
Analog de Sitter universe in quantum Hall systems with an expanding edge

Yasusada Nambu 1,* and Masahiro Hotta2,†
1Department of Physics, Graduate School of Science, Nagoya University,

Chikusa, Nagoya 464-8602, Japan
2Department of Physics, Tohoku University, Sendai 980-8578, Japan

(Received 26 January 2023; accepted 16 March 2023; published 4 April 2023)

Expanding edges in quantum Hall systems can become a simulator of quantum 1þ 1 dimensional
expanding universes. In these systems, edge excitations are represented as a chiral scalar field in curved
spacetimes. We investigate Hawking radiation and entanglement behavior predicted by this model
assuming that the expansion law of the edge region corresponds to a de Sitter universe. As observable
quantities for the quantum field, local spatial modes associated with detection regions are introduced using
window functions for the field, and their correlations are evaluated. We found the impact of Hawking
radiation caused by the edge expansion on autocorrelation functions of the local modes, and confirmed that
entanglement death due to Hawking radiation occurs. This behavior of entanglement is related to “quantum
to classical transition” in cosmic inflations.
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I. INTRODUCTION

Analog models of gravitational systems are useful
to understand the physics of black holes and early
universe [1]. Indeed, although quantum aspects of black
hole evaporation with Hawking radiation has been paid
much attention theoretically, it is difficult to observe the
phenomena in our universe due to its too low temperature
for astrophysical black holes. Concerning cosmological
particle creations, it is hard to observe the occurrence
of this effect in the early stage of the universe directly.
However, considering condensed matter systems, it is
possible to design models with causal horizons for
excitations, which have similar properties as black hole
horizons or cosmological horizons for null rays in general
relativity. Thus it is possible to perform experiments of
analog Hawking radiation [2,3] and particle creations in
expanding universes in laboratories. Quantum Hall (QH)
systems can become one of such analog models [4–6].
A QH system emerges when a strong perpendicular
magnetic field is applied to two-dimensional electrons
when the Landau level filling factor becomes an integer or
a rational fraction [7,8]. The QH systems are typical
topological materials consisting of the bulk and edge.
In the bulk, the dynamics yields a large energy gap
in its dispersion relation. In the edge, the dispersion
relation of the edge current is protected owing to the
topological structure of the system, and the edge excita-
tions are always gapless. Thus the edge effective theories

are given by free field theories with a chiral condition,
and belong to a class of conformal field theory in 1þ 1
dimensional spacetime.
Most of all experiments of QH systems have been

performed in a static situation. The electrons are confined
in the bulk region by a static electric field created by the
surface potential of host semiconductors of the 2D elec-
trons and the edge attached to the bulk remains unchanged
in time. Expanding edges were proposed in [9] and
experimental realization is ongoing [10,11]; the edge
expands by gradually relaxing the external electric fields
through continuous electron supply into the bulk and the
excitations moving along the edge are affected by the
expansion. Thus, it is possible to perform experiments of
the quantum scalar field in an analog expanding universe.
In our previous paper [12], we formulated a quantum field
theory in 1þ 1 dimensional curved spacetime to analyze
the edge dynamics. It was shown that the expanding edges
can be regarded as expanding universe simulators of two-
dimensional dilaton-gravity models, and pointed out that
our theoretical setup can simulate the classical counterpart
of an analog Hawking radiation with Gibbons-Hawking
temperature from the future de Sitter horizon formed in the
expanding edge region.
In this paper, applying the formulation developed in our

previous paper [12], we investigate quantum aspects of the
scalar field in an expanding edge model which reproduces an
analog de Sitter universe. In particular, we focus on particle
creation in the analog de Sitter universe (Hawking radiation),
generation of quantum fluctuations by edge expansion, and
their entanglement behavior. We will show that the thermal
radiation with the Gibbons-Hawking temperature from the

*nambu@gravity.phys.nagoya-u.ac.jp
†hotta@tuhep.phys.tohoku.ac.jp

PHYSICAL REVIEW D 107, 085002 (2023)

