dirac conjecture the quantization of those systems may be
inconsistent. We shall see that in the system proposed here,
this is not the case.

We shall quantize in two different frameworks: quanti-
zation in Hilbert space and deformation quantization. In
the first case we use two alternative representations, in
terms of matrix operators, and as differential operators on
Grassmann variables (Schrödinger realization). The treat-
ment of the Fermi oscillator to be considered here is close
to Refs. [26,27] in deformation quantization, and to [28]
in the operator approach. It turns out that the model is
equivalent to the Fermi oscillator prepared in the positive
energy state.

A. Operator correspondence

We start by postulating a correspondence between the
classical variables and operators: ðλ; πλÞ → ðλ̂; π̂λÞ, while
the Poisson bracket is mapped to a Z2 graded commutator,

dff; ggD ¼ ½f̂; ĝ�iℏ
; ½f̂; ĝ� ≔ f̂ ĝ−ð−1Þjfjjgjĝ f̂ : ð42Þ

Thus we should look for representations of the algebra,

½λ̂; π̂λ� ¼ −iℏ: ð43Þ

Modulo ordering, the classical Hamiltonian (35) is mapped
to the quantum operator,

Ĥ ¼ −
iω
2
ðλ̂π̂λ − π̂λλ̂Þ: ð44Þ

The Schrödinger equation is then,

iℏ
d
dt
jϕðtÞi − ĤjϕðtÞi ¼ 0; ð45Þ

and the stationary Schrödinger equation,

ĤjψEi ¼ EjψEi;

is obtained by separation of the time coordinate:
jϕðtÞi ≔ e−i

E
ℏtjψEi.

The Hamiltonian (44) corresponds to the Fermi oscillator
[26,27,29], which has two energy levels. Hence the wave
function can be expanded as,

jϕðtÞi ¼ e−i
ω
2
tjψþi þ eþiω2tjψ−i; ð46Þ

and jψþi and jψ−i are initial states. As we shall see, the
latter are energy eigenstates with the spectrum,

Ĥjψ�i ¼ E�jψ�i; E� ¼ �
ωℏ
2

: ð47Þ

We shall also verify that the quantum analogue of the
constraint πλ ≈ 0 can be implemented in two equivalent
ways:
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π̂λjϕðtÞi ¼ 0; or π̂λjϕðtfÞi ¼ 0; ð48Þ

namely for all t, or as the quantum analog of the final-time
condition (40). In the latter case, we say that the fermion is
prepared in a vanishing momentum state at t ¼ tf.

1. Matrix representation

In a matrix representation, the operator correspondence
can be given in the form,

λ̂¼
�
0 0

1 0

�
; π̂λ ¼

�
0 −iℏ
0 0

�
; Ĥ¼ωℏ

2

�
1 0

0 −1

�

ð49Þ

This representation is compatible with the reality condi-
tions,

ˆ̄λ ¼ i
ℏ
π̂λ; ˆ̄π ¼ iℏλ̂; Ĥ† ¼ Ĥ; ð50Þ

where ˆ̄λ ≔ λ̂† and ˆ̄π ≔ π̂†λ .
The Hamiltonian eigenstates (47) are given by

jψþi ¼
�
ψþ
0

�
; jψ−i ¼

�
0

ψ−

�
: ð51Þ

The condition (48) can be implemented as π̂λjϕðtfÞi, which
implies ψ− ¼ 0, and the system stays in the Eþ eigenstate
for all values of the time t.

2. Schrödinger realization

Now the operator correspondence (cf., [28]) is given by,

λ̂ ¼ λ; π̂λ ¼ −iℏ
∂

∂λ
; Ĥ ¼ ℏω

2

�
∂

∂λ
λ − λ

∂

∂λ

�
:

ð52Þ

The Eigenstates of the Hamiltonian are spanned in terms
of the λ variable as jψi ¼ ψþ þ λψ−, where ψ� are real
commuting variables. The inner product is given by an
integral formula,

hψ̄ jϕi ¼
Z

dλdλ̄
N
ðψ̄þ þ ψ̄−λ̄Þðϕþ þ λϕ−Þ

¼ 1

N
ðψ̄þϕþ þ ψ̄−ϕ−Þ: ð53Þ

where N ¼ jψþj2 þ jψ−j2 is a normalization constant, and
we have used the standard rules for Berezin integrals. Now
we obtain the spectrum (47) with

jψþi ¼ ψþ; jψ−i ¼ λψ−; ð54Þ

and the time-dependent solutions of the Schrödinger
equations are given as in (46). Once again, the constraints
(48) imply ψ− ¼ 0. The operators ðλ̂; π̂λÞ satisfy the conju-
gation relations (50) with respect to scalar product (53).

