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Motivated by the Bose et al.-Matletto-Vedral (BMV) proposal for detecting quantum superposition of
spacetime geometries, we study a toy model of a quantum entanglement generation between two spins
(qubits) mediated by a relativistic free scalar field. After time evolution, spin correlation is generated
through the interactions with the field. Because of the associated particle creation into an open system, the
quantum state of spins is partially decohered. In this paper, we give a comprehensive study of the model
based on the closed time path formalism, focusing on relativistic causality and quantum mechanical
complementarity. We calculate various quantities such as spin correlations, entanglement entropies, mutual
information and negativity, and study their behaviors in various limiting situations. In particular, we
calculate the mutual information of the two spins and compare it with spin correlation functions. In some
cases, its inequality relation improves the trade-off relation between the fringe visibility and the
distinguishability (which-way information) by giving a stronger upper bound on the visibility. We also
discuss why no quantum entanglement can be generated unless both spins are causally affected by one

another while spin correlations are generated.
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I. INTRODUCTION

Relativistic quantum field theories (QFT) can success-
fully describe our Universe in a compatible way between
the principle of quantum mechanics and relativistic cau-
sality, and provides a nontrivial concept of quantum
vacuum with vacuum fluctuations. Formulated on the
curved spacetime, it can incorporate nontrivial effects of
classical gravity. Thus, we can say that QFT serves as a
foundation for the success and further progress of modern
descriptions of not only matter fields but also the spacetime
itself in which matter lives. Though it is natural to think that
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the gravitational field should also be quantized and
described within the framework of the QFT paradigm, it
is not yet experimentally confirmed as no experiments have
been done to observe the quantum nature of gravity.
Toward this direction, the so-called BMV tabletop
experiment is proposed by Bose ef al. [1] and Matletto
and Vedral [2] to detect quantum entanglement between
two massive objects generated by the Newtonian gravita-
tional interaction. The generation of entanglement can be
interpreted as being induced by a quantum superposition of
different spacetime geometries. The experiment may
become feasible in the foreseeable future by virtue of
the experimental progress in the ground state cooling [3,4],
and macroscopic superpositions [5,6]. The original analysis
in the BMV proposal is very simple and intuitive based on
the Newtonian approximation. However, there have been
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discussions on its physical interpretation, especially about
whether the detection of the gravity-mediated entanglement
can be an experimental test of the quantum nature of
gravity [7-15]. Also, more detailed analyses based on field-
theoretical models are given in the Hamiltonian formu-
lation [15-18] and in the path-integral formulation [12,19]
to understand its possible impacts of the relativistic
causality and the vacuum fluctuations of the gravitational
field. See Refs. [20,21] for reviews.

The purpose of the present work is to give a compre-
hensive description of the field-mediated quantum/classical
correlations between two objects based on a simple toy
model for the BMV-type setup. Time evolution of the state
containing two objects (qubits, or equivalently, spins) as
well as the quantum field can be fully obtained by using the
technique of closed time path integral and given in terms of
two types of Green’s functions. One is the retarded/
advanced Green’s function and the other is the Keldysh
Green’s function. It is briefly reviewed in [19] and in the
Appendix A. The relativistic causality reflected in the
retarded/advanced Green’s functions controls the genera-
tion of the correlations via causal influence from one to the
other. On the other hand, the vacuum fluctuations man-
ifested by the Keldysh Green’s function have two important
effects: generation of correlations and decoherence of each
object’s quantum state by particle creations associated with
nonadiabaticity of the setup. We discuss how these effects
are related to each other in various cases, employing a sort
of trade-off relation between entropies and mutual infor-
mation. In particular, we compare the mutual information
of two spins with the spin correlation functions to check the
inequality between them. We also obtain the necessary
conditions, in terms of the causality and the decoherence,
for the quantum entanglement to be generated in our setup.
We show that the quantum entanglement cannot be gen-
erated unless two spins are causally connected in both
directions.

This paper is organized as follows; we use figures in each
section to explain it. Our field-theoretical model is intro-
duced in Sec. II. A schematic picture of the model is given
in Fig. 1. We then discuss its Newtonian approximation in
Sec. III to describe entanglement generation due to the
nonlocal interaction. Figure 3 shows the evolution of
entanglement as a function of the interaction time-interval.
In the Newtonian approximation, there is no decoherence
due to the particle creations and the entanglement entropy
simply oscillates. The notions of visibility, distinguish-
ability and the separability condition by negativity are also
introduced in this section. All the necessary calculations are
given in this section.

In Sec. IV, we introduce a dynamical field coupled to
spin systems and solve the model exactly. We obtain the
reduced density matrix tracing out the field variables in
which the effects of the causality and the vacuum fluctua-
tions are automatically taken into account. Figure 4 shows
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FIG. 1. A schematic view of the setup. Alice’s spin and Bob’s
spin are located at x = x, and x = xp, respectively, and interact
with the field on the world lines colored pink and purple. In the
boxes, time-dependences of the strengths of the spin-field
couplings 4, and Ay are depicted. Each coupling is nonvanishing
only during a finite interval. The signs of the couplings are
correlated with the signs of the z-direction spins 65°B.

the contents of this section, in particular various tools we
introduce for investigating various properties. Due to the
particle creation associated with the nonadiabaticity of the
time evolution, various quantities such as spin correlations
or quantum entanglement are suppressed by the adiaba-
ticity parameters y, and yg, given in Eq. (57), written in
terms of the Keldysh Green’s function.

Using these results, in Sec. V, we consider four limiting
cases to see how the causality and the vacuum fluctuations
affect correlations between the objects. Figures 5 and 6
show the situations of these four cases, specified by their
adiabaticity and causal relations between Alice and Bob.
An adiabatic limit in Sec. V A corresponds to y, = 1. There
is no particle creation from Alice. Figure 7 shows the
entanglement negativity of Alice and Bob spins. Its non-
vanishing property expresses quantum entanglement
between the spins. We also depict the mutual information
of Alice and Bob in Fig. 8 and that of Alice and field in
Fig. 10. On the other hand, in the nonadiabatic limit of
yp = 0 studied in Sec. V B, Bob is completely decohered.
Thus the mutual information of Alice and Bob, depicted in
Fig. 11, cannot be larger than the half value of the maximal
one. The nonadiabatic limit can be considered as an analog
of the Colella-Overhauser-Werner (COW) experiment in
which Bob’s spin is replaced by the earth and interacts with
Alice’s spin via gravitational interaction. The third and
fourth cases are focusing relativistic causality. In Sec. V C,
we study spacelike separated case where both retarded
Green’s functions between Alice and Bob vanish as in
Fig. 13. In this case, while they do not have the causal
interaction, spin correlations appear from the entanglement
of the vacuum state of the field. Mutual information and
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spin correlations are depicted in Fig. 14. In Sec. V D, these
quantities are evaluated in the case where only one of the
retarded Green’s functions is vanishing and depicted in
Fig. 16. In both of those cases, as proved in Sec. V D 5, the
reduced density matrix of the two-spin system is separable
and there is no quantum entanglement between Alice’s and
Bob’s spins. In Sec. V E, we have a short summary of the
roles played by various Green’s functions. Finally, we
summarize the paper in Sec. VI.

In Appendix A, we give a review of the closed time path
integral formalism to calculate the reduced density matrix
in our setup. In Appendix B, we calculate correlations
between the scalar field and the spin variables. In
Appendix C, we prove that the strength of decoherence
due to the nonadiabaticity, y, and yg, are directly related to
the number of particles created by the nonadiabatic change
of the spin-field couplings. In Appendix D, we numerically
evaluate integrations of various Green’s functions. In
Appendix E, we check inequality relations between
Green functions as a consistency for the non-negativity
of the density matrix.

II. SETUP

We consider a system consisting of Alice’s spin ¢?,

Bob’s spin ¢, and a scalar field ¢ in (3 + 1) dimensional
spacetime. The Hamiltonian is given by H=H ot Hy+
Hyg with

i, = / d%% [ﬁz(x) F (V) + m2)|,
i, = —3?/1A(t)€;5(xA)» Hy = —3123/130)(35(«‘73)7 (1)

where m is the mass of the field and #(x) is the canonical
conjugate of ¢(x). The strengths of the couplings, 14 (r) and
g (1), are controlled by Alice and Bob; they are nonzero in
the finite time intervals as depicted in Fig. 1. Without loss
of generality, we suppose that they take positive values;
Aa(t) > 0 and Ag(t) > 0. The system is symmetric under an
interchange of Alice and Bob, and all the discussions below
are interchangeable under (A, B) — (B, A).

At the initial time # = #; when Alice and Bob have not yet
turned on the spin-field interactions, it is assumed that the
total system is in a pure and separable state:

W) = [Wi) a4 )

where |Q) is the field’s ground state with 1, = 5 = 0,
and

) an = (F)a -+ 0 (H)s + 1-)a)

:%q++yu+—yﬂ—+%+k—»- (3)

Here |+) being the eigenstate of 6, with the eigenvalue +1.
We also introduced the notation

|o'0"> = |6>A|6/>B with 0,06 = =+. (4)

Acting the time evolution operator U(t;, 1) =
T exp{—i [{" dzH} on the initial state (2), we obtain a state

at t = t; by which time Alice and Bob have turned off the
interactions:

We) = Ut 1;)| W), (5)

which is no longer separable. In the following sections, we
clarify the nature of this final state by solving the system
exactly and evaluating various quantities such as correlation
functions, entanglement entropies, entanglement negativity,
and mutual informations.

III. ENTANGLEMENT GENERATION
IN NEWTONIAN APPROXIMATION

Before solving the system exactly, let us see how the
entanglement between Alice’s spin and Bob’s spin devel-
ops in an effective theory where the interaction between
two spins is replaced by a nonlocal Newtonian interaction.
The tabletop experiments [1,2] to detect the quantum
superposition of spacetime geometries are based on the
analyses in this approximation. Here, the entanglement
between the two spins is induced by the Newtonian
potential to generate spin correlations and affect quantum
interferences, as shown in Fig. 3. The entanglement entropy
represents the amplitude of the correlations properly in the
Newtonian picture.

The corresponding Hamiltonian is the ferromagnetic
one:

H g = —J6268 X O(toge — 1)0(t — 14y), (6)

where 6(¢) is the Heaviside step function. The distance
between Alice and Bob D = |x, — x|, the mass of the
field m and the interaction strengths 1, g are all contained
in the coefficient,

(7)

Here we have assumed a simple time dependence,
Aa(t)2g(t) = AadgO(togs — 1)0(t — toy), where A, and A
are positive constants, f.,(>#) and t.; are the times at
which the spin-spin interaction is turned on and off,
respectively.

A. Generating entanglement and correlations

Acting the time evolution operator with the Hamiltonian
(6) on the initial state (3), we find

085003-3



HIDAKA, ISO, and SHIMADA

PHYS. REV. D 107, 085003 (2023)

ei@ e—i@
¥e)ap = 5 (1) + == + 5

=:|0) p (8)

for t = t; > to, where © := J X (fog — toy) is the dimen-
sionless time interval for which the spin-spin interaction is
effective. It is convenient to write the density matrix in the
Bloch representation as

(H=) +1=+))

Pas = |¥r)ap (¥l
= %{iAiB + 60268 + cos(20) [60 18 + 1468]
—sin(20)[646% + 62671}, (9)

z Oy

where 1* and 1® are the unit operators acting on the Hilbert
space of Alice’s and Bob’s spin. By taking the partial trace,
we get the following reduced density matrices, respectively,

1 .
pa = trg{pa} = 5 {1* + cos(20)5%},
1 -
po = i lpan} = 5 (1% +cos(20)32). (10)

Here, try and trg represent the trace over Alice’s and Bob’s
Hilbert space.

As is obvious from the above expressions (9) and (10),
the expectation values of spins are given by

(6roz) =1,
(6362) = (6267) = —sin(20),
(63) = (67) = cos(20), (11)

and all the others vanish. Here the expectation values are
given by (O) := tryg{pagO}. In order to see the correla-
tions between two spins, we introduce 867 := 64 — (6%)

with w = x, y, z. Nontrivial correlations are given by

(662668) = sin?(20),
(069068) = (66286%) = —sin(20).  (12)

These correlations reflect the quantum entanglement
between the two spins. In the rest of this section, we see
their relation by calculating entanglement entropy, visibil-
ity, distinguishability, and entanglement negativity.

B. Entanglement entropy

The entanglement entropy is defined as the von
Neumann entropy of a reduced state. Since the eigenvalues
of the reduced density matrix p, in (10) is given by

, 14 s5cos(20)

58 > with s = +1, (13)

the entanglement entropy is computed as

S(pa) = =Y piIn py = Z(cos(20)),  (14)

s=+
where the function

1 1 1- 1-
_ —H;ln +v in v (15)

E(v)=-— 2 2 2

monotonically decreases from In2 to O when |v| increases
from O to 1, see Fig. 2. In the Newtonian approximation, the
entanglement entropy associated with Bob’s spin takes the
same value: S(pg) = S(ps) = Z(cos(20)). As depicted in
Fig. 3, the entanglement entropy oscillates with the
dimensionless time interval ® and it reaches the maximal
value In2 at ® = z/4 mod /2. This can be understood
directly from the expression (8) at ® = z/4,

In 2
¥(v)

0 ‘ : ‘ L
—1 0 +1

FIG. 2. X(v) defined in (15) is the concave, even function of
v € [—1, +1]. It vanishes with v = +1 and reaches the maximum
value In2 at v = 0.

1+ A |
S
L Vﬁ
L /2 L 7 ©

0

FIG. 3. Horizontal axis is ® = J(ty — t,,), and the dimension-
less time interval for which the spin-spin interaction is effective.
The solid line depicts the entanglement entropy S(p,)/In2,
which is positively correlated with the distinguishability
D(®) = (663668)* = (662668)* = (66166%) depicted with
the dashed line. On the other hand, the visibility VA (@) =
(64)? = (6B)? depicted with the dotted-dashed line is negatively
correlated with the entropy.
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(A +1=204)(+)s +1=)8)

W) aBlo—r/4 =

2f

(A= 1=)a) (s =1=)p). (16)

2f

as it is a maximally entangled state. From the ® dependence
of the spin expectation values in (12), the entanglement
entropy faithfully represents the amount of the spin
correlations in the Newtonian approximation. It is because
the dynamical field is absent and no information is trans-
ferred away from the subsystem of Alice and Bob.

C. Visibility and distinguishability

One can also introduce two types of quantities, visibility
V and distinguishability D, to describe the “wave particle
duality” [22]. Suppose that the interaction described by (6)
is turned on for Bob to be able to make a guess on which
eigenstate Alice would find |+), or |-),. Then, the
quantum interference between these two eigenstates should
be partially lost and the expectation values of 6% and 6%
become smaller than the values that could be if the spin-
spin interaction were not turned on. In this sense, there is a
trade-off relation between Alice’s visibility of the quantum
interference effects and Bob’s distinguishability of the state
of Alice’s spin [17].

Alice’s visibility of the interference fringe can be
quantified by

= (6% +i63)] = 2[(=[pal+)al.
(17)

Within the Newtonian approximation here, we have the
visibility from (10) as

Va = | cos(20)],

(18)

which is nothing but the absolute value of (6£) in (11). As
seen in Fig. 3, it is negatively correlated with the entangle-
ment entropy (14), which is simply because the entangle-
ment entropy is now written as a function of the visibility:

Z(Va(0)). (19)

where X(v) is the monotonically decreasing function of »
for » > 0 defined in (15). That is, the more entangled
the two spins are, the weaker the quantum interference
effects are.'