2470-0010=2023=107(8)=085002(14) 085002-1 © 2023 American Physical Society

https://orcid.org/0000-0003-2596-4650
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.085002&domain=pdf&date_stamp=2023-04-04
https://doi.org/10.1103/PhysRevD.107.085002
https://doi.org/10.1103/PhysRevD.107.085002
https://doi.org/10.1103/PhysRevD.107.085002
https://doi.org/10.1103/PhysRevD.107.085002


expanding edge region is created and that it is detectable in a
static edge region. For this purpose, instead of introducing a
specific detector model to measure the Hawking radiation,
we define local spatial modes of the scalar field using
window functions and consider their correlations. Further-
more, we will also investigate the entanglement between
two spatial regions and show that it decreases by Hawking
radiation coming from the expanding edge region. We regard
this behavior as a feature corresponding to the disappearance
of quantumness of the primordial quantum fluctuations
expected in cosmic inflations [13–15]. Thus, our analog
de Sitter model can be available as a simulator of the early
universe to explore the generation mechanism and the
feature of primordial quantum fluctuations originated by
cosmic inflations.
The plan of the paper is as follows. In Sec. II, we review

our setup of the expanding edge of the QH systems and
an analog de Sitter universe. In Sec. III, we present the
behavior of classical wave propagation in the expanding
edge system. In Sec. IV, we formulate the quantum treat-
ment of edge excitations and investigate the behavior of
spatial local modes which are measurable in an experiment
of the QH system. In Sec. V, we discuss entanglement
between spatial modes. Section VI is devoted to summary
and speculation.

II. EXPANDING EDGE OF QUANTUM
HALL SYSTEM

Let us consider a massless scalar field φ on the edge
of QH systems. Based on the effective theory of the edge
excitations in QH systems [7,8], the edge mode is repre-
sented by a massless scalar field φ the wavelength of which
is 100 times larger than the magnetic length

lB ¼
ffiffiffiffiffiffi
ℏ
eB

r
; ð1Þ

where B is a perpendicular magnetic field. The edge current
and the edge charge density are given as derivatives of the
scalar field. We derive the wave equation for φ. The left
moving modes and the right moving modes of φ obey

∂τφL −
v

aðτÞ ∂xφL ¼ 0; ∂τφR þ v
aðτÞ ∂xφR ¼ 0; ð2Þ

where τ denotes a time variable in a laboratory, x is the
comoving coordinate along the edge and the proper length
along the edge is given by aðτÞ R dx. The scale factor aðτÞ
represents the expansion of the edge. Using the trapping
potential UðyÞ perpendicular to the edges of the QH
system, the propagation speed of the edge excitation v is
determined as

v ¼ cU0ðyÞ
eB

¼ cE
B

; ð3Þ

where E is the electric field induced by U. This propa-
gation speed of the edge excitation is the same as the
classical drift velocity of electrons. The solution of these
equations is

φL ¼ A

�
v
Z

dτ
a
þ x

�
; φR ¼ B

�
v
Z

dτ
a
− x

�
; ð4Þ

where A, B are arbitrary functions. The scalar field
φ ≔ φL þ φR obeys

φ̈þ _a
a
_φ −

v2

a2
∂
2
xφ ¼ 0; _¼ ∂

∂τ
: ð5Þ

This is the Klein-Gordon equation □φ ¼ 0 in a 1þ 1
dimensional expanding universe, the metric of which is
given by

ds2 ¼ −v2dτ2 þ a2ðτÞdx2: ð6Þ

The propagation speed of the edge excitation v plays
the same role as the speed of light c in general relativity
which determines causal structures of spacetimes. It is
possible to control the expansion law aðτÞ by tuning the
external trapping electric field for the edge region. We can
perform experiments of quantum physics of an early
universe using the analog expanding universe by analyz-
ing QH systems with an expanding edge. From now on,
we set v ¼ 1 and we use v as a unit of length and time in
our analog spacetimes. By introducing the conformal
time t ≔