B. Deformation quantization approach

In the deformation quantization approach, the classical
functions remain invariant but the product of the canonical
variables is deformed,

fg → f � g ¼ fgþOðℏÞ; ð55Þ

where the star-product �, to be specified, is equivalent to an
expansion in ℏ around fg.
The Poisson bracket is then deformed,

dff; ggD ¼ ½f̂; ĝ��iℏ
; ½f; g�� ¼ f � g− ð−1Þfgg � f; ð56Þ

and it is such that in the classical limit

lim
ℏ→0

½f; g��
iℏ
¼ ff; gg: ð57Þ

it becomes, literally, the Poisson bracket.
We define the star-product

f � g ≔ f exp

�
ℏ
2i

B
↔
�
g; ð58Þ

by the exponentiation of the Poisson bi-vector,

B
↔

≔
∂
 
∂λ

∂
!
∂πλ
þ ∂
 
∂πλ

∂
!
∂λ

; ð59Þ

in the convention f ∂
 ¼ −ð−1Þjfj ∂!f, for ∂ ¼ ∂λ; ∂πλ.

Since B
↔3 ¼ 0, the expansion of the exponential (58)

contains up to order

B
↔2 ¼ 2

∂
 
∂λ

∂
 
∂πλ

∂
!
∂πλ

∂
!
∂λ

: ð60Þ

In this framework, the Moyal equation

iℏ
dW
dt
¼ iℏ

∂W
∂t
þ ½W;H�� ¼ 0; ð61Þ

provides the relevant distribution, namely the Wigner
function. The classical limit of the Moyal equation is the
Liouville theorem for the phase space distribution.
The most general form of W is,

WðtÞ ¼ w0 þ λw1 þ πλw2 þ λπλw3; ð62Þ
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where w’s are functions of time. The mean value of an
observable is given by,

hfi ¼
Z

dπλdλ
N

f �W: ð63Þ

We demand W to be Grassmann-even in order to preserve
the Grassmann parity of the mean values (63), hence jfj ¼
ð0; 1; 1; 0Þ for f ¼ ðw0; w1; w2; w3Þ, respectively. Since H
commutes with w0 and λπλw3 the coefficients w1 and w3

must be time-independent ∂tw0 ¼ 0 ¼ ∂tw3, in order to
satisfy (61) and the remaining coefficients must have the
form,

w1 ¼ w̃1 exp

�
−i

w
ℏ
t

�
; w2 ¼ w̃2 exp

�
i
w
ℏ
t

�
; ð64Þ

where w̃1 and w̃2 are constants.
The Wigner function provides the energy spectrum by

means of the stargenvalue equation

H �W ¼ EW: ð65Þ

The Hamiltonian acts diagonally when

w0 ¼
iℏ
2
w3; ð66Þ

or alternatively when w0 ¼ − iℏ
2
w3. By definiteness, we

choose option (66). Therefore the Wigner function splits
into two sectors,

Wþ ¼
iℏ
2
w3 þ πλw2 þ λπλw3; W− ¼ λw1; ð67Þ

such that,

H �W� ¼ E�W�; E� ¼ �
ℏω
2

: ð68Þ

In order to have h1i ¼ 1, we should normalize w3 ¼ 1
and the meaning of the constant w1 and w2 is obtained from
the expectation values

hλi ¼ w2; hπλi ¼ −w1: ð69Þ

Hence we can write,

Wþ ¼
iℏ
2
þ πλhλi þ λπλ; W− ¼ −λhπλi; ð70Þ

The analogue of the constraints (48) πλ �W ¼ w̃1 ¼ 0
implies hπλi ¼ 0 for all t.

VII. CONCLUSIONS AND FINAL REMARKS

The goal of our article has been to propose a new
fermionic counterexample to the Dirac conjecture, which
complements the many bosonic cases already existing in
the literature (see e.g., [2–5]).
Here, a direct test shows that the secondary first-class

constraint does not generate a gauge symmetry, and hence
the Dirac conjecture fails. We have shown that there is a
single gauge symmetry generator, the Castellani chain (1),
and that the number of gauge fixing conditions and the
number of FCC do not need to match to get rid of all
arbitrary functions of time: it suffices to impose a gauge
fixing condition conjugate to the primary FCC. Thus the
system propagates one degree of freedom. Assuming the
Dirac conjecture without verification would lead us to
impose an additional constraint, wrongly referred to as
“gauge fixing,” and there would be no propagating degrees
of freedom.
The gauge fixed model is equivalent to the fermion

harmonic oscillator, with the secondary first-class being
imposed by means of a boundary condition, which is
preserved for all time from the first-order nature of the
system. Quantization does not present problems, as sug-
gested in [2] for scenarios where the Dirac conjecture is
invalid. Here, the secondary first-class constraint can be
imposed as a condition that “prepares” the system in the
positive energy stationary state. Quantization problems of
this kind of system result from the lack of definition of the
Poisson bracket in odd-dimensional subspaces of the phase
space. Indeed, if an odd number of phase space directions
are removed algebraically, the Poisson bracket will not be
correctly defined in odd-dimensional induced subspaces.
However, it is perfectly possible, as it happens here, that
setting secondary FCC as boundary conditions, the system
will not evolve along those constrained directions, i.e., the
system will evolve naturally in a submanifold of the initial
phase space.
Our result suggests a more general alternative to the

treatment of secondary first-class constraint, as boundary
conditions preserved in the volution generated by the total
Hamiltonian, instead of being imposed as algebraic restric-
tions on the phase space. This has interesting implications
in the quantization scheme, which we shall formalize in a
subsequent publication.
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