S(.bA) =

"For an “asymmetric interferometer” [22] with the predict-
ability Py = [(P;]|62|W;)| # 0, the entanglement entropy is given

by S(pa) = Z(y/ VA + P%), and then, the entropy is again the
monotonically decreasing function of the visibility V,.

In order to define the distinguishability, let us first
introduce Bob’s density matrix under the condition that
Alice’s spin is found to be in the eigenstate of 62 with the
eigenvalue +1:

Pt = 2(£[pan ). (20)

Then, for the initial state given by (3) with the vanishing
expectation value of 62, Bob’s distinguishability of Alice’s
z-spin can be quantified by the trace distance between pg
and pg:

(1)

| VR
Dy = EtrB|p§ - Pgl,

where || is defined as |O] =V O'O for an operator
O [23]. The trace distance is a quantity that represents
how close two states are. If the distance is large, two states
can be distinguished. In the special case of one-qubit that is
the case of our interest, when ﬁf§ are represented in the
Bloch representation,

At

Py =5 (1% +r.-8%), (22)

NI>—*

where 68 = (68,68,68), the trace distance is equal to the

half of the Euclidean distance
Dy ==lr, —r | (23)

on the Bloch sphere.
Within the Newtonian approximation, (20) turns out
to be

1 .
Pk =5 {1° + cos(20)? F isin(20)58}.  (24)
from (9). Thus, we have r. = (0, cos(20), F sin(20)) and
the distinguishability is

1
Dy = §|rJr —r_| =sin(20)]|. (25)

This is equal to the absolute value of (664'56%) = (56256%)
and /(562662 in (12), and also, positively correlated with
the entanglement entropy (14), see Fig. 3, since (14) can be
written as
S(pa) = (1 - D(©)]'7). (26)
The entanglement between the two spins makes it possible
for Bob to tell the direction of Alice’s spin by observing
Bob’s own spins.
Note that the visibility and distinguishability satisfy the
trade-off relation
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VAi+Di=1, (27)

which implies pi are pure states [22]. In fact, they are
expressed by

i = |£O)5(

(28)

where the state is nothing but the one that has evolved with
the Hamiltonian (=, |H zg|=.) A:

| £0)y = 0% (|4} + |))

g +eT€—)p). (29)

As seen in Sec. IV E, pg are no longer pure states if the
field that creates potential between Alice and Bob is
dynamical, and (27) is to be replaced by inequalities.

D. Separability condition and negativity

Whether quantum entanglement has been generated by
the time evolution can be judged by whether the density
matrix is separable. When the density matrix, which can be
in a mixed or pure state, is written as a mixture of product
states as

PaB = Zl’iﬁg)ﬁg) (30)

with the probabilities p; > 0 satisfying > ; p; = 1, the state
is said to be separable. Such a state can be prepared by local
operations and classical communication (LOCC) [24]; in
this sense, spin correlations existing in a separable state are
regarded as classical correlations.

For the two-qubit system, the necessary and sufficient
condition for a density matrix to be separable is the
positivity of the partial transposition [25,26]. As a measure
of nonseparability or the quantum entanglement between
the two spins, we take the entanglement negativity, sum-
mation of the absolute values of negative ones in (33):

N == Zg(_ﬂn”ﬂnL (31)

where ji, are eigenvalues of the transposed density matrix.
Note that if p,g is a pure state, N # 0 is equivalent
to S(pa) # 0.

Let us evaluate the negativity in the Newtonian approxi-
mation. Noting the transposition of Pauli matrices,
(i",67,87,67) = (1.6,,-8,.6.), the partial transposition
(actlng on Bob’s spin) of the density matrix (9) is
obtained as

DAy = {1 ATB 4

—s1n(2®)[ 268 — 6268}, (32)

6868 + cos(20)[62018 4 1468]

From this, we obtain the eigenvalues of the partial trans-
position:

~‘1‘2:_{]Jrs2+s1\/2+2s2cos (40)}.  (33)

There is one negative eigenvalue, i,z = —|sin(20)|/2 for
® # 0 mod /2, and thus, the negativity is

N = % |5in(20)). (34)

Therefore, the Hamiltonian (6) in the Newtonian approxi-
mation generates the quantum entanglement between Bob
and Alice, except ® = Omod /2, where the state is
recursed to the initial one,

PaB = = ) ap (Wil (35)

As we will see below, when the field is dynamical, the
negativity can vanish for various reasons discussed in
Secs. VB-V D, even though the entanglement entropy is
nonvanishing.

IV. RELATIVISTIC TREATMENT
WITH A DYNAMICAL FIELD

Hereafter, we go back to the original model described by
the Hamiltonian (2) with the initial state (2), and study its
time evolution without any approximation. With the
dynamics of the field taken into account, the resultant
final state turns out to be different from the one obtained in
the previous section: it respects the causality expressed by
the retarded Green’s function of the field; and also
describes particle creation and decoherence of the quantum
state of the spins expressed by the Keldysh Green’s
function.

In this section, we expand general discussions including
some “tools” to understand the quantum state after the time
evolution, see Fig. 4; one may skip this section to Sec. V to
see the physical consequences of the dynamical field in
limiting cases and come back to this section to check some
definitions or notations.

In Secs. IV A and IV B, we first obtain the density matrix
of the reduced system, composed of the two spins, realized
after the time evolution with the interaction between the
spins and the dynamical field. In Sec. IV C, we calculate the
spin correlations to see how they are different from the ones
obtained in the Newtonian limit due to the causality and the
decoherence. In Sec. IV D, we see some general behaviors
of the entanglement entropies in our setup. In Sec. IV E, the
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Pure and Separable "Tools”
. . VA r . ) IVH
Time evolution [y 3 Negativity vr Trade-off

Entangled - 1+ Entanglement entropy 1vp rdoﬁon

and Decohered . .
+ Mutual information 1vG -~

. . - Visibility and Distinguishability 1ve
Spin correlation <
e - Schrédinger Robertson relation 1vi

FIG. 4. In Sec. IV, we compute the reduced density matrix of
the final state of the spins, and then, introduce various “tools” in
each subsection to understand its entanglement structure as well
as the induced spin-spin correlations. Also, we discuss trade-off
relations to be satisfied with the spin-field correlations taken into
account. The red letters indicate the corresponding subsections.
Armed with these tools, we discuss the physical consequences of
the spin-spin correlations in various limiting cases in Sec. V.

visibility and the distinguishability are obtained and dis-
cussed from the viewpoint of the relation with the entro-
pies. In Sec. IV F, we discuss a sufficient condition for the
density matrix of the reduced system of the two spins to be
separable in our setup using the entanglement negativity. In
Sec. IV G, various mutual informations are constructed
from the entropies to quantify the amount of the spin-spin
and spin-field correlations. In Sec. IV H, we discuss trade-
off relations to be satisfied by the mutual informations and
their similarity to and difference from inequalities satisfied
by the visibility and the distinguishability.

In addition, in order to approach various limiting cases
considered in Sec. V, we discuss one more thing in this
section. In Sec. IV I, inequalities to be satisfied by the
propagators are derived from the Robertson-Schrodinger
uncertainty relation.

A. Reduced density matrix of the final state

We do not observe the scalar field directly. Then, it is
sufficient to know the reduced density matrix obtained by
tracing out the scalar field from the total density matrix
constructed from (5):

Pap = try{[¥e) (W}
=ty {U (1, 1) W) (¥l O (15, 1)}, (36)

which is a mixed state unlike (9) in general. For spins, the
Hamiltonian only depends on &% and 4%, i.e., the time
evolution operator can be expanded by the z-spin basis (4),
in which each component of (36) can be written as

. 1
<01A0]13 ‘pAB|690]23> = Z X Z[J] . Jz] (37)

Here, 67, 65"® = +1 and the prefactor comes from the

initial state (3) as

(010} W) ap (Wilosoy) = 1/4 (38)
and
Z[J 1. Jo) = (QUU (15, 15 T0)] 0 (1. 1: 1) |Q), (39)
with the time evolution operator

Uy (te.1i:0,) = (0202 |U (1. 1;) |02 oP)

1

—Texp {—i [ 'fdz{ﬁz¢— / d3xJi(t,x)(§5(x)}].

(40)
The “source” for the scalar field”
Ji(1.x):=00Ap (1)8%) (x—x5) + 0825 (1)) (x—xp)  (41)

is different in ﬁ¢(tf, t;J5) and U¢(tf, t;;J1) and therefore
Z[Jy,J,)] is not trivial.

B. Results of the Schwinger-Keldysh
effective action

Since the field’s configuration is traced out, it is
convenient to use the path-integral formulation [19] on
the closed time path [29], Schwinger-Keldysh formalism.
The Hamiltonian A, ¢ 18 the free-field part in (1), and hence,
(39) is easily computed as a Gaussian functional integral.
Putting details of the computation in Appendix A, let us
present the result;

AR exp{i@@gAa;\ L oAGB )

1
~ L (oA + PG + 20860 }

(42)
where 0P = (07 4 oA)/2 and ol = o} - o}

have been introduced for convenience.
In the first line of (42), we have real quantities,

1 t
©BA = /fdz/fde(z)GR(t—t’,xB —x7)2a (1),
t t
1 1
®4B = / Ldr / (A AN ()Gt — x5 = xp)Ap (1), (43)
f 4

which connect Alice’s spin and Bob’s spin in a causal
way with the retarded/advanced Green’s function of

*Similar types of source terms are used in order to realize
quantum sensors for an interacting quantum field [27,28].
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the source-free’ real scalar field. The retarded Green’s
function

Gr(t—1,x—x") = Go({ —1,x' —x)
=i0(t = 1)(Ql[(1.x). (1" .x))]|Q) 4.

(44)
satisfies

(? = m*)Gra)(t =1 x —x') = =W (x = x').  (45)
Hence, ®E* is nothing but the time integration of the
retarded potential that Alice’s spin induces at Bob’s
position. Similarly, &P is the retarded potential that

Bob’s spin induces at Alice’s position.
In the second line of (42),

e 1
o = ["ar [ a6t - 1.0 (1)
4 1
1, 1
op = ["ar [" atay(o)Gu(e - 1.0 (0),
L t
(SIQB — &BA

t; t;
= / dr / dr'2g(1)Gg (1 — ¢, xg —x5)A5(1') (46)
4 4

are the contributions of the vacuum fluctuations described
by the Keldysh Green’s function,

G (1 =1, x —x) =S (Q{d(1.x), p(1 . ¥)}Q)y.  (47)

N —

where {-, -} represents the anticommutator. The behavior of
the retarded and Keldysh Green’s functions is depicted in
Fig. 21. Here, note that we have the following inequalities

2

&AA H /dt/lA [xA)|Q> ZO,

2

Here, the Heisenberg operator ¢ (z,x):=/ (1:,1:0)¢p b(x)U(1,1,;0)
is introduced with the interaction with the spins turned off. Since
the scalar field is originally free apart from the interaction with the
spins, one may regard 4?5( t,x) as the interaction picture operator. It
satisfies free-field’s equation of motion: (0% — m?)¢(t.x) = 0.
Note that, because of this definition, the one-point function
vanishes: (Q|qA$(tx)|Q)¢ =0.

@AA + @BB + Z(SBA

H/dt/IA V(. x5) £ A (1)(1.x)]|Q),

2
> 0.

(49)

As computed in Appendix C, in our model without non-
linear interactions, these quantities are related to the
number of particles N created due to the nonadiabaticity
of Alice’s and Bob’s protocols:

(PrIN|Pp) = 6" + GR®, (50)

(Wil :N2: ) = (BrNIW)” = 4(6°)% (51)

where : N : represents the normal ordering of N. Especially,
(49) corresponds to the number of particles created when
Alice and Bob observe the z-spin eigenstates with their
respective eigenvalues ¢* and ¢®:

(W {]oAB) R{oA B [} W) = B + BBB 4 AGB2RA.

(52)

C. Reduced density matrix and spin correlation
We can now calculate the reduced density matrix of
Alice and Bob, and the spin correlation functions by using

the results in the previous section. The density matrix (37)
can be written in the Bloch representation as

1 (san o o
/A)AB = Z { lAlB + Cxx(%?&,]? + Can)/c\lB + COxlAa',]?
FOB Gt rC R ()
and it is further reduced to
A A [IPEYN ~A
pa = trg{Pag} = 5{1 + Cy06% ), (54)

N ~ 1 1 A
P = tta{Pag} = E{IB + Coxby ), (55)

where the coefficients are obtained by computing the
expectation values of the spin operators,

Cyy 1= (6767) = yarp cosh(4B),

Cyy = (8387) = yarp sinh(4BR*),

Co = (67) = ra cos(26RP),

Cox = (67) = rp cos(2BR™),

C,o t= (6268) = 75 sin2639),

C.y = (8968) = —rp sin(268%). (56)
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Their overall amplitudes are suppressed by two quantities

7a = exp(=260Y),  yy = exp(—2688)  (57)
representing the nonadiabaticity of Alice’s and Bob’s
protocols. Observe that, because of G, GEB GBA £ 0
and @R" # GR® in general, the reduced density matrices
deviate from those in the Newtonian approximation in (9)
and (10). Note that the inequalities in (48) guarantee
0 <7ya,yg < 1. With (49), it is also guaranteed that 0 <
Ciy<land 0L |C),| < 1.

From (56), it is straightforward to see that the correla-
tions between the two spins are obtained as

(6692568) = yayplcosh(4GBA) — cos(2684) cos(2RB)],
(664:668) = yayp sinh(4GE*),

(665:668) = —ya sin(26R"),

(662668) = —yp sin(26R*), (58)

and all the others vanish. The situation here can be
compared with (12) in the Newtonian approximation where
all the nonvanishing correlation functions depend only on
the single parameter ©.

D. Entanglement entropy

From the reduced density matrix and the spin correla-
tions obtained in Sec. IVC, we can calculate various
quantities. In this section, we first calculate the entangle-
ment entropy.

1. S(p,) and S(pg)

The eigenvalues of Alice’s reduced density matrix (54)
and Bob’s one (55) are given by

1 +sC

,4;\:% with s = +1, (59)
1+ sC

s ==% with s = %1, (60)

respectively. These are nonnegative since |C
as shown below (57). Then, the entanglement entropies are
computed as

S(pa) == piInul =2(C,9) =Z(yacos(264%)),  (61)

S(pp)==> pyInuy=2(Co,) =Z(rpcos(2684)).  (62)

s==+

Instead of cos(20) in the Newtonian picture (14), we have
two different quantities C,, = (64) and C,, = (6B) givenin
(56) for Alice’s spin and Bob’s spin, respectively. Remember
that X(v) monotonically decreases with v increasing. Take
the reduced system of Alice’s spin. When C,, vanishes,
S(p,) takes the maximal® value. Since y, defined in (57)
does not exceed unity, the entanglement entropies are
restricted to take their values in the region

0 < Z(ra) < E(ra cos264%)) = S(p) <In 2. (63)

The minimal value 0 is realized when the reduced system
is in a pure state, that is, Alice’s spin does not entangle with
the rest of the total system composed of Bob’s spin and the
field. The necessary and sufficient condition for the
vanishing S(p,) is that ®RE = O0modz/2 and y, = 1,
namely an adiabatic limit of Alice; GR* — 0.

On the other hand, S(p, ) can take the maximal value In 2
for two reasons. One is the case of maximal entanglement
between Alice’s spin and Bob’s spin via the field ¢ as the
retarded potential. In this case, C,, vanishes owing to
®R® = 7/4 mod 7/2 even when y, = 1. The other case is
realized by the entanglement between Alice’s spin and the
on-shell excitations of the field due to the nonadiabaticity
of Alice’s protocol. That is, if Alice abruptly turns on/off
the spin-field interaction, ®2* — oo and y, — 0 and the
maximal value of the entropy is obtained.

In contrast to the Newtonian case where S(p,) = S(Pg),
the causal structure also plays important roles in presence
of dynamical field. For instance, when Alice is not in Bob’s
causal future, the retarded Green’s function from Bob to
Alice disappears and so does ®B. Then, S(p,) takes its
nonzero minimum value X(y,), whereas S(pg) is still
possible to take the maximal value In 2.

2. S(pas) =S(ﬁ¢)

Since the total system is in a pure state, the entanglement
entropy of the subsystem of Alice and Bob S(p,p) is equal
to that of the scalar field S(p,). Let us calculate it.

The eigenvalues of (53) are computed as

Si182
Hap =

{1 +5,C + Sl\/(CxO +5,Co,)* + (Cy; + 5C,))* + C§y}

4>|—4>|~

*In our setup, the maximum value of S(p,
state (3). See the Footnote 1.

{1 + s,7AYp cosh(4 ®BA ) + Sl\/YA + YB + 25,77 €08(2 ((3AB GBA)) + 7A7135mh2( (SjBA)} (64)

) reaches the maximal one In 2 because the predictability P, vanishes with the spin initial
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with 51’2 = #+1.
obtained by

Thus, the entanglement entropy is

S(Pag) Z g’ In gy (65)

S1.82=

with the eigenvalues (64). Unlike S(p) and S(pg) dis-
cussed above, it depends on all the spin expectation values
in (56) and quantifies the entanglement between the field
and the two spins.

The minimal value 0 of S(pag) is found when the
reduced system with p,p is in a pure state, or equivalently,
when the largest eigenvalue 15 is the only finite one to be
unity. The necessary and sufficient condition is that both
Alice and Bob adiabatically change the spin-field coupling
so that all the ®y’s vanish: G*, GEB BB — 0.

S(pap) takes the maximal value 21n2 if all the eigen-
values equate: u,z> = 1/4, which is realized only in the
nonadlabanc limit where 82A, 828 — oo so that all the C’s
vanish.” Note that, when all the spin correlation functions
in (58) vanish, or equivalently,

Cpy =0 =

Czy =0, Cyx = CxCoy, (66)

we have
S(Pas) = S(Pa) + S(PB)- (67)

It is because the density matrix (53) can be written as the
tensor product state:

A

{1218 4 C0Coe6288 + C8218 + €, 1468}

B

PAB =

= PalB- (68)

E. Visibility and distinguishability
The visibility and the distinguishability introduced
in Sec. I C are discussed in [17] in a specific situation.
Here we discuss them in a bit more general situation.
According to the definition (17), Alice’s and Bob’s
visibility of their interference fringes are computed from
(54) and (55) as

Va = [Cxol = 74l COS(2®§B) )
Vg = |Co.| = 78] cosQBRM)|. (69)

which are nothing but the absolute values of (6%) and (62),
respectively, seen in (56). Although V, # Vg, note that
the relation with the entanglement entropy (19) generally

holds:

°As shown in Appendix B, as far as D =
be finite, GR" + BB
Cyy, Cyy — 0

|xa — x| is fixed to
—2|®BA| - o is guaranteed, and then,

S(Pa) =Z(Va).  S(pp) =Z(Ve).  (70)

as long as (62) = (68) = 0. This means that the entangle-
ment entropy and the visibility embody the same kind of
information.

In order to compute the distinguishability, we first obtain

|
Px =5 {1% + Cuot £ Ci0},
:—{1B+C0xa +C,, 68 (71)
from (53) according to the definition (20). Then, (22)
and (23) tell us that Alice’s distinguishability of Bob’s spin

and Bob’s distinguishability of Alice’s spin can be quanti-
fied by

DA = ‘Cyzl = 7A| sin(Z(ﬁﬁB) ’
Dy = ‘Czyl = VB‘ sin(2(§EA) >

(72)

which are nothing but the absolute values of (565'66%) and
(662667 ), respectively. However, unlike in the Newtonian

picture, these differ from +/(56466%). And also, while
the entanglement entropy can be regarded as a monoton-
ically increasing function of the distinguishability as
S(Pa) = Z(Va) = Z((y2 = D%)"/?), the entanglement
entropy and the distinguishability no longer have the same
information due to the field dynamics that affects the value
of YA-
The presence of the dynamical field also spoils the
equality (27). It is known that
Vi+Di<1, Vi+Di<1 (73)
hold to quantify the notion of wave particle duality [22], see
discussions in [17] for the applicability to systems with
dynamical fields. In our setup, these imply

7% cos?(26RB) + 2 sin?(2684) < 1, (74)
73 cos?(26B8A) + ¢4 sin?(26RB) < 1, (75)
respectively.

Remember that, in the Newtonian approximation, the
two-spin system is a pure state and the equality (27) holds.
In the presence of the dynamical field, the two-spin system
is no longer in a pure state and the equality is replaced by an
inequality. In order to know how much the inequality
deviates from the equality, we need a different type of trade-
off relation which can properly take the information of the
dynamical field into account. In later sections, we study a
trade-off relation of mutual information for this purpose.
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F. Separability condition and negativity

The reduced density matrix p,p in (53) describes a
mixed state, and it can be a separable state. Then, Alice’s
spin and Bob’s spin are not entangled and the spin
correlations in (58) are classical. The separability for
the two-qubit system is quantified by the negativity. If
the negativity vanishes, the density matrix is separable. The
negativity (31) is evaluated by the eigenvalue of the partial
transposition (acting on Bob’s spin) of the reduced density
matrix (53),
|

AT | PP R AA A
Pas = —{1A1B + C, 65065 — C,\ 6465 + C6218

+ Co 1168 + C,.6088 — C.,62681, (76)

yrzry
which is nothing but (53) with the following replacements,
Cyy, = —C,,, C,y = —C,. (77)

Then, making these replacements in (64), we get the
eigenvalues of the partial transposition:

~S182
Hap =

{1 +5,C + 51\/(Cx0 + 5,Co0)* + (Cy, - Szczy)2 + C_%y}

4>\~4>|~

The entanglement negativity is the summation of the
absolute values of negative eigenvalues:

Na= D Ol (79)

S1,87=

Note that, when C,, x C,, =0, we have fi)p’ = /,txgz
which cannot be negative for consistency, and thus, pag
is separable. In other words, it is a necessary condition to be
nonseparable that both Alice and Bob have finite distin-
guishabilities, D, # 0 and Dy # 0 in our setup.

G. Mutual information

1. Definition of mutual information

The mutual information /xy quantifies the amount of
correlations between two subsystems X and Y. In our setup,
each of X and Y is identified as either Alice’s spin, Bob’s
spin, the field ¢, or compositions of them. In terms of the
mutual information, correlations between two subsystems
are related to correlations between another choice of two
subsystems as seen below.

Consider three more reduced density matrices besides
(53)—(55) as

Py =1raB{PABy )
(80)

Py =ta{PaBgp ).  Pag=tg{PaBy}

where pap, = |¥r)(Wg|. Since the total system is in the
pure state, the entanglement entropies associated with these
density matrices are computed as

S(Pag)=S(pn). Soag)=S(s). S(ps)=S(pan)- (81)
From these three, we can compose three types of the mutual
informations as

{1 + 5277 cosh(4BR) + s \/}’A + 7§ + 2527478 c08(2(GR® + GF*)) + yArgsinh?(4 (QBA)}- (78)

Iag = S(Pa) + S(P8) — S(PaB) (82)
Ing = S(Pa) + S(Pg) — S(Pag)

= S(pa) + S(Pas) — S(P8), (83)
Iy = S(pg) + S(py) — S(PBy)

= S(pp) + S(Pas) — S(Pa), (84)

which are guaranteed to be nonnegative by the subaddi-
tivity for von Neumann entropy.® Then, from the above
expressions, it is easy to see that they are bounded from
above,

OslAB’IAz[)?IBqﬁSQ'ln 2. (85)

2. Mutual information and correlation functions

In general, the mutual information vanishes if and only if
there is no correlation between variables from one reduced
system and variables from the other. Especially, if all the
spin correlation functions vanish, then /,5 also vanishes
because the reduced density matrix is tensor product state,
PAB = PaPR, as explicitly seen in (68). If I, vanishes, all
the correlation functions vanish because the mutual infor-
mation gives an upper bound on the correlation func-
tions [30]. In our case, the inequality is given by

Lo (664068)%  (667,668,)?
AB = N ~ -
2[Rl 6 117 2

(86)

®Those can be understood as the strong subadditivity inequalities

S(Pag) + S(Pag) = S(Py) + S(Pasg)s

and ones that are obtained by permuting A, B, and ¢. Here, the total
state papy = |Pr) (Wl is pure, and hence, S(pap,) = 0.
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for any pair of spin variables, w,w' = x, y, z. Here, ||||
represents the operator norm. Note that, even though the
spin correlations are built up by the interaction mediated by
the quantum field, they are not necessarily attributed to the
quantum entanglement between Alice’s and Bob’s spins.
The mutual information does not care if the correlations are
quantum or classical, and hence, it cannot be a measure of
the entanglement in general.

H. Trade-off relation in terms of entropy

Let us first observe from the definitions (82)—(84) that,
when the total system is in a pure state, the mutual
informations satisfies’

Iag + 1ap = 28(Pa), Ing + Iy = 25(ps).  (87)
When Alice’s spin is not entangled with the rest of the
system and S(p,) = 0, there is neither the correlation /g
between Alice’s spin and Bob’s spin nor the correlation 5
between Alice’s spin and the field. One can also regard
these as trade-off relations: With the right-hand side S(p,)
known and fixed, the more correlation / Ad between the
field and Alice’s spin, the less correlation 7,5 between
Bob’s spin and Alice’s spin. Since the mutual informations
is non-negative because of the subadditivity as mentioned
above, we have an inequalities

Iap <2 min{S(p4), S(Pp)}- (88)

by dropping /54 and I, from the equalities. Thus both
spins must be entangled with the rest of the system in order
for the spin correlations to exist.

We have already seen that, in (70), the visibility and the
entropy are in one-to-one correspondence. Let us here
introduce an entropic counterpart of the Visibility8 as

Py =2[In 2 - S(py)]
=1+ Va)In(1+Va) + (1 =Vy)In(1 =V,), (89)

which monotonically increases from 0 to 2 In 2 as Vy
increases from 0 to 1. For Bob’s spin, Py is defined in the
same manner. Then, the inequalities in (88) turn out to be
IABS21H2—PA, IABSZIHQ,—PB. (90)
These relations can be regarded as analogs of the relations
between the visibility and the distinguishability in (73),

"When the total system is in a mixed state, inequalities /o +
Iny <28(pa) and Ipp + Iy, < 25(pp) hold in general [23].

¥For an asymmetric interferometer mentioned in the Foot-
note 1, one may define it by P, = 2[E(P,) — S(pa)] so that it
vanishes when V, = 0.

D <1-V3, Di<1-Vi. (91)
The mutual information /,p plays the role of the distin-
guishability. Unlike the distinguishabilities in (72), it is
neither “Alice’s” mutual information nor “Bob’s” mutual
information, but the mutual information of Alice and Bob.
It is because I,g cares about all the spin correlations
including both (864'66%) and (66266%), as will be dis-
cussed in Sec. V C. In this sense, the mutual information
I g rather corresponds to the averaged distinguishability of
Bob and Alice, (D5 + D3)/2. The averaged distinguish-
ability satisfies the following inequality:

”»”

Di+Dy ., _Vat+Vi
2 2

(92)

whose counterpart of mutual information is given by

Pp + Py

Ing <2In2-
AB S < In 3

(93)
We will see in Secs. VA and VB that the mutual
information and the average distinguishability behave
similarly. Note that the mutual information contains infor-
mation of not only distinguishabilities but also other
correlations. Therefore, the mutual information can be
nonzero even if both Alice’s and Bob’s distinguishability
vanish, and accordingly, the inequalities in (90) combined
with the relation (89) can give a stronger upper bound on
the visibility. Indeed, when Dy = 0, the trade-off relation
gives us VX < 1. On the other hand, by defining IV/A(P A) @s
the inverse function of P, (V,) in (89), the inequality of the
mutual information (90) tells us that

Va VAR I 2= 1I,)=U, < 1. (94)

Similarly, we have Vg < U;. These are theoretical con-
straints on the fringe visibility and, combined with the
trade-off relation (91), we can give a stronger constraint on
the visibilities as V3 ) < min{l7. 1 - D, }.

An advantage of using (90) or (93) instead of (91) or (92)
is that we know what is missing to saturate the equalities.
The inequalities (90) can be made to become equalities (87)
by taking into account the mutual informations /,, and

1B¢:

IAB:2 ln2—PA—IA¢,

IAB:Z ln2—PB—IB¢,, (95)
and (93) becomes

PatPy_

Ing =21In2-—
AB n )

S(Pas)- (96)

where (I5y + Ig,)/2 = S(Pag) is used.
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I. Robertson-Schrodinger inequalities

In the reduced density matrix (53), we get ®&’s, the
various time integrations of the propagators given in (43)
and (46). Those are not independent from each other; there
are inequalities to be satisfied among those quantities, due
to the quantum uncertainty discussed in [17].

Given a density matrix p, for two Hermitian operators
50,, with (5(51’2> = tr{f)éé)l,z} =0, their vanishing
expectation value under p, the Robertson-Schrodinger
inequality

(50%) (608) 2(1({60,,50,) P+ [{[501,60u1) ) (97)

holds, which follows from the Cauchy-Schwarz inequality.
If two operators are chosen as

50, / " dna(Dd(r.x,).

50), = / " dtag () (1. x3) (98)

4

(see Footnote 3 for the definition of the Heisenberg
operator here), and the expectation value is taken under
the vacuum state |Q),(Qf, we get (507) = GR",
(603) = BF®, ({60,,60,}) = 268, and ([50,,60,)) =
GRA — GRB. Therefore, we have

(O3 - BR°) <4(GROP - (B31))  (99)
with, for consistency,

GRAGR" > (BrY)%, (100)
which is stronger than (49). Similar inequalities can be
obtained as consistency conditions for the eigenvalues of
the density matrix (53) to be nonnegative in a certain limit,
see Appendix E. These inequalities are to be used in
Secs. VA, VC, and V D to take adiabatic limit properly.

V. FOUR LIMITING CASES

In the previous sections, we have exactly solved the
model and obtained various quantities such as the spin
correlations and negativity. In this section, we study their
properties in some limiting cases. Compared to the
Newtonian approximation, decoherence due to particle
creations and relativistic causality are two important new
ingredients in relativistic theories. Two Figs. 5 and 6 show
various situations. In Fig. 5, one can consider various
situations depending on how much the particle creations
occur, which is described by the Keldysh Green’s func-
tions. Figure 6 shows the causal structure described by the
retarded Green’s functions connecting Alice’s spin and
Bob’s spin. These relativistic effects of particle creations

Newtoninan
1

5.3 Adiabatic

I

¥
= i

([\93 Non-
= adiabatic
Z

(iv) < (ii) —> (iii)
7a = exp(—26¢*)

FIG. 5. Various limiting cases in terms of Alice’s (horizontal)
and Bob’s (vertical) adiabaticities. The upper right corner
corresponds to the Newtonian approximation discussed in Sec. I1I
which is realized as the adiabatic limit and a part of the limit (i).
The lower right corner (iii) is included both in the limit (i) and (ii).
The lower left corner (iv) corresponds to the nonadiabatic limit
where both Alice and Bob turn on or off their spin-field
interactions abruptly which is a part of the limit (ii).

and causality are not totally independent due to the
inequalities in Sec. IV L.

In Sec. VA, we take the adiabatic limit of Alice’s
protocol so that y, = 1; the region (i) in Fig. 5. On the
other hand, in Sec. V B, we take the nonadiabatic limit of
Bob’s protocol so that yg = 0; the region (ii). In terms of

N Alice . Bob
toﬂ?”” TR _
T (i) 2o
(V)
TA ' <
U
™ ., (1)
A x

FIG. 6. The four distinctive spacetime locations of Bob’s
protocol in terms of causality. The dashed lines are lightlike

curves in the flat spacetime under consideration. TOAn(Off) is the

length of time Alice takes to turn on (off) the spin-field
interaction. The coupling takes a constant value A, (7) =l
for the period 7. See (D4) in Appendix D for its explicit time
dependence. Note that the pink and purple curves are just to show
the strengths of the couplings changing in time at the same spatial
points x, and xg. The distance between the two spatial points
denoted by D does not change in time as in Fig. 1.
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the causal structure, case (i) necessarily falls within the
region (I) in Fig. 6 as mentioned later, whereas case (ii) can
be anywhere. Then, in Sec. V C, we assume Alice’s and
Bob’s protocols are spacelike separated from each other;
the region (IV) in Fig. 6. In Sec. V D, we discuss the case
where Alice can influence Bob’s spin in a causal way while
Bob cannot influence Alice’s spin; the region (II). In
Sec. V E, we summarize which propagator is responsible
for the spin-spin correlation in each limiting case, mention-
ing the necessary condition for the quantum entanglement
between the two spins to be generated.

A. Adiabatic limit

Let us first consider the region (i) in Fig. 5 characterized
by ya = 1. It can be realized by taking the adiabatic limit of
Tén_off — oo with the strength of the coupling 1, kept finite,
and we have

GRA = 0. (101)
Then Bob’s protocol must be in the region (I) in Fig. 6. It is
necessary because of the Robertson-Schrodinger inequality
(99). Indeed the condition (101) requires

GBA =0, GRE = 88~ =:0, (102)
where ® = JT® is a product of the effective duration of the
interaction between Bob’s spin and the field’

- 1 o0
T8 = _—/ diag(1) (103)
AB J -
and the effective coupling between two spins
.7 = /_IB /oo leGR(I — t/,xB —xA)A.A(lJ)
= ZB /oo dt/GA(t — t’,xB —xA)/lA(t')
- - exp(-mD)
= Apgdg X ———. 104
AR X 42D (104)

It is nothing but the coefficient J in (6). We have taken

A

ti > —co and f; — oo to realize the limit of 7T  — oo.

1. Nonseparability and quantum entanglement

In this case, Alice and Bob are quantum entangled as a
nonseparable state. It can be seen from the nonvanishing
negativity. Let us first look at the reduced density matrix of
Alice and Bob. The spin correlations in (56) are given by

*With an explicit form of the time dependence of Az given by
(D4), we have 7B = TB + (T8, + T5))/2.

>

Cxx:< ?6,]3>:7B7 ny:<A¢&.]v3>:0’
Co= <Af?> =c0s(20), Co= <A£’> =ypcos(20),
C,,=(6362)=—sin(20), C,,=(626%)=—ypsin(20).

(105)

From these spin correlations, we can obtain the density
matrix,

6710)xp (167

1 1-
A + B 27/B (106)

PaB =~ |©) A (®] +

where |®),5 is defined in (8). Its simple form, written
as a statistical sum of the two states |®),5(®| and
62|0©) A5 (0|62, can be derived from the eigenvalues (64)
with the spin correlations in (105),

45, L4 sorB

= 107
HaB B ( )

Hap =0,

The density matrix (106) is nonseparable since one
of the eigenvalues of the partial transposition (78) with
S| =8 = —1,

o1
R (I PR BT

becomes negative. It shows that the two spins are quantum
entangled as long as yg > 0. In this case, the negativity (31)
is merely the absolute value of ji,; which depicted in Fig. 7
as the function of ® with different values of yg. In the
adiabatic limit of Bob, yg — 1, the negativity reduces to the
Newtonian one (34). The negativity takes the maximum
value with ® = z/4mod /2 irrespective of yg. It is

1/2} vy =1
N B
1/4
0 /2 e =0 . ©

FIG.7. The entanglement negativity " = |fi,5| as the function
of ® =J x T® given by (108) with y5 =0, 0.25, 0.5, 0.75,
and 1. Regardless of yp, it takes maximum values with
® = z/4mod z/2. In the limit of yg — 1, it gives the negativity
of the pure state consisting of the two spins discussed in Sec. III
and behaves consistently with the entanglement entropy
¥(cos(20)) depicted in Fig. 3. In y5 — 0, it vanishes regardless
of the values of ® due to the total decoherence of Bob’s spin.

085003-14



ENTANGLEMENT GENERATION AND DECOHERENCE IN A TWO- ...

PHYS. REV. D 107, 085003 (2023)

consistent with the fact that the entanglement entropy (14)
in the Newtonian picture depicted in Fig. 3 takes the
maximal value with ® = z/4. At ® =0 mod =/2, the
negativity vanishes as the reduced state (106) is disen-
tangled to be

1% + 6218 4+ ypoB
5 .

5 (109)

PaBlo—o =

In the nonadiabatic limit, yg = 0 with a general value of ©,
the negativity vanishes and the state becomes separable,
which is the special case of Sec. V B, and the explicit form
of the density matrix is given in (123).

2. Spin-spin correlations

The adiabatic limit can be compared to the Newtonian
approximation as we vary Bob’s nonadiabaticity yg from 1
to 0. Let us evaluate the mutual information /,5 and
compare it to the Newtonian case of yg = 1. From (105),
we obtain

(664668) =ypsin?(20),
(669:668) =—sin(20),

(6656%) =0,
(66456®) = —ypsin(20).  (110)

From the eigenvalues (107) of p,p, the entropy (65)
quantifying the entanglement between the field and the
two spins is obtained as

S(Pas) = Z(rg) (111)
which depends only on yg, see (15) for the definition of the
function Z. In the adiabatic limit yg — 1, it vanishes so that
the reduced system of the two spins becomes pure and
(106) reproduces the Newtonian one (9) as expected. The
eigenvalues of p, given by (59) are the same as (13) in the
Newtonian picture. On the other hand, the eigenvalues of
pp given by (60) deviates from them by yp # 1. The
entanglement entropies of Alice and Bob are given respec-
tively by

5(Pa) = Z(cos(20)), (112)

S(pp) = Z(rp cos(20)). (113)
From (111)—(113), we find the mutual information between
Alice’s and Bob’s spin in (82) as

I = £(c0s(20)) + E(rg cos(20)) — E(rg).  (114)
It takes the maximum value 21In2—3X(yg) at © =
r/4modrx/2, as seen in Fig. 8. On the other hand, it
vanishes at ® = 0 when p,p becomes a tensor product state
(109). The mutual information is comparable to the
averaged distinguishability of Alice and Bob,

2m2f Bl 1f B =1
Ins D3+D4
2
1
In2 7B =10 2 7B =0
0 /2 0 m/ 2@
FIG. 8. Left panel: The mutual information /,5 between the

two spins in the adiabatic limit of Alice y, = 1. ® =J x T8 is
given by (114) and each line corresponds to Bob’s nonadiaba-
ticity, yg = 0, 0.25, 0.5, 0.75, and 1. It is positively correlated
with the negativity A" = |fiy5| depicted in Fig. 7. In the limit of
yg = 1, Ing/2 coincides with the entanglement entropy
%(cos(20)) in the Newtonian approximation (14). I ,5 decreases
as Bob’s nonadiabaticity is increased. Even in the limit yz — 0,
the mutual information /5 is nonvanishing unlike the negativity.
Right panel: The averaged distinguishability (D% + D3)/2
behaves in a similar way, and it takes the maximum value
(1+73)/2 with ® = z/4 mod z/2.

Di+Ds _IC:P+ICHP _T4+rg .,

5 3 5 sin (20). (115)

Figure 8 shows that behaviors of the mutual information
and the averaged distinguishability agree with each other.

Let us compare the upper bound on the visibility (91)
from the wave particle duality with the ones from the
mutual information (94). As seen in Fig. 9, in most region
of yg <1, the bound from the mutual information is

/2]

12 | 1

FIG. 9. The upper bounds on Alice’s visibility V4 as functions
of Bob’s adiabaticity yg. The black lines show the upper bounds
Z/{% obtained from the mutual information (94). The pink lines
show the bounds 1 — D3 from the wave particle duality inequality
(91). The solid (dashed) lines are for ® = z/8 (® = n/4)
respectively, where Alice’s visibility itself is evaluated to be
VX = 1/2 (Vi = 0). In most regions of y except for yg ~ 1, we
have M% <1- DzB, and hence, the mutual information gives a
stronger bound on Alice’s visibility.
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stronger than the one from the wave particle duality;
V2 <1 -D} =1 —y}sin?(20). Thus, we get an improved
upper bound on the visibility V4 < min{U?,1 —D3}. On
the other hand, in the present case of y4 = 1, one can check
that the upper bound on Bob’s visibility V3 <1 -D% =
cos?(20) given by Alice’s distinguishability is always
stronger than the one from the mutual information.

3. Spin-field correlations

The mutual information of Alice and Bob 7,5 decreases
as the nonadiabaticity of Bob is increased from the
Newtonian limit y5 = 1 to the nonadiabatic limit of Bob
with yg = 0. This behavior can be understood as a
consequence of one of the trade-off relations in (87) written
as

Ing = 285(pa) — Inp = 22(c0s(20)) — 1 4. (116)
The first term is the value expected in the Newtonian
approximation. /g is smaller than this value by the second
term representing correlations between the field and Alice’s
spin. We can also get another trade-off relation for /,p
focusing on the correlation of field and Bob spin;
Ip=28(pp)—Ip;=2Z(ypcos(20)) —Ig,. These trade-
off relations reflect that a part of information of the
subsystem of Alice and Bob is carried out by the emission
of radiation.

The carried-out information, /,, and Iy, are given by
(83) and (84),

(cos(20)) + X(rp) — Z(yp cos(20)),
— %(cos(20)),

IA¢:

Igy = Z(yg c0s(20)) + Z(rp) (117)
and depicted in Fig. 10. The mutual information of Alice
and Bob 1,5, a counterpart of distinguishability, satisfies
the trade-off relation (95) with the visibility represented by
S(pa) (or P,) and the carried-out information 7.

One can explicitly see that the spin-field correlation
functions behave correspondingly. For instance, the corre-
lation with Alice’s spin,

(Wr|662 8¢ (x)|Pr)

— (56056 >[tfdtGR(tf—t,x—xB)/lB(t), (118)

cannot vanish at Yx on the final time slice with yg =
exp(— (SiBB) <1 except with ® =0 mod x/2. Here,
5p(x) = ¢(x) — (p(x)). Note that Alice’s spin is correlated
with the field only through the correlation with Bob’s spin,
(664:668) = —sin(20). On the other hand, the correlation
with Bob’s spin,

21n?2 =0

N,

In2

0

FIG. 10. The mutual informations between the field and one of
the spins, 1,4 in pink and /g, in purple, in the adiabatic limit of
Alice y5 = 1 as functions of ® = J x T® given in (117) with
g = 0,0.25,0.5,0.75, and 1. In the limit of yg — 1, both vanish
since the field decouples with the spins. /g, does not vanish with
yg < L. On the other hand, with © changed, /,, vanishes with
® = 0 mod #/2 and positively correlated with 7,5 depicted in
Fig. 8, which is because the field is correlated with Alice’s spin
only via the correlation with Bob’s spin in the current limit
of YA = 1.

~ Iy
(,[56550 ()| ¥;) = / AG (1~ tx—x)Ag(1).  (119)
4
cannot vanish at Yx on the final time slice with yg < 1.

B. Nonadiabatic limit

Let us consider the region (ii) in Fig. 5 characterized by
yg = 0, where Bob turns on and/or turns off the spin-field
interaction abruptly10 so that

GEB - o, (120)
while G2* and GF* remain finite. As seen shortly, the
quantum entanglement between Alice’s spin and Bob’s spin
is not generated in this case because of the total

decoherence of Bob’s spin. The COW experiment falls
within this limiting case in the sense mentioned below.

1. Separability of spins

The expectation values in (56) become

C, = (606%) =0,  C,,=(6p8}) =0,

Cyo = (68) = ya cos(2GR"®), Cox = (6%) =0,

Cy, = (6367) = —yasin(26g®),  C,, = (626)) =
(121)

In the BMV setup where spatial position of the particle
changes, this corresponds to the abrupt acceleration and/or
deceleration.
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In this case, Bob’s distinguishability of Alice’s spin
Dy = |C.,| =0 vanishes due to the nonadiabaticity.
From the expression in Sec. IVF, we can see that the
entanglement negativity vanishes since

s si— 1+ s1y
s =y = (122)

Accordingly the density matrix (53) is written in a
separable form:

. 1 aas AAG AAA
PAB — E(IAIB + Cx()G?IB + Cyzﬁ)‘égl;)
B L P)e(=
sttt o

where p and py are defined in (71), and written explic-
itly as

N + 4 . .

pi =110 1e), (6] + L2250 10) , (1054
w1th 0 = G, (124)

where |+£0), are defined as (29). The separability in the

nonadiabatic case yg = 0 is because Bob’s spin is totally
decohered due to the violent particle creation.''

Therefore, spin correlations discussed below are
classical unlike in the adiabatic limit discussed in the
previous section.

2. Spin-spin correlations

From (121), most of the correlation functions vanish and

the only nonvanishing one is

(5&;\5&?) = —yA sin(20), (125)
whose absolute value is nothing but Alice’s distinguish-
ability of Bob’s spin, D, = y4]sin(20)| given in (72).
Thus, the mutual information /5 and D, embody the same
information in this case.

Let us look at it more explicitly. In the nonadiabatic limit
of Bob, the entanglement entropies of Alice and Bob in
(61) and (62) are given by

S5(Pa)

= X(y5 c0s(20)), (126)

"In principle, we can take a time slice in the course of the
protocol where Ag(f) is still nonzero to compute the reduced
density matrix. It is effectively the same as the sudden turn-off,
and hence, we get the same result as (123). However, in this case,
the disappearance of the interference fringe is not because
of the particle creation, but rather because of the “false
decoherence” [31] due to the orthogonality between two states
with different Newtonian potentials.

2In 21 1
In2¢ =l i =1 i
/ﬁ\ A=
YA =10 ©
0 /2 0 /2
FIG. 11. Left panel: the mutual information /,p in the non-

adiabatic limit of Bob yg = 0 as the function of @ = GRP given
by (129) with y, = 0, 0.25, 0.5, 0.75, and 1. It takes maximum
value with ® = 7/4 mod z/2. In the limit of y, — 1 toward the
region (iii) in Fig. 5, it corresponds to the one obtained in the
previous section with y, = 1 and yg — 0, see Fig. 8. On the other
hand, y, — 0 leads to the region (iv) in Fig. 5, and then,
I,p vanishes. Right panel: the averaged distinguishability
(DX +D3%)/2 behaves in a similar way, and it takes the
maximum value y% /2 with ® = /4 mod /2.

S(pg) = In 2. (127)
From (127), we find Py = 2(In 2 — S(pg)) = 0, and equiv-
alently, the visibility of Bob vanishes, Vg = 0. It is because
the large nonadiabaticity completely destroys the interfer-
ence between 68 = £1 states. Using (122), the entangle-
ment entropy (65) of the field is given by

S(Pag) =1In 2+ Z(ya), (128)
and the mutual information is obtained as
Ixp = Z(ra c0s(20)) = Z(ya)- (129)

It behaves in a similar way as the averaged distinguish-
ability does, as seen in Fig. 11.

In the nonadiabatic limit where the coherence of
Bob’s spin is totally lost, we can get a stronger upper
bound on the mutual information /,5: When the reduced
density matrix pp is given by the form'? of (123), one can
show that

S(Pag) = max{S(pa), S(Pp)} (130)
which corresponds to the inequality, always satisfied in
classical information theory, to guarantee non-negativity of

12 . .

In a more general setup with the asymmetric interferometer
with Pp #0 mentioned in Footnote 1 one finds ppp =
>kt PiPAIk)g (k| with p such that |p, —p_| =Py and
p++p-=1, and then, S(pap) = S(Pp) + > i PLS(PR)
where S(pp) = Z(Pg). Therefore, S(pap) = S(pp). Based on
the fact that projective measurements never decrease entropy,
S(Pag) = S(Pa) can also be shown [23].
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conditional entropy. Then, the mutual information defined
by (82) satisfies

Iy < min{S(py). S(p)}. (131)
Since S(pa), S(P) < In 2, we necessarily have /55 < In2.
This can be considered as an entropic counterpart
of the upper bound of the averaged distinguishability
(DX +D3})/2 < 1/2, which obeys from the vanishing
Dg and Dy < 1.

Now, let us regard the inequalities in (91) as upper
bounds on the visibilities, and compare them with the upper
bound (94) from the mutual information. For Alice’s
visibility V,, the bound in (91) from the wave particle
duality is trivial since Dg = 0. However, the bound (94)
due to the nonvanishing mutual information gives a
stronger constraint on Alice’s visibility. On the other hand,
for Bob’s visibility Vg in the current limiting case,
U3 > 1 — D3 always holds, and thus, the mutual informa-
tion does not give a stronger bound on Vj.

3. Spin-field correlations

The amount of carried-out information by the field is
quantified by the mutual informations given by (83) and
(84):

Inp = Z(ya c0s(20)) + Z(y4),

Ig; =21In 2 +2Z(ys) — Z(racos(20)), (132)

depicted in Fig. 12. Because of the inequality (130), these
are bounded from below as I > S(pa), Iy > S(pp). The
fact that I, never vanishes, Iy, > S(pg) = In 2, implies
that there always is some correlation between Bob’s spin
and the field. For instance,

(W,[56550 ()| ¥;) = / " 4Gty — 1.x —xg)ig(r) (133)

4

does not vanish at Yx on the final time slice. Speaking of
correlations between the field and Alice’s spin, for instance,

(W,[5655 ()W) = / "Gt~ t.x —xp)in(1) (134)

5

does not vanish with y, = exp(—202*) < 1. Another
example is

(W [66050(x) W) = ~2(62) / dGy (17 — 1.5 — xp) (1)

+6382) [ diGulti= v = x)in(0),

(135)

2In 20— —

In2-

Ing

0 /2 T

FIG. 12. The mutual informations between the field and one of
the spins, /4 in pink and /g, in purple, in the nonadiabatic limit
of Bob yg = 0 as the functions of @ = G® given by (129) with
ya = 0,0.25, 0.5, 0.75, and 1. In the limit of y, — 1 toward the
region (iii) in Fig. 5, these correspond to the ones obtained in the
previous section with y, = 1 and yg — 0, see Fig. 10. Only in
this limit, / A Can vanish with ® =0 mod z/2. On the other
hand, y, — 0 leads to the region (iv) in Fig. 5 where both take the
maximal value 2 In 2.

which vanishes at Yx only with y, — 1 and ® = 0 mod
n/2 as I, in (132) implies.

4. Analogy with the COW experiment setup

Since the total system is in a pure state, the spin
correlations are all originated from the quantum effects.
However, (123) is now in a separable form of density
matrices, that is, Alice’s spin and Bob’s spin are not
quantum entangled; the only nonzero spin correlation
(125) is to be understood as a classical correlation.

The situation is similar to the COW experiment setup [32]
where the Earth is described as a classical source or a
classical statistical ensemble composed of vast numbers of
particles. The interference pattern of the neutron beam split
and recombined is affected by Earth’s gravitational poten-
tial. However, it does not require entanglement between the
neutron and the Earth. The nonadiabatic limit considered
here represents the situation of the COW experiment.
Ideally, the experiment is to be done without any
decoherence of the neutron beam. Then this corresponds
to the limit of y, — 1 in our model, and thus, the region
(iii) in Fig. 5. In the y, — 1 limit, the reduced density
matrix (123) becomes

Pap = [+0)A (10| + \—®>A<—®|#,

[+)s (+]
2

(136)

where |+0), is defined as (29). The state can also be
obtained from the density matrix (106) in the region (i) with
yg — 0. The two different eigenvalues of Alice’s z-spin
correspond to two different paths of neutrons at different
heights and the two different eigenvalues of Bob’s z-spin
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are understood as two different configurations of particles
that compose the Earth in the COW experiment setup.13

5. Nonadiabatic limit of both Alice and Bob

Furthermore, let us assume that both Alice and Bob turn
on and/or turn off their spin-field interactions abruptly. It
leads to the region (iv) in Fig. 5 since

GRA, BB - oo (137)
Note that 2B remains finite in general. In this case, all the
C’s vanish, and the entropies are computed as

S(pa) = S(py) =12, S(pap)=2In2. (138)
As the result, we get
IABIO, IA¢:IB¢:21n 2, (139)

that is, Alice and Bob cannot gain any information about
each other’s spins since the quantum coherence of both two
spins is totally lost now.

C. Spacelike separated case

In the next two sections, we consider two limiting cases
in the causal structure of Fig. 6. First, we study the region
(IV) where Alice’s and Bob’s protocols are spacelike
separated from each other. In this case, both of the retarded
Green’s functions vanish, and hence, we have

GRE = BEA =0, (140)
while ®2B is finite in general. As seen below, while spin-
spin correlations are induced, negativity vanishes and there

is no quantum entanglement between the two spins
generated.

1. Vacuum-induced spin correlation

In this case, the expectation values in (56) become

Cor = (6267) = yay cosh(4BRY),

Cyy = (676y) = yayp sinh(46R"),

Cyo = (6%) = 1as Cox = (6%) = 78

C,, = (646%) =0, C,, = (626%) = 0. (141)

BBecause of the low dimensionality of the Hilbert space of
Bob’s variable, there is no decoherence due to its very presence.
However, if one replaces Bob’s spin with some continuous
variable such as the meter considered in [19], the decoherence
of Alice’s spin is caused even with y, = 1. Then, it models the
possible decoherence of Alice’s spin caused by the gravitational
potential sourced by a vast number of massive objects surround-
ing it.

Then, two of the spin correlation functions in (58) are
nonvanishing

(66%66%) = yayglcosh(4BR*) — 1],
(664:668) = yayp sinh(4GE*),

(58?5&?) = (58?58§> =0 (142)
which depends only on the Keldysh Green’s function
GEA # 0. Thus, even though Alice’s spin and Bob’s spin
do not have the causally connected direct interactions, spins
get correlated through the correlations of the quantum field
in the vacuum.

Since C,, and C,, vanish, both Alice’s and Bob’s
distinguishability vanish D, = Dy = 0. Nevertheless,
the mutual information becomes nonzero, which will be
shown in Fig. 14. From the discussion below (79) in
Sec. IV F, the entanglement negativity vanishes and the
reduced state pap is separable. The two spins are not
entangled and their correlations are classical even though
they are originated from the entanglement with the field.
In [16], it is shown that the separability in this case follows

from the relation [H,, Hg] = 0.

2. Spin correlation mediated by created particles

As we will see below, particle creation is necessary for
the spin correlation to be generated. The following dis-
cussion holds with Alice and Bob interchanged. Because of
relativistic causality, the presence of Bob’s spin cannot
affect Alice’s measurement of her own spin, that is to say,
the reduced density matrix of Alice’s spin p, is indepen-
dent from whether Bob’s spin exists or not. Then, the
entanglement entropy S(p,) of Alice can be evaluated in
the absence of Bob’s spin. That is, S(p, ) in the current case
measures the amount of entanglement between Alice’s spin
and the field. This can be explicitly shown as follows:
Consider a time slice X, depicted in Fig. 13. Since Bob’s
spin has not yet interacted with the field by this time, the
full density matrix on this slice can be written as a tensor
product, pg ;py Where pg; is the initial state of Bob’s spin14
and p, is an entangled state of Alice’s spin and the field in
general. The density matrix at the slice X is related to the
density matrix p; == |¥¢) (W] on the final time slice X; as
Dr = I:B(/,(ﬁoﬁsqi)lﬁg 4> Where IzB(/) is the time evolution
operator corresponding to Lorentz boost from X, to X
which is trivial acting on the Hilbert space of Alice’s spin.

Therefore, pp = trgy{pr} = trgy{poPmi} = try{po}, and

14ﬁB,i can be any state unless it is entangled with the field and
Alice’s spin. For the initial state (3), we have pg; =
(|4+)g + |=)p) ({(+|g + (=|g)/2. Note also that, if the spin is
dynamical on its own, pg; should be replaced with LA/BﬁB_iU;g
where Uy is the corresponding time evolution operator acting
only on the Hilbert space of Bob’s spin nontrivially. It does not
change the conclusion here.
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AN

FIG. 13. Alice’s spin and Bob’s spin do not have causal
influences on each other. In order to see that the reduced density
matrix of Alice’s spin does not care about Bob’s spin, one can
take a time slice X, depicted by the blue line which is mapped to
the final time slice X; by a Lorentz boost.

thus, S(p,) originates from the entanglement between
Alice’s spin and the field; if there is no particle creation
from Alice’s spin, then S(p,) = 0 and the above inequality
tells us that I/, =0, which means that there is no
correlation between the two spins generated.

Now that we have the explicit forms of p, and pg and
their eigenvalues given by (59) and (60), the entanglement
entropies (61) and (62) are obtained as

S(Pa) = Z(ra)s S(ps) = Z(rs), (143)

which depend only on y, and yg, respectively. Then, in the
adiabatic limit where either y, — 1 or yg — 1, the entro-
pies vanish as expected. Therefore, all of the correlation
functions in (142) vanish in the adiabatic limit with no
particle created.

Note also that, once the explicit expressions for the
correlation functions in (142) are obtained, the uncertainty
relation (100),

In YA In YB

y (144)

(67)) < G OR =

guarantees that all the spin correlations vanish in the
adiabatic limit.

3. Asymptotic behavior of spin correlations

The time integration of the Keldysh function ®&EA
behaves as

exp(—mD)

BA
G x e

, (145)

(IV)

N
-

106

C

10—12

C.’E x

10-18
0 5

vy
e
D

15 20

FIG. 14. Spin correlation C,,,, == (66466%,)?/2 with w,w' = x,
v, z as a function of D in the spacelike separated case. With the
mass of scalar field m set to be unity, the parameters are chosen in
such a way that the system is symmetric under the swapping of
a(t) and Ag(f); Aa=Ag=1, TH =TH =T =T5, =2,
TA = TB =4, and 14, = 1B, see Fig. 13. With these parameters,
we get GA = GBB ~(0.0125. With D > 8, we are in the current
limiting case (IV). The nonzero components, C,, and C,,, are
plotted with the yellow and black lines. Just for comparison, we
have included the part with D < 8. Then, the system falls within
the region (I) in Fig. 6 where we have C., and C,, nonvanishing.
Because of the symmetry, C,, = C, and itis plotted with the gray

line. The mutual information /.5 plotted with the blue line is
always larger than C’s as (86) says.

see Fig. 20 in Appendix D. Note that G2* and GEB
are independent from D. Therefore, the correlation func-
tions in (142) behave as (562668) ~ 8y yp(®GEA)? and
(664'668) ~ 4y sy @A, whose squared value is depicted
in Fig. 14.

Let us now explicitly see that the mutual information /g
reflects the behavior of the correlations and satisfies the
inequality (86). The eigenvalue (64) of p,p is given in this
case as

515 1
HAB = {1 + 52778 cosh(4GE*)

+ 5 \/(VA + $278)* + }’?\YZBSinh2(4(QEA)}- (146)

Plugging it into (65), we get the entanglement entropy
S(pap). The mutual information (82) is obtained as a
function of ®2*, GEB, and GEA,

Ing = Iag(7a.78: GR™). (147)

As seen in Fig. 14, it is always larger than the spin
correlation functions entering in to the right-hand side of
(86) denoted by C,,,s. For sufficiently large values of D, the
mutual information depends on D in the same manner as
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Cyy does."” Though the inequality (86) appears to be a rather
weak relation, /5 properly represents the spin-spin correla-
tions. Because of these nonvanishing correlations and the
corresponding mutual information, (94) can put upper bounds
on Both Alice’s and Bob’s visibilities, as contrasted with the
inequalities (91) from the wave particle duality which are
trivial with the vanishing distinguishabilities.

4. Spin-field correlations

In the adiabatic limit of y, = exp(=2G") — 1, the
correlations between the field and each spin also must
vanish. It can be seen from the trade-off relations in (87)
since the entanglement entropy in the right-hand side in the
relation S(p,) in (61) vanishes S(p,) = Z(1) = 0 and the
mutual information behaves as I, — 0. Similarly we have
Igy — 0. Thus the correlations between the field and spins
must vanish. One can explicitly see such behaviors as
follows. For example,

mw%@%un%>=—wA/dmﬂﬁ—ux<mMAﬂ
(148)

vanishes in the adiabatic limit. Note that this is independent
of Bob’s position xg. Thus, we can take a limit of A, — 0
and D — oo while keeping Alice and Bob to be separated
in the spacelike region. In this limit, the above correlation
vanishes. Furthermore, with the number operator N, we get

<‘Pf|55?5N|‘Pf> = _2®§A<5§?> =7ya Iny,,
(Wrlo628:N2: [Wp) = —4{BRAGRE + (BRA)?}1(69),
(149)

see (C36) and (C39) in Appendix C. The first one explicitly
vanishes with y, — 1. The second one also vanishes in the
adiabatic limit because of the uncertainty relation (144).

D. A case with one-way causal influence

Let us consider the region (II) in Fig. 6 where the
coupling between Alice’s spin and the field A5(7) is
nonvanishing in the causal past of Bob’s protocol, whereas
Bob has not turned on the spin-field coupling Az(?) in the
causal past of Alice’s turning A, (#) off. Then, we have

®AB = 0. (150)

PFor GBA =0, we get S(pap) = S(Pa) + S(pg) since the
eigenvalue (146) is simplified as
(14 s1ra)(1 + s25178)

2
HaB |(55§A:0 = 4 ’

where 5| =s fors, = +1 and s} = s;sign(y, —yp) fors, = —1.
Then, 7,5 = 0 follows.

while @EA does not vanish. As seen below, again, there is
no quantum entanglement between the two spins generated
in this case.

1. Causality vs complementarity

If one accepted the Newtonian picture in this causally
disconnected case and naively used the wave function (8),
G o—i©

O)an =5 (1) +1--D+5

with ® « A caused by the Newtonian interaction (6), it
would lead to an apparent paradox as follows. From (11),
we would have (6£) = cos(20). It means that the inter-
ference of spin up and down states, o, = £, would be
reduced and vanish at the most entangled case of ® = 7/4.
On the other hand, due to the causality, Bob cannot affect
the result of Alice and the interference must be independent
of ® « Az. The paradox, of course, appeared by the
Newtonian approximation where the dynamical effects
of the fields are neglected. This paradox is first discussed
in [7] in the setup of gravitational interactions as the origin
of ®, and its resolution is given in [9,11] by discussing the
vacuum fluctuations of the metric field and the emission of
on-shell gravitons. In particular, in [11], it is shown in
an abstract and sophisticated argument that the partial
decoherence of Alice’s spin, reflected by y, < 1 below, is
inevitable for Bob to gain the “which-path” information.

Let us look at the trade-off relation between the visibility
and distinguishability as the resolution of the paradox. With
(150), the expectation values in (56) become

(=) +1=+)  (151)

ny = <A?&$> = YAYB Siﬂh(4(§§A),
CxO = <A§> =7As C()x = <6-)]§> =17B COS(Z@EA),
G, = <6§8‘;> =0, C,y= (6’?65) = —yB Siﬂ(Z(ﬁEA).

(152)

As explicitly seen here, the visibility V3 = (62)? +
(68)* =4 does not depend on Ag since the retarded
Green’s function from Bob to Alice is now irrel-
evant [17,19]. The fact that Alice’s distinguishability D, =
|Cy.| = 0 vanishes also indicates that Alice cannot gain the
which-path information about Bob’s spin.

On the other hand, Bob can distinguish Alice’s spin since
Bob’s spin is causally connected to Alice connected;
however, the distinguishability is bounded by D3 <1 —
V2 =1- y% from (73), i.e., the decoherence of Alice’s
spin or the particle production is inevitable for Bob to gain
the which-path information. The inevitable decoherence of
Alice’s spin is discussed in a quantitative way in [17] with
the inequality in (73), which becomes, in the current case,

73 4 rEsin?(2684) < 1, (153)
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FIG. 15. In order to see that the reduced density matrix of
Alice’s spin does not care about Bob’s spin, one can take a time
slice X depicted by the blue line. For taking the adiabatic limit in
the case with one-way causal influence, we take 7%, = oo and
change the parameter T2, the length of time that Alice takes to
turn off the spin-field interaction, while keeping all the other
parameters unchanged. In order to restrict ourselves in the region
) in Fig. 6, 5% < 18, + D is imposed.

where Dy = | sin(2854)| is employed. It is also shown
numerically in [17] that this inequality is guaranteed by the
relation
(GR*)? Inys Inyg

4 b
which can be derived from the Robertson inequality.'® In
the following, we discuss a similar trade-off relation in
terms of the mutual informations.

< GRAGER = (154)

2. Spin correlation mediated by created particles

At the time slice % depicted in Fig. 15, Bob’s spin is not
yet to interact with the field. Thus Alice’s state cannot
depend on Bob’s action, and for the generation of the spin-
spin correlations between Alice and Bob, the dynamics of
field with particle creation is inevitable as in the case of
Sec. VC. Indeed, if there is no particle creation from
Alice’s spin and y, = 1, the entanglement entropy S(p4 ) in
(61) vanishes since S(p,) = X(1) =0. Then, from the
trade-off relation (88), /4,5 = 0 and no spin correlations are

possible. This can be also seen from the explicit calcu-
lations in (58) with B&B = 0. If ®x® = 0, the Robertson-
Schrodinger inequality (99) becomes

(GR*)?
4

In YA In YB
4 b

(O SO 6P - (159

and in the adiabatic limit of y, =1, we must have

®BA = ©BA = 0." Thus all the correlations in (58)
(5666%) = 7a7plcosh(4G2) — cos(26R%)],
(664'66%) = yayp sinh(4GE*),

(669868) =0,

(66586%) = —yp sin(2G6RA), (156)

must vanish. When all the correlation functions vanish, it is
impossible for Bob to gain any information about Alice’s
spin; then, the distinguishability Dy should vanish. This

explicitly follows from Dy = [(662565)| in (72).

3. Asymptotic behavior of spin correlations

Let us look at an asymptotic behavior of spin correlations
near the adiabatic limit y, = 1 as sketched in Fig. 15.
We are interested in the dependence on the adiabatic
parameter T2 The time integrations of the Keldysh
Green’s function, GB*, A, and the retarded Green’s
function, ®EA, behave as
ORGP (Th) o

« (Tg)?  (157)

apart from oscillatory parts, see Fig. 21 in Appendix D.

GBB is, of course, independent of 7%;. For small values of

G4 and GEA, the correlation functions in (156) behave as
(66266%) ~ 8y arsl(GR*)
(664:668) ~ 4y \ys ORA,

(864568 ~ —2y5BBA,

+ (R /4],

(158)

Their squared values are depicted in Fig. 16.

The mutual information /5 reflects the behavior of the
correlations and satisfies the inequality (86). In the current
case, we have the eigenvalue (64) of pap as

S182 __

HaB T

1
- {1 + 5274 7g cosh(4GBA) + 5 \/yi + 73 + 2557a7 c0s(28BA) + yAyZsinh? (4GEA) }

(159)

"®The Robertson inequality (5@2><5@2> > |([5@1, 5@2]>|2 /4 is weaker than the Robertson-Schrodinger inequality (97). With the

ch01ce of the operators given in (98), one finds G GEE >

(@BA

&AB)2/4

"This is not only the case with y4 — 1 but also Wlth yg — 1. The entropy (62) evaluated with (60) in the current case depends not

only on yg but also on GEA as S(pg) =

¥ (yg cos(28BA)). Then, the yg — 1 limit itself does not necessarily make S(pg) vanish.

However, that GEA vanishes with yg — 1 is guaranteed by the inequality (155). Therefore, the second one of the trade-off relations in
(87) implies that there are no correlations between the two spins in the adiabatic limit where Bob takes an infinitely long time to turn on

and off the spin-field interaction.
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FIG. 16. Spin correlation C,,,, == (661,668,)?/2 with w, w' = x,
y. z as a function of T%; in the case with one-way causal
influence. With the mass of scalar field m set to be unity, the other
parameters are all fixed as follows: A, =g =1, T, = oo,
T8 =78, =1, T® =2, % =18, +D—1, and D=5, see
Fig. 15. we have C,, C,,, and C,, nonvanishing in the current
case, plotted with the gray, yellow, and black lines, respectively.
The mutual information /,p plotted with the blue line is always

larger than C’s as (86) says.

Plugging it into (65), we get the entanglement entropy
S(pag), and then the mutual information (82) is obtained as
a function of G", GEE, BBA and GEA,

Ing = Iap(7a. 78 OR* GRA). (160)
It is depicted in Fig. 16. I, is actually larger than various
correlators C,,,, as the relation (86) indicates.

Now, let us compare the two upper bounds on the
visibility (91) and (94). For Bob’s visibility, the bound (91)
from the wave particle duality inequality is trivial V3 < 1
since Alice’s distinguishability vanishes for causality.
However, the bound (94) from the mutual information still
constrains it as V5 <U? < 1 due to the nonvanishing spin
correlations obtained as (156). As for Alice’s visibility,
while the bound (91) is effective with nonzero Bob’s
distinguishability, the bound (94) from the mutual infor-
mation turns out to be stronger, see Fig. 17.

4. Spin-field correlations

In the adiabatic limit, the correlations between the field
and Alice’s spin also vanish because we have S(p,) = 0 in
the limit y5, = exp(—262*) = 1 and from the trade-off
relation in (87) the mutual information 7,4 also must
vanish. One can explicitly see this as follows. For example,

(4[66260(x) [ ¥y) = ~2(62) / dG (1 — 1.5 = xp) (1)
(161)

vanishes in the adiabatic limit. Furthermore, with the
number operator N, we get

1 M m\
1-D3 U3
A
Toff
1-10"% ‘ ‘
0 50 100

FIG. 17. The upper bounds on Alice’s visibility V, as functions
of T%;. All the parameters are the same as in Fig. 16. The black
line shows the bound {7 obtained from the mutual information
(94). The pink line shows the bound 1 —D3 from the wave
particle duality inequality (91). For any value of T2, the mutual
information gives a stronger bound. Alice’s visibility itself Vi =
yi ~().86 is much smaller than these bounds.

(Wrld6RoN|Wr) = =262 (62) = yaIn 74,
(W[6645: N2 : | W) = —4{GAAGEB | (@BA)2
+(BR)?/4}(87). (162)

The first one explicitly vanishes with y, — 1. The second
one also vanishes in the adiabatic limit because of the
uncertainty relation (155).

On the other hand, correlations between the field and
Bob’s spin do not have to vanish in the limit of y, — 1. Itis
because, when I,5 = 0, the second one in the trade-off
relations in (87) becomes Iy, = 25(pg) which is nonzero
with yg < 1. For instance, the first term of

(56550 (x) ;) = —2(6%) / diGy (1 — 1.3 — x5) 5 (1)

+6288) [ Gl = 13 = x)ia 1)

(163)

remains finite in the limit of y4 — 1. For the correlations
with the number operator, we have

(Wr[6536N ;) = 26 (67) — GFA (5265).
(W,|66B5: N?: |W;) = —4{GAAGBB 4 (BA)2
+(BRA)?/4}(68)
+26RA (GRM - BRP) (6267).  (164)

While the second one vanishes with y, — 1, the first one
does not and yg In yg remains.
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5. Separability

As seen in (152), we have C,, = 0. Therefore, the
analysis in Sec. IVF tells us that the entanglement
negativity vanishes, and thus, the reduced state p,p is
separable. It is consistent with the observation obtained
in [18] with the electromagnetic field that the entanglement
negativity vanishes for D > 4. — 5.

Here, let us give a simple explanation in Hamiltonian
formulation why the entanglement is not generated when
one of the retarded Green’s functions vanishes because of
the causality, applying a no-go theorem for entanglement
extraction [33]. We consider a time evolution by Lorentz
boost which brings the initial time slice X; to X, see
Fig. 18. With L being the corresponding unitary operator,18
the time evolution (5) is rewritten as

|le> = I:T‘A/(Tt» )L|‘P>

= L™V (21, 70) Vag (0, m)LI¥5),  (166)
where V(z7,7;) == LU(t;,t;)L" is decomposed into two
parts, the unitary operator V g (70, 7;) for the time evolution
from Zf to X and VB¢ (¢, 7¢) for the evolution from X to X.
Since Az = 0 for 7 < 7 and 1, = O for 7 > 7, the former
one trivially acts on the Hilbert space of Bob’s spin, and the
latter trivially acts on the Hilbert space of Alice’s spin. Note
that L. does not act on the Hilbert space of the spins since
Aa = Ag = 0 during those time evolution by Lorentz boost.
Itis convenient to take the interaction picture to describe the
evolution from X to Xf. The state evolves as

A T A
Vypi(t.79) = T exp {_i/ deHﬁ,I(Z,)}
70

— ¢l exp {—i / § dTIA{TBJ@)}, (167)
To

"®This is nothing but the time evolution operator in the Rindler
coordinate (1, 0,y;,y,) which is related to the Minkowski
one (1,x,y,y,) as t—1t, = gsinh(n), x —xy = ¢cosh(). In
general, 7, and x, are arbitrary. The metric is given by
ds? = —@*dn* 4 do* + 37, , dy7. In this coordinate, the Ham-
iltonian K = k¢ +Kn+ Kyg is given by

K, = / dgdzyg[ffz(e,y) +(9,0(0.¥))?

+ [Vo(e.y)? + m* P (0.y)].

XA — Xo
KA_—

cosh(y)’
(165)

d o
EﬁA(fA)Gb(QAuV) with  ga(n) =

ta(1) = oa(n) sinh(y),

and Ky is defined in a similar way as K. Since 4, =g =0
during the evolution form X; to X in Fig. 18, the corresponding
unitary operator is simply given by L = exp[—iAnK ) With an
appropriate choice of “time” interval A.

FIG. 18. Time evolution regarded as a combination of two
Lorentz transformation: U(t;, 1;) = \7¢B \7¢A. Dashed lines depict
light cones. The blue lines depict the time slices with 7 = 7;, 7,
and 7. In this example, the retarded Green’s function from
Alice’s spin to Bob’s spin and its time integration 54 is nonzero
whereas G55 = 0.

where
i 1(7) = =654 (1(2)) (7,28 (7)) (168)
and
/ d / ae e ()]
—5 [t [ atmnGei-t0m). (169)
Here, the field operator is defined as ¢(z.x) =

VL )L e T with B = LH,LT. (See a
related discussion in Footnote 3). In deriving (167), the
time-ordering is evaluated with the Magnus expansion [34]
as V(ﬁBI = exp{zk 1Qk} with Ql =—i fo dTH ( )
Qz 10)2 and Qk23 =0.

In the new coordinate system (z,y), spin’s trajectory is
described by yg(zr). Let us write down the spectral

decomposition19 of the operator @ :=

Jir dedB (1(2))(z. x5 (7)) as @ = 30, B |®;) (D Then,
rewriting the evolution operator (167) as

Hermitian

Vipa(tr 1) = €2y | @) (D exp{icBd; ),
k

(170)

we find a reduced density matrix on X; to be separable:

PaB = tf(/;{|lpf>< i} = tr(/){‘A/(/)B,lﬁOﬁB.i‘A/})B,I}
W
= Zpk PB >

(171)

PJust for illustrative purposes, we assume @ has a discreet
spectrum. See discussions in [33] for the continuous case.
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where pp; is the initial state of Bob’s spin (see
Footnote 14),

o= Vagle0, 51053 (1F)n 1))
X (4 + L@ Vgmm)  (172)

is the state of the subsystem composed of Alice’s spin and
the field on X§ and

Pi = A { (Do Pp) }» (173)
/A)Xc) = <d>k|,b0|<1>k>/17k, (174)
p) im0, o0, (175)

Note that the details of the initial state are irrelevant except
for that Bob’s spin is not entangled with the rest of the
system at the initial time. It is crucial for this proof of
separability that the evolution operator is written in the
form of (170) called simple-generated unitary [33]. There
are two reasons here we have this form: Each spin has no
energy gap when the coupling to the field is absent, and the
commutator [$(x),p(x')] in (169) turns out to be the
c-number. Therefore, when detectors coupling to the field
has some dynamics or when the field has nonlinear
interactions as is the case with the gravitational field, the
quantum entanglement between the detectors can be
generated even if one of the retarded Green’s functions
connecting them vanishes.

E. Short summary of the spin correlations
and various Green’s functions

We give a short summary of the roles played by various
Green’s functions for the spin correlations and entangle-
ment in various limiting cases. After integrating the
quantum field, any observables of Alice and Bob are
written in terms of the following five quantities:

GRB,  ®BA GRA, GBB GRB=0EA (176)
As we have seen in this section, these quantities are present
or absent in different situations and play different roles.
First ®%* and 2B appear as a form of y, and y3, and they
only quantify the overall magnitude of the spin correla-
tions. On the other hand, the other three quantities
determine whether spin correlations and quantum entan-
glement appear or disappear. Thus, we consider the three
quantities and summarize the situation in the Table 1.

In this section, we have studied four situations, depicted
in Figs. 5 and 6. In the region (i) discussed in Sec. VA,
because of the Robertson-Schrodinger inequality (99), @24
vanishes and the equality 28 = GB* is required. Thus

only the quantity 28 = GEA is relevant for the absence or

TABLE I. Underlined quantities are relevant ones to the spin
correlations in each limiting case.

Region @) (ii) av) an
@ﬁB :ggA ﬂ =0 =0
(Clig =GR"P #0 =0 #0
o =0 #0 #0 #0

presence of correlations. It is the case for the Newtonian
approximation. In the region (ii) discussed in Sec. V B,
because the state of Bob’s spin is fully decohered by
yg = 0, two quantities 85* and GE* become irrelevant for
determining the spin correlations or entanglement even
though they are nonvanishing. Thus the only quantity for
controlling the correlations is the one-way causal influence
from Bob to Alice with 828 In the region (IV) discussed in
Sec. V C, both of &8 and ®EA vanish due to the causality.
Thus the only quantity ®2A representing the vacuum
fluctuations induces the spin correlations. Finally, in the
region (IT) discussed in Sec. V D, ®%® vanishes due to the
causality. Then, the one-way causal influence from Alice to
Bob with ®E” and the vacuum fluctuations with GEA
contribute to the spin correlations. In this situation, two
quantities are relevant.

The spin correlations do not necessarily indicate the
quantum entanglement since spins can be correlated under
classical correlations. The calculation of the negativity in
our setup shows that the quantum entanglement is present
only when both of the two retarded Green’s functions are
nonvanishing. Thus, in regions (II) and (IV), there is no
quantum entanglement. In the case of (ii), since Bob’s state
is completely decohered and decoupled from Alice, there is
no entanglement. Thus, only in the case of (i), entangle-
ment is present.

VI. SUMMARY

In this work, we gave a comprehensive study of a field-
theoretical toy model for the BMV setup. The correlation
between the two spins is induced through the local
interactions with the scalar field. We observed that the
causal structure and the nonadiabaticity of the setup affect
the amount of the spin correlations and the quantum
entanglement. We first took the Newtonian approximation
in Sec. Il to look at how entanglement is generated
between the spins. It is the situation considered in the
original analysis of the BMV experiment. We then intro-
duced a field-theoretical model in Sec. IV, which can be
exactly solved. Introducing various “tools” to understand
the quantum behavior of the final state (53), we investigated
the model in various limiting situations in Sec. V. We
especially focused on the relativistic causality, the vacuum
fluctuations, and particle creations which are absent in the
Newtonian approximation.
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The quantum entanglement generated by the gravita-
tional potential is the target of the BMV experiment to
observe the quantum superposition of spacetime geom-
etries. In the Newtonian approximation, entanglement is
indeed generated between two spins of Alice and Bob
mediated by the Newton potential, as explicitly checked by
calculating the spin correlations in Fig. 3 or entanglement
entropy (14) in Sec. II. In this case, these quantities are
sufficient for the quantum entanglement since the state of
Alice’s and Bob’s spins is a pure state (9).

In general, when the quantum field mediating two spins
is dynamical, the system composed of Alice’s and Bob’s
spins is no longer maintained in a pure state. Thus spin
correlations or entanglement entropy between spins is not
sufficient to describe the behavior of the system. We thus
calculated various quantities such as the mutual informa-
tion or negativity. The dynamical field plays two important
roles, one is the effect of relativistic causality and the other
is the particle creation associated with the nonadiabaticity
of Alice’s and Bob’s protocols. These effects are repre-
sented by various Green’s functions, classified by retarded
type and Keldysh type, summarized in Sec. V E.

The Keldysh type of Green’s functions is related to the
nonadiabaticity of the protocols which induce particle
creations. To understand its role, we investigated an
adiabatic limit and a nonadiabatic limit. The adiabatic limit
of Alice’s protocol (i) is studied in Sec. VA. In addition to
this limit, if we take the further adiabatic limit of Bob’s
protocol, all the decoherence factors disappear and the
Newtonian result is reproduced. On the other hand, a
nonadiabatic limit of Bob with adiabatic Alice gives an
analogous situation to the COW experiment. The amount of
entanglement between Alice’s and Bob’s spins vanishes as
depicted in Fig. 7.

The retarded Green’s functions control the causal influ-
ence between Alice and Bob. In Secs. VC and VD, we
observed that the entanglement disappears unless both of
the causal influences from Alice to Bob and from Bob to
Alice are present. The proof is given in Sec. V D 5. Due to
this property, the nonvanishing spin correlations when
spins are spacelike separated is not genuine quantum
correlation. Indeed the reduced density matrix of the final
state becomes a mixture of product states like (30). Such a
separable density matrix can be prepared by LOCC, and
hence, no quantum field is necessary in principle.
Therefore, the observation of such spin correlations cannot
be regarded as evidence of the quantum gravity effect in the
BMYV experiment. Nevertheless, the spin correlation attrib-
uted to the Keldysh function connecting Alice’s spin and
Bob’s spin is a manifestation of the quantum nature of the
field, namely, the vacuum fluctuations. Thus, when the
causal influence between Alice and Bob is absent, even
though the spin correlations could be generated by LOCC,
they are actually generated by quantum field theoretical
interactions.

While these two types of Green’s functions play different
roles as above, their effects are constrained by various
trade-off relations. Our system is composed of Alice’s spin,
Bob’s spin, and the field. In the Newtonian limit, the field is
decoupled. Then, Alice’s visibility of the interference and
Bob’s distinguishability of Alice’s z-spin satisfy a relation
in (27). This relation becomes an inequality when we take
the dynamical effects of the quantum field into account,
given in (73) and called wave particle duality. Note that
both quantities of the visibility and the distinguishability
are written only in terms of the correlation between Alice’s
and Bob’s spin, and all the information of the field is
abandoned. In order to take the effects of fields into
account, we introduced mutual informations among
Alice, Bob, and the field in Sec. IV G and their trade-off
relations similar to the wave particle duality given in (95) in
Sec. IV H. From the trade-off relations, it follows that the
particle creation is necessary for the spin correlation to be
generated when Alice and Bob are spacelike separated as in
Secs. V C and V D. We also obtained an upper bound (94)
on the visibility from the trade-off inequality (90), and
argued that, in some cases, this upper bound on the
visibility can be stronger than the one from the wave
particle duality as explicitly seen in Figs. 9 and 17.
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APPENDIX A: PATH-INTEGRAL
FORMULATION ON CTP

Here, we apply the path-integral technique to compute
the reduced density matrix used in [19] to the system with
the Hamiltonian (2), briefly reviewing the Keldysh formal-
ism on the closed time path (CTP).

1. Propagators

First, we introduce various propagators to be used in the
CTP or Keldysh formalism. For the free, real scalar field
described by H 4 in (2) without any source terms, there are
two quantities; the retarded/advanced Green’s function (44)
and the Keldysh function (47) on the vacuum state [Q),,

Gr(x,y) = GA(y,x)

=i0(x" = y)(Qld(x). ¢M)]IQ)y. (A1)

G (x.y) = 5 (QHA(x). p(1) }Q). (A2)

N[ =
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which are purely real. From these two, one can construct
the spectral function,

G,(%,y) = Gr(x,y) = Ga(x,y) = (QI[B(x), p(1)]| Ry
(A3)
the Wightman functions,
i
Gs(x,y) = Gk (x.y) £ 5 G, (x.y), (A4)
the time-ordered propagator,
i
Gr(x.y) = Gx(x,y) —sign(x” ") 3G, (x.y).  (A3)
and the antitime ordered propagator, Gi(x,y) =
[Gr(x,y)]*. It is also convenient to define the path ordered

propagator on the CTP, C = C; + C,, sketched in Fig. 19,

. 1
= Gg(x,y) - s1gnc(x0 - )’0)_

5 G,(x,y),

Ge(x,y) (A6)
where sign.(x" — y9) is the sign function on the CTP: if x°

is ahead of (behind) y° in terms of the path C, it gives +1
(=1). It can be written with the 2 x 2 matrix notation as

9= (5l o)
~(%n laen aren)

(A7)

(—i/2 —1/2)
X 9
1 1

where the (i, j) component is for the arguments x and y
being on C; and C;, respectively.

2. Computing reduced density matrix

Let us consider an initial state at t = ¢;,

Pasg(ti) = Pas(ti) ® [€2),4(L], (A8)

where [Q), is field’s ground state with 1, = 1z = 0 and
Pag(t;) is an arbitrary density matrix of the two spin system

Ci

t=t Ca t=t

FIG. 19. Closed time path C =C; 4+ C,. Each of the time
arguments x° and y° of the propagator G.(x,y) is either on
the forward path C; or on the backward path C,.

at the initial time #;. The density matrix of the total system
at some time ¢ is obtained as

Papg(t) = U(? 1:)pay (1) U(2 . 1), (A9)
where U(¢, ;) = Texp{—i [ dtH(t)} is the time evolu-
tion operator. Assuming that by this time both Alice
and Bob have turned off the spin-field interaction:
¢ > max{t’y;, 2}, we trace out the field ¢ to define the
reduced density matrix:

pas = try{U(1 6)papg ()U(1, 1)} (A10)
Note that it does not depend on 7 for the assumption
¢ > max{t’;, 13} since each spin has no dynamics on its
own. For later convenience, ¢’ is considered to be as large
as +oo.

Noting the spins in Hamiltonian are diagonal in z-basis,

each matrix element can be written in the form of

(ot ot |Pasloray) = f(or. oF. 05, 05) x ZJ1. o], (ALL)
where

f(o}, 0}, 05, 0%) = (o} o} [Pas(ti)|0305) (A12)
and
Z[T 1. T = QU4 15 02) Uy (7 1:571)|Q) (A13)

with the time evolution operator defined by (40) with the
“source” J; originated from the interaction between the
field and the spins (41). It is written in the path-integral
form on the closed time path (CTP) as

AUA / df, / debir (019, (2 2)
x Kel|pin. J2; din, J1] (A14)
with

Kelpi, J2i it J1]
- / d¢'<¢i2|ff(,,<rcri;12>*|¢'><¢/|ff¢<rc 6 0)lbn)

, o (t)=¢'
d¢ D¢1 D¢,
1(6)=dui b (t)=di

xexp{ ‘dtL[qz’)l, = i/t/dlL[ﬁszz]}

ha(t))=chia .
:/ Dqﬁcexp{l/dtL[qﬁc,Jc]}.
1(t)=n C

Here, C = C; + C, is the CTP sketched in Fig. 19 and

(A15)
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on C]

e = {¢l on G Je = {jl (Al6)
2

¢, on C on Cp’
which appear in the Lagrangian

Lip.d) = [ @x(- 007 S ) (an)

in the last line.
Since there is no nonlinear interaction here, the path-
integral in (A14) can be exactly evaluated. The propagator

G, defined in (A6) satisfies (02 —m?)Ge(x,y) = i5(64) (x—y)
with the vacuum initial boundary condition, where

6&4) (x —y) is the delta function on CTP. With this propa-
gator, we have

1
inZ[sy. 1) = =5 [ dadtase(x)Gelr)elx)

:% / dhxd®y(Jy(x) i7,(x))
: <GR((jc,y) gim) <iz(();))> (A18)

Ji(x) + 12 (x)

2

= 0P Ap(x0)8%) (x = x4) + 0P 25 (x°)8) (x — xp),
Jo(x) = J1(x) = J2(x)

= o ap(x0)8%) (x = x,) + 0825 (x°)8) (x — xp),

(A19)

Jr(x) =

where o = (608 +65P)/2 and o3P =608 — )P,
Specifying the initial state pog(#) in (A8) to be (3), we
have f(o?,0%,06%,68) = 1/4. Then, the reduced density
matrix (37) or its Bloch representation (53) is reproduced.

APPENDIX B: CORRELATION
BETWEEN FIELD AND SPIN

In each limiting case in Sec. V, the correlations between
the field and the spin are discussed. Here, we obtain the
generating functional of the correlation functions. Let us
introduce external sources J'{5 and Jf for the field in the
time evolution as

A t, A
u(r, ti;J?) =T exp {—i/ drH (1)
4

+i [ “ar / d3x1?(z,x><§s(x)], (B1)

and define

Phe = {07, 1:00)pang (1)U (7 1:99)'} - (B2)

instead of (A10). Each matrix element is written in the
form of

(ofo?|phplorol) = (o} 0% .05.08)x Z[T1.T5).  (B3)
where
Ti(x) = Ji(x) + T (x). (B4)

Z|J,J>] can be computed in the same manner as
Z[J,,J,], and we get

n2[71.7] = =3 [ 4T Geley) Te(w
—t [ () i7,60)

(e auten) (i) ®

where

7,y = T+ T

Ta(x) = T1(x) = Ta(x) = Jo(x) + I (x).

= J,(x) + J? (x),

(B6)

The linear combinations of the external sources, J? :=
(J? + Jf)/Z and J{ = J({’ —J?, come with ¢, = (1 +
452)/2 and ¢a = ¢1 — 452 as

i =ity =Tl + I, (B7)

in Z as seen in (A15). Therefore, differentiating Z[.7, 7]

with respect to iJZ’/r is equivalent to inserting ¢, /,, and thus,

the density matrix (B2) with the external sources are the
generating functional of the correlation functions of the
field and the spins. For instance, we have

R . o R
tr{PABG?f/J)(x)}zf = —tr{PJA{pBU?} , (B8)

672 (x) 19=0

where x = (#;,x) is a spacetime point on the time slice
before which both Alice and Bob have turned off their
spin-field interactions; see the comment below (A10).
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It is convenient to put it in the Bloch representation as

1 .
ﬁig :exp{_i‘]a'GK'Ja+1Ja’GR’Jr}

1
~A~B
x3 D Cueher, (BY)
u,v=0,x,y.,2
where “” abbreviates the spacetime integration:

Ja Gg - J, = [ d*xd*yJ,(x)Gg(x, y)J4(y), for instance.
In the body of the paper, we are interested in correlations
between the field and each spin with the initial state of the
spins given by (3). For Alice’s spin, we need the following
components in (B9) to differentiate with respect to iJ?,

Cly=Cy cos(2iJ? - (D%A)) cosh(iJ? - CD;{B))
+C,.sin(2i77 - ) sinh(i77 - ),
C;O = —C,sin(2iJ? - CDE?)) cosh(iJ? - <I>§B))

+C,.cos(2is? - @) sinh(iJ? - DY),

!y = cosh(iJ? - ®P)) sinh (i - dF) (B10)
with C,y and C,, defined in (56), where
(A) oy . Ity —
oM (1) = / AGy (¢ — 1,5 —x3)3a (1),
o) = [l =¥ —x a0, (B11)

in addition, <DE<B >(t’ ) and dJI(QB)(t’ ) are defined in the same
manner. Note that why J? is absent in (B10) is that
J?(x) =0 is assumed for x° < max{r’, 8} because,
here, we are only interested in correlations between the
field and each spin after both Alice and Bob turned off their
spin-field interactions. For correlations between the field
and Bob’s spin, we need Cy,, Cj, and Cy_ which are given
by the above CY;, C};, and C; with the replacement
(A,B) = (B, A) applied.

APPENDIX C: PARTICLE CREATION
AND PROPAGATOR

In the presence of time-dependent external sources,
particles are created in general. Here, we formulate a
computation of the number of particles created and its
correlation with the spin operators, based on the
Hamiltonian formalism which is more intuitive than the
path-integral one. We first consider a single harmonic
oscillator and then extend the discussion to the scalar field
case. Finally, we couple the field to the spin variables s as in
the body of the paper and compute correlations between the
spin operators and the number of particles created.

1. Harmonic oscillator

Suppose a system is governed by the Hamiltonian
H = H, + H, with

A2 2452
N P wx P
H = — _ = — 1
) w<N+2>, (C1)
R A A
i1, = —J(0)% = —J(1) 28 (C2)

V2o

X and p denote the position and the momentum operators of
a harmonic oscillator with frequency w. Its mass is set to be

A

unity here. The number operator N = a'a is constructed
from the annihilation operator & = (wi +ip)/v2w and
the creation operator ¥ = (w& — ip)/v/2@. We assume the
external source J(7) is zero at the initial time ¢ = #; and the
system is in the ground state |0) defined by a|0) = 0.

It is convenient to take the interaction picture where
operators evolve in time with Uy (z,1,) =exp{—i(r—1;)H,}
as Oy(1.1,) = Uy(1.1)TOU(1.1;) and the state evolves
with Uy(t, 1) = T exp{—i Ik dr'H,(7)} where

A

Hy(1) = Uo(t, 1) HUo (1, 1) = =J (1) xi (1), (C3)

&e_i‘”(’_ti) + a‘i‘e+ia)(t—ti)

V2w

Since Ni(1) = Uy(t.,)"NUy(t.1;) = N, we obtain the
number of particles at t = #; as

x(1) = (C4)

(Wi N|W) = (0[O (1. ) N Uy (1. 1;)[0) = [A%. (C5)
where
A ) 1 i e+iw(t—ti) c6
=1 tJ(t
[0 (c6)
This can be proved by noting
(&, U\(1;,1,)] = AUy(t, 1). (C7)
The number of particles (C5) can be rewritten as
. t, t,
(W V) = / “dr / AI(0G (- 1) (F)
5 f
_ / dr / AIOG(t-)I(F),  (CS)
4 5
where
, o e—io(i=1)
G (r=1) = {032 (1)|0) = — (C9)
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is the Wightman function for a harmonic oscillator and its
symmetric part is the Keldysh function,

(O{21(1). 31(7) }]0) _ cos(w(r—1'))
2 2w '

Gg(t—1):= (C10)

The expectation values of N” with n>2 can be
computed in the same manner. For example,

(W |N?|¥r) = (Welata'aa W) + (e N|¥p),  (C11)
where the first term is given by
(010\(1r, r)"a"a’aa Ut 1)|0) = (JAP)> = (¥ N|¥p)*.
(C12)

2. Free scalar field

The free scalar field is nothing but the sum of infinitely
many harmonic oscillators:

Bx) = / (d et O (€13)
o, +al
Dl = Sk (C14)

where w; = \/m? + |k|> with m being field’s mass. Now,
we suppose the system is governed by the Hamiltonian
H = Hy + H, with

Here, H, is the same as H¢ in (2) and N, = &Z&k is the
number density operator of particle with momentum k. On

the other hand, A is the external source term and J(z,k) is
a Fourier component of the external source J(z,x):

J(x) = / %j(z,k)em.

Note that J*(¢,—k) = J(t,k) for J(t,x) to be real.
In the interaction picture, the field operator becomes

(C17)

. &ke—iwk(t—ti) —l—(AlikeH(”k(t_ti)

t.k) = , C18

and the interaction Hamiltonian is given by
0 = [ S50 -RbeR. €9

Then, we get

A =i / (k) S (C20)

=i tJ(t, k) ———

k t; 2a)k

As in the harmonic oscillator case, the operator measuring
the number of particles created

N:/Wakak

- 3k | (C21)
Hy= | —= Ny +=, CI15
3 itself does not evolve in the interaction picture: Ny(r) = N.
g — / d k3 J(t, k) g;ﬁ(k) (C16) Therefore, starting from the vacuum initial state |Q),,
(27) we find
|
. o ek, v fu eionlt=) _
(I = QU0 1) WO )19, = [ sl = ["ar ["as o 10
t, t
:/ dt/ / /dg J(t,x)G.(t =1, x —x")J(t,x)
:/ / / /d3 '"J(t,x)Gg(t =1, x —x')J (1, x), (C22)
|
where is the Wightman function and
, , o (QUB(1x). (1 X)) }Q),
G (1= 1x =¥ = (QUd(1.%). (7. ¥ |2} Gy (1—1' v —x') = :
_/ B e_iwk(t_t)eJrik-(x—x’) () _/ Bk cos(a)k(t—t’))eﬂk.(x_x,) (C24)
(271')3 20)k (27[)3 2(1)k
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is the Keldysh Green’s function for the free field,

A &Pk age
[ N =

¢I( x) / (271_)3

In the body of paper, the subscript “I”” of ¢;(z, x) is dropped,
see Footnote 3 in Sec. IVA.

The expectation values of N” with n>2 can be
computed similarly. For instance,

—iwy (1—1;)+ik-x +

\ 260k

a}:eﬂmk (t—t;)—ik-x

(C25)

(Pe|N2 W) = ((PeIN¥p))* + (Pl N]¥p). (C26)

where the first term is calculated as

3 3K
/(;T];/é k)*( |On(15, 1)ty lafy e g U (11, 1 6)1R)

-1/ (;W;A (2] = (el (27)

(BRI = (B0 (1. ) RO (1 1)) = /

Iy Iy
= > /dt/ dr (6X6%)
XX'=AB 1 g

3. Free scalar field coupled with spin
Now, let us identify A, in (C16) as the spin-field
interaction H, + Hy in (2). Then the current becomes
operators acting on the spin variables,

J(1,x) = 6225(1)8%) (x —x5) + 8225(1)5) (x — x),
(C28)

which is an operator acting on spins’ Hilbert space. Note
that 62 and 68 commute with the free-field Hamiltonian

Hy=H ¢» and the operator in the interaction picture is the
same as in the Schrodinger picture; JZAIB =628 It is also
true for other components of the spin. Therefore, (C20) is

replaced by an operator acting on the spin variables,

e+iwk(t—ti)

dt ———
\/260k

Iy

Ak = 1 (6?/{A(l)€_ik.xA + 6?13(1‘)6_”(*13).
(C29)

With the initial state |¥;) given in (2), the number of

particles created due to the nonadiabaticity is computed as

&k
(2z)?

S (WO (17, 1) TAL AR O (1) | W)

Ix()Go(t =1, xx —Xxx)Ax (1)

t t
=Y / "dr / AP A (1) G (t = ,0)x () = B3 + GEB. (C30)
X=A.B g
On the third equality, we have used (62)? = (6%)? = 1 and (6268) = t{pAp6268} = 0 with the initial state of the spins
given by (3) as seen in (56). In the same manner, we find
(Pel N2 e) = (Pe s N2 [Wy) + (P N, (C31)
where the first term is given by
. &’k d*K .
V| N2 |¥,) = WO (17, 1) ALAL A AUy (1, 1) |5
e 82 10) = [ 555 [ S 0 AL A A D119
te te t t AY AX A AY
= Z / du/ du’/ dv/ dv'(6Y62626))
XX\Y.Y=AB " 5 fi i
X ﬂx(”)G>(M - l/t/,xx —xX!)/IX/(M/)ly(U)G> (’U - U/,xY —fo)j.Y/(U/>
= (BR" + BRP)* +4(GEH) . (C32)

It can be easily shown by noting that, due to (626%) = 0, four spin correlations vanish unless two of them are A and the
other two are B, or all four of them are A or B. The statement is expressed by the following equality,

6Y6%X6%X'6Y = SxxByy + 465 (a0)x Oy (adp)y + 2(Bxx'Oy(a0B)y + Oyy Sx(adp)x/)8265. (C33)

Here, dx(adp)x = (Oxadx’ + OxBOax)/2-
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4. Correlation between spin and number of particles

One can compute the correlation functions between the spin and the number of particles in the same way as above. For

instance, inserting 6%, = 6%, we get

W |6AN|P
< flaw | f> 27[)

3
/ (d K010, 1) AL6BA D (1) ,)

= / dt/ dr' (s Ix()Go (1 =1, xx —xx ) Ax (1). (C34)
X,X'=AB
Most of the terms in the expectation value of
6-?0{:6)(/ - 26w15XA5X’A8? + 25w15X(A5B)X’8§ + (6XB5X’B - 5XA6X’A)6Q + 2i€w1116X[A6B]X’8§)\6? (C35)

vanish because of the initial state (3) assumed here, see (56). Here, dx(adpjx' = (6xadBx — OxBOAX’)/2, and €, denotes

the totally antisymmetric tensor with e,,, = +1. Therefore,

(Prlat NI¥r) = (BR° — B (67) + (6R® —ORM)(6088). (Wil N|¥y) = (Prl62N|Pr) = (C36)
For the correlations with Bob’s spin, one can simply make the replacement (A,B) — (B, A).
Similarly, we find
AA. 2. &k &K St aA R
(Wrlw: N=:|¥y) = m 2n) (Wil U1 (1, 1) T AgAL S0 A (1) Ak Uy (1, 1) | ;)
= / du / du’ / dv / dv'(6Y6X686X 6Y)
XX’YY’ AB
X Ax (u) G (u — u', xx = X0 )Ax (') Ay (0) G (v = V', 2y = Xy) Ay (V). (C37)
where most of the terms in the expectation value of
GY67636Y 67 = 88,,0x(a0m)¥Ox(adr)y' 07 + 20, (v x(adp)y + OxyOx(adp)y )57
+ (8xyOxy — 45X(A5B)Y5X'(A5B)Y')5$ + 2i€,, (Ox'yOx(a0B)y — 5XY5X’(A5B)Y’)8?8]; (C38)
|
vanish with the initial state (3) assumed. Then, Ga(r.2') = J1(m/3) + (_) for s >0, (DI)

(B3 872) = (OFF - 62)? — (63° - BF)?)(62)
+2(6P - BFY) (B - 62 (506).

(68:N*:) =0, (68:N%:) =0. (C39)

Again, one can make the replacement (A,B) — (B,A) to

obtain the correlations with Bob’s spin.

APPENDIX D: TIME INTEGRATION
OF PROPAGATOR

The reduced density matrix (53) and various quantities
obtained from it are all given as functions of ®’s defined
in (43) and (46). Here, we present explicit forms of ®’s and
their numerical values used to draw Figs. 14 and 16. As a
function of s := (t — #')> — |x —x'|?, the retarded Green’s
function of the source-free field defined in (44) is written as

vl

and it vanishes for s < 0 reflecting the relativistic causality.
Here, J, is the Bessel function of the first kind. The
Keldysh function (47) can be written as

Gk (x,x') = 1m % {S_l/z(”/z)yl(m\/g) for s >0
KX, X)) = 2272 (—s)‘l/zKl(m\/IE) for s < 0,
(D2)

where Y, is the Bessel function of the second kind and K,
is the modified Bessel function of the second kind.
Although Gy itself is divergent at s = 0, an integration over
s = 0 gives a finite number since (z/2)Y;(x)/K;(x) —» —
for x N\ 0. Then, it is convenient to express it in terms of
Fourier modes as
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&k cos(wp(t=1)) yior
G x. x) :/(27[)3 kak elee)
271 [ 2

dk—cos(wy(t—1))

sin(k|x — x'|)
222 ) Wy,

klx — x|
(D3)

For the time dependence of the couplings, we assume a
simple form

A
Lot — 1

A
Toff

a(t) = /IA{H( o — 00 = 1y)
+ 0(15 — 1)0(1 = 75y

t—m
00— ) }

+ 9(;(‘?11 TA
on

(D4)

A (A (A .TB B
z'-k(Toff’Ton’toff’l‘on’Toff’Ton*toff’ton) A 7B
ToffToff

) A
4wy sin (a’k T ot
2

where By >0, ThH =Tn—15>0 and
TA =74 -1, >0, as sketched in Fig. 6. Bob’s one
Ag(t) is defined by replacing “A” with “B.” Then, ®g’s
are numerically evaluated simply by plugging (D1) and
(D2) into the definitions in (44) and implementing the time
integration. On the other hand, for ®’s, the time integra-
tion is analytically done with the expression (D3) plugged

in the definition (46):

A
Thy = th —

) k? sin(kD)
GpA =23 / dk—
K an? w; kD
X Ti(Toges Tons thie tons Totes Tons Toges fon) — (DS)
with

. (@ T8 TA
) sin <%> cos (a)k(téff -5 —w Off

4o . ((u
+ sin

A TB
Ton Ton

)
4wy,

TAN .
k4 on sin

Tg“ff T8,

A
. (o, T
sin [ 2k off
2

doi? <a)kToAn
in

- S
A TB
TOH Toff

and
v i
Chals ) dk Ik(T?ff’TgmtoAff’tA“) (D7)
with
I (ToffvToAn’toAff’ )
= Ty (o, Tons g tons Thips Tons Toigs Lon)

40)1:2 .9 (a)kTOff> 4(1)/:2 .2 <a)kT(I)An>
= sin + sin
(T5)? 2 (T6)? 2
8w, ? TA TA .
- Akasin Dol ) i ( L4 0n cos(w,T*), (D8)
T54T o 2 2

where T4 := TA + (T4, + T5,)/2. Also, we get a similar
form for ®EB. Then, the momentum integration is numeri-
cally implemented.

For Fig. 14 in Sec. V C, with the mass of scalar field m
set to be unity, parameters are chosen in such a way that
the system is symmetric under the swapping of A,(¢)
and Ag(t); Aa=Adg=1, TH=T4%=T5 =T8;=2,
TA =TB =4, and 3 = 5,. With these parameters we
get @A = BB ~ 0.0125. The absolute values of G2* and

> sin

TB TA TB

<(Uk2 on> oS <wk(toAn (m) Wy on 0n)
T8 T‘ v —I—TB

) i <wk on> cos <a)k(t0Aff t(]?n) off 0n>

T8 TA +T
<—a)k2 Off> cos (wk(foAn —155) F 0" - Off>

|
®BA are plotted in Fig. 20. Note that, because of the
symmetry, we have ®RB = GBA. With D =0, we get
GEA=@RA=0EB, and then, the Robertson-Schrodinger
relatlon (99) saturates.

1 v

A

N —
5 TS 15 20

FIG. 20. The absolute value of ®E* is plotted as a function of
the spatial distance D between Alice and Bob with the yellow
line. We have included the part with D < 8 where the system falls
within the region (I) in Fig. 6; the retarded Green’s functions
connecting Alice’s spin and Bob’s spin are nonvanishing.
Because of the symmetry, we have GRP = GBA. Its absolute
value is plotted with the gray line.
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1
2 %1077 )
\
Y BA
| &B
N
B \ AA A
1075 \
\\ QSK TOff
X —
O 1 e
prS 100 150 200
@BA
-107° K

FIG. 21. ®EA plotted with the gray line and GE* plotted with
the yellow line decreases as ~(T%) ™", where T2 is the time that
Alice takes to turn off the spin-field interaction. On the other
hand, G plotted with the dashed line decreases as ~(T4;) 2.

For Fig. 16 in Sec. VD, parameters are chosen as
follows: Ay =Adg=1, Th =00, T5 =T =1,
T8 =2, 8 =18 +D—1, and D=5, see Fig. 15.
With these parameters, we get 2B ~0.037. BEA, GBA,
and G2 are plotted in Fig. 21. It is checked that the ratio of
the left-hand side to the right-hand side of the inequality
(155) is always less than unity; for large Tg\ff, it becomes
~2 x 107 and oscillates around it.

APPENDIX E: CONSISTENCY CONDITION
FROM NON-NEGATIVITY

Since the total system is governed by the well-defined
theory with the Hamiltonian (2), the reduced density

matrices are necessarily positive semidefinite. Here, let
us observe that the non-negativity of the density matrix (53)
for the initial state given by (2) requires an inequality
similar to the one (99) derived from the Robertson-
Schrodinger relation.

The eigenvalues of (53) are computed as (64). For
s; = +1, the non-negativity is trivially satisfied. On the
other hand, for s; = —1, it turns out that

— 55[cosh(4BEA) — cos(2(BEA — BRB))]

<A —ra)rg' —7e)/2

= 2sinh(2G&") sinh(2GEB). (E1)
This is trivially satisfied for s, = +1. However, for
s, = —1, it becomes

cos(2(BR"* - BR"))

> 1 —2[sinh(2&%*) sinh(2GEB) —sinh? (26E4)].  (E2)
Note that, this is merely a consistency condition, and thus,
it can be confirmed by explicitly evaluating both sides with
the definitions (43) and (46).

Especially, for the case with G2*, GEB GBA « 1, the
consistency condition (E2) reads
I - cos(2(BEA — BAF)) < B(GRAGEE — (B84)2),  (E3)
which is guaranteed by the Robertson-Schrodinger inequal-
ity (99).
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