R
dτ=a and null coordinates x� ≔ t� x, the

metric is written as the conformally flat form:

ds2 ¼ −a2dxþdx−: ð7Þ

The scalar field is represented as

φ ¼ φLðxþÞ þ φRðx−Þ: ð8Þ

For a given form of aðτÞ which represents the expansion
law of the edge region, it is possible to identify a
corresponding analog universe using the metric (7). In
the QH systems, either φL or φR is allowed due to the
boundary condition of QH systems.
In this paper, we consider an analog de Sitter universe

in our setup of the QH system. The left panel of Fig. 1
depicts a setup of our QH experiment with the expanding
edge of the QH system: the edge system is composed of
an input static region I (L=2 < x), an expanding region II
(−L=2 ≤ x ≤ L=2), and a output static region III
(x < −L=2). The analog metric of this system is written as
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ds2¼a2ðtÞð−dt2þdx2Þ;

aðtÞ¼
� 1

cosðHtÞθðtÞþθð−tÞ for −L=2≤x≤L=2 ðregion IIÞ;
1 forL=2< jxj ðregion I;IIIÞ;

ð9Þ

where θðtÞ is the Heaviside function. Using the proper time
τ ¼ R

t
0 dt

0aðt0Þ, the metric in region II is

ds2 ¼
�
−dτ2 þ cosh2ðHτÞdx2; for τ ≥ 0:

−dτ2 þ dx2; for τ < 0:
ð10Þ

Thus, we assume a spacetime that is flat Minkowski for
t < 0 and de Sitter expansion starts at t ¼ 0 in region II.
The global structure of this spacetime is shown in the right
panel of Fig. 1 with the parameter π=4 < LH < π=2. There
emerges formation of the future de Sitter horizon H þ in
region II. It is possible to obtain a relation between spatial
coordinates of regions I and II explicitly. Null coordinates

in regions I and III are related by the following formula (see
detail in Appendix A):

xþI ¼ Φ½−LþΦ−1½xþIII þΦ½L=2��� þ L=2≕ fðxþIIIÞ; ð11Þ

x−III ¼ Φ½−LþΦ−1½x−I þ L=2�� −Φ½L=2� þ L; ð12Þ

where the function Φ is defined by Fig. 2

ΦðxÞ ¼
Z

x

0

dyaðyÞ

¼
� 1

2H ln 1þsinHx
1−sinHx for 0 ≤ x < π

2H ;

x for x < 0:
ð13Þ

The inverse function is

Φ−1ðxÞ ¼
� 1

H arcsin tanhðHxÞ for x > 0

x for x < 0;
ð14Þ

FIG. 1. Left: schematic picture of the expanding edge system. x denotes a coordinate along the edge of the QH system. Regions I and
III are static Minkowski regions and the expanding region II corresponds to a de Sitter universe. Right panel: Penrose diagram
representing the present setup with the expanding edge region II (gray region), which starts accelerated expansion at t ¼ 0. A and B
denote world lines of detectors which perform measurements of edge excitations. This diagram corresponds to the π=4 < LH < π=2
case. For parameter values not included in this range, global structure of the spacetime becomes different (see [12]).

FIG. 2. Left panel: the function ΦðxÞ. Φ ¼ þ∞ at Hx ¼ π=2. Right panel: the function fðxÞ.
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and for x → þ∞,

Φ−1ðxÞ ∼ π

2H
−

2

H
e−Hx: ð15Þ

The asymptotic form of the function fðxþIIIÞ ¼ xþI ½xþIII� is

fðxþIIIÞ ∼
�
c0 − c1e−HxþIII for xþIII → þ∞
xþIII for xþIII → −∞;

ð16Þ

where the constants c0 and c1 are

c0 ¼
L
2
− ln tanðHL=2Þ;

c1 ¼
2

H sinHL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sinHL=2
1þ sinHL=2

s
: ð17Þ

III. CLASSICAL SIMULATION
OF HAWKING RADIATION

We send plane waves from region I (in-region) and detect
them at a point in region III (out-region). Normalized wave
modes in regions I and III are

φðIÞ
k ¼e−ikx

þ
Iffiffiffiffiffiffiffiffi

4πk
p ¼e−ikfðx

þ
IIIÞffiffiffiffiffiffiffiffi

4πk
p ; φðIIIÞ

k ¼e−ikx
þ
IIIffiffiffiffiffiffiffiffi

4πk
p ; k>0: ð18Þ

An input plane wave e−ikx
þ
I in region I has the wave form

expð−ikfðxþIIIÞÞ in region III. Distortion of plane waves
due to de Sitter expansion of region II is encoded in the
function fðxþIIIÞ. Figure 3 depicts wave forms in region III.
The left panel shows the real part and the imaginary part of

φðIÞ
k as the function of xþIII. The right panel shows snapshots

of wave forms ReφðIÞ
k at t ¼ 0, 3, 6. We can observe the

wave is stretched by de Sitter expansion in region II.

The in-mode and out-mode are related by the Bogoliubov
transformation,

φðIÞ
k ¼

Z
∞

0

dk0
h
αðk; k0ÞφðIIIÞ

k0 þ βðk; k0ÞφðIIIÞ�
k0

i
; ð19Þ

φðIIIÞ
k ¼

Z
∞

0

dk0
h
α�ðk0; kÞφðIÞ

k0 − βðk0; kÞφðIÞ�
k0

i
; ð20Þ

where Bogoliubov coefficients α and β are obtained from
the relation

e−ik
0fðxþIIIÞffiffiffiffi
k0

p ¼
Z

∞

0

dkffiffiffi
k

p
h
αðk;k0Þe−ikxþIII þβðk;k0ÞeikxþIII

i
: ð21Þ

Thus,

αðk; k0Þ ¼ 1

2π

ffiffiffiffi
k
k0

r Z
∞

−∞
dye−ik

0fðyÞeiky;

βðk; k0Þ ¼ 1

2π

ffiffiffiffi
k
k0

r Z
∞

−∞
dye−ik

0fðyÞe−iky: ð22Þ

Using the asymptotic form (16) of fðxÞ, we have [12]

jβðk; k0Þj2 ∼
�
0 for xþIII → −∞;

1
2πHk0

1
expð2πk=HÞ−1 for xþIII → þ∞:

ð23Þ

For xþIII → þ∞, the Bogoliubov coefficient β shows the
Planckian distribution with a temperature

TH ¼ H
2π

: ð24Þ

This temperature coincides with the Gibbons-Hawking
temperature in the de Sitter spacetime. Thus, it is possible
to detect the classical counterpart of Hawking radiation
from the cosmological horizon in a de Sitter universe by

FIG. 3. Wave forms in region III (L ¼ H ¼ 1; k ¼ 7). Left panel: real part (blue) and imaginary part (red) of φ. Right panel: change of
the spatial profile of waves (real part of φ) at different times (t ¼ 0, 3, 6).
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measuring the Fourier component of wave signals in the
Minkowski region III.

IV. QUANTUM SIMULATION OF HAWKING
RADIATION

From now on, we consider a quantum scalar field φ̂
in the expanding edge system. Our main purpose is to
investigate quantum effects of the edge mode in the
quantum Hall system, which is measurable through the
local charge density ∂xþ φ̂ of the edge excitation.

A. Correlation functions

Let us consider the setup shown in Fig. 1. We prepare
measurement points A and B in region III. At these points, a
part of the signals emitted fromI − of region I cannot reach
region III after the formation of the future de Sitter horizon
H þ in region II. Thus, the spacetime structure is similar to
that with a black hole formation by gravitational collapse.
We consider detection of quantum fluctuations of the scalar
field in region III by imposing the vacuum condition atI −

in region I:

âkj0Ii ¼ 0: ð25Þ

Owing to the chirality of the edge mode, we only consider a
left moving scalar field and the field operator in region III is
expressed as

φ̂ðxþÞ ¼
Z

∞

0

dkffiffiffiffiffiffiffiffi
4πk

p ½âke−ikfðxþÞ þ â†ke
ikfðxþÞ�: ð26Þ

In our setup, the gauge invariant physical quantity is charge
density, which is given by the derivative of the field
operator φ̂:

Π̂ðxþÞ ≔ φ̂0ðxþÞ

¼ −if0ðxþÞ
Z

∞

0

dk

ffiffiffiffiffiffi
k
4π

r h
âke−ikfðx

þÞ − â†ke
ikfðxþÞ

i
:

ð27Þ

We investigate quantum effects based on the field
operator Π̂. Commutators between field operators are

½φ̂ðxþÞ; φ̂ðyþÞ� ¼ −
i
4
signðfðxþÞ − fðyþÞÞ; ð28Þ

½φ̂ðxþÞ; Π̂ðyþÞ� ¼ i
2
f0ðyþÞδðfðxþÞ − fðyþÞÞ; ð29Þ

½Π̂ðxþÞ;Π̂ðyþÞ�¼ i
2
f0ðxþÞf0ðyþÞδ0ðfðxþÞ−fðyþÞÞ: ð30Þ

The Wightman function for φ̂ is

Dðxþ1 ; xþ2 Þ ¼ hφ̂ðxþ1 Þφ̂ðxþ2 Þi

¼ 1

4π

Z
∞

μ

dk
k
e−ikðfðx

þ
1
Þ−fðxþ

2
Þ−iΔfÞ

¼ −
1

4π
log½μðfðxþ1 Þ − fðxþ2 Þ − iΔfÞ�; ð31Þ

where we introduced an IR cutoff μ as the lower bound of
the integral, and a UV cutoff Δf > 0 by

Δf ≔ f0ððxþ1 þ xþ2 Þ=2Þjxþ1 ¼xþ
2
ϵ; ð32Þ

with the spatial cutoff length ϵ in the flat region III. In the
Minkowski phase t < 0, Δf ¼ ϵ, and in the de Sitter phase
t ≥ 0, Δf ∼ e−Htϵ which corresponds to the comoving
wavelength in the de Sitter region II. The local spatial
modes prepared in the Minkowski region III can detect long
wavelength quantum fluctuation in the de Sitter region II.
In our analysis, the scalar field φ̂ is an effective one and
there exists the short-distance cutoff length ϵ below which
effective treatment of the edge mode breaks down. In the
QH systems, this scale corresponds to the magnetic
length lB. We regard the short-distance cutoff ϵ as this
length in our analysis.
The Wightman function for Π̂ is

DΠðxþ1 ; xþ2 Þ ≔ hΠ̂ðxþ1 ÞΠ̂ðxþ2 Þi ¼ ∂xþ
1
∂xþ

2
Dðxþ1 ; xþ2 Þ

¼ f0ðxþ1 Þf0ðxþ2 Þ
4π

Z
∞

0

dkke−ikðfðx
þ
1
Þ−fðxþ

2
Þ−iΔfÞ

¼ −
1

4π

f0ðxþ1 Þf0ðxþ2 Þ
ðfðxþ1 Þ − fðxþ2 Þ − iΔfÞ2 : ð33Þ

This quantity is independent of the IR cutoff μ. Using (16),
the asymptotic behavior becomes

DΠðxþ1 ;xþ2 Þ

∼−
1

4π

8<
:

1
½ð2=HÞsinhðHðxþ

1
−xþ

2
Þ=2Þ−iϵ�2 for xþ1;2→þ∞

1
ðxþ

1
−xþ

2
−iϵÞ2 for xþ1;2→−∞:

ð34Þ

For xþ1 ; x
þ
2 → þ∞, DΠ has the same behavior as that of a

thermal state with the Gibbons-Hawking temperature TH.
Correlation functions are

hfφ̂ðxþÞ; φ̂ðyþÞgi

¼ 1

2π

Z
∞

μ

dk
k
cosðkðfðxþÞ − fðyþÞÞÞe−kΔf; ð35Þ

ANALOG DE SITTER UNIVERSE IN QUANTUM HALL SYSTEMS … PHYS. REV. D 107, 085002 (2023)

085002-5



hfφ̂ðxþÞ; Π̂ðyþÞgi

¼ f0ðyþÞ
2π

Z
∞

0

dk sinðkðfðxþÞ − fðyþÞÞÞe−kΔf; ð36Þ

hfΠ̂ðxþÞ; Π̂ðyþÞgi

¼ f0ðxþÞf0ðyþÞ
2π

Z
∞

0

dkk cosðkðfðxþÞ − fðyþÞÞÞe−kΔf:

ð37Þ

B. Correlation of local spatial mode

We consider the measurement of the field Π̂ðxþÞ at xA
and xB in region III. This measurement process can be
represented by the interaction between the field operator Π̂
and the canonical variables ