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Motivated by the Bose et al.-Matletto-Vedral (BMV) proposal for detecting quantum superposition of
spacetime geometries, we study a toy model of a quantum entanglement generation between two spins
(qubits) mediated by a relativistic free scalar field. After time evolution, spin correlation is generated
through the interactions with the field. Because of the associated particle creation into an open system, the
quantum state of spins is partially decohered. In this paper, we give a comprehensive study of the model
based on the closed time path formalism, focusing on relativistic causality and quantum mechanical
complementarity. We calculate various quantities such as spin correlations, entanglement entropies, mutual
information and negativity, and study their behaviors in various limiting situations. In particular, we
calculate the mutual information of the two spins and compare it with spin correlation functions. In some
cases, its inequality relation improves the trade-off relation between the fringe visibility and the
distinguishability (which-way information) by giving a stronger upper bound on the visibility. We also
discuss why no quantum entanglement can be generated unless both spins are causally affected by one
another while spin correlations are generated.
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I. INTRODUCTION

Relativistic quantum field theories (QFT) can success-
fully describe our Universe in a compatible way between
the principle of quantum mechanics and relativistic cau-
sality, and provides a nontrivial concept of quantum
vacuum with vacuum fluctuations. Formulated on the
curved spacetime, it can incorporate nontrivial effects of
classical gravity. Thus, we can say that QFT serves as a
foundation for the success and further progress of modern
descriptions of not only matter fields but also the spacetime
itself in which matter lives. Though it is natural to think that

the gravitational field should also be quantized and
described within the framework of the QFT paradigm, it
is not yet experimentally confirmed as no experiments have
been done to observe the quantum nature of gravity.
Toward this direction, the so-called BMV tabletop

experiment is proposed by Bose et al. [1] and Matletto
and Vedral [2] to detect quantum entanglement between
two massive objects generated by the Newtonian gravita-
tional interaction. The generation of entanglement can be
interpreted as being induced by a quantum superposition of
different spacetime geometries. The experiment may
become feasible in the foreseeable future by virtue of
the experimental progress in the ground state cooling [3,4],
and macroscopic superpositions [5,6]. The original analysis
in the BMV proposal is very simple and intuitive based on
the Newtonian approximation. However, there have been
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discussions on its physical interpretation, especially about
whether the detection of the gravity-mediated entanglement
can be an experimental test of the quantum nature of
gravity [7–15]. Also, more detailed analyses based on field-
theoretical models are given in the Hamiltonian formu-
lation [15–18] and in the path-integral formulation [12,19]
to understand its possible impacts of the relativistic
causality and the vacuum fluctuations of the gravitational
field. See Refs. [20,21] for reviews.
The purpose of the present work is to give a compre-

hensive description of the field-mediated quantum/classical
correlations between two objects based on a simple toy
model for the BMV-type setup. Time evolution of the state
containing two objects (qubits, or equivalently, spins) as
well as the quantum field can be fully obtained by using the
technique of closed time path integral and given in terms of
two types of Green’s functions. One is the retarded/
advanced Green’s function and the other is the Keldysh
Green’s function. It is briefly reviewed in [19] and in the
Appendix A. The relativistic causality reflected in the
retarded/advanced Green’s functions controls the genera-
tion of the correlations via causal influence from one to the
other. On the other hand, the vacuum fluctuations man-
ifested by the Keldysh Green’s function have two important
effects: generation of correlations and decoherence of each
object’s quantum state by particle creations associated with
nonadiabaticity of the setup. We discuss how these effects
are related to each other in various cases, employing a sort
of trade-off relation between entropies and mutual infor-
mation. In particular, we compare the mutual information
of two spins with the spin correlation functions to check the
inequality between them. We also obtain the necessary
conditions, in terms of the causality and the decoherence,
for the quantum entanglement to be generated in our setup.
We show that the quantum entanglement cannot be gen-
erated unless two spins are causally connected in both
directions.
This paper is organized as follows; we use figures in each

section to explain it. Our field-theoretical model is intro-
duced in Sec. II. A schematic picture of the model is given
in Fig. 1. We then discuss its Newtonian approximation in
Sec. III to describe entanglement generation due to the
nonlocal interaction. Figure 3 shows the evolution of
entanglement as a function of the interaction time-interval.
In the Newtonian approximation, there is no decoherence
due to the particle creations and the entanglement entropy
simply oscillates. The notions of visibility, distinguish-
ability and the separability condition by negativity are also
introduced in this section. All the necessary calculations are
given in this section.
In Sec. IV, we introduce a dynamical field coupled to

spin systems and solve the model exactly. We obtain the
reduced density matrix tracing out the field variables in
which the effects of the causality and the vacuum fluctua-
tions are automatically taken into account. Figure 4 shows

the contents of this section, in particular various tools we
introduce for investigating various properties. Due to the
particle creation associated with the nonadiabaticity of the
time evolution, various quantities such as spin correlations
or quantum entanglement are suppressed by the adiaba-
ticity parameters γA and γB, given in Eq. (57), written in
terms of the Keldysh Green’s function.
Using these results, in Sec. V, we consider four limiting

cases to see how the causality and the vacuum fluctuations
affect correlations between the objects. Figures 5 and 6
show the situations of these four cases, specified by their
adiabaticity and causal relations between Alice and Bob.
An adiabatic limit in Sec. VA corresponds to γA ¼ 1. There
is no particle creation from Alice. Figure 7 shows the
entanglement negativity of Alice and Bob spins. Its non-
vanishing property expresses quantum entanglement
between the spins. We also depict the mutual information
of Alice and Bob in Fig. 8 and that of Alice and field in
Fig. 10. On the other hand, in the nonadiabatic limit of
γB ¼ 0 studied in Sec. V B, Bob is completely decohered.
Thus the mutual information of Alice and Bob, depicted in
Fig. 11, cannot be larger than the half value of the maximal
one. The nonadiabatic limit can be considered as an analog
of the Colella-Overhauser-Werner (COW) experiment in
which Bob’s spin is replaced by the earth and interacts with
Alice’s spin via gravitational interaction. The third and
fourth cases are focusing relativistic causality. In Sec. V C,
we study spacelike separated case where both retarded
Green’s functions between Alice and Bob vanish as in
Fig. 13. In this case, while they do not have the causal
interaction, spin correlations appear from the entanglement
of the vacuum state of the field. Mutual information and

FIG. 1. A schematic view of the setup. Alice’s spin and Bob’s
spin are located at x ¼ xA and x ¼ xB, respectively, and interact
with the field on the world lines colored pink and purple. In the
boxes, time-dependences of the strengths of the spin-field
couplings λA and λB are depicted. Each coupling is nonvanishing
only during a finite interval. The signs of the couplings are
correlated with the signs of the z-direction spins σ̂A;Bz .
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spin correlations are depicted in Fig. 14. In Sec. V D, these
quantities are evaluated in the case where only one of the
retarded Green’s functions is vanishing and depicted in
Fig. 16. In both of those cases, as proved in Sec. V D 5, the
reduced density matrix of the two-spin system is separable
and there is no quantum entanglement between Alice’s and
Bob’s spins. In Sec. V E, we have a short summary of the
roles played by various Green’s functions. Finally, we
summarize the paper in Sec. VI.
In Appendix A, we give a review of the closed time path

integral formalism to calculate the reduced density matrix
in our setup. In Appendix B, we calculate correlations
between the scalar field and the spin variables. In
Appendix C, we prove that the strength of decoherence
due to the nonadiabaticity, γA and γB, are directly related to
the number of particles created by the nonadiabatic change
of the spin-field couplings. In Appendix D, we numerically
evaluate integrations of various Green’s functions. In
Appendix E, we check inequality relations between
Green functions as a consistency for the non-negativity
of the density matrix.

II. SETUP

We consider a system consisting of Alice’s spin σA,
Bob’s spin σB, and a scalar field ϕ in (3þ 1) dimensional
spacetime. The Hamiltonian is given by Ĥ ¼ Ĥϕ þ ĤA þ
ĤB with

Ĥϕ ¼
Z

d3x
1

2

�
π̂2ðxÞ þ ð∇ϕ̂ðxÞÞ2 þm2ϕ̂2ðxÞ

�
;

ĤA ¼ −σ̂Az λAðtÞϕ̂ðxAÞ; ĤB ¼ −σ̂Bz λBðtÞϕ̂ðxBÞ; ð1Þ

where m is the mass of the field and π̂ðxÞ is the canonical
conjugate of ϕ̂ðxÞ. The strengths of the couplings, λAðtÞ and
λBðtÞ, are controlled by Alice and Bob; they are nonzero in
the finite time intervals as depicted in Fig. 1. Without loss
of generality, we suppose that they take positive values;
λAðtÞ ≥ 0 and λBðtÞ ≥ 0. The system is symmetric under an
interchange of Alice and Bob, and all the discussions below
are interchangeable under ðA;BÞ → ðB;AÞ.
At the initial time t ¼ ti when Alice and Bob have not yet

turned on the spin-field interactions, it is assumed that the
total system is in a pure and separable state:

jΨii ¼ jΨiiABjΩiϕ; ð2Þ

where jΩiϕ is the field’s ground state with λA ¼ λB ¼ 0,
and

jΨiiAB ≔
1

2
ðjþiAþj−iAÞðjþiBþj−iBÞ

¼ 1

2
ðjþþiþjþ−iþ j−þiþj−−iÞ: ð3Þ

Here j�i being the eigenstate of σ̂z with the eigenvalue�1.
We also introduced the notation

jσσ0i ≔ jσiAjσ0iB with σ; σ0 ¼ �: ð4Þ

Acting the time evolution operator Ûðtf ; tiÞ ¼
T expf−i R tf

ti dtĤg on the initial state (2), we obtain a state
at t ¼ tf by which time Alice and Bob have turned off the
interactions:

jΨfi ¼ Ûðtf ; tiÞjΨii; ð5Þ

which is no longer separable. In the following sections, we
clarify the nature of this final state by solving the system
exactly and evaluating various quantities such as correlation
functions, entanglement entropies, entanglement negativity,
and mutual informations.

III. ENTANGLEMENT GENERATION
IN NEWTONIAN APPROXIMATION

Before solving the system exactly, let us see how the
entanglement between Alice’s spin and Bob’s spin devel-
ops in an effective theory where the interaction between
two spins is replaced by a nonlocal Newtonian interaction.
The tabletop experiments [1,2] to detect the quantum
superposition of spacetime geometries are based on the
analyses in this approximation. Here, the entanglement
between the two spins is induced by the Newtonian
potential to generate spin correlations and affect quantum
interferences, as shown in Fig. 3. The entanglement entropy
represents the amplitude of the correlations properly in the
Newtonian picture.
The corresponding Hamiltonian is the ferromagnetic

one:

ĤAB ¼ −J̄σ̂Az σ̂Bz × θðtoff − tÞθðt − tonÞ; ð6Þ

where θðtÞ is the Heaviside step function. The distance
between Alice and Bob D ¼ jxA − xBj, the mass of the
field m and the interaction strengths λA;B are all contained
in the coefficient,

J̄ ≔ λ̄Aλ̄B
expð−mDÞ

4πD
: ð7Þ

Here we have assumed a simple time dependence,
λAðtÞλBðtÞ ¼ λ̄Aλ̄Bθðtoff − tÞθðt − tonÞ, where λ̄A and λ̄B
are positive constants, tonð>tiÞ and toff are the times at
which the spin-spin interaction is turned on and off,
respectively.

A. Generating entanglement and correlations

Acting the time evolution operator with the Hamiltonian
(6) on the initial state (3), we find
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jΨfiAB ¼ eiΘ

2
ðjþþi þ j−−iÞ þ e−iΘ

2
ðjþ−i þ j−þiÞ

≕ jΘiAB ð8Þ

for t ¼ tf > toff, where Θ ≔ J̄ × ðtoff − tonÞ is the dimen-
sionless time interval for which the spin-spin interaction is
effective. It is convenient to write the density matrix in the
Bloch representation as

ρ̂AB ¼ jΨfiABhΨf j

¼ 1

4
f1̂A1̂B þ σ̂Ax σ̂

B
x þ cosð2ΘÞ½σ̂Ax 1̂B þ 1̂Aσ̂Bx �

− sinð2ΘÞ½σ̂Ay σ̂Bz þ σ̂Az σ̂
B
y �g; ð9Þ

where 1̂A and 1̂B are the unit operators acting on the Hilbert
space of Alice’s and Bob’s spin. By taking the partial trace,
we get the following reduced density matrices, respectively,

ρ̂A ¼ trBfρ̂ABg ¼ 1

2
f1̂A þ cosð2ΘÞσ̂Ax g;

ρ̂B ¼ trAfρ̂ABg ¼ 1

2
f1̂B þ cosð2ΘÞσ̂Bx g: ð10Þ

Here, trA and trB represent the trace over Alice’s and Bob’s
Hilbert space.
As is obvious from the above expressions (9) and (10),

the expectation values of spins are given by

hσ̂Ax σ̂Bx i ¼ 1;

hσ̂Ay σ̂Bz i ¼ hσ̂Az σ̂By i ¼ − sinð2ΘÞ;
hσ̂Ax i ¼ hσ̂Bx i ¼ cosð2ΘÞ; ð11Þ

and all the others vanish. Here the expectation values are
given by hÔi ≔ trABfρ̂ABÔg. In order to see the correla-
tions between two spins, we introduce δσ̂Aw ≔ σ̂Aw − hσ̂Awi
with w ¼ x, y, z. Nontrivial correlations are given by

hδσ̂Ax δσ̂Bx i ¼ sin2ð2ΘÞ;
hδσ̂Ay δσ̂Bz i ¼ hδσ̂Az δσ̂By i ¼ − sinð2ΘÞ: ð12Þ

These correlations reflect the quantum entanglement
between the two spins. In the rest of this section, we see
their relation by calculating entanglement entropy, visibil-
ity, distinguishability, and entanglement negativity.

B. Entanglement entropy

The entanglement entropy is defined as the von
Neumann entropy of a reduced state. Since the eigenvalues
of the reduced density matrix ρ̂A in (10) is given by

μsA ¼ 1þ s cosð2ΘÞ
2

with s ¼ �1; ð13Þ

the entanglement entropy is computed as

Sðρ̂AÞ ¼ −
X
s¼�

μsA ln μsA ¼ Σðcosð2ΘÞÞ; ð14Þ

where the function

ΣðvÞ ≔ −
1þ v
2

ln
1þ v
2

−
1 − v
2

ln
1 − v
2

ð15Þ

monotonically decreases from ln 2 to 0 when jvj increases
from 0 to 1, see Fig. 2. In the Newtonian approximation, the
entanglement entropy associated with Bob’s spin takes the
same value: Sðρ̂BÞ ¼ Sðρ̂AÞ ¼ Σðcosð2ΘÞÞ. As depicted in
Fig. 3, the entanglement entropy oscillates with the
dimensionless time interval Θ and it reaches the maximal
value ln 2 at Θ ¼ π=4 mod π=2. This can be understood
directly from the expression (8) at Θ ¼ π=4,

FIG. 2. ΣðvÞ defined in (15) is the concave, even function of
v ∈ ½−1;þ1�. It vanishes with v ¼ �1 and reaches the maximum
value ln 2 at v ¼ 0.

FIG. 3. Horizontal axis is Θ ¼ J̄ðtoff − tonÞ, and the dimension-
less time interval for which the spin-spin interaction is effective.
The solid line depicts the entanglement entropy Sðρ̂AÞ= ln 2,
which is positively correlated with the distinguishability
D2

BðΘÞ ¼ hδσ̂Ay δσ̂Bz i2 ¼ hδσ̂Az δσ̂By i2 ¼ hδσ̂Ax δσ̂Bx i depicted with
the dashed line. On the other hand, the visibility V2

AðΘÞ ¼
hσ̂Ax i2 ¼ hσ̂Bx i2 depicted with the dotted-dashed line is negatively
correlated with the entropy.
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jΨfiABjΘ¼π=4 ¼
1

2
ffiffiffi
2

p ðjþiA þ j−iAÞðjþiB þ j−iBÞ

þ i

2
ffiffiffi
2

p ðjþiA − j−iAÞðjþiB − j−iBÞ; ð16Þ

as it is a maximally entangled state. From theΘ dependence
of the spin expectation values in (12), the entanglement
entropy faithfully represents the amount of the spin
correlations in the Newtonian approximation. It is because
the dynamical field is absent and no information is trans-
ferred away from the subsystem of Alice and Bob.

C. Visibility and distinguishability

One can also introduce two types of quantities, visibility
V and distinguishability D, to describe the “wave particle
duality” [22]. Suppose that the interaction described by (6)
is turned on for Bob to be able to make a guess on which
eigenstate Alice would find jþiA or j−iA. Then, the
quantum interference between these two eigenstates should
be partially lost and the expectation values of σ̂Ax and σ̂Ay
become smaller than the values that could be if the spin-
spin interaction were not turned on. In this sense, there is a
trade-off relation between Alice’s visibility of the quantum
interference effects and Bob’s distinguishability of the state
of Alice’s spin [17].
Alice’s visibility of the interference fringe can be

quantified by

VA ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ̂Ax i2 þ hσ̂Ay i2

q
¼ jhσ̂Ax þ iσ̂Ay ij ¼ 2jh−jρ̂AjþiAj:

ð17Þ

Within the Newtonian approximation here, we have the
visibility from (10) as

VA ¼ j cosð2ΘÞj; ð18Þ

which is nothing but the absolute value of hσ̂Ax i in (11). As
seen in Fig. 3, it is negatively correlated with the entangle-
ment entropy (14), which is simply because the entangle-
ment entropy is now written as a function of the visibility:

Sðρ̂AÞ ¼ ΣðVAðΘÞÞ; ð19Þ

where ΣðvÞ is the monotonically decreasing function of v
for v ≥ 0 defined in (15). That is, the more entangled
the two spins are, the weaker the quantum interference
effects are.1

In order to define the distinguishability, let us first
introduce Bob’s density matrix under the condition that
Alice’s spin is found to be in the eigenstate of σ̂Az with the
eigenvalue �1:

ρ̂�B ¼ 2h�jρ̂ABj�iA: ð20Þ

Then, for the initial state given by (3) with the vanishing
expectation value of σ̂Az , Bob’s distinguishability of Alice’s
z-spin can be quantified by the trace distance between ρ̂þB
and ρ̂−B:

DB ¼ 1

2
trBjρ̂þB − ρ̂−Bj; ð21Þ

where j·j is defined as jÔj ≔
ffiffiffiffiffiffiffiffiffiffi
Ô†Ô

p
for an operator

Ô [23]. The trace distance is a quantity that represents
how close two states are. If the distance is large, two states
can be distinguished. In the special case of one-qubit that is
the case of our interest, when ρ̂�B are represented in the
Bloch representation,

ρ̂�B ¼ 1

2
ð1̂B þ r� · σ̂BÞ; ð22Þ

where σ̂B ¼ ðσ̂Bx ; σ̂By ; σ̂Bz Þ, the trace distance is equal to the
half of the Euclidean distance

DB ¼ 1

2
jrþ − r−j ð23Þ

on the Bloch sphere.
Within the Newtonian approximation, (20) turns out

to be

ρ̂�B ¼ 1

2
f1̂B þ cosð2ΘÞσ̂Bx ∓ isinð2ΘÞσ̂By g; ð24Þ

from (9). Thus, we have r� ¼ ð0; cosð2ΘÞ;∓ sinð2ΘÞÞ and
the distinguishability is

DB ¼ 1

2
jrþ − r−j ¼ j sinð2ΘÞj: ð25Þ

This is equal to the absolute value of hδσ̂Ay δσ̂Bz i ¼ hδσ̂Az δσ̂By i
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδσ̂Ax δσ̂Bx i

p
in (12), and also, positively correlated with

the entanglement entropy (14), see Fig. 3, since (14) can be
written as

Sðρ̂AÞ ¼ Σð½1 −D2
BðΘÞ�1=2Þ: ð26Þ

The entanglement between the two spins makes it possible
for Bob to tell the direction of Alice’s spin by observing
Bob’s own spins.
Note that the visibility and distinguishability satisfy the

trade-off relation

1For an “asymmetric interferometer” [22] with the predict-
ability PA ≔ jhΨijσ̂Az jΨiij ≠ 0, the entanglement entropy is given
by Sðρ̂AÞ ¼ Σð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
A þ P2

A

p
Þ, and then, the entropy is again the

monotonically decreasing function of the visibility VA.
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V2
A þD2

B ¼ 1; ð27Þ

which implies ρ̂�B are pure states [22]. In fact, they are
expressed by

ρ̂�B ¼ j�ΘiBh�Θj; ð28Þ

where the state is nothing but the one that has evolved with
the Hamiltonian h�zjĤABj�ziA:

j � ΘiB ¼ e�iΘσ̂Bz
1ffiffiffi
2

p ðjþiB þ j−iBÞ

¼ 1ffiffiffi
2

p ðe�iΘjþiB þ e∓iΘj−iBÞ: ð29Þ

As seen in Sec. IV E, ρ̂�B are no longer pure states if the
field that creates potential between Alice and Bob is
dynamical, and (27) is to be replaced by inequalities.

D. Separability condition and negativity

Whether quantum entanglement has been generated by
the time evolution can be judged by whether the density
matrix is separable. When the density matrix, which can be
in a mixed or pure state, is written as a mixture of product
states as

ρ̂AB ¼
X
i

piρ̂
ðiÞ
A ρ̂ðiÞB ð30Þ

with the probabilities pi > 0 satisfying
P

i pi ¼ 1, the state
is said to be separable. Such a state can be prepared by local
operations and classical communication (LOCC) [24]; in
this sense, spin correlations existing in a separable state are
regarded as classical correlations.
For the two-qubit system, the necessary and sufficient

condition for a density matrix to be separable is the
positivity of the partial transposition [25,26]. As a measure
of nonseparability or the quantum entanglement between
the two spins, we take the entanglement negativity, sum-
mation of the absolute values of negative ones in (33):

N ≔
X
n

θð−μ̃nÞjμ̃nj; ð31Þ

where μ̃n are eigenvalues of the transposed density matrix.
Note that if ρ̂AB is a pure state, N ≠ 0 is equivalent
to Sðρ̂AÞ ≠ 0.
Let us evaluate the negativity in the Newtonian approxi-

mation. Noting the transposition of Pauli matrices,
ð1̂T; σ̂Tx ; σ̂Ty ; σ̂Tz Þ ¼ ð1̂; σ̂x;−σ̂y; σ̂zÞ, the partial transposition
(acting on Bob’s spin) of the density matrix (9) is
obtained as

ρ̂TB
AB ¼ 1

4
f1̂A1̂B þ σ̂Ax σ̂

B
x þ cosð2ΘÞ½σ̂Ax 1̂B þ 1̂Aσ̂Bx �

− sinð2ΘÞ½σ̂Ay σ̂Bz − σ̂Az σ̂
B
y �g: ð32Þ

From this, we obtain the eigenvalues of the partial trans-
position:

μ̃s1s2AB ¼ 1

4
f1þ s2 þ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2s2 cosð4ΘÞ

p
g: ð33Þ

There is one negative eigenvalue, μ̃−−AB ¼ −j sinð2ΘÞj=2 for
Θ ≠ 0 mod π=2, and thus, the negativity is

N ¼ 1

2
j sinð2ΘÞj: ð34Þ

Therefore, the Hamiltonian (6) in the Newtonian approxi-
mation generates the quantum entanglement between Bob
and Alice, except Θ ¼ 0mod π=2, where the state is
recursed to the initial one,

ρ̂AB ¼ 1̂A þ σ̂Ax
2

1̂B þ σ̂Bx
2

¼ jΨiiABhΨij: ð35Þ

As we will see below, when the field is dynamical, the
negativity can vanish for various reasons discussed in
Secs. V B–VD, even though the entanglement entropy is
nonvanishing.

IV. RELATIVISTIC TREATMENT
WITH A DYNAMICAL FIELD

Hereafter, we go back to the original model described by
the Hamiltonian (2) with the initial state (2), and study its
time evolution without any approximation. With the
dynamics of the field taken into account, the resultant
final state turns out to be different from the one obtained in
the previous section: it respects the causality expressed by
the retarded Green’s function of the field; and also
describes particle creation and decoherence of the quantum
state of the spins expressed by the Keldysh Green’s
function.
In this section, we expand general discussions including

some “tools” to understand the quantum state after the time
evolution, see Fig. 4; one may skip this section to Sec. V to
see the physical consequences of the dynamical field in
limiting cases and come back to this section to check some
definitions or notations.
In Secs. IVA and IV B, we first obtain the density matrix

of the reduced system, composed of the two spins, realized
after the time evolution with the interaction between the
spins and the dynamical field. In Sec. IV C, we calculate the
spin correlations to see how they are different from the ones
obtained in the Newtonian limit due to the causality and the
decoherence. In Sec. IV D, we see some general behaviors
of the entanglement entropies in our setup. In Sec. IV E, the
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visibility and the distinguishability are obtained and dis-
cussed from the viewpoint of the relation with the entro-
pies. In Sec. IV F, we discuss a sufficient condition for the
density matrix of the reduced system of the two spins to be
separable in our setup using the entanglement negativity. In
Sec. IVG, various mutual informations are constructed
from the entropies to quantify the amount of the spin-spin
and spin-field correlations. In Sec. IV H, we discuss trade-
off relations to be satisfied by the mutual informations and
their similarity to and difference from inequalities satisfied
by the visibility and the distinguishability.
In addition, in order to approach various limiting cases

considered in Sec. V, we discuss one more thing in this
section. In Sec. IV I, inequalities to be satisfied by the
propagators are derived from the Robertson-Schrödinger
uncertainty relation.

A. Reduced density matrix of the final state

We do not observe the scalar field directly. Then, it is
sufficient to know the reduced density matrix obtained by
tracing out the scalar field from the total density matrix
constructed from (5):

ρ̂AB ¼ trϕfjΨfihΨf jg
¼ trϕfÛðtf ; tiÞjΨiihΨijÛðti; tfÞg; ð36Þ

which is a mixed state unlike (9) in general. For spins, the
Hamiltonian only depends on σ̂Az and σ̂Bz , i.e., the time
evolution operator can be expanded by the z-spin basis (4),
in which each component of (36) can be written as

hσA1 σB1 jρ̂ABjσA2 σB2 i ¼
1

4
× Z½J1; J2�: ð37Þ

Here, σA;B1 ; σA;B2 ¼ �1 and the prefactor comes from the
initial state (3) as

hσA1 σB1 jΨiiABhΨijσA2 σB2 i ¼ 1=4 ð38Þ

and

Z½J1; J2� ¼ hΩj½Ûϕðtf ; ti; J2Þ�†Ûϕðtf ; ti; J1ÞjΩiϕ ð39Þ

with the time evolution operator

Ûϕðtf ;ti;JiÞ≔hσAi σBi jÛðtf ;tiÞjσAi σBi i

¼Texp

�
−i

Z
tf

ti

dt

�
Ĥϕ−

Z
d3xJiðt;xÞϕ̂ðxÞ

��
:

ð40Þ

The “source” for the scalar field2

Jiðt;xÞ≔σAi λAðtÞδð3Þðx−xAÞþσBi λBðtÞδð3Þðx−xBÞ ð41Þ

is different in Ûϕðtf ; ti; J2Þ and Ûϕðtf ; ti; J1Þ and therefore
Z½J1; J2� is not trivial.

B. Results of the Schwinger-Keldysh
effective action

Since the field’s configuration is traced out, it is
convenient to use the path-integral formulation [19] on
the closed time path [29], Schwinger-Keldysh formalism.
The Hamiltonian Ĥϕ is the free-field part in (1), and hence,
(39) is easily computed as a Gaussian functional integral.
Putting details of the computation in Appendix A, let us
present the result;

Z½J1; J2� ¼ exp
�
iðσBaGBA

R σAr þ σAa GAB
R σBr Þ

−
1

2
ðσAa GAA

K σAa þ σBaGBB
K σBa þ 2σBaGBA

K σAa Þ
�
;

ð42Þ

where σA;Br ≔ ðσA;B1 þ σA;B2 Þ=2 and σA;Ba ≔ σA;B1 − σA;B2

have been introduced for convenience.
In the first line of (42), we have real quantities,

GBA
R ≔

Z
tf

ti

dt
Z

tf

ti

dt0λBðtÞGRðt − t0; xB − xAÞλAðt0Þ;

GAB
R ≔

Z
tf

ti

dt
Z

tf

ti

dt0λAðtÞGRðt − t0; xA − xBÞλBðt0Þ; ð43Þ

which connect Alice’s spin and Bob’s spin in a causal
way with the retarded/advanced Green’s function of

FIG. 4. In Sec. IV, we compute the reduced density matrix of
the final state of the spins, and then, introduce various “tools” in
each subsection to understand its entanglement structure as well
as the induced spin-spin correlations. Also, we discuss trade-off
relations to be satisfied with the spin-field correlations taken into
account. The red letters indicate the corresponding subsections.
Armed with these tools, we discuss the physical consequences of
the spin-spin correlations in various limiting cases in Sec. V.

2Similar types of source terms are used in order to realize
quantum sensors for an interacting quantum field [27,28].
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the source-free3 real scalar field. The retarded Green’s
function

GRðt − t0; x − x0Þ ¼ GAðt0 − t; x0 − xÞ
¼ iθðt − t0ÞhΩj½ϕ̂ðt; xÞ; ϕ̂ðt0; x0Þ�jΩiϕ;

ð44Þ

satisfies

ð∂2 −m2ÞGRðAÞðt − t0; x − x0Þ ¼ −δð4Þðx − x0Þ: ð45Þ

Hence, GBA
R is nothing but the time integration of the

retarded potential that Alice’s spin induces at Bob’s
position. Similarly, GAB

R is the retarded potential that
Bob’s spin induces at Alice’s position.
In the second line of (42),

GAA
K ≔

Z
tf

ti

dt
Z

tf

ti

dt0λAðtÞGKðt − t0; 0ÞλAðt0Þ;

GBB
K ≔

Z
tf

ti

dt
Z

tf

ti

dt0λBðtÞGKðt − t0; 0ÞλBðt0Þ;

GAB
K ¼ GBA

K

≔
Z

tf

ti

dt
Z

tf

ti

dt0λBðtÞGKðt − t0; xB − xAÞλAðt0Þ ð46Þ

are the contributions of the vacuum fluctuations described
by the Keldysh Green’s function,

GKðt − t0; x − x0Þ ≔ 1

2
hΩjfϕ̂ðt; xÞ; ϕ̂ðt0; x0ÞgjΩiϕ; ð47Þ

where f·; ·g represents the anticommutator. The behavior of
the retarded and Keldysh Green’s functions is depicted in
Fig. 21. Here, note that we have the following inequalities

GAA
K ¼

����
Z

dtλAðtÞϕ̂ðt; xAÞjΩiϕ
����
2

≥ 0;

GBB
K ¼

����
Z

dtλBðtÞϕ̂ðt; xBÞjΩiϕ
����
2

≥ 0; ð48Þ

GAA
K þGBB

K � 2GBA
K

¼
����
Z

dt½λAðtÞϕ̂ðt; xAÞ � λBðtÞϕ̂ðt; xBÞ�jΩiϕ
����
2

≥ 0:

ð49Þ

As computed in Appendix C, in our model without non-
linear interactions, these quantities are related to the
number of particles N created due to the nonadiabaticity
of Alice’s and Bob’s protocols:

hΨf jN̂jΨfi ¼ GAA
K þGBB

K ; ð50Þ

hΨf j∶N̂2∶ jΨfi − hΨf jN̂jΨfi2 ¼ 4ðGAB
K Þ2; ð51Þ

where ∶N̂∶ represents the normal ordering of N̂. Especially,
(49) corresponds to the number of particles created when
Alice and Bob observe the z-spin eigenstates with their
respective eigenvalues σA and σB:

hΨf jfjσAσBiN̂hσAσBjgjΨfi ¼ GAA
K þGBB

K þ σAσB2GBA
K :

ð52Þ

C. Reduced density matrix and spin correlation

We can now calculate the reduced density matrix of
Alice and Bob, and the spin correlation functions by using
the results in the previous section. The density matrix (37)
can be written in the Bloch representation as

ρ̂AB ¼ 1

4

�
1̂A1̂B þ Cxxσ̂

A
x σ̂

B
x þ Cx0σ̂

A
x 1̂

B þ C0x1̂
Aσ̂Bx

þ Cyyσ̂
A
y σ̂

B
y þ Cyzσ̂

A
y σ̂

B
z þ Czyσ̂

A
z σ̂

B
y

�
; ð53Þ

and it is further reduced to

ρ̂A ¼ trBfρ̂ABg ¼ 1

2
f1̂A þ Cx0σ̂

A
x g; ð54Þ

ρ̂B ¼ trAfρ̂ABg ¼ 1

2
f1̂B þ C0xσ̂

B
x g; ð55Þ

where the coefficients are obtained by computing the
expectation values of the spin operators,

Cxx ≔ hσ̂Ax σ̂Bx i ¼ γAγB coshð4GBA
K Þ;

Cyy ≔ hσ̂Ay σ̂By i ¼ γAγB sinhð4GBA
K Þ;

Cx0 ≔ hσ̂Ax i ¼ γA cosð2GAB
R Þ;

C0x ≔ hσ̂Bx i ¼ γB cosð2GBA
R Þ;

Cyz ≔ hσ̂Ay σ̂Bz i ¼ −γA sinð2GAB
R Þ;

Czy ≔ hσ̂Az σ̂By i ¼ −γB sinð2GBA
R Þ: ð56Þ

3Here, the Heisenberg operator ϕ̂ðt;xÞ≔Ûðti;t;0Þϕ̂ðxÞÛðt;ti;0Þ
is introduced with the interaction with the spins turned off. Since
the scalar field is originally free apart from the interaction with the
spins, one may regard ϕ̂ðt; xÞ as the interaction picture operator. It
satisfies free-field’s equation of motion: ð∂2 −m2Þϕ̂ðt; xÞ ¼ 0.
Note that, because of this definition, the one-point function
vanishes: hΩjϕ̂ðt; xÞjΩiϕ ¼ 0.

HIDAKA, ISO, and SHIMADA PHYS. REV. D 107, 085003 (2023)

085003-8



Their overall amplitudes are suppressed by two quantities

γA ¼ expð−2GAA
K Þ; γB ¼ expð−2GBB

K Þ ð57Þ

representing the nonadiabaticity of Alice’s and Bob’s
protocols. Observe that, because of GAA

K ;GBB
K ;GBA

K ≠ 0

and GBA
R ≠ GAB

R in general, the reduced density matrices
deviate from those in the Newtonian approximation in (9)
and (10). Note that the inequalities in (48) guarantee
0 ≤ γA; γB ≤ 1. With (49), it is also guaranteed that 0 ≤
Cxx ≤ 1 and 0 ≤ jCyyj ≤ 1.
From (56), it is straightforward to see that the correla-

tions between the two spins are obtained as

hδσ̂Ax δσ̂Bx i ¼ γAγB½coshð4GBA
K Þ − cosð2GBA

R Þ cosð2GAB
R Þ�;

hδσ̂Ay δσ̂By i ¼ γAγB sinhð4GBA
K Þ;

hδσ̂Ay δσ̂Bz i ¼ −γA sinð2GAB
R Þ;

hδσ̂Az δσ̂By i ¼ −γB sinð2GBA
R Þ; ð58Þ

and all the others vanish. The situation here can be
compared with (12) in the Newtonian approximation where
all the nonvanishing correlation functions depend only on
the single parameter Θ.

D. Entanglement entropy

From the reduced density matrix and the spin correla-
tions obtained in Sec. IV C, we can calculate various
quantities. In this section, we first calculate the entangle-
ment entropy.

1. Sðρ̂AÞ and Sðρ̂BÞ
The eigenvalues of Alice’s reduced density matrix (54)

and Bob’s one (55) are given by

μsA ≔
1þ sCx0

2
with s ¼ �1; ð59Þ

μsB ≔
1þ sC0x

2
with s ¼ �1; ð60Þ

respectively. These are nonnegative since jCx0j; jC0xj ≤ 1
as shown below (57). Then, the entanglement entropies are
computed as

Sðρ̂AÞ¼−
X
s¼�

μsAlnμ
s
A¼ΣðCx0Þ¼ΣðγAcosð2GAB

R ÞÞ; ð61Þ

Sðρ̂BÞ¼−
X
s¼�

μsB lnμ
s
B¼ΣðC0xÞ¼ΣðγBcosð2GBA

R ÞÞ: ð62Þ

Instead of cosð2ΘÞ in the Newtonian picture (14), we have
two different quantitiesCx0 ¼ hσ̂Ax i andCx0 ¼ hσ̂Bx i given in
(56) for Alice’s spin andBob’s spin, respectively. Remember
that ΣðvÞ monotonically decreases with v increasing. Take
the reduced system of Alice’s spin. When Cx0 vanishes,
Sðρ̂AÞ takes the maximal4 value. Since γA defined in (57)
does not exceed unity, the entanglement entropies are
restricted to take their values in the region

0 ≤ ΣðγAÞ ≤ ΣðγA cosð2GAB
R ÞÞ ¼ Sðρ̂AÞ ≤ ln 2: ð63Þ

The minimal value 0 is realized when the reduced system
is in a pure state, that is, Alice’s spin does not entangle with
the rest of the total system composed of Bob’s spin and the
field. The necessary and sufficient condition for the
vanishing Sðρ̂AÞ is that GAB

R ¼ 0mod π=2 and γA ¼ 1,
namely an adiabatic limit of Alice; GAA

K → 0.
On the other hand, Sðρ̂AÞ can take the maximal value ln 2

for two reasons. One is the case of maximal entanglement
between Alice’s spin and Bob’s spin via the field ϕ as the
retarded potential. In this case, Cx0 vanishes owing to
GAB

R ¼ π=4 mod π=2 even when γA ¼ 1. The other case is
realized by the entanglement between Alice’s spin and the
on-shell excitations of the field due to the nonadiabaticity
of Alice’s protocol. That is, if Alice abruptly turns on/off
the spin-field interaction, GAA

K → ∞ and γA → 0 and the
maximal value of the entropy is obtained.
In contrast to the Newtonian case where Sðρ̂AÞ ¼ Sðρ̂BÞ,

the causal structure also plays important roles in presence
of dynamical field. For instance, when Alice is not in Bob’s
causal future, the retarded Green’s function from Bob to
Alice disappears and so does GAB

R . Then, Sðρ̂AÞ takes its
nonzero minimum value ΣðγAÞ, whereas Sðρ̂BÞ is still
possible to take the maximal value ln 2.

2. Sðρ̂ABÞ=Sðρ̂ϕÞ
Since the total system is in a pure state, the entanglement

entropy of the subsystem of Alice and Bob Sðρ̂ABÞ is equal
to that of the scalar field Sðρ̂ϕÞ. Let us calculate it.
The eigenvalues of (53) are computed as

μs1s2AB ≔
1

4

n
1þ s2Cxx þ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCx0 þ s2C0xÞ2 þ ðCyz þ s2CzyÞ2 þ C2

yy

q o

¼ 1

4

n
1þ s2γAγB coshð4GBA

K Þ þ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2A þ γ2B þ 2s2γAγB cosð2ðGAB

R −GBA
R ÞÞ þ γ2Aγ

2
Bsinh

2ð4GBA
K Þ

q o
ð64Þ

4In our setup, the maximum value of Sðρ̂AÞ reaches the maximal one ln 2 because the predictability PA vanishes with the spin initial
state (3). See the Footnote 1.
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with s1;2 ¼ �1. Thus, the entanglement entropy is
obtained by

Sðρ̂ABÞ ¼ −
X

s1;s2¼�
μs1s2AB ln μs1s2AB ð65Þ

with the eigenvalues (64). Unlike Sðρ̂AÞ and Sðρ̂BÞ dis-
cussed above, it depends on all the spin expectation values
in (56) and quantifies the entanglement between the field
and the two spins.
The minimal value 0 of Sðρ̂ABÞ is found when the

reduced system with ρ̂AB is in a pure state, or equivalently,
when the largest eigenvalue μþþ

AB is the only finite one to be
unity. The necessary and sufficient condition is that both
Alice and Bob adiabatically change the spin-field coupling
so that all the GK’s vanish: GAA

K ;GBB
K ;GBA

K → 0.
Sðρ̂ABÞ takes the maximal value 2 ln 2 if all the eigen-

values equate: μs1s2AB ¼ 1=4, which is realized only in the
nonadiabatic limit whereGAA

K ;GBB
K → ∞ so that all the C’s

vanish.5 Note that, when all the spin correlation functions
in (58) vanish, or equivalently,

Cyy ¼ Cyz ¼ Czy ¼ 0; Cxx ¼ Cx0C0x; ð66Þ

we have

Sðρ̂ABÞ ¼ Sðρ̂AÞ þ Sðρ̂BÞ: ð67Þ

It is because the density matrix (53) can be written as the
tensor product state:

ρ̂AB ¼ 1

4
f1̂A1̂B þ Cx0C0xσ̂

A
x σ̂

B
x þ Cx0σ̂

A
x 1̂

B þ C0x1̂
Aσ̂Bx g

¼ ρ̂Aρ̂B: ð68Þ

E. Visibility and distinguishability

The visibility and the distinguishability introduced
in Sec. III C are discussed in [17] in a specific situation.
Here we discuss them in a bit more general situation.
According to the definition (17), Alice’s and Bob’s
visibility of their interference fringes are computed from
(54) and (55) as

VA ¼ jCx0j ¼ γAj cosð2GAB
R Þj;

VB ¼ jC0xj ¼ γBj cosð2GBA
R Þj; ð69Þ

which are nothing but the absolute values of hσ̂Ax i and hσ̂Bx i,
respectively, seen in (56). Although VA ≠ VB, note that
the relation with the entanglement entropy (19) generally
holds:

Sðρ̂AÞ ¼ ΣðVAÞ; Sðρ̂BÞ ¼ ΣðVBÞ; ð70Þ

as long as hσ̂Az i ¼ hσ̂Bz i ¼ 0. This means that the entangle-
ment entropy and the visibility embody the same kind of
information.
In order to compute the distinguishability, we first obtain

ρ̂�A ¼ 1

2
f1̂A þ Cx0σ̂

A
x � Cyzσ̂

A
y g;

ρ̂�B ¼ 1

2
f1̂B þ C0xσ̂

B
x � Czyσ̂

B
y g; ð71Þ

from (53) according to the definition (20). Then, (22)
and (23) tell us that Alice’s distinguishability of Bob’s spin
and Bob’s distinguishability of Alice’s spin can be quanti-
fied by

DA ¼ jCyzj ¼ γAj sinð2GAB
R Þj;

DB ¼ jCzyj ¼ γBj sinð2GBA
R Þj; ð72Þ

which are nothing but the absolute values of hδσ̂Ay δσ̂Bz i and
hδσ̂Az δσ̂By i, respectively. However, unlike in the Newtonian

picture, these differ from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδσ̂Ax δσ̂Bx i

p
. And also, while

the entanglement entropy can be regarded as a monoton-
ically increasing function of the distinguishability as
Sðρ̂AÞ ¼ ΣðVAÞ ¼ Σððγ2A −D2

AÞ1=2Þ, the entanglement
entropy and the distinguishability no longer have the same
information due to the field dynamics that affects the value
of γA.
The presence of the dynamical field also spoils the

equality (27). It is known that

V2
A þD2

B ≤ 1; V2
B þD2

A ≤ 1 ð73Þ

hold to quantify the notion of wave particle duality [22], see
discussions in [17] for the applicability to systems with
dynamical fields. In our setup, these imply

γ2A cos2ð2GAB
R Þ þ γ2B sin

2ð2GBA
R Þ ≤ 1; ð74Þ

γ2B cos
2ð2GBA

R Þ þ γ2A sin2ð2GAB
R Þ ≤ 1; ð75Þ

respectively.
Remember that, in the Newtonian approximation, the

two-spin system is a pure state and the equality (27) holds.
In the presence of the dynamical field, the two-spin system
is no longer in a pure state and the equality is replaced by an
inequality. In order to know how much the inequality
deviates from the equality, we need a different type of trade-
off relation which can properly take the information of the
dynamical field into account. In later sections, we study a
trade-off relation of mutual information for this purpose.

5As shown in Appendix B, as far as D ¼ jxA − xBj is fixed to
be finite, GAA

K þGBB
K − 2jGBA

K j → ∞ is guaranteed, and then,
Cxx; Cyy → 0.
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F. Separability condition and negativity

The reduced density matrix ρ̂AB in (53) describes a
mixed state, and it can be a separable state. Then, Alice’s
spin and Bob’s spin are not entangled and the spin
correlations in (58) are classical. The separability for
the two-qubit system is quantified by the negativity. If
the negativity vanishes, the density matrix is separable. The
negativity (31) is evaluated by the eigenvalue of the partial
transposition (acting on Bob’s spin) of the reduced density
matrix (53),

ρ̂TB
AB ¼ 1

4
f1̂A1̂B þ Cxxσ̂

A
x σ̂

B
x − Cyyσ̂

A
y σ̂

B
y þ Cx0σ̂

A
x 1̂

B

þ C0x1̂
Aσ̂Bx þ Cyzσ̂

A
y σ̂

B
z − Czyσ̂

A
z σ̂

B
y g; ð76Þ

which is nothing but (53) with the following replacements,

Cyy → −Cyy; Czy → −Czy: ð77Þ

Then, making these replacements in (64), we get the
eigenvalues of the partial transposition:

μ̃s1s2AB ¼ 1

4

n
1þ s2Cxx þ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCx0 þ s2C0xÞ2 þ ðCyz − s2CzyÞ2 þ C2

yy

q o

¼ 1

4

n
1þ s2γAγB coshð4GBA

K Þ þ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2A þ γ2B þ 2s2γAγB cosð2ðGAB

R þGBA
R ÞÞ þ γ2Aγ

2
Bsinh

2ð4GBA
K Þ

q o
: ð78Þ

The entanglement negativity is the summation of the
absolute values of negative eigenvalues:

N ≔
X

s1;s2¼�
θð−μ̃s1s2AB Þjμ̃s1s2AB j: ð79Þ

Note that, when Cyz × Czy ¼ 0, we have μ̃s1s2AB ¼ μs1s2AB
which cannot be negative for consistency, and thus, ρ̂AB
is separable. In other words, it is a necessary condition to be
nonseparable that both Alice and Bob have finite distin-
guishabilities, DA ≠ 0 and DB ≠ 0 in our setup.

G. Mutual information

1. Definition of mutual information

The mutual information IXY quantifies the amount of
correlations between two subsystems X and Y. In our setup,
each of X and Y is identified as either Alice’s spin, Bob’s
spin, the field ϕ, or compositions of them. In terms of the
mutual information, correlations between two subsystems
are related to correlations between another choice of two
subsystems as seen below.
Consider three more reduced density matrices besides

(53)–(55) as

ρ̂Bϕ≔ trAfρ̂ABϕg; ρ̂Aϕ≔ trBfρ̂ABϕg; ρ̂ϕ≔ trABfρ̂ABϕg;
ð80Þ

where ρ̂ABϕ ≔ jΨfihΨf j. Since the total system is in the
pure state, the entanglement entropies associated with these
density matrices are computed as

Sðρ̂BϕÞ¼Sðρ̂AÞ; Sðρ̂AϕÞ¼Sðρ̂BÞ; Sðρ̂ϕÞ¼Sðρ̂ABÞ: ð81Þ

From these three, we can compose three types of the mutual
informations as

IAB ≔ Sðρ̂AÞ þ Sðρ̂BÞ − Sðρ̂ABÞ; ð82Þ

IAϕ ≔ Sðρ̂AÞ þ Sðρ̂ϕÞ − Sðρ̂AϕÞ
¼ Sðρ̂AÞ þ Sðρ̂ABÞ − Sðρ̂BÞ; ð83Þ

IBϕ ≔ Sðρ̂BÞ þ Sðρ̂ϕÞ − Sðρ̂BϕÞ
¼ Sðρ̂BÞ þ Sðρ̂ABÞ − Sðρ̂AÞ; ð84Þ

which are guaranteed to be nonnegative by the subaddi-
tivity for von Neumann entropy.6 Then, from the above
expressions, it is easy to see that they are bounded from
above,

0 ≤ IAB; IAϕ; IBϕ ≤ 2 ln 2: ð85Þ

2. Mutual information and correlation functions

In general, the mutual information vanishes if and only if
there is no correlation between variables from one reduced
system and variables from the other. Especially, if all the
spin correlation functions vanish, then IAB also vanishes
because the reduced density matrix is tensor product state,
ρ̂AB ¼ ρ̂Aρ̂B, as explicitly seen in (68). If IAB vanishes, all
the correlation functions vanish because the mutual infor-
mation gives an upper bound on the correlation func-
tions [30]. In our case, the inequality is given by

IAB ≥
hδσ̂Awδσ̂Bw0 i2

2kσ̂Awk2kσ̂Bw0k2 ¼
hδσ̂Awδσ̂Bw0 i2

2
ð86Þ

6Those canbeunderstood as the strong subadditivity inequalities

Sðρ̂BϕÞ þ Sðρ̂AϕÞ ≥ Sðρ̂ϕÞ þ Sðρ̂ABϕÞ;
and ones that are obtained by permutingA, B, andϕ. Here, the total
state ρ̂ABϕ ≔ jΨfihΨf j is pure, and hence, Sðρ̂ABϕÞ ¼ 0.
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for any pair of spin variables, w;w0 ¼ x, y, z. Here, k·k
represents the operator norm. Note that, even though the
spin correlations are built up by the interaction mediated by
the quantum field, they are not necessarily attributed to the
quantum entanglement between Alice’s and Bob’s spins.
The mutual information does not care if the correlations are
quantum or classical, and hence, it cannot be a measure of
the entanglement in general.

H. Trade-off relation in terms of entropy

Let us first observe from the definitions (82)–(84) that,
when the total system is in a pure state, the mutual
informations satisfies7

IAB þ IAϕ ¼ 2Sðρ̂AÞ; IAB þ IBϕ ¼ 2Sðρ̂BÞ: ð87Þ

When Alice’s spin is not entangled with the rest of the
system and Sðρ̂AÞ ¼ 0, there is neither the correlation IAB
between Alice’s spin and Bob’s spin nor the correlation IAϕ
between Alice’s spin and the field. One can also regard
these as trade-off relations: With the right-hand side Sðρ̂AÞ
known and fixed, the more correlation IAϕ between the
field and Alice’s spin, the less correlation IAB between
Bob’s spin and Alice’s spin. Since the mutual informations
is non-negative because of the subadditivity as mentioned
above, we have an inequalities

IAB ≤ 2 minfSðρ̂AÞ; Sðρ̂BÞg: ð88Þ

by dropping IAϕ and IBϕ from the equalities. Thus both
spins must be entangled with the rest of the system in order
for the spin correlations to exist.
We have already seen that, in (70), the visibility and the

entropy are in one-to-one correspondence. Let us here
introduce an entropic counterpart of the visibility8 as

PA ≔ 2½ln 2 − Sðρ̂AÞ�
¼ ð1þ VAÞ lnð1þ VAÞ þ ð1 − VAÞ lnð1 − VAÞ; ð89Þ

which monotonically increases from 0 to 2 ln 2 as VA
increases from 0 to 1. For Bob’s spin, PB is defined in the
same manner. Then, the inequalities in (88) turn out to be

IAB ≤ 2 ln 2 − PA; IAB ≤ 2 ln 2 − PB: ð90Þ

These relations can be regarded as analogs of the relations
between the visibility and the distinguishability in (73),

D2
B ≤ 1 − V2

A; D2
A ≤ 1 − V2

B: ð91Þ

The mutual information IAB plays the role of the distin-
guishability. Unlike the distinguishabilities in (72), it is
neither “Alice’s” mutual information nor “Bob’s” mutual
information, but the mutual information of Alice and Bob.
It is because IAB cares about all the spin correlations
including both hδσ̂Ay δσ̂Bz i and hδσ̂Az δσ̂By i, as will be dis-
cussed in Sec. V C. In this sense, the mutual information
IAB rather corresponds to the averaged distinguishability of
Bob and Alice, ðD2

A þD2
BÞ=2. The averaged distinguish-

ability satisfies the following inequality:

D2
A þD2

B

2
≤ 1 −

V2
A þ V2

B

2
; ð92Þ

whose counterpart of mutual information is given by

IAB ≤ 2 ln 2 −
PA þ PB

2
: ð93Þ

We will see in Secs. VA and V B that the mutual
information and the average distinguishability behave
similarly. Note that the mutual information contains infor-
mation of not only distinguishabilities but also other
correlations. Therefore, the mutual information can be
nonzero even if both Alice’s and Bob’s distinguishability
vanish, and accordingly, the inequalities in (90) combined
with the relation (89) can give a stronger upper bound on
the visibility. Indeed, when DB ¼ 0, the trade-off relation
gives us V2

A ≤ 1. On the other hand, by defining V̌AðPAÞ as
the inverse function of PAðVAÞ in (89), the inequality of the
mutual information (90) tells us that

VA ≤ V̌Að2 ln 2 − IABÞ≕UI ≤ 1: ð94Þ

Similarly, we have VB ≤ UI . These are theoretical con-
straints on the fringe visibility and, combined with the
trade-off relation (91), we can give a stronger constraint on
the visibilities as V2

AðBÞ ≤ minfU2
I ; 1 −D2

BðAÞg.
An advantage of using (90) or (93) instead of (91) or (92)

is that we know what is missing to saturate the equalities.
The inequalities (90) can be made to become equalities (87)
by taking into account the mutual informations IAϕ and
IBϕ:

IAB ¼ 2 ln 2 − PA − IAϕ;

IAB ¼ 2 ln 2 − PB − IBϕ; ð95Þ

and (93) becomes

IAB ¼ 2 ln 2 −
PA þ PB

2
− Sðρ̂ABÞ; ð96Þ

where ðIAϕ þ IBϕÞ=2 ¼ Sðρ̂ABÞ is used.

7When the total system is in a mixed state, inequalities IAB þ
IAϕ ≤ 2Sðρ̂AÞ and IAB þ IBϕ ≤ 2Sðρ̂BÞ hold in general [23].

8For an asymmetric interferometer mentioned in the Foot-
note 1, one may define it by PA ≔ 2½ΣðPAÞ − Sðρ̂AÞ� so that it
vanishes when VA ¼ 0.
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I. Robertson-Schrödinger inequalities

In the reduced density matrix (53), we get G’s, the
various time integrations of the propagators given in (43)
and (46). Those are not independent from each other; there
are inequalities to be satisfied among those quantities, due
to the quantum uncertainty discussed in [17].
Given a density matrix ρ̂, for two Hermitian operators

δÔ1;2 with hδÔ1;2i ≔ trfρ̂δÔ1;2g ¼ 0, their vanishing
expectation value under ρ, the Robertson-Schrödinger
inequality

hδÔ2
1ihδÔ2

2i≥
1

4
ðjhfδÔ1;δÔ2gij2þjh½δÔ1;δÔ2�ij2Þ ð97Þ

holds, which follows from the Cauchy-Schwarz inequality.
If two operators are chosen as

δÔ1 ¼
Z

tf

ti

dtλAðtÞϕ̂ðt; xAÞ;

δÔ2 ¼
Z

tf

ti

dtλBðtÞϕ̂ðt; xBÞ ð98Þ

(see Footnote 3 for the definition of the Heisenberg
operator here), and the expectation value is taken under
the vacuum state jΩiϕhΩj, we get hδÔ2

1i ¼ GAA
K ,

hδÔ2
2i ¼ GBB

K , hfδÔ1; δÔ2gi ¼ 2GAB
K , and h½δÔ1; δÔ2�i ¼

GBA
R −GAB

R . Therefore, we have

ðGBA
R −GAB

R Þ2 ≤ 4ðGAA
K GBB

K − ðGBA
K Þ2Þ ð99Þ

with, for consistency,

GAA
K GBB

K ≥ ðGBA
K Þ2; ð100Þ

which is stronger than (49). Similar inequalities can be
obtained as consistency conditions for the eigenvalues of
the density matrix (53) to be nonnegative in a certain limit,
see Appendix E. These inequalities are to be used in
Secs. VA, V C, and VD to take adiabatic limit properly.

V. FOUR LIMITING CASES

In the previous sections, we have exactly solved the
model and obtained various quantities such as the spin
correlations and negativity. In this section, we study their
properties in some limiting cases. Compared to the
Newtonian approximation, decoherence due to particle
creations and relativistic causality are two important new
ingredients in relativistic theories. Two Figs. 5 and 6 show
various situations. In Fig. 5, one can consider various
situations depending on how much the particle creations
occur, which is described by the Keldysh Green’s func-
tions. Figure 6 shows the causal structure described by the
retarded Green’s functions connecting Alice’s spin and
Bob’s spin. These relativistic effects of particle creations

and causality are not totally independent due to the
inequalities in Sec. IV I.
In Sec. VA, we take the adiabatic limit of Alice’s

protocol so that γA ¼ 1; the region (i) in Fig. 5. On the
other hand, in Sec. V B, we take the nonadiabatic limit of
Bob’s protocol so that γB ¼ 0; the region (ii). In terms of

FIG. 5. Various limiting cases in terms of Alice’s (horizontal)
and Bob’s (vertical) adiabaticities. The upper right corner
corresponds to the Newtonian approximation discussed in Sec. III
which is realized as the adiabatic limit and a part of the limit (i).
The lower right corner (iii) is included both in the limit (i) and (ii).
The lower left corner (iv) corresponds to the nonadiabatic limit
where both Alice and Bob turn on or off their spin-field
interactions abruptly which is a part of the limit (ii).

FIG. 6. The four distinctive spacetime locations of Bob’s
protocol in terms of causality. The dashed lines are lightlike
curves in the flat spacetime under consideration. TA

onðoffÞ is the

length of time Alice takes to turn on (off) the spin-field
interaction. The coupling takes a constant value λAðtÞ ¼ λ̄A
for the period TA. See (D4) in Appendix D for its explicit time
dependence. Note that the pink and purple curves are just to show
the strengths of the couplings changing in time at the same spatial
points xA and xB. The distance between the two spatial points
denoted by D does not change in time as in Fig. 1.
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the causal structure, case (i) necessarily falls within the
region (I) in Fig. 6 as mentioned later, whereas case (ii) can
be anywhere. Then, in Sec. V C, we assume Alice’s and
Bob’s protocols are spacelike separated from each other;
the region (IV) in Fig. 6. In Sec. V D, we discuss the case
where Alice can influence Bob’s spin in a causal way while
Bob cannot influence Alice’s spin; the region (II). In
Sec. V E, we summarize which propagator is responsible
for the spin-spin correlation in each limiting case, mention-
ing the necessary condition for the quantum entanglement
between the two spins to be generated.

A. Adiabatic limit

Let us first consider the region (i) in Fig. 5 characterized
by γA ¼ 1. It can be realized by taking the adiabatic limit of
TA
on;off → ∞with the strength of the coupling λ̄A kept finite,

and we have

GAA
K ¼ 0: ð101Þ

Then Bob’s protocol must be in the region (I) in Fig. 6. It is
necessary because of the Robertson-Schrödinger inequality
(99). Indeed the condition (101) requires

GBA
K ¼ 0; GAB

R ¼ GBA
R ≕Θ; ð102Þ

where Θ ¼ J̄T̄B is a product of the effective duration of the
interaction between Bob’s spin and the field9

T̄B ≔
1

λ̄B

Z
∞

−∞
dtλBðtÞ ð103Þ

and the effective coupling between two spins

J̄ ≔ λ̄B

Z
∞

−∞
dt0GRðt − t0; xB − xAÞλAðt0Þ

¼ λ̄B

Z
∞

−∞
dt0GAðt − t0; xB − xAÞλAðt0Þ

¼ λ̄Aλ̄B ×
expð−mDÞ

4πD
: ð104Þ

It is nothing but the coefficient J̄ in (6). We have taken
ti → −∞ and tf → ∞ to realize the limit of TA

on;off → ∞.

1. Nonseparability and quantum entanglement

In this case, Alice and Bob are quantum entangled as a
nonseparable state. It can be seen from the nonvanishing
negativity. Let us first look at the reduced density matrix of
Alice and Bob. The spin correlations in (56) are given by

Cxx¼hσ̂Ax σ̂Bx i¼ γB; Cyy¼hσ̂Ay σ̂By i¼0;

Cx0¼hσ̂Ax i¼ cosð2ΘÞ; C0x¼hσ̂Bx i¼ γBcosð2ΘÞ;
Cyz¼hσ̂Ay σ̂Bz i¼−sinð2ΘÞ; Czy¼hσ̂Az σ̂By i¼−γB sinð2ΘÞ:

ð105Þ

From these spin correlations, we can obtain the density
matrix,

ρ̂AB ¼ 1þ γB
2

jΘiABhΘj þ
1 − γB

2
σ̂Bz jΘiABhΘjσ̂Bz ; ð106Þ

where jΘiAB is defined in (8). Its simple form, written
as a statistical sum of the two states jΘiABhΘj and
σ̂Bz jΘiABhΘjσ̂Bz , can be derived from the eigenvalues (64)
with the spin correlations in (105),

μ−s2AB ¼ 0; μþs2
AB ¼ 1þ s2γB

2
: ð107Þ

The density matrix (106) is nonseparable since one
of the eigenvalues of the partial transposition (78) with
s1 ¼ s2 ¼ −1,

μ̃−−AB ¼ 1

4

n
1 − γB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2B − 2γB cosð4ΘÞ

q o
ð108Þ

becomes negative. It shows that the two spins are quantum
entangled as long as γB > 0. In this case, the negativity (31)
is merely the absolute value of μ̃−−AB which depicted in Fig. 7
as the function of Θ with different values of γB. In the
adiabatic limit of Bob, γB → 1, the negativity reduces to the
Newtonian one (34). The negativity takes the maximum
value with Θ ¼ π=4mod π=2 irrespective of γB. It is

FIG. 7. The entanglement negativityN ¼ jμ̃−−ABj as the function
of Θ ¼ J̄ × T̄B given by (108) with γB ¼ 0, 0.25, 0.5, 0.75,
and 1. Regardless of γB, it takes maximum values with
Θ ¼ π=4mod π=2. In the limit of γB → 1, it gives the negativity
of the pure state consisting of the two spins discussed in Sec. III
and behaves consistently with the entanglement entropy
Σðcosð2ΘÞÞ depicted in Fig. 3. In γB → 0, it vanishes regardless
of the values of Θ due to the total decoherence of Bob’s spin.

9With an explicit form of the time dependence of λB given by
(D4), we have T̄B ¼ TB þ ðTB

off þ TB
onÞ=2.
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consistent with the fact that the entanglement entropy (14)
in the Newtonian picture depicted in Fig. 3 takes the
maximal value with Θ ¼ π=4. At Θ ¼ 0 mod π=2, the
negativity vanishes as the reduced state (106) is disen-
tangled to be

ρ̂ABjΘ¼0 ¼
1̂A þ σ̂Ax

2

1̂B þ γBσ̂
B
x

2
: ð109Þ

In the nonadiabatic limit, γB ¼ 0 with a general value of Θ,
the negativity vanishes and the state becomes separable,
which is the special case of Sec. V B, and the explicit form
of the density matrix is given in (123).

2. Spin-spin correlations

The adiabatic limit can be compared to the Newtonian
approximation as we vary Bob’s nonadiabaticity γB from 1
to 0. Let us evaluate the mutual information IAB and
compare it to the Newtonian case of γB ¼ 1. From (105),
we obtain

hδσ̂Ax δσ̂Bx i¼ γBsin2ð2ΘÞ; hδσ̂Ay δσ̂By i¼0;

hδσ̂Ay δσ̂Bz i¼−sinð2ΘÞ; hδσ̂Az δσ̂By i¼−γB sinð2ΘÞ: ð110Þ

From the eigenvalues (107) of ρ̂AB, the entropy (65)
quantifying the entanglement between the field and the
two spins is obtained as

Sðρ̂ABÞ ¼ ΣðγBÞ; ð111Þ

which depends only on γB, see (15) for the definition of the
function Σ. In the adiabatic limit γB → 1, it vanishes so that
the reduced system of the two spins becomes pure and
(106) reproduces the Newtonian one (9) as expected. The
eigenvalues of ρ̂A given by (59) are the same as (13) in the
Newtonian picture. On the other hand, the eigenvalues of
ρ̂B given by (60) deviates from them by γB ≠ 1. The
entanglement entropies of Alice and Bob are given respec-
tively by

Sðρ̂AÞ ¼ Σðcosð2ΘÞÞ; ð112Þ

Sðρ̂BÞ ¼ ΣðγB cosð2ΘÞÞ: ð113Þ

From (111)–(113), we find the mutual information between
Alice’s and Bob’s spin in (82) as

IAB ¼ Σðcosð2ΘÞÞ þ ΣðγB cosð2ΘÞÞ − ΣðγBÞ: ð114Þ

It takes the maximum value 2 ln 2 − ΣðγBÞ at Θ ¼
π=4mod π=2, as seen in Fig. 8. On the other hand, it
vanishes atΘ ¼ 0when ρ̂AB becomes a tensor product state
(109). The mutual information is comparable to the
averaged distinguishability of Alice and Bob,

D2
A þD2

B

2
¼ jCyzj2 þ jCzyj2

2
¼ 1þ γ2B

2
sin2ð2ΘÞ: ð115Þ

Figure 8 shows that behaviors of the mutual information
and the averaged distinguishability agree with each other.
Let us compare the upper bound on the visibility (91)

from the wave particle duality with the ones from the
mutual information (94). As seen in Fig. 9, in most region
of γB ≲ 1, the bound from the mutual information is

FIG. 8. Left panel: The mutual information IAB between the
two spins in the adiabatic limit of Alice γA ¼ 1. Θ ¼ J̄ × T̄B is
given by (114) and each line corresponds to Bob’s nonadiaba-
ticity, γB ¼ 0, 0.25, 0.5, 0.75, and 1. It is positively correlated
with the negativity N ¼ jμ̃−−ABj depicted in Fig. 7. In the limit of
γB → 1, IAB=2 coincides with the entanglement entropy
Σðcosð2ΘÞÞ in the Newtonian approximation (14). IAB decreases
as Bob’s nonadiabaticity is increased. Even in the limit γB → 0,
the mutual information IAB is nonvanishing unlike the negativity.
Right panel: The averaged distinguishability ðD2

A þD2
BÞ=2

behaves in a similar way, and it takes the maximum value
ð1þ γ2BÞ=2 with Θ ¼ π=4 mod π=2.

FIG. 9. The upper bounds on Alice’s visibility VA as functions
of Bob’s adiabaticity γB. The black lines show the upper bounds
U2
I obtained from the mutual information (94). The pink lines

show the bounds 1 −D2
B from the wave particle duality inequality

(91). The solid (dashed) lines are for Θ ¼ π=8 (Θ ¼ π=4)
respectively, where Alice’s visibility itself is evaluated to be
V2
A ¼ 1=2 (V2

A ¼ 0). In most regions of γB except for γB ∼ 1, we
have U2

I < 1 −D2
B, and hence, the mutual information gives a

stronger bound on Alice’s visibility.
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stronger than the one from the wave particle duality;
V2
A ≤ 1 −D2

B ¼ 1 − γ2Bsin
2ð2ΘÞ. Thus, we get an improved

upper bound on the visibility V2
A ≤ minfU2

I ; 1 −D2
Bg. On

the other hand, in the present case of γA ¼ 1, one can check
that the upper bound on Bob’s visibility V2

B ≤ 1 −D2
A ¼

cos2ð2ΘÞ given by Alice’s distinguishability is always
stronger than the one from the mutual information.

3. Spin-field correlations

The mutual information of Alice and Bob IAB decreases
as the nonadiabaticity of Bob is increased from the
Newtonian limit γB ¼ 1 to the nonadiabatic limit of Bob
with γB ¼ 0. This behavior can be understood as a
consequence of one of the trade-off relations in (87) written
as

IAB ¼ 2Sðρ̂AÞ − IAϕ ¼ 2Σðcosð2ΘÞÞ − IAϕ: ð116Þ

The first term is the value expected in the Newtonian
approximation. IAB is smaller than this value by the second
term representing correlations between the field and Alice’s
spin. We can also get another trade-off relation for IAB
focusing on the correlation of field and Bob spin;
IAB¼2Sðρ̂BÞ−IBϕ¼2ΣðγBcosð2ΘÞÞ−IBϕ. These trade-
off relations reflect that a part of information of the
subsystem of Alice and Bob is carried out by the emission
of radiation.
The carried-out information, IAϕ and IBϕ, are given by

(83) and (84),

IAϕ ¼ Σðcosð2ΘÞÞ þ ΣðγBÞ − ΣðγB cosð2ΘÞÞ;
IBϕ ¼ ΣðγB cosð2ΘÞÞ þ ΣðγBÞ − Σðcosð2ΘÞÞ; ð117Þ

and depicted in Fig. 10. The mutual information of Alice
and Bob IAB, a counterpart of distinguishability, satisfies
the trade-off relation (95) with the visibility represented by
Sðρ̂AÞ (or PA) and the carried-out information IAϕ.
One can explicitly see that the spin-field correlation

functions behave correspondingly. For instance, the corre-
lation with Alice’s spin,

hΨf jδσ̂Ay δϕ̂ðxÞjΨfi

¼ hδσ̂Ay δσ̂Bz i
Z

tf

ti

dtGRðtf − t; x − xBÞλBðtÞ; ð118Þ

cannot vanish at ∀x on the final time slice with γB ¼
expð−2GBB

K Þ < 1 except with Θ ¼ 0 mod π=2. Here,
δϕ̂ðxÞ ¼ ϕ̂ðxÞ − hϕ̂ðxÞi. Note that Alice’s spin is correlated
with the field only through the correlation with Bob’s spin,
hδσ̂Ay δσ̂Bz i ¼ − sinð2ΘÞ. On the other hand, the correlation
with Bob’s spin,

hΨf jδσ̂Bz δϕ̂ðxÞjΨfi¼
Z

tf

ti

dtGRðtf−t;x−xBÞλBðtÞ; ð119Þ

cannot vanish at ∀x on the final time slice with γB < 1.

B. Nonadiabatic limit

Let us consider the region (ii) in Fig. 5 characterized by
γB ¼ 0, where Bob turns on and/or turns off the spin-field
interaction abruptly10 so that

GBB
K → ∞; ð120Þ

while GAA
K and GBA

K remain finite. As seen shortly, the
quantum entanglement between Alice’s spin and Bob’s spin
is not generated in this case because of the total
decoherence of Bob’s spin. The COW experiment falls
within this limiting case in the sense mentioned below.

1. Separability of spins

The expectation values in (56) become

Cxx ¼ hσ̂Ax σ̂Bx i ¼ 0; Cyy ¼ hσ̂Ay σ̂By i ¼ 0;

Cx0 ¼ hσ̂Ax i ¼ γA cosð2GAB
R Þ; C0x ¼ hσ̂Bx i ¼ 0;

Cyz ¼ hσ̂Ay σ̂Bz i ¼ −γA sinð2GAB
R Þ; Czy ¼ hσ̂Az σ̂By i ¼ 0:

ð121Þ

FIG. 10. The mutual informations between the field and one of
the spins, IAϕ in pink and IBϕ in purple, in the adiabatic limit of
Alice γA ¼ 1 as functions of Θ ¼ J̄ × T̄B given in (117) with
γB ¼ 0, 0.25, 0.5, 0.75, and 1. In the limit of γB → 1, both vanish
since the field decouples with the spins. IBϕ does not vanish with
γB < 1. On the other hand, with Θ changed, IAϕ vanishes with
Θ ¼ 0 mod π=2 and positively correlated with IAB depicted in
Fig. 8, which is because the field is correlated with Alice’s spin
only via the correlation with Bob’s spin in the current limit
of γA ¼ 1.

10In the BMV setup where spatial position of the particle
changes, this corresponds to the abrupt acceleration and/or
deceleration.
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In this case, Bob’s distinguishability of Alice’s spin
DB ¼ jCzyj ¼ 0 vanishes due to the nonadiabaticity.
From the expression in Sec. IV F, we can see that the
entanglement negativity vanishes since

μs1þAB ¼ μs1−AB ¼ 1þ s1γA
4

: ð122Þ

Accordingly the density matrix (53) is written in a
separable form:

ρ̂AB ¼ 1

2
ð1̂A1̂B þ Cx0σ̂

A
x 1̂

B þ Cyzσ̂
A
y σ̂

B
z Þ

¼ ρ̂þA
jþiBhþj

2
þ ρ̂−A

j−iBh−j
2

; ð123Þ

where ρ̂þA and ρ̂−A are defined in (71), and written explic-
itly as

ρ̂�A ¼ 1þ γA
2

j�ΘiAh�Θj þ 1 − γA
2

σ̂Az j�ΘiAh�Θjσ̂Az
with Θ ¼ GAB

R ; ð124Þ

where j�ΘiA are defined as (29). The separability in the
nonadiabatic case γB ¼ 0 is because Bob’s spin is totally
decohered due to the violent particle creation.11

Therefore, spin correlations discussed below are
classical unlike in the adiabatic limit discussed in the
previous section.

2. Spin-spin correlations

From (121), most of the correlation functions vanish and
the only nonvanishing one is

hδσ̂Ay δσ̂Bz i ¼ −γA sinð2ΘÞ; ð125Þ

whose absolute value is nothing but Alice’s distinguish-
ability of Bob’s spin, DA ¼ γAj sinð2ΘÞj given in (72).
Thus, the mutual information IAB andDA embody the same
information in this case.
Let us look at it more explicitly. In the nonadiabatic limit

of Bob, the entanglement entropies of Alice and Bob in
(61) and (62) are given by

Sðρ̂AÞ ¼ ΣðγA cosð2ΘÞÞ; ð126Þ

Sðρ̂BÞ ¼ ln 2: ð127Þ

From (127), we find PB ¼ 2ðln 2 − Sðρ̂BÞÞ ¼ 0, and equiv-
alently, the visibility of Bob vanishes, VB ¼ 0. It is because
the large nonadiabaticity completely destroys the interfer-
ence between σ̂Bz ¼ �1 states. Using (122), the entangle-
ment entropy (65) of the field is given by

Sðρ̂ABÞ ¼ ln 2þ ΣðγAÞ; ð128Þ

and the mutual information is obtained as

IAB ¼ ΣðγA cosð2ΘÞÞ − ΣðγAÞ: ð129Þ

It behaves in a similar way as the averaged distinguish-
ability does, as seen in Fig. 11.
In the nonadiabatic limit where the coherence of

Bob’s spin is totally lost, we can get a stronger upper
bound on the mutual information IAB: When the reduced
density matrix ρ̂AB is given by the form12 of (123), one can
show that

Sðρ̂ABÞ ≥ maxfSðρ̂AÞ; Sðρ̂BÞg ð130Þ

which corresponds to the inequality, always satisfied in
classical information theory, to guarantee non-negativity of

FIG. 11. Left panel: the mutual information IAB in the non-
adiabatic limit of Bob γB ¼ 0 as the function of Θ ¼ GAB

R given
by (129) with γA ¼ 0, 0.25, 0.5, 0.75, and 1. It takes maximum
value with Θ ¼ π=4 mod π=2. In the limit of γA → 1 toward the
region (iii) in Fig. 5, it corresponds to the one obtained in the
previous section with γA ¼ 1 and γB → 0, see Fig. 8. On the other
hand, γA → 0 leads to the region (iv) in Fig. 5, and then,
IAB vanishes. Right panel: the averaged distinguishability
ðD2

A þD2
BÞ=2 behaves in a similar way, and it takes the

maximum value γ2A=2 with Θ ¼ π=4 mod π=2.

11In principle, we can take a time slice in the course of the
protocol where λBðtÞ is still nonzero to compute the reduced
density matrix. It is effectively the same as the sudden turn-off,
and hence, we get the same result as (123). However, in this case,
the disappearance of the interference fringe is not because
of the particle creation, but rather because of the “false
decoherence” [31] due to the orthogonality between two states
with different Newtonian potentials.

12In a more general setup with the asymmetric interferometer
with PB ≠ 0 mentioned in Footnote 1 one finds ρ̂AB ¼P

k¼� pkρ̂
k
AjkiBhkj with p� such that jpþ − p−j ¼ PB and

pþ þ p− ¼ 1, and then, Sðρ̂ABÞ ¼ Sðρ̂BÞ þ
P

k¼� pkSðρ̂kAÞ
where Sðρ̂BÞ ¼ ΣðPBÞ. Therefore, Sðρ̂ABÞ ≥ Sðρ̂BÞ. Based on
the fact that projective measurements never decrease entropy,
Sðρ̂ABÞ ≥ Sðρ̂AÞ can also be shown [23].
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conditional entropy. Then, the mutual information defined
by (82) satisfies

IAB ≤ minfSðρ̂AÞ; Sðρ̂BÞg: ð131Þ

Since Sðρ̂AÞ; Sðρ̂BÞ ≤ ln 2, we necessarily have IAB ≤ ln 2.
This can be considered as an entropic counterpart
of the upper bound of the averaged distinguishability
ðD2

A þD2
BÞ=2 ≤ 1=2, which obeys from the vanishing

DB and DA ≤ 1.
Now, let us regard the inequalities in (91) as upper

bounds on the visibilities, and compare them with the upper
bound (94) from the mutual information. For Alice’s
visibility VA, the bound in (91) from the wave particle
duality is trivial since DB ¼ 0. However, the bound (94)
due to the nonvanishing mutual information gives a
stronger constraint on Alice’s visibility. On the other hand,
for Bob’s visibility VB in the current limiting case,
U2
I > 1 −D2

A always holds, and thus, the mutual informa-
tion does not give a stronger bound on VB.

3. Spin-field correlations

The amount of carried-out information by the field is
quantified by the mutual informations given by (83) and
(84):

IAϕ ¼ ΣðγA cosð2ΘÞÞ þ ΣðγAÞ;
IBϕ ¼ 2 ln 2þ ΣðγAÞ − ΣðγA cosð2ΘÞÞ; ð132Þ

depicted in Fig. 12. Because of the inequality (130), these
are bounded from below as IAϕ ≥ Sðρ̂AÞ, IBϕ ≥ Sðρ̂BÞ. The
fact that IBϕ never vanishes, IBϕ ≥ Sðρ̂BÞ ¼ ln 2, implies
that there always is some correlation between Bob’s spin
and the field. For instance,

hΨf jδσ̂Bz δϕ̂ðxÞjΨfi ¼
Z

tf

ti

dtGRðtf − t;x− xBÞλBðtÞ ð133Þ

does not vanish at ∀x on the final time slice. Speaking of
correlations between the field and Alice’s spin, for instance,

hΨf jδσ̂Az δϕ̂ðxÞjΨfi ¼
Z

tf

ti

dtGRðtf − t;x− xAÞλAðtÞ ð134Þ

does not vanish with γA ¼ expð−2GAA
K Þ < 1. Another

example is

hΨf jδσ̂Ay δϕ̂ðxÞjΨfi ¼ −2hσ̂Ax i
Z

dtGKðtf − t; x − xAÞλAðtÞ

þhσ̂Ay σ̂Bz i
Z

dtGRðtf − t; x − xBÞλBðtÞ;

ð135Þ

which vanishes at ∀x only with γA → 1 and Θ ¼ 0 mod
π=2 as IAϕ in (132) implies.

4. Analogy with the COW experiment setup

Since the total system is in a pure state, the spin
correlations are all originated from the quantum effects.
However, (123) is now in a separable form of density
matrices, that is, Alice’s spin and Bob’s spin are not
quantum entangled; the only nonzero spin correlation
(125) is to be understood as a classical correlation.
The situation is similar to the COWexperiment setup [32]

where the Earth is described as a classical source or a
classical statistical ensemble composed of vast numbers of
particles. The interference pattern of the neutron beam split
and recombined is affected by Earth’s gravitational poten-
tial. However, it does not require entanglement between the
neutron and the Earth. The nonadiabatic limit considered
here represents the situation of the COW experiment.
Ideally, the experiment is to be done without any
decoherence of the neutron beam. Then this corresponds
to the limit of γA → 1 in our model, and thus, the region
(iii) in Fig. 5. In the γA → 1 limit, the reduced density
matrix (123) becomes

ρ̂AB ¼ jþΘiAhþΘj jþiBhþj
2

þ j−ΘiAh−Θj
j−iBh−j

2
;

ð136Þ

where j�ΘiA is defined as (29). The state can also be
obtained from the density matrix (106) in the region (i) with
γB → 0. The two different eigenvalues of Alice’s z-spin
correspond to two different paths of neutrons at different
heights and the two different eigenvalues of Bob’s z-spin

FIG. 12. The mutual informations between the field and one of
the spins, IAϕ in pink and IBϕ in purple, in the nonadiabatic limit
of Bob γB ¼ 0 as the functions of Θ ¼ GAB

R given by (129) with
γA ¼ 0, 0.25, 0.5, 0.75, and 1. In the limit of γA → 1 toward the
region (iii) in Fig. 5, these correspond to the ones obtained in the
previous section with γA ¼ 1 and γB → 0, see Fig. 10. Only in
this limit, IAϕ can vanish with Θ ¼ 0 mod π=2. On the other
hand, γA → 0 leads to the region (iv) in Fig. 5 where both take the
maximal value 2 ln 2.
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are understood as two different configurations of particles
that compose the Earth in the COW experiment setup.13

5. Nonadiabatic limit of both Alice and Bob

Furthermore, let us assume that both Alice and Bob turn
on and/or turn off their spin-field interactions abruptly. It
leads to the region (iv) in Fig. 5 since

GAA
K ;GBB

K → ∞: ð137Þ

Note thatGAB
K remains finite in general. In this case, all the

C’s vanish, and the entropies are computed as

Sðρ̂AÞ ¼ Sðρ̂BÞ ¼ ln 2; Sðρ̂ABÞ ¼ 2 ln 2: ð138Þ

As the result, we get

IAB ¼ 0; IAϕ ¼ IBϕ ¼ 2 ln 2; ð139Þ

that is, Alice and Bob cannot gain any information about
each other’s spins since the quantum coherence of both two
spins is totally lost now.

C. Spacelike separated case

In the next two sections, we consider two limiting cases
in the causal structure of Fig. 6. First, we study the region
(IV) where Alice’s and Bob’s protocols are spacelike
separated from each other. In this case, both of the retarded
Green’s functions vanish, and hence, we have

GAB
R ¼ GBA

R ¼ 0; ð140Þ

while GAB
K is finite in general. As seen below, while spin-

spin correlations are induced, negativity vanishes and there
is no quantum entanglement between the two spins
generated.

1. Vacuum-induced spin correlation

In this case, the expectation values in (56) become

Cxx ¼ hσ̂Ax σ̂Bx i ¼ γAγB coshð4GBA
K Þ;

Cyy ¼ hσ̂Ay σ̂By i ¼ γAγB sinhð4GBA
K Þ;

Cx0 ¼ hσ̂Ax i ¼ γA; C0x ¼ hσ̂Bx i ¼ γB;

Cyz ¼ hσ̂Ay σ̂Bz i ¼ 0; Czy ¼ hσ̂Az σ̂By i ¼ 0: ð141Þ

Then, two of the spin correlation functions in (58) are
nonvanishing

hδσ̂Ax δσ̂Bx i ¼ γAγB½coshð4GBA
K Þ − 1�;

hδσ̂Ay δσ̂By i ¼ γAγB sinhð4GBA
K Þ;

hδσ̂Ay δσ̂Bz i ¼ hδσ̂Az δσ̂By i ¼ 0 ð142Þ

which depends only on the Keldysh Green’s function
GBA

K ≠ 0. Thus, even though Alice’s spin and Bob’s spin
do not have the causally connected direct interactions, spins
get correlated through the correlations of the quantum field
in the vacuum.
Since Cyz and Czy vanish, both Alice’s and Bob’s

distinguishability vanish DA ¼ DB ¼ 0. Nevertheless,
the mutual information becomes nonzero, which will be
shown in Fig. 14. From the discussion below (79) in
Sec. IV F, the entanglement negativity vanishes and the
reduced state ρ̂AB is separable. The two spins are not
entangled and their correlations are classical even though
they are originated from the entanglement with the field.
In [16], it is shown that the separability in this case follows
from the relation ½ĤA; ĤB� ¼ 0.

2. Spin correlation mediated by created particles

As we will see below, particle creation is necessary for
the spin correlation to be generated. The following dis-
cussion holds with Alice and Bob interchanged. Because of
relativistic causality, the presence of Bob’s spin cannot
affect Alice’s measurement of her own spin, that is to say,
the reduced density matrix of Alice’s spin ρ̂A is indepen-
dent from whether Bob’s spin exists or not. Then, the
entanglement entropy Sðρ̂AÞ of Alice can be evaluated in
the absence of Bob’s spin. That is, Sðρ̂AÞ in the current case
measures the amount of entanglement between Alice’s spin
and the field. This can be explicitly shown as follows:
Consider a time slice Σ0 depicted in Fig. 13. Since Bob’s
spin has not yet interacted with the field by this time, the
full density matrix on this slice can be written as a tensor
product, ρ̂B;iρ̂0 where ρ̂B;i is the initial state of Bob’s spin

14

and ρ̂0 is an entangled state of Alice’s spin and the field in
general. The density matrix at the slice Σ0 is related to the
density matrix ρ̂f ≔ jΨfihΨf j on the final time slice Σf as
ρ̂f ¼ L̂Bϕðρ̂0ρ̂B;iÞL̂†

Bϕ, where L̂Bϕ is the time evolution
operator corresponding to Lorentz boost from Σ0 to Σf
which is trivial acting on the Hilbert space of Alice’s spin.
Therefore, ρ̂A ¼ trBϕfρ̂fg ¼ trBϕfρ̂0ρ̂B;ig ¼ trϕfρ̂0g, and

13Because of the low dimensionality of the Hilbert space of
Bob’s variable, there is no decoherence due to its very presence.
However, if one replaces Bob’s spin with some continuous
variable such as the meter considered in [19], the decoherence
of Alice’s spin is caused even with γA ¼ 1. Then, it models the
possible decoherence of Alice’s spin caused by the gravitational
potential sourced by a vast number of massive objects surround-
ing it.

14ρ̂B;i can be any state unless it is entangled with the field and
Alice’s spin. For the initial state (3), we have ρ̂B;i ¼
ðjþiB þ j−iBÞðhþjB þ h−jBÞ=2. Note also that, if the spin is
dynamical on its own, ρ̂B;i should be replaced with ÛBρ̂B;iÛ

†
B

where ÛB is the corresponding time evolution operator acting
only on the Hilbert space of Bob’s spin nontrivially. It does not
change the conclusion here.
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thus, Sðρ̂AÞ originates from the entanglement between
Alice’s spin and the field; if there is no particle creation
from Alice’s spin, then Sðρ̂AÞ ¼ 0 and the above inequality
tells us that IAB ¼ 0, which means that there is no
correlation between the two spins generated.
Now that we have the explicit forms of ρ̂A and ρ̂B and

their eigenvalues given by (59) and (60), the entanglement
entropies (61) and (62) are obtained as

Sðρ̂AÞ ¼ ΣðγAÞ; Sðρ̂BÞ ¼ ΣðγBÞ; ð143Þ

which depend only on γA and γB, respectively. Then, in the
adiabatic limit where either γA → 1 or γB → 1, the entro-
pies vanish as expected. Therefore, all of the correlation
functions in (142) vanish in the adiabatic limit with no
particle created.
Note also that, once the explicit expressions for the

correlation functions in (142) are obtained, the uncertainty
relation (100),

ðGBA
K Þ2 ≤ GAA

K GBB
K ¼ ln γA ln γB

4
ð144Þ

guarantees that all the spin correlations vanish in the
adiabatic limit.

3. Asymptotic behavior of spin correlations

The time integration of the Keldysh function GBA
K

behaves as

GBA
K ∝

expð−mDÞ
D3=2 ; ð145Þ

see Fig. 20 in Appendix D. Note that GAA
K and GBB

K
are independent from D. Therefore, the correlation func-
tions in (142) behave as hδσ̂Ax δσ̂Bx i ≈ 8γAγBðGBA

K Þ2 and
hδσ̂Ay δσ̂By i ≈ 4γAγBGBA

K , whose squared value is depicted
in Fig. 14.
Let us now explicitly see that the mutual information IAB

reflects the behavior of the correlations and satisfies the
inequality (86). The eigenvalue (64) of ρ̂AB is given in this
case as

μs1s2AB ¼ 1

4

n
1þ s2γAγB coshð4GBA

K Þ

þ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγA þ s2γBÞ2 þ γ2Aγ

2
Bsinh

2ð4GBA
K Þ

q o
: ð146Þ

Plugging it into (65), we get the entanglement entropy
Sðρ̂ABÞ. The mutual information (82) is obtained as a
function of GAA

K , GBB
K , and GBA

K ,

IAB ¼ IABðγA; γB;GBA
K Þ: ð147Þ

As seen in Fig. 14, it is always larger than the spin
correlation functions entering in to the right-hand side of
(86) denoted by Cww0. For sufficiently large values of D, the
mutual information depends on D in the same manner as

FIG. 14. Spin correlation Cww0 ≔ hδσ̂Awδσ̂Bw0 i2=2 with w;w0 ¼ x,
y, z as a function of D in the spacelike separated case. With the
mass of scalar fieldm set to be unity, the parameters are chosen in
such a way that the system is symmetric under the swapping of
λAðtÞ and λBðtÞ; λ̄A ¼ λ̄B ¼ 1, TA

on ¼ TA
off ¼ TB

on ¼ TB
off ¼ 2,

TA ¼ TB ¼ 4, and tAon ¼ tBon, see Fig. 13. With these parameters,
we get GAA

K ¼ GBB
K ≃ 0.0125. With D ≥ 8, we are in the current

limiting case (IV). The nonzero components, Cyy and Cxx, are
plotted with the yellow and black lines. Just for comparison, we
have included the part with D < 8. Then, the system falls within
the region (I) in Fig. 6 where we have Czy and Cyz nonvanishing.
Because of the symmetry, Czy ¼ Cyz and it is plotted with the gray
line. The mutual information IAB plotted with the blue line is
always larger than C’s as (86) says.

FIG. 13. Alice’s spin and Bob’s spin do not have causal
influences on each other. In order to see that the reduced density
matrix of Alice’s spin does not care about Bob’s spin, one can
take a time slice Σ0 depicted by the blue line which is mapped to
the final time slice Σf by a Lorentz boost.
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Cyy does.
15 Though the inequality (86) appears to be a rather

weak relation, IAB properly represents the spin-spin correla-
tions. Because of these nonvanishing correlations and the
correspondingmutual information, (94) can put upper bounds
on Both Alice’s and Bob’s visibilities, as contrasted with the
inequalities (91) from the wave particle duality which are
trivial with the vanishing distinguishabilities.

4. Spin-field correlations

In the adiabatic limit of γA ¼ expð−2GAA
K Þ → 1, the

correlations between the field and each spin also must
vanish. It can be seen from the trade-off relations in (87)
since the entanglement entropy in the right-hand side in the
relation SðρAÞ in (61) vanishes SðρAÞ ¼ Σð1Þ ¼ 0 and the
mutual information behaves as IAϕ → 0. Similarly we have
IBϕ → 0. Thus the correlations between the field and spins
must vanish. One can explicitly see such behaviors as
follows. For example,

hΨf jδσ̂Ay δϕ̂ðxÞjΨfi ¼ −2γA
Z

dtGKðtf − t; x − xAÞλAðtÞ

ð148Þ

vanishes in the adiabatic limit. Note that this is independent
of Bob’s position xB. Thus, we can take a limit of λ̄A → 0
and D → ∞ while keeping Alice and Bob to be separated
in the spacelike region. In this limit, the above correlation
vanishes. Furthermore, with the number operator N̂, we get

hΨf jδσ̂Ax δN̂jΨfi ¼ −2GAA
K hσ̂Ax i ¼ γA ln γA;

hΨf jδσ̂Ax δ∶N̂2∶ jΨfi ¼ −4fGAA
K GBB

K þ ðGBA
K Þ2ghσ̂Ax i;

ð149Þ

see (C36) and (C39) in Appendix C. The first one explicitly
vanishes with γA → 1. The second one also vanishes in the
adiabatic limit because of the uncertainty relation (144).

D. A case with one-way causal influence

Let us consider the region (II) in Fig. 6 where the
coupling between Alice’s spin and the field λAðtÞ is
nonvanishing in the causal past of Bob’s protocol, whereas
Bob has not turned on the spin-field coupling λBðtÞ in the
causal past of Alice’s turning λAðtÞ off. Then, we have

GAB
R ¼ 0: ð150Þ

while GBA
R does not vanish. As seen below, again, there is

no quantum entanglement between the two spins generated
in this case.

1. Causality vs complementarity

If one accepted the Newtonian picture in this causally
disconnected case and naively used the wave function (8),

jΘiAB¼
eiΘ

2
ðjþþiþj−−iÞþe−iΘ

2
ðjþ−iþj−þiÞ ð151Þ

with Θ ∝ λ̄B caused by the Newtonian interaction (6), it
would lead to an apparent paradox as follows. From (11),
we would have hσ̂Ax i ¼ cosð2ΘÞ. It means that the inter-
ference of spin up and down states, σz ¼ �, would be
reduced and vanish at the most entangled case of Θ ¼ π=4.
On the other hand, due to the causality, Bob cannot affect
the result of Alice and the interference must be independent
of Θ ∝ λ̄B. The paradox, of course, appeared by the
Newtonian approximation where the dynamical effects
of the fields are neglected. This paradox is first discussed
in [7] in the setup of gravitational interactions as the origin
of Θ, and its resolution is given in [9,11] by discussing the
vacuum fluctuations of the metric field and the emission of
on-shell gravitons. In particular, in [11], it is shown in
an abstract and sophisticated argument that the partial
decoherence of Alice’s spin, reflected by γA < 1 below, is
inevitable for Bob to gain the “which-path” information.
Let us look at the trade-off relation between the visibility

and distinguishability as the resolution of the paradox. With
(150), the expectation values in (56) become

Cxx ¼ hσ̂Ax σ̂Bx i ¼ γAγB coshð4GBA
K Þ;

Cyy ¼ hσ̂Ay σ̂By i ¼ γAγB sinhð4GBA
K Þ;

Cx0 ¼ hσ̂Ax i ¼ γA; C0x ¼ hσ̂Bx i ¼ γB cosð2GBA
R Þ;

Cyz ¼ hσ̂Ay σ̂Bz i ¼ 0; Czy ¼ hσ̂Az σ̂By i ¼ −γB sinð2GBA
R Þ:
ð152Þ

As explicitly seen here, the visibility V2
A ¼ hσ̂Ax i2 þ

hσ̂Ay i2 ¼ γ2A does not depend on λ̄B since the retarded
Green’s function from Bob to Alice is now irrel-
evant [17,19]. The fact that Alice’s distinguishabilityDA ¼
jCyzj ¼ 0 vanishes also indicates that Alice cannot gain the
which-path information about Bob’s spin.
On the other hand, Bob can distinguish Alice’s spin since

Bob’s spin is causally connected to Alice connected;
however, the distinguishability is bounded by D2

B ≤ 1 −
V2
A ¼ 1 − γ2A from (73), i.e., the decoherence of Alice’s

spin or the particle production is inevitable for Bob to gain
the which-path information. The inevitable decoherence of
Alice’s spin is discussed in a quantitative way in [17] with
the inequality in (73), which becomes, in the current case,

γ2A þ γ2Bsin
2ð2GBA

R Þ ≤ 1; ð153Þ

15For GBA
K ¼ 0, we get Sðρ̂ABÞ ¼ Sðρ̂AÞ þ Sðρ̂BÞ since the

eigenvalue (146) is simplified as

μs1s2AB jGBA
K ¼0 ¼

ð1þ s01γAÞð1þ s2s01γBÞ
4

;

where s01¼s1 for s2 ¼ þ1 and s01 ¼ s1signðγA − γBÞ for s2 ¼ −1.
Then, IAB ¼ 0 follows.
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where DB ¼ γBj sinð2GBA
R Þj is employed. It is also shown

numerically in [17] that this inequality is guaranteed by the
relation

ðGBA
R Þ2
4

≤ GAA
K GBB

K ¼ ln γA ln γB
4

; ð154Þ

which can be derived from the Robertson inequality.16 In
the following, we discuss a similar trade-off relation in
terms of the mutual informations.

2. Spin correlation mediated by created particles

At the time slice Σ0 depicted in Fig. 15, Bob’s spin is not
yet to interact with the field. Thus Alice’s state cannot
depend on Bob’s action, and for the generation of the spin-
spin correlations between Alice and Bob, the dynamics of
field with particle creation is inevitable as in the case of
Sec. V C. Indeed, if there is no particle creation from
Alice’s spin and γA ¼ 1, the entanglement entropy SðρAÞ in
(61) vanishes since SðρAÞ ¼ Σð1Þ ¼ 0. Then, from the
trade-off relation (88), IAB ¼ 0 and no spin correlations are

possible. This can be also seen from the explicit calcu-
lations in (58) with GAB

R ¼ 0. If GAB
R ¼ 0, the Robertson-

Schrödinger inequality (99) becomes

ðGBA
R Þ2
4

þ ðGBA
K Þ2 ≤ GAA

K GBB
K ¼ ln γA ln γB

4
; ð155Þ

and in the adiabatic limit of γA ¼ 1, we must have
GBA

R ¼ GBA
K ¼ 0.17 Thus all the correlations in (58)

hδσ̂Ax δσ̂Bx i ¼ γAγB½coshð4GBA
K Þ − cosð2GBA

R Þ�;
hδσ̂Ay δσ̂By i ¼ γAγB sinhð4GBA

K Þ;
hδσ̂Ay δσ̂Bz i ¼ 0;

hδσ̂Az δσ̂By i ¼ −γB sinð2GBA
R Þ; ð156Þ

must vanish. When all the correlation functions vanish, it is
impossible for Bob to gain any information about Alice’s
spin; then, the distinguishability DB should vanish. This
explicitly follows from DB ¼ jhδσ̂Az δσ̂By ij in (72).

3. Asymptotic behavior of spin correlations

Let us look at an asymptotic behavior of spin correlations
near the adiabatic limit γA ¼ 1 as sketched in Fig. 15.
We are interested in the dependence on the adiabatic
parameter TA

off. The time integrations of the Keldysh
Green’s function, GBA

K , GAA
K , and the retarded Green’s

function, GBA
R , behave as

GBA
K ; GBA

R ∝ ðTA
offÞ−1; GAA

K ∝ ðTA
offÞ−2 ð157Þ

apart from oscillatory parts, see Fig. 21 in Appendix D.
GBB

K is, of course, independent of TA
off . For small values of

GBA
K and GBA

R , the correlation functions in (156) behave as

hδσ̂Ax δσ̂Bx i ≈ 8γAγB½ðGBA
K Þ2 þ ðGBA

R Þ2=4�;
hδσ̂Ay δσ̂By i ≈ 4γAγBGBA

K ;

hδσ̂Az δσ̂By i ≈ −2γBGBA
R : ð158Þ

Their squared values are depicted in Fig. 16.
The mutual information IAB reflects the behavior of the

correlations and satisfies the inequality (86). In the current
case, we have the eigenvalue (64) of ρ̂AB as

μs1s2AB ¼ 1

4

n
1þ s2γA γB coshð4GBA

K Þ þ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2A þ γ2B þ 2s2γAγB cosð2GBA

R Þ þ γ2Aγ
2
Bsinh

2ð4GBA
K Þ

q o
: ð159Þ

FIG. 15. In order to see that the reduced density matrix of
Alice’s spin does not care about Bob’s spin, one can take a time
slice Σ0 depicted by the blue line. For taking the adiabatic limit in
the case with one-way causal influence, we take TA

on ¼ ∞ and
change the parameter TA

off, the length of time that Alice takes to
turn off the spin-field interaction, while keeping all the other
parameters unchanged. In order to restrict ourselves in the region
(II) in Fig. 6, tAoff < tBon þD is imposed.

17This is not only the case with γA → 1 but also with γB → 1. The entropy (62) evaluated with (60) in the current case depends not
only on γB but also on GBA

R as Sðρ̂BÞ ¼ ΣðγB cosð2GBA
R ÞÞ. Then, the γB → 1 limit itself does not necessarily make Sðρ̂BÞ vanish.

However, that GBA
R vanishes with γB → 1 is guaranteed by the inequality (155). Therefore, the second one of the trade-off relations in

(87) implies that there are no correlations between the two spins in the adiabatic limit where Bob takes an infinitely long time to turn on
and off the spin-field interaction.

16The Robertson inequality hδÔ2
1ihδÔ2

2i ≥ jh½δÔ1; δÔ2�ij2=4 is weaker than the Robertson-Schrödinger inequality (97). With the
choice of the operators given in (98), one finds GAA

K GBB
K ≥ ðGBA

R −GAB
R Þ2=4.
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Plugging it into (65), we get the entanglement entropy
Sðρ̂ABÞ, and then the mutual information (82) is obtained as
a function of GAA

K , GBB
K , GBA

K , and GBA
R ,

IAB ¼ IABðγA; γB;GBA
K ;GBA

R Þ: ð160Þ

It is depicted in Fig. 16. IAB is actually larger than various
correlators Cww0 as the relation (86) indicates.
Now, let us compare the two upper bounds on the

visibility (91) and (94). For Bob’s visibility, the bound (91)
from the wave particle duality inequality is trivial V2

B ≤ 1
since Alice’s distinguishability vanishes for causality.
However, the bound (94) from the mutual information still
constrains it as V2

B ≤ U2
I < 1 due to the nonvanishing spin

correlations obtained as (156). As for Alice’s visibility,
while the bound (91) is effective with nonzero Bob’s
distinguishability, the bound (94) from the mutual infor-
mation turns out to be stronger, see Fig. 17.

4. Spin-field correlations

In the adiabatic limit, the correlations between the field
and Alice’s spin also vanish because we have Sðρ̂AÞ ¼ 0 in
the limit γA ¼ expð−2GAA

K Þ → 1 and from the trade-off
relation in (87) the mutual information IAϕ also must
vanish. One can explicitly see this as follows. For example,

hΨf jδσ̂Ay δϕ̂ðxÞjΨfi ¼ −2hσ̂Ax i
Z

dtGKðtf − t; x − xAÞλAðtÞ

ð161Þ

vanishes in the adiabatic limit. Furthermore, with the
number operator N̂, we get

hΨf jδσ̂Ax δN̂jΨfi ¼ −2GAA
K hσ̂Ax i ¼ γA ln γA;

hΨf jδσ̂Ax δ∶N̂2∶jΨfi ¼ −4fGAA
K GBB

K þ ðGBA
K Þ2

þ ðGBA
R Þ2=4ghσ̂Ax i: ð162Þ

The first one explicitly vanishes with γA → 1. The second
one also vanishes in the adiabatic limit because of the
uncertainty relation (155).
On the other hand, correlations between the field and

Bob’s spin do not have to vanish in the limit of γA → 1. It is
because, when IAB ¼ 0, the second one in the trade-off
relations in (87) becomes IBϕ ¼ 2Sðρ̂BÞ which is nonzero
with γB < 1. For instance, the first term of

hΨf jδσ̂By δϕ̂ðxÞjΨfi ¼ −2hσ̂Bx i
Z

dtGKðtf − t; x − xBÞλBðtÞ

þhσ̂Az σ̂By i
Z

dtGRðtf − t; x − xAÞλAðtÞ

ð163Þ

remains finite in the limit of γA → 1. For the correlations
with the number operator, we have

hΨf jδσ̂Bx δN̂jΨfi¼−2GBB
K hσ̂Bx i−GBA

R hσ̂Az σ̂By i;
hΨf jδσ̂Bx δ∶N̂2∶ jΨfi¼−4fGAA

K GBB
K þðGBA

K Þ2
þðGBA

R Þ2=4ghσ̂Bx i
þ2GBA

R ðGAA
K −GBB

K Þhσ̂Az σ̂By i: ð164Þ

While the second one vanishes with γA → 1, the first one
does not and γB ln γB remains.

FIG. 16. Spin correlation Cww0 ≔ hδσ̂Awδσ̂Bw0 i2=2 with w;w0 ¼ x,
y, z as a function of TA

off in the case with one-way causal
influence. With the mass of scalar fieldm set to be unity, the other
parameters are all fixed as follows: λ̄A ¼ λ̄B ¼ 1, TA

on ¼ ∞,
TB
on ¼ TB

off ¼ 1, TB ¼ 2, tAoff ¼ tBon þD − 1, and D ¼ 5, see
Fig. 15. we have Czy, Cyy, and Cxx nonvanishing in the current
case, plotted with the gray, yellow, and black lines, respectively.
The mutual information IAB plotted with the blue line is always
larger than C’s as (86) says.

FIG. 17. The upper bounds on Alice’s visibility VA as functions
of TA

off . All the parameters are the same as in Fig. 16. The black
line shows the bound U2

I obtained from the mutual information
(94). The pink line shows the bound 1 −D2

B from the wave
particle duality inequality (91). For any value of TA

off , the mutual
information gives a stronger bound. Alice’s visibility itself V2

A ¼
γ2A ≃ 0.86 is much smaller than these bounds.
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5. Separability

As seen in (152), we have Cyz ¼ 0. Therefore, the
analysis in Sec. IV F tells us that the entanglement
negativity vanishes, and thus, the reduced state ρ̂AB is
separable. It is consistent with the observation obtained
in [18] with the electromagnetic field that the entanglement
negativity vanishes for D ≫ tAoff − tAon.
Here, let us give a simple explanation in Hamiltonian

formulation why the entanglement is not generated when
one of the retarded Green’s functions vanishes because of
the causality, applying a no-go theorem for entanglement
extraction [33]. We consider a time evolution by Lorentz
boost which brings the initial time slice Σi to Στ

i , see
Fig. 18. With L̂ being the corresponding unitary operator,18

the time evolution (5) is rewritten as

jΨfi ¼ L̂†V̂ðτf ; τiÞL̂jΨii
¼ L̂†V̂Bϕðτf ; τ0ÞV̂Aϕðτ0; τiÞL̂jΨii; ð166Þ

where V̂ðτf ; τiÞ ≔ L̂Ûðtf ; tiÞL̂† is decomposed into two
parts, the unitary operator V̂Aϕðτ0; τiÞ for the time evolution
fromΣτ

i toΣτ
0 and V̂Bϕðτf ; τ0Þ for the evolution fromΣτ

0 toΣτ
f .

Since λB ¼ 0 for τ < τ0 and λA ¼ 0 for τ > τ0, the former
one trivially acts on the Hilbert space of Bob’s spin, and the
latter trivially acts on the Hilbert space of Alice’s spin. Note
that L̂ does not act on the Hilbert space of the spins since
λA ¼ λB ¼ 0 during those time evolution by Lorentz boost.
It is convenient to take the interaction picture to describe the
evolution from Στ

0 to Στ
f . The state evolves as

V̂ϕB;Iðτf ; τ0Þ ¼ T exp

�
−i

Z
τf

τ0

dτĤτ
B;Iðt0Þ

�

¼ eiω2 exp

�
−i

Z
τf

τ0

dτĤτ
B;IðτÞ

�
; ð167Þ

where

Ĥτ
B;IðτÞ ¼ −σ̂Bz λBðtðτÞÞϕ̂ðτ; χBðτÞÞ ð168Þ

and

ω2 ≔
i
2

Z
τf

τ0

dτ
Z

τ

τ0

dτ0½Ĥτ
B;IðτÞ; Ĥτ

B;Iðτ0Þ�

¼ 1

2

Z
dt
Z

dt0λBðtÞGRðt − t0; 0ÞλBðt0Þ: ð169Þ

Here, the field operator is defined as ϕ̂ðτ; χ Þ ¼
eiðτ−τiÞĤ

τ
ϕL̂ ϕ̂ðxÞL̂†e−iðτ−τiÞĤ

τ
ϕ with Ĥτ

ϕ ¼ L̂ĤϕL̂
†. (See a

related discussion in Footnote 3). In deriving (167), the
time-ordering is evaluated with the Magnus expansion [34]
as V̂ϕB;I ¼ expfP∞

k¼1 Ω̂kg with Ω̂1 ¼ −i
R
τf
τ0
dτĤτ

B;IðτÞ,
Ω̂2 ¼ iω2 and Ω̂k≥3 ¼ 0.
In the new coordinate system ðτ; χ Þ, spin’s trajectory is

described by χBðτÞ. Let us write down the spectral
decomposition19 of the Hermitian operator Φ̂ ≔R
τf
τ0
dτλBz ðtðτÞÞϕ̂ðτ; χBðτÞÞ as Φ̂ ¼ P

k ΦkjΦkihΦkj. Then,
rewriting the evolution operator (167) as

V̂ϕB;Iðτf ; τ0Þ ¼ eiω2

X
k

jΦkihΦkj expfiσ̂BzΦkg; ð170Þ

we find a reduced density matrix on Σf to be separable:

ρ̂AB ¼ trϕfjΨfihΨf jg ¼ trϕfV̂ϕB;Iρ̂0ρ̂B;iV̂
†
ϕB;Ig

¼
X
k

pkρ̂
ðkÞ
A ρ̂ðkÞB ; ð171Þ

FIG. 18. Time evolution regarded as a combination of two
Lorentz transformation: Ûðtf ; tiÞ ¼ V̂ϕBV̂ϕA. Dashed lines depict
light cones. The blue lines depict the time slices with τ ¼ τi; τ0,
and τf . In this example, the retarded Green’s function from
Alice’s spin to Bob’s spin and its time integrationGBA

R is nonzero
whereas GAB

R ¼ 0.

18This is nothing but the time evolution operator in the Rindler
coordinate ðη; ϱ; y1; y2Þ which is related to the Minkowski
one ðt; x; y1; y2Þ as t − t0 ¼ ϱ sinhðηÞ, x − x0 ¼ ϱ coshðηÞ. In
general, t0 and x0 are arbitrary. The metric is given by
ds2 ¼ −ϱ2dη2 þ dϱ2 þP

j¼1;2 dy
2
j . In this coordinate, the Ham-

iltonian K̂ ¼ K̂ϕ þ K̂A þ K̂B is given by

K̂ϕ ¼
Z

dϱd2y
ϱ

2
½π̂2ðϱ; yÞ þ ð∂ϱϕ̂ðϱ; yÞÞ2

þ j∇ϕ̂ðϱ; yÞj2 þm2ϕ̂2ðϱ; yÞ�;

K̂A ¼ −σ̂Az
dtA
dη

λAðtAÞϕ̂ðϱA; yÞ with ϱAðηÞ ¼
xA − x0
coshðηÞ ;

tAðηÞ ¼ ϱAðηÞ sinhðηÞ; ð165Þ
and K̂B is defined in a similar way as K̂A. Since λA ¼ λB ¼ 0
during the evolution form Σi to Στ

i in Fig. 18, the corresponding
unitary operator is simply given by L̂ ¼ exp½−iΔηK̂ϕ� with an
appropriate choice of “time” interval Δη.

19Just for illustrative purposes, we assume Φ̂ has a discreet
spectrum. See discussions in [33] for the continuous case.
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where ρ̂B;i is the initial state of Bob’s spin (see
Footnote 14),

ρ̂0 ≔ V̂Aϕðτ0; τiÞL̂jΩiϕ
1

2
ðjþiA þ j−iAÞ

× ðhþjA þ h−jAÞhΩjϕL̂†V̂†
Aϕðτ0; τiÞ ð172Þ

is the state of the subsystem composed of Alice’s spin and
the field on Στ

0 and

pk ≔ trAfhΦkjρ̂0jΦkig; ð173Þ

ρ̂ðkÞA ≔ hΦkjρ̂0jΦki=pk; ð174Þ

ρ̂ðkÞB ≔ eiσ̂
B
z Φk ρ̂B;ie−iσ̂

B
z Φk : ð175Þ

Note that the details of the initial state are irrelevant except
for that Bob’s spin is not entangled with the rest of the
system at the initial time. It is crucial for this proof of
separability that the evolution operator is written in the
form of (170) called simple-generated unitary [33]. There
are two reasons here we have this form: Each spin has no
energy gap when the coupling to the field is absent, and the
commutator ½ϕ̂ðxÞ; ϕ̂ðx0Þ� in (169) turns out to be the
c-number. Therefore, when detectors coupling to the field
has some dynamics or when the field has nonlinear
interactions as is the case with the gravitational field, the
quantum entanglement between the detectors can be
generated even if one of the retarded Green’s functions
connecting them vanishes.

E. Short summary of the spin correlations
and various Green’s functions

We give a short summary of the roles played by various
Green’s functions for the spin correlations and entangle-
ment in various limiting cases. After integrating the
quantum field, any observables of Alice and Bob are
written in terms of the following five quantities:

GAB
R ; GBA

R ; GAA
K ; GBB

K ; GAB
K ¼ GBA

K : ð176Þ

As we have seen in this section, these quantities are present
or absent in different situations and play different roles.
FirstGAA

K andGBB
K appear as a form of γA and γB, and they

only quantify the overall magnitude of the spin correla-
tions. On the other hand, the other three quantities
determine whether spin correlations and quantum entan-
glement appear or disappear. Thus, we consider the three
quantities and summarize the situation in the Table I.
In this section, we have studied four situations, depicted

in Figs. 5 and 6. In the region (i) discussed in Sec. VA,
because of the Robertson-Schrödinger inequality (99),GBA

K
vanishes and the equality GAB

R ¼ GBA
R is required. Thus

only the quantityGAB
R ¼ GBA

R is relevant for the absence or

presence of correlations. It is the case for the Newtonian
approximation. In the region (ii) discussed in Sec. V B,
because the state of Bob’s spin is fully decohered by
γB ¼ 0, two quantities GBA

R and GBA
K become irrelevant for

determining the spin correlations or entanglement even
though they are nonvanishing. Thus the only quantity for
controlling the correlations is the one-way causal influence
from Bob to Alice withGAB

R . In the region (IV) discussed in
Sec. V C, both ofGAB

R andGBA
R vanish due to the causality.

Thus the only quantity GBA
K representing the vacuum

fluctuations induces the spin correlations. Finally, in the
region (II) discussed in Sec. V D, GAB

R vanishes due to the
causality. Then, the one-way causal influence from Alice to
Bob with GBA

R and the vacuum fluctuations with GBA
K

contribute to the spin correlations. In this situation, two
quantities are relevant.
The spin correlations do not necessarily indicate the

quantum entanglement since spins can be correlated under
classical correlations. The calculation of the negativity in
our setup shows that the quantum entanglement is present
only when both of the two retarded Green’s functions are
nonvanishing. Thus, in regions (II) and (IV), there is no
quantum entanglement. In the case of (ii), since Bob’s state
is completely decohered and decoupled from Alice, there is
no entanglement. Thus, only in the case of (i), entangle-
ment is present.

VI. SUMMARY

In this work, we gave a comprehensive study of a field-
theoretical toy model for the BMV setup. The correlation
between the two spins is induced through the local
interactions with the scalar field. We observed that the
causal structure and the nonadiabaticity of the setup affect
the amount of the spin correlations and the quantum
entanglement. We first took the Newtonian approximation
in Sec. III to look at how entanglement is generated
between the spins. It is the situation considered in the
original analysis of the BMV experiment. We then intro-
duced a field-theoretical model in Sec. IV, which can be
exactly solved. Introducing various “tools” to understand
the quantum behavior of the final state (53), we investigated
the model in various limiting situations in Sec. V. We
especially focused on the relativistic causality, the vacuum
fluctuations, and particle creations which are absent in the
Newtonian approximation.

TABLE I. Underlined quantities are relevant ones to the spin
correlations in each limiting case.

Region (i) (ii) (IV) (II)

GAB
R ¼GBA

R ≠0 ¼0 ¼0

GBA
R ¼GAB

R ≠0 ¼0 ≠0
GBA

K ¼0 ≠0 ≠0 ≠0
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The quantum entanglement generated by the gravita-
tional potential is the target of the BMV experiment to
observe the quantum superposition of spacetime geom-
etries. In the Newtonian approximation, entanglement is
indeed generated between two spins of Alice and Bob
mediated by the Newton potential, as explicitly checked by
calculating the spin correlations in Fig. 3 or entanglement
entropy (14) in Sec. III. In this case, these quantities are
sufficient for the quantum entanglement since the state of
Alice’s and Bob’s spins is a pure state (9).
In general, when the quantum field mediating two spins

is dynamical, the system composed of Alice’s and Bob’s
spins is no longer maintained in a pure state. Thus spin
correlations or entanglement entropy between spins is not
sufficient to describe the behavior of the system. We thus
calculated various quantities such as the mutual informa-
tion or negativity. The dynamical field plays two important
roles, one is the effect of relativistic causality and the other
is the particle creation associated with the nonadiabaticity
of Alice’s and Bob’s protocols. These effects are repre-
sented by various Green’s functions, classified by retarded
type and Keldysh type, summarized in Sec. V E.
The Keldysh type of Green’s functions is related to the

nonadiabaticity of the protocols which induce particle
creations. To understand its role, we investigated an
adiabatic limit and a nonadiabatic limit. The adiabatic limit
of Alice’s protocol (i) is studied in Sec. VA. In addition to
this limit, if we take the further adiabatic limit of Bob’s
protocol, all the decoherence factors disappear and the
Newtonian result is reproduced. On the other hand, a
nonadiabatic limit of Bob with adiabatic Alice gives an
analogous situation to the COWexperiment. The amount of
entanglement between Alice’s and Bob’s spins vanishes as
depicted in Fig. 7.
The retarded Green’s functions control the causal influ-

ence between Alice and Bob. In Secs. V C and VD, we
observed that the entanglement disappears unless both of
the causal influences from Alice to Bob and from Bob to
Alice are present. The proof is given in Sec. V D 5. Due to
this property, the nonvanishing spin correlations when
spins are spacelike separated is not genuine quantum
correlation. Indeed the reduced density matrix of the final
state becomes a mixture of product states like (30). Such a
separable density matrix can be prepared by LOCC, and
hence, no quantum field is necessary in principle.
Therefore, the observation of such spin correlations cannot
be regarded as evidence of the quantum gravity effect in the
BMVexperiment. Nevertheless, the spin correlation attrib-
uted to the Keldysh function connecting Alice’s spin and
Bob’s spin is a manifestation of the quantum nature of the
field, namely, the vacuum fluctuations. Thus, when the
causal influence between Alice and Bob is absent, even
though the spin correlations could be generated by LOCC,
they are actually generated by quantum field theoretical
interactions.

While these two types of Green’s functions play different
roles as above, their effects are constrained by various
trade-off relations. Our system is composed of Alice’s spin,
Bob’s spin, and the field. In the Newtonian limit, the field is
decoupled. Then, Alice’s visibility of the interference and
Bob’s distinguishability of Alice’s z-spin satisfy a relation
in (27). This relation becomes an inequality when we take
the dynamical effects of the quantum field into account,
given in (73) and called wave particle duality. Note that
both quantities of the visibility and the distinguishability
are written only in terms of the correlation between Alice’s
and Bob’s spin, and all the information of the field is
abandoned. In order to take the effects of fields into
account, we introduced mutual informations among
Alice, Bob, and the field in Sec. IVG and their trade-off
relations similar to the wave particle duality given in (95) in
Sec. IV H. From the trade-off relations, it follows that the
particle creation is necessary for the spin correlation to be
generated when Alice and Bob are spacelike separated as in
Secs. V C and V D. We also obtained an upper bound (94)
on the visibility from the trade-off inequality (90), and
argued that, in some cases, this upper bound on the
visibility can be stronger than the one from the wave
particle duality as explicitly seen in Figs. 9 and 17.
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APPENDIX A: PATH-INTEGRAL
FORMULATION ON CTP

Here, we apply the path-integral technique to compute
the reduced density matrix used in [19] to the system with
the Hamiltonian (2), briefly reviewing the Keldysh formal-
ism on the closed time path (CTP).

1. Propagators

First, we introduce various propagators to be used in the
CTP or Keldysh formalism. For the free, real scalar field
described by Hϕ in (2) without any source terms, there are
two quantities; the retarded/advanced Green’s function (44)
and the Keldysh function (47) on the vacuum state jΩiϕ,

GRðx; yÞ ¼ GAðy; xÞ
¼ iθðx0 − y0ÞhΩj½ϕ̂ðxÞ; ϕ̂ðyÞ�jΩiϕ; ðA1Þ

GKðx; yÞ ¼
1

2
hΩjfϕ̂ðxÞ; ϕ̂ðyÞgjΩiϕ; ðA2Þ
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which are purely real. From these two, one can construct
the spectral function,

Gρðx; yÞ ¼ GRðx; yÞ −GAðx; yÞ ¼ ihΩj½ϕ̂ðxÞ; ϕ̂ðyÞ�jΩiϕ;
ðA3Þ

the Wightman functions,

G≶ðx; yÞ ¼ GKðx; yÞ �
i
2
Gρðx; yÞ; ðA4Þ

the time-ordered propagator,

GTðx; yÞ ¼ GKðx; yÞ − signðx0 − y0Þ i
2
Gρðx; yÞ; ðA5Þ

and the antitime ordered propagator, GT̃ðx; yÞ ¼
½GTðx; yÞ��. It is also convenient to define the path ordered
propagator on the CTP, C ¼ C1 þ C2, sketched in Fig. 19,

GCðx; yÞ ¼ GKðx; yÞ − signCðx0 − y0Þ i
2
Gρðx; yÞ; ðA6Þ

where signCðx0 − y0Þ is the sign function on the CTP: if x0

is ahead of (behind) y0 in terms of the path C, it gives þ1
(−1). It can be written with the 2 × 2 matrix notation as

GCðx; yÞ ¼
�
GTðx; yÞ G<ðx; yÞ
G>ðx; yÞ GT̃ðx; yÞ

	

¼
�−i=2 1

i=2 1

	�
0 GAðx; yÞ

GRðx; yÞ GKðx; yÞ

	

×

�−i=2 −i=2
1 1

	
; ðA7Þ

where the ði; jÞ component is for the arguments x and y
being on Ci and Cj, respectively.

2. Computing reduced density matrix

Let us consider an initial state at t ¼ ti,

ρ̂ABϕðtiÞ ¼ ρ̂ABðtiÞ ⊗ jΩiϕhΩj; ðA8Þ

where jΩiϕ is field’s ground state with λA ¼ λB ¼ 0 and
ρ̂ABðtiÞ is an arbitrary density matrix of the two spin system

at the initial time ti. The density matrix of the total system
at some time t0 is obtained as

ρ̂ABϕðt0Þ ¼ Ûðt0; tiÞρ̂ABϕðtiÞÛðt0; tiÞ†; ðA9Þ

where Ûðt0; tiÞ ¼ T expf−i R t0
ti
dtĤðtÞg is the time evolu-

tion operator. Assuming that by this time both Alice
and Bob have turned off the spin-field interaction:
t0 > maxftAoff ; tBoffg, we trace out the field ϕ to define the
reduced density matrix:

ρ̂AB ¼ trϕfÛðt0; tiÞρ̂ABϕðtiÞÛðt0; tiÞ†g: ðA10Þ

Note that it does not depend on t0 for the assumption
t0 > maxftAoff ; tBoffg since each spin has no dynamics on its
own. For later convenience, t0 is considered to be as large
as þ∞.
Noting the spins in Hamiltonian are diagonal in z-basis,

each matrix element can be written in the form of

hσA1 σB1 jρ̂ABjσA2 σB2 i ¼ fðσA1 ; σB1 ; σA2 ; σB2 Þ × Z½J1; J2�; ðA11Þ

where

fðσA1 ; σB1 ; σA2 ; σB2 Þ ≔ hσA1 σB1 jρ̂ABðtiÞjσA2 σB2 i ðA12Þ

and

Z½J 1;J 2� ¼ hΩjÛϕðt0; ti; J2Þ†Ûϕðt0; ti; J1ÞjΩiϕ ðA13Þ

with the time evolution operator defined by (40) with the
“source” Ji originated from the interaction between the
field and the spins (41). It is written in the path-integral
form on the closed time path (CTP) as

Z½J1; J2� ¼
Z

dϕi1

Z
dϕi2hϕi1jjΩiϕhΩjjϕi2i

× KC½ϕi2; J2;ϕi1; J1� ðA14Þ

with

KC½ϕi2; J2;ϕi1; J1�

≔
Z

dϕ0hϕi2jÛϕðt0; ti; J2Þ†jϕ0ihϕ0jÛϕðt0; ti; J1Þjϕi1i

¼
Z

dϕ0
Z

ϕ1ðt0Þ¼ϕ0

ϕ1ðtiÞ¼ϕi1

Dϕ1

Z
ϕ2ðt0Þ¼ϕ0

ϕ2ðtiÞ¼ϕi2

Dϕ2

× exp
�
i
Z

t0

ti

dtL½ϕ1; J1� − i
Z

t0

ti

dtL½ϕ2; J2�
�

¼
Z

ϕ2ðtiÞ¼ϕi2

ϕ1ðtiÞ¼ϕi1

DϕC exp

�
i
Z
C
dtL½ϕC; JC�

�
: ðA15Þ

Here, C ¼ C1 þ C2 is the CTP sketched in Fig. 19 and

FIG. 19. Closed time path C ¼ C1 þ C2. Each of the time
arguments x0 and y0 of the propagator GCðx; yÞ is either on
the forward path C1 or on the backward path C2.
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ϕC ¼
�
ϕ1 on C1
ϕ2 on C2

; JC ¼
�
J1 on C1
J2 on C2

; ðA16Þ

which appear in the Lagrangian

L½ϕ; J� ¼
Z

d3x

�
−
1

2
ð∂ϕÞ2 −m2

2
ϕ2 þ Jϕ

	
ðA17Þ

in the last line.
Since there is no nonlinear interaction here, the path-

integral in (A14) can be exactly evaluated. The propagator

GC defined in (A6) satisfies ð∂2x−m2ÞGCðx;yÞ¼ iδð4ÞC ðx−yÞ
with the vacuum initial boundary condition, where

δð4ÞC ðx − yÞ is the delta function on CTP. With this propa-
gator, we have

lnZ½J1;J2� ¼−
1

2

Z
C
d4xd4yJCðxÞGCðx;yÞJCðxÞ

¼þ1

2

Z
d4xd4yðJrðxÞ iJaðxÞÞ

×

�
0 GAðx;yÞ

GRðx;yÞ GKðx;yÞ

	�
JrðxÞ
iJaðxÞ

	
ðA18Þ

with

JrðxÞ ¼
J1ðxÞ þ J2ðxÞ

2

¼ σAr λAðx0Þδð3Þðx − xAÞ þ σBr λBðx0Þδð3Þðx − xBÞ;
JaðxÞ ¼ J1ðxÞ − J2ðxÞ

¼ σAa λAðx0Þδð3Þðx − xAÞ þ σBa λBðx0Þδð3Þðx − xBÞ;
ðA19Þ

where σA;Br ¼ ðσA;B1 þ σA;B2 Þ=2 and σA;Ba ¼ σA;B1 − σA;B2 .
Specifying the initial state ρ̂ABðtiÞ in (A8) to be (3), we
have fðσA1 ; σB1 ; σA2 ; σB2 Þ ¼ 1=4. Then, the reduced density
matrix (37) or its Bloch representation (53) is reproduced.

APPENDIX B: CORRELATION
BETWEEN FIELD AND SPIN

In each limiting case in Sec. V, the correlations between
the field and the spin are discussed. Here, we obtain the
generating functional of the correlation functions. Let us
introduce external sources Jϕ1 and Jϕ2 for the field in the
time evolution as

Ûðt0; ti; Jϕi Þ ¼ T exp

�
−i

Z
t0

ti

dtĤðtÞ

þ i
Z

t0

ti

dt
Z

d3xJϕi ðt; xÞϕ̂ðxÞ
�
; ðB1Þ

and define

ρ̂J
ϕ

AB ¼ trϕfÛðt0; ti; Jϕ1 Þρ̂ABϕðtiÞÛðt0; ti; Jϕ2 Þ†g ðB2Þ

instead of (A10). Each matrix element is written in the
form of

hσA1 σB1 jρ̂J
ϕ

ABjσA2 σB2 i¼fðσA1 ;σB1 ;σA2 ;σB2 Þ×Z½J 1;J 2�; ðB3Þ

where

J iðxÞ ≔ JiðxÞ þ Jϕi ðxÞ: ðB4Þ

Z½J 1;J 2� can be computed in the same manner as
Z½J1; J2�, and we get

lnZ½J 1;J 2� ¼−
1

2

Z
C
d4xd4yJ CðxÞGCðx;yÞJ CðxÞ

¼þ1

2

Z
d4xd4yðJ rðxÞ iJ aðxÞÞ

×

�
0 GAðx;yÞ

GRðx;yÞ GKðx;yÞ

	�
J rðyÞ
iJ aðyÞ

	
; ðB5Þ

where

J rðxÞ ¼
J 1ðxÞ þ J 2ðxÞ

2
¼ JrðxÞ þ Jϕr ðxÞ;

J aðxÞ ¼ J 1ðxÞ − J 2ðxÞ ¼ JaðxÞ þ Jϕa ðxÞ: ðB6Þ

The linear combinations of the external sources, Jϕr ≔
ðJϕ1 þ Jϕ2 Þ=2 and Jϕa ≔ Jϕ1 − Jϕ2 , come with ϕr ≔ ðϕ1 þ
ϕ2Þ=2 and ϕa ≔ ϕ1 − ϕ2 as

iJϕ1ϕ1 − iJϕ2ϕ2 ¼ iJϕaϕr þ iJϕr ϕa ðB7Þ

in Z as seen in (A15). Therefore, differentiating Z½J 1;J 2�
with respect to iJϕa=r is equivalent to inserting ϕr=a, and thus,
the density matrix (B2) with the external sources are the
generating functional of the correlation functions of the
field and the spins. For instance, we have

trfρ̂ABσAz ϕ̂ðxÞgΣf
¼ δ

iδJϕa ðxÞ
trfρ̂JϕABσAz g






Jϕ¼0

; ðB8Þ

where x ¼ ðtf ; xÞ is a spacetime point on the time slice Σf
before which both Alice and Bob have turned off their
spin-field interactions; see the comment below (A10).
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It is convenient to put it in the Bloch representation as

ρ̂J
ϕ

AB ¼ exp

�
−
1

2
Ja · GK · Ja þ iJa ·GR · Jr

�

×
1

4

X
u;v¼0;x;y;z

CJ
uvσ̂

A
u σ̂

B
v ; ðB9Þ

where “·” abbreviates the spacetime integration:
Ja ·GK · Ja ¼

R
d4xd4yJaðxÞGKðx; yÞJaðyÞ, for instance.

In the body of the paper, we are interested in correlations
between the field and each spin with the initial state of the
spins given by (3). For Alice’s spin, we need the following
components in (B9) to differentiate with respect to iJϕa ,

CJ
x0 ¼ Cx0 cosð2iJϕa ·ΦðAÞ

K Þ coshðiJϕa ·ΦðBÞ
R Þ

þ Cyz sinð2iJϕa ·ΦðAÞ
K Þ sinhðiJϕa ·ΦðBÞ

R Þ;
CJ
y0 ¼ −Cx0 sinð2iJϕa ·ΦðAÞ

K Þ coshðiJϕa ·ΦðBÞ
R Þ

þ Cyz cosð2iJϕa ·ΦðAÞ
K Þ sinhðiJϕa ·ΦðBÞ

R Þ;
CJ
z0 ¼ coshðiJϕa ·ΦðBÞ

R Þ sinhðiJϕa ·ΦðAÞ
R Þ ðB10Þ

with Cx0 and Cyz defined in (56), where

ΦðAÞ
K ðt0Þ ≔

Z
dtGKðt0 − t; x0 − xAÞλAðtÞ;

ΦðAÞ
R ðt0Þ ≔

Z
dtGRðt0 − t; x0 − xAÞλAðtÞ; ðB11Þ

in addition, ΦðBÞ
K ðt0Þ and ΦðBÞ

R ðt0Þ are defined in the same
manner. Note that why Jϕr is absent in (B10) is that
Jϕi ðxÞ ¼ 0 is assumed for x0 < maxftAoff ; tBoffg because,
here, we are only interested in correlations between the
field and each spin after both Alice and Bob turned off their
spin-field interactions. For correlations between the field
and Bob’s spin, we need CJ

0x, C
J
0y, and C

J
0z which are given

by the above CJ
x0, CJ

y0, and CJ
z0 with the replacement

ðA;BÞ → ðB;AÞ applied.

APPENDIX C: PARTICLE CREATION
AND PROPAGATOR

In the presence of time-dependent external sources,
particles are created in general. Here, we formulate a
computation of the number of particles created and its
correlation with the spin operators, based on the
Hamiltonian formalism which is more intuitive than the
path-integral one. We first consider a single harmonic
oscillator and then extend the discussion to the scalar field
case. Finally, we couple the field to the spin variables s as in
the body of the paper and compute correlations between the
spin operators and the number of particles created.

1. Harmonic oscillator

Suppose a system is governed by the Hamiltonian
Ĥ ¼ Ĥ0 þ Ĥs with

Ĥ0 ¼
p̂2

2
þ ω2x̂2

2
¼ ω

�
N̂ þ 1

2

	
; ðC1Þ

Ĥs ¼ −JðtÞx̂ ¼ −JðtÞ âþ â†ffiffiffiffiffiffi
2ω

p : ðC2Þ

x̂ and p̂ denote the position and the momentum operators of
a harmonic oscillator with frequency ω. Its mass is set to be
unity here. The number operator N̂ ¼ â†â is constructed
from the annihilation operator â ¼ ðωx̂þ ip̂Þ= ffiffiffiffiffiffi

2ω
p

and
the creation operator â† ¼ ðωx̂ − ip̂Þ= ffiffiffiffiffiffi

2ω
p

. We assume the
external source JðtÞ is zero at the initial time t ¼ ti and the
system is in the ground state j0i defined by âj0i ¼ 0.
It is convenient to take the interaction picture where

operators evolve in time with U0ðt;tiÞ¼expf−iðt−tiÞĤ0g
as ÔIðt; tiÞ ¼ Û0ðt; tiÞ†ÔU0ðt; tiÞ and the state evolves
with ÛIðt; tiÞ ¼ T expf−i R t

ti
dt0ĤIðt0Þg where

ĤIðtÞ ≔ Û0ðt; tiÞ†ĤsU0ðt; tiÞ ¼ −JðtÞxIðtÞ; ðC3Þ

xIðtÞ ¼
âe−iωðt−tiÞ þ â†eþiωðt−tiÞffiffiffiffiffiffi

2ω
p : ðC4Þ

Since N̂IðtÞ ¼ Û0ðt; tiÞ†N̂Û0ðt; tiÞ ¼ N̂, we obtain the
number of particles at t ¼ tf as

hΨf jN̂jΨfi ¼ h0jÛIðtf ; tiÞ†N̂ÛIðtf ; tiÞj0i ¼ jAj2; ðC5Þ

where

A ¼ i
Z

tf

ti

dtJðtÞ e
þiωðt−tiÞffiffiffiffiffiffi

2ω
p : ðC6Þ

This can be proved by noting

½â; ÛIðtf ; tiÞ� ¼ AÛIðtf ; tiÞ: ðC7Þ

The number of particles (C5) can be rewritten as

hΨf jN̂jΨfi ¼
Z

tf

ti

dt
Z

tf

ti

dt0JðtÞG>ðt − t0ÞJðt0Þ

¼
Z

tf

ti

dt
Z

tf

ti

dt0JðtÞGKðt − t0ÞJðt0Þ; ðC8Þ

where

G>ðt − t0Þ ≔ h0jx̂IðtÞx̂Iðt0Þj0i ¼
e−iωðt−t0Þ

2ω
ðC9Þ
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is the Wightman function for a harmonic oscillator and its
symmetric part is the Keldysh function,

GKðt− t0Þ≔ h0jfx̂IðtÞ; x̂Iðt0Þgj0i
2

¼ cosðωðt− t0ÞÞ
2ω

: ðC10Þ

The expectation values of N̂n with n ≥ 2 can be
computed in the same manner. For example,

hΨf jN̂2jΨfi ¼ hΨf jâ†â†â â jΨfi þ hΨf jN̂jΨfi; ðC11Þ

where the first term is given by

h0jÛIðtf ; tiÞ†â†â†â â Ûðtf ; tiÞj0i ¼ ðjAj2Þ2 ¼ hΨf jN̂jΨfi2:
ðC12Þ

2. Free scalar field

The free scalar field is nothing but the sum of infinitely
many harmonic oscillators:

ϕ̂ðxÞ ¼
Z

d3k
ð2πÞ3 ϕ̂ðkÞe

þik·x; ðC13Þ

ϕ̂ðkÞ ¼ âk þ â†−kffiffiffiffiffiffiffiffi
2ωk

p ; ðC14Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jkj2

p
with m being field’s mass. Now,

we suppose the system is governed by the Hamiltonian
Ĥ ¼ Ĥ0 þ Ĥs with

Ĥ0 ¼
Z

d3k
ð2πÞ3 ωk

�
N̂k þ

1

2

	
; ðC15Þ

Ĥs ¼ −
Z

d3k
ð2πÞ3 J̃ðt;−kÞϕ̂ðkÞ: ðC16Þ

Here, Ĥ0 is the same as Ĥϕ in (2) and N̂k ¼ â†kâk is the
number density operator of particle with momentum k. On
the other hand, Ĥs is the external source term and J̃ðt; kÞ is
a Fourier component of the external source Jðt; xÞ:

Jðt; xÞ ¼
Z

d3k
ð2πÞ3 J̃ðt; kÞe

þik·x: ðC17Þ

Note that J̃�ðt;−kÞ ¼ J̃ðt; kÞ for Jðt; xÞ to be real.
In the interaction picture, the field operator becomes

ϕ̂Iðt; kÞ ¼
âke−iωkðt−tiÞ þ â†−ke

þiωkðt−tiÞffiffiffiffiffiffiffiffi
2ωk

p ; ðC18Þ

and the interaction Hamiltonian is given by

ĤIðtÞ ¼ −
Z

d3k
ð2πÞ3 J̃ðt;−kÞϕ̂Iðt; kÞ: ðC19Þ

Then, we get

Ak ¼ i
Z

tf

ti

dtJ̃ðt; kÞ e
þiωkðt−tiÞffiffiffiffiffiffiffiffi
2ωk

p : ðC20Þ

As in the harmonic oscillator case, the operator measuring
the number of particles created

N̂ ¼
Z

d3k
ð2πÞ3 â

†
kâk ðC21Þ

itself does not evolve in the interaction picture: N̂IðtÞ ¼ N̂.
Therefore, starting from the vacuum initial state jΩiϕ,
we find

hΨf jN̂jΨfi ¼ hΩjÛIðtf ; tiÞ†N̂ÛIðtf ; tiÞjΩiϕ ¼
Z

d3k
ð2πÞ3 jAkj2 ¼

Z
tf

ti

dt
Z

tf

ti

dt0
Z

d3k
ð2πÞ3 J̃ðt;−kÞ

e−iωkðt−t0Þ

2ωk
J̃ðt0; kÞ

¼
Z

tf

ti

dt
Z

tf

ti

dt0
Z

d3x
Z

d3x0Jðt; xÞG>ðt − t0; x − x0ÞJðt0; x0Þ

¼
Z

tf

ti

dt
Z

tf

ti

dt0
Z

d3x
Z

d3x0Jðt; xÞGKðt − t0; x − x0ÞJðt0; x0Þ; ðC22Þ

where

G>ðt − t0; x − x0Þ ≔ hΩjϕ̂Iðt; xÞ; ϕ̂Iðt0; x0ÞjΩiϕ

¼
Z

d3k
ð2πÞ3

e−iωkðt−t0Þ

2ωk
eþik·ðx−x0Þ ðC23Þ

is the Wightman function and

GKðt−t0;x−x0Þ≔hΩjfϕ̂Iðt;xÞ;ϕ̂Iðt0;x0ÞgjΩiϕ
2

¼
Z

d3k
ð2πÞ3

cosðωkðt−t0ÞÞ
2ωk

eþik·ðx−x0Þ ðC24Þ
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is the Keldysh Green’s function for the free field,

ϕ̂Iðt; xÞ ≔
Z

d3k
ð2πÞ3

âke−iωkðt−tiÞþik·x þ â†ke
þiωkðt−tiÞ−ik·xffiffiffiffiffiffiffiffi

2ωk
p :

ðC25Þ

In the body of paper, the subscript “I” of ϕ̂Iðt; xÞ is dropped,
see Footnote 3 in Sec. IVA.
The expectation values of N̂n with n ≥ 2 can be

computed similarly. For instance,

hΨf jN̂2jΨfi ¼ ðhΨf jN̂jΨfiÞ2 þ hΨf jN̂jΨfi; ðC26Þ

where the first term is calculated as

Z
d3k
ð2πÞ3

Z
d3k0

ð2πÞ3 hΩjÛIðtf ; tiÞ†â†kâ†k0 âk0 âkÛðtf ; tiÞjΩiϕ

¼
�Z

d3k
ð2πÞ3 jAkj2

�
2

¼ ðhΨf jN̂jΨfiÞ2: ðC27Þ

3. Free scalar field coupled with spin

Now, let us identify Ĥs in (C16) as the spin-field
interaction ĤA þ ĤB in (2). Then the current becomes
operators acting on the spin variables,

Jðt; xÞ ¼ σ̂Az λAðtÞδð3Þðx − xAÞ þ σ̂Bz λBðtÞδð3Þðx − xBÞ;
ðC28Þ

which is an operator acting on spins’ Hilbert space. Note
that σ̂Az and σ̂Bz commute with the free-field Hamiltonian
Ĥ0 ¼ Ĥϕ, and the operator in the interaction picture is the
same as in the Schrödinger picture; σ̂A;BzI ¼ σ̂A;Bz . It is also
true for other components of the spin. Therefore, (C20) is
replaced by an operator acting on the spin variables,

Ak ¼ i
Z

tf

ti

dt
eþiωkðt−tiÞffiffiffiffiffiffiffiffi

2ωk
p ðσ̂Az λAðtÞe−ik·xA þ σ̂Bz λBðtÞe−ik·xBÞ:

ðC29Þ

With the initial state jΨii given in (2), the number of
particles created due to the nonadiabaticity is computed as

hΨf jN̂jΨfi ¼ hΨijÛIðtf ; tiÞ†N̂ÛIðtf ; tiÞjΨii ¼
Z

d3k
ð2πÞ3 hΨijÛIðtf ; tiÞ†A†

kAkÛIðtfÞjΨii

¼
X

X;X0¼A;B

Z
tf

ti

dt
Z

tf

ti

dt0hσ̂Xz σ̂X0
z iλXðtÞG>ðt − t0; xX − xX0 ÞλX0 ðt0Þ

¼
X

X¼A;B

Z
tf

ti

dt
Z

tf

ti

dt0λXðtÞGKðt − t0; 0ÞλXðt0Þ ¼ GAA
K þGBB

K : ðC30Þ

On the third equality, we have used ðσ̂Az Þ2 ¼ ðσ̂Bz Þ2 ¼ 1 and hσ̂Az σ̂Bz i ¼ trfρ̂ABσ̂Az σ̂Bz g ¼ 0 with the initial state of the spins
given by (3) as seen in (56). In the same manner, we find

hΨf jN̂2jΨfi ¼ hΨf j∶N̂2∶ jΨfi þ hΨf jN̂jΨfi; ðC31Þ

where the first term is given by

hΨf j∶N̂2∶jΨfi ¼
Z

d3k
ð2πÞ3

Z
d3k0

ð2πÞ3 hΨijÛIðtf ; tiÞ†A†
kA

†
k0Ak0AkÛIðtf ; tiÞjΨii

¼
X

X;X0;Y;Y0¼A;B

Z
tf

ti

du
Z

tf

ti

du0
Z

tf

ti

dv
Z

tf

ti

dv0hσ̂Yz σ̂Xz σ̂X0
z σ̂Y

0
z i

× λXðuÞG>ðu − u0; xX − xX0 ÞλX0 ðu0ÞλYðvÞG>ðv − v0; xY − xY0 ÞλY0 ðv0Þ
¼ ðGAA

K þGBB
K Þ2 þ 4ðGBA

K Þ2: ðC32Þ

It can be easily shown by noting that, due to hσ̂Az σ̂Bz i ¼ 0, four spin correlations vanish unless two of them are A and the
other two are B, or all four of them are A or B. The statement is expressed by the following equality,

σ̂Yz σ̂
X
z σ̂

X0
z σ̂Y

0
z ¼ δXX0δYY0 þ 4δXðAδBÞX0δYðAδBÞY0 þ 2ðδXX0δYðAδBÞY0 þ δYY0δXðAδBÞX0 Þσ̂Az σ̂Bz : ðC33Þ

Here, δXðAδBÞX0 ≔ ðδXAδBX0 þ δXBδAX0 Þ=2.
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4. Correlation between spin and number of particles

One can compute the correlation functions between the spin and the number of particles in the same way as above. For
instance, inserting σ̂AwI ¼ σ̂Aw , we get

hΨf jσ̂AwN̂jΨfi ¼
Z

d3k
ð2πÞ3 hΨijÛIðtf ; tiÞ†A†

kσ̂
A
wAkÛIðtfÞjΨii

¼
X

X;X0¼A;B

Z
tf

ti

dt
Z

tf

ti

dt0hσ̂Xz σ̂Aw σ̂X0
z iλXðtÞG>ðt − t0; xX − xX0 ÞλX0 ðt0Þ: ðC34Þ

Most of the terms in the expectation value of

σ̂Xz σ̂
A
w σ̂

X0
z ¼ 2δwzδXAδX0Aσ̂

A
z þ 2δwzδXðAδBÞX0 σ̂Bz þ ðδXBδX0B − δXAδX0AÞσ̂Aw þ 2iϵwvzδX½AδB�X0 σ̂Av σ̂

B
z ðC35Þ

vanish because of the initial state (3) assumed here, see (56). Here, δX½AδB�X0 ¼ ðδXAδBX0 − δXBδAX0 Þ=2, and ϵwvu denotes
the totally antisymmetric tensor with ϵxyz ¼ þ1. Therefore,

hΨf jσ̂Ax N̂jΨfi ¼ ðGBB
K −GAA

K Þhσ̂Ax i þ ðGAB
R −GBA

R Þhσ̂Ay σ̂Bz i; hΨf jσ̂Ay N̂jΨfi ¼ 0; hΨf jσ̂Az N̂jΨfi ¼ 0: ðC36Þ

For the correlations with Bob’s spin, one can simply make the replacement ðA;BÞ → ðB;AÞ.
Similarly, we find

hΨf jσ̂Aw∶ N̂2∶jΨfi ¼
Z

d3k
ð2πÞ3

Z
d3k0

ð2πÞ3 hΨijÛIðtf ; tiÞ†A†
kA

†
k0 σ̂

A
wAk0 ðtfÞAkÛIðtf ; tiÞjΨii

¼
X

X;X0;Y;Y0¼A;B

Z
tf

ti

du
Z

tf

ti

du0
Z

tf

ti

dv
Z

tf

ti

dv0hσ̂Yz σ̂Xz σ̂Aw σ̂X0
z σ̂Y

0
z i

× λXðuÞG>ðu − u0; xX − xX0 ÞλX0 ðu0ÞλYðvÞG>ðv − v0; xY − xY0 ÞλY0 ðv0Þ; ðC37Þ

where most of the terms in the expectation value of

σ̂Yz σ̂
X
z σ̂

A
w σ̂

X0
z σ̂Y

0
z ¼ 8δzwδXðAδBÞYδX0ðAδBÞY0 σ̂Az þ 2δzwðδX0Y0δXðAδBÞY þ δXYδX0ðAδBÞY0 Þσ̂Bz

þ ðδXYδX0Y0 − 4δXðAδBÞYδX0ðAδBÞY0 Þσ̂Aw þ 2iϵwvzðδX0Y0δXðAδBÞY − δXYδX0ðAδBÞY0 Þσ̂Av σ̂Bz ðC38Þ

vanish with the initial state (3) assumed. Then,

hσ̂Ax ∶N̂2∶i ¼ ððGBB
K −GAA

K Þ2 − ðGAB
R −GBA

R Þ2Þhσ̂Ax i
þ 2ðGAB

R −GBA
R ÞðGBB

K −GAA
K Þhσ̂Ay σ̂Bz i;

hσ̂Ay ∶N̂2∶i ¼ 0; hσ̂Az ∶N̂2∶i ¼ 0: ðC39Þ

Again, one can make the replacement ðA;BÞ → ðB;AÞ to
obtain the correlations with Bob’s spin.

APPENDIX D: TIME INTEGRATION
OF PROPAGATOR

The reduced density matrix (53) and various quantities
obtained from it are all given as functions of G’s defined
in (43) and (46). Here, we present explicit forms ofG’s and
their numerical values used to draw Figs. 14 and 16. As a
function of s ≔ ðt − t0Þ2 − jx − x0j2, the retarded Green’s
function of the source-free field defined in (44) is written as

GRðx; x0Þ ¼
−m
4π

ffiffiffi
s

p J1ðm
ffiffiffi
s

p Þ þ δðsÞ
2π

for s ≥ 0; ðD1Þ

and it vanishes for s < 0 reflecting the relativistic causality.
Here, Jα is the Bessel function of the first kind. The
Keldysh function (47) can be written as

GKðx; x0Þ ¼
1

2

m
2π2

×

�
s−1=2ðπ=2ÞY1ðm

ffiffiffi
s

p Þ for s ≥ 0

ð−sÞ−1=2K1ðm
ffiffiffiffiffiffi
−s

p Þ for s < 0
;

ðD2Þ

where Yα is the Bessel function of the second kind and Kα

is the modified Bessel function of the second kind.
AlthoughGK itself is divergent at s ¼ 0, an integration over
s ¼ 0 gives a finite number since ðπ=2ÞY1ðxÞ=K1ðxÞ → −1
for x ↘ 0. Then, it is convenient to express it in terms of
Fourier modes as
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GKðx; x0Þ ¼
Z

d3k
ð2πÞ3

cosðωkðt − t0ÞÞ
2ωk

eik·ðx−x0Þ

¼ 2−1

2π2

Z
∞

0

dk
k2

ωk
cosðωkðt − t0ÞÞ sinðkjx − x0jÞ

kjx − x0j :

ðD3Þ

For the time dependence of the couplings, we assume a
simple form

λAðtÞ ¼ λ̄A

�
θðtAoff − tÞθðt − t̃AoffÞ

tAoff − t
TA
off

þ θðt̃Aoff − tÞθðt − t̃AonÞ

þ θðt̃Aon − tÞθðt − tAonÞ
t − tAon
TA
on

�
; ðD4Þ

where TA
off ¼ tAoff − t̃Aoff ≥ 0, TA

on ¼ t̃Aon − tAon ≥ 0 and
TA ¼ t̃Aoff − t̃Aon ≥ 0, as sketched in Fig. 6. Bob’s one
λBðtÞ is defined by replacing “A” with “B.” Then, GR’s
are numerically evaluated simply by plugging (D1) and
(D2) into the definitions in (44) and implementing the time
integration. On the other hand, for GK’s, the time integra-
tion is analytically done with the expression (D3) plugged
in the definition (46):

GBA
K ¼ λ̄Aλ̄B

4π2

Z
dk

k2

ω3
k

sinðkDÞ
kD

× IkðTA
off ; T

A
on; tAoff ; t

A
on;TB

off ; T
B
on; tBoff ; t

B
onÞ ðD5Þ

with

IkðTA
off ;T

A
on;tAoff ;t

A
on;TB

off ;T
B
on;tBoff ;t

B
onÞ≔

4ω−2
k

TA
offT

B
off

sin

�
ωkTA

off

2

	
sin

�
ωkTB

off

2

	
cos

�
ωkðtAoff−tBoffÞ−ωk

TA
off−TB

off

2

	

þ 4ω−2
k

TA
onTB

on
sin

�
ωkTA

on

2

	
sin

�
ωkTB

on

2

	
cos

�
ωkðtAon−tBonÞþωk

TA
on−TB

on

2

	

−
4ω−2

k

TA
offT

B
on
sin

�
ωkTA

off

2

	
sin

�
ωkTB

on

2

	
cos

�
ωkðtAoff−tBonÞ−ωk

TA
offþTB

on

2

	

−
4ω−2

k

TA
onTB

off

sin

�
ωkTA

on

2

	
sin

�
ωkTB

off

2

	
cos

�
ωkðtAon−tBoffÞþωk

TA
onþTB

off

2

	
; ðD6Þ

and

GAA
K ¼ λ̄Aλ̄B

4π2

Z
dk

k2

ω3
k

ĪkðTA
off ; T

A
on; tAoff ; t

A
onÞ ðD7Þ

with

ĪkðTA
off ;T

A
on; tAoff ; t

A
onÞ

≔ IkðTA
off ;T

A
on; tAoff ; t

A
on;TA

off ;T
A
on; tAoff ; t

A
onÞ

¼ 4ω−2
k

ðTA
offÞ2

sin2
�
ωkTA

off

2

	
þ 4ω−2

k

ðTA
onÞ2

sin2
�
ωkTA

on

2

	

−
8ω−2

k

TA
offT

A
on
sin

�
ωkTA

off

2

	
sin

�
ωkTA

on

2

	
cosðωkT̄AÞ; ðD8Þ

where T̄A ≔ TA þ ðTA
off þ TA

onÞ=2. Also, we get a similar
form for GBB

K . Then, the momentum integration is numeri-
cally implemented.
For Fig. 14 in Sec. V C, with the mass of scalar field m

set to be unity, parameters are chosen in such a way that
the system is symmetric under the swapping of λAðtÞ
and λBðtÞ; λ̄A ¼ λ̄B ¼ 1, TA

on ¼ TA
off ¼ TB

on ¼ TB
off ¼ 2,

TA ¼ TB ¼ 4, and tAon ¼ tBon. With these parameters, we
getGAA

K ¼ GBB
K ≃ 0.0125. The absolute values ofGBA

K and

GBA
R are plotted in Fig. 20. Note that, because of the

symmetry, we have GAB
R ¼ GBA

R . With D ¼ 0, we get
GBA

K ¼GAA
K ¼GBB

K , and then, the Robertson-Schrödinger
relation (99) saturates.

FIG. 20. The absolute value of GBA
K is plotted as a function of

the spatial distance D between Alice and Bob with the yellow
line. We have included the part withD < 8 where the system falls
within the region (I) in Fig. 6; the retarded Green’s functions
connecting Alice’s spin and Bob’s spin are nonvanishing.
Because of the symmetry, we have GAB

R ¼ GBA
R . Its absolute

value is plotted with the gray line.
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For Fig. 16 in Sec. V D, parameters are chosen as
follows: λ̄A ¼ λ̄B ¼ 1, TA

on ¼ ∞, TB
on ¼ TB

off ¼ 1,
TB ¼ 2, tAoff ¼ tBon þD − 1, and D ¼ 5, see Fig. 15.
With these parameters, we get GBB

K ≃ 0.037. GBA
R , GBA

K ,
andGAA

K are plotted in Fig. 21. It is checked that the ratio of
the left-hand side to the right-hand side of the inequality
(155) is always less than unity; for large TA

off , it becomes
∼2 × 10−4 and oscillates around it.

APPENDIX E: CONSISTENCY CONDITION
FROM NON-NEGATIVITY

Since the total system is governed by the well-defined
theory with the Hamiltonian (2), the reduced density

matrices are necessarily positive semidefinite. Here, let
us observe that the non-negativity of the density matrix (53)
for the initial state given by (2) requires an inequality
similar to the one (99) derived from the Robertson-
Schrödinger relation.
The eigenvalues of (53) are computed as (64). For

s1 ¼ þ1, the non-negativity is trivially satisfied. On the
other hand, for s1 ¼ −1, it turns out that

− s2½coshð4GBA
K Þ − cosð2ðGBA

R −GAB
R ÞÞ�

≤ ðγ−1A − γAÞðγ−1B − γBÞ=2
¼ 2 sinhð2GAA

K Þ sinhð2GBB
K Þ: ðE1Þ

This is trivially satisfied for s2 ¼ þ1. However, for
s2 ¼ −1, it becomes

cosð2ðGBA
R −GAB

R ÞÞ
≥ 1− 2½sinhð2GAA

K Þ sinhð2GBB
K Þ− sinh2ð2GBA

K Þ�: ðE2Þ

Note that, this is merely a consistency condition, and thus,
it can be confirmed by explicitly evaluating both sides with
the definitions (43) and (46).
Especially, for the case with GAA

K ;GBB
K ;GBA

K ≪ 1, the
consistency condition (E2) reads

1 − cosð2ðGBA
R −GAB

R ÞÞ ≤ 8ðGAA
K GBB

K − ðGBA
K Þ2Þ; ðE3Þ

which is guaranteed by the Robertson-Schrödinger inequal-
ity (99).

[1] S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M.
Toroš, M. Paternostro, A. Geraci, P. Barker, M. S. Kim, and
G. Milburn, Phys. Rev. Lett. 119, 240401 (2017).

[2] C. Marletto and V. Vedral, Phys. Rev. Lett. 119, 240402
(2017).

[3] U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić,
N. Kiesel, and M. Aspelmeyer, Science 367, 892 (2020).

[4] F. Tebbenjohanns, M. L. Mattana, M. Rossi, M. Frimmer,
and L. Novotny, Nature (London) 595, 378 (2021).

[5] T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly,
S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A.
Kasevich, Nature (London) 528, 530 (2015).

[6] Y. Y. Fein, P. Geyer, P. Zwick, F. Kiałka, S. Pedalino, M.
Mayor, S. Gerlich, andM.Arndt, Nat. Phys. 15, 1242 (2019).

[7] A. Mari, G. De Palma, and V. Giovannetti, Sci. Rep. 6,
22777 (2016).

[8] C. Anastopoulos and B.-L. Hu, arXiv:1804.11315.
[9] A. Belenchia, R. M. Wald, F. Giacomini, E. Castro-Ruiz, Č.

Brukner, and M. Aspelmeyer, Phys. Rev. D 98, 126009
(2018).

[10] M. Christodoulou and C. Rovelli, Phys. Lett. B 792, 64
(2019).

[11] D. L. Danielson, G. Satishchandran, and R. M. Wald, Phys.
Rev. D 105, 086001 (2022).

[12] M. Christodoulou, A. Di Biagio, M. Aspelmeyer, Č.
Brukner, C. Rovelli, and R. Howl, arXiv:2202.03368.

[13] V. Fragkos, M. Kopp, and I. Pikovski, AVS Quantum Sci. 4,
045601 (2022).

[14] M. Christodoulou, A. Di Biagio, R. Howl, and C. Rovelli,
Classical Quantum Gravity 40, 047001 (2023).

[15] L.-Q. Chen, F. Giacomini, and C. Rovelli, arXiv:2207.10592.
[16] A. Matsumura, Phys. Rev. D 104, 046001 (2021).
[17] Y. Sugiyama, A. Matsumura, and K. Yamamoto, Phys.

Rev. D 106, 125002 (2022).
[18] Y. Sugiyama, A. Matsumura, and K. Yamamoto, Phys. Rev.

D 106, 045009 (2022).
[19] Y. Hidaka, S. Iso, and K. Shimada, Phys. Rev. D 106,

076018 (2022).
[20] D. Carney, P. C. E. Stamp, and J. M. Taylor, Classical

Quantum Gravity 36, 034001 (2019).

FIG. 21. GBA
R plotted with the gray line and GBA

K plotted with
the yellow line decreases as ∼ðTA

offÞ−1, where TA
off is the time that

Alice takes to turn off the spin-field interaction. On the other
hand, GAA

K plotted with the dashed line decreases as ∼ðTA
offÞ−2.

HIDAKA, ISO, and SHIMADA PHYS. REV. D 107, 085003 (2023)

085003-34

https://doi.org/10.1103/PhysRevLett.119.240401
https://doi.org/10.1103/PhysRevLett.119.240402
https://doi.org/10.1103/PhysRevLett.119.240402
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1038/s41586-021-03617-w
https://doi.org/10.1038/nature16155
https://doi.org/10.1038/s41567-019-0663-9
https://doi.org/10.1038/srep22777
https://doi.org/10.1038/srep22777
https://arXiv.org/abs/1804.11315
https://doi.org/10.1103/PhysRevD.98.126009
https://doi.org/10.1103/PhysRevD.98.126009
https://doi.org/10.1016/j.physletb.2019.03.015
https://doi.org/10.1016/j.physletb.2019.03.015
https://doi.org/10.1103/PhysRevD.105.086001
https://doi.org/10.1103/PhysRevD.105.086001
https://arXiv.org/abs/2202.03368
https://doi.org/10.1116/5.0101334
https://doi.org/10.1116/5.0101334
https://doi.org/10.1088/1361-6382/acb0aa
https://arXiv.org/abs/2207.10592
https://doi.org/10.1103/PhysRevD.104.046001
https://doi.org/10.1103/PhysRevD.106.125002
https://doi.org/10.1103/PhysRevD.106.125002
https://doi.org/10.1103/PhysRevD.106.045009
https://doi.org/10.1103/PhysRevD.106.045009
https://doi.org/10.1103/PhysRevD.106.076018
https://doi.org/10.1103/PhysRevD.106.076018
https://doi.org/10.1088/1361-6382/aaf9ca
https://doi.org/10.1088/1361-6382/aaf9ca


[21] N. Huggett, N. Linnemann, and M. Schneider, arXiv:
2205.09013.

[22] B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996).
[23] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information: 10th Anniversary Edition (Cambridge
University Press, Cambridge, England, 2011), 10th ed.

[24] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[25] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[26] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.

Lett. A 223, 1 (1996).
[27] A. Bermudez, G. Aarts, and M. Müller, Phys. Rev. X 7,

041012 (2017).

[28] G. Martín-Vázquez, G. Aarts, M. Müller, and A. Bermudez,
PRX Quantum 3, 020352 (2022).

[29] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964).
[30] M.M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac,

Phys. Rev. Lett. 100, 070502 (2008).
[31] W. G. Unruh, arXiv:1110.2199.
[32] R. Colella, A.W. Overhauser, and S. A. Werner, Phys. Rev.

Lett. 34, 1472 (1975).
[33] P. Simidzija, R. H. Jonsson, and E. Martín-Martínez, Phys.

Rev. D 97, 125002 (2018).
[34] W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954).

ENTANGLEMENT GENERATION AND DECOHERENCE IN A TWO- … PHYS. REV. D 107, 085003 (2023)

085003-35

https://arXiv.org/abs/2205.09013
https://arXiv.org/abs/2205.09013
https://doi.org/10.1103/PhysRevLett.77.2154
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevX.7.041012
https://doi.org/10.1103/PhysRevX.7.041012
https://doi.org/10.1103/PRXQuantum.3.020352
https://doi.org/10.1103/PhysRevLett.100.070502
https://arXiv.org/abs/1110.2199
https://doi.org/10.1103/PhysRevLett.34.1472
https://doi.org/10.1103/PhysRevLett.34.1472
https://doi.org/10.1103/PhysRevD.97.125002
https://doi.org/10.1103/PhysRevD.97.125002
https://doi.org/10.1002/cpa.3160070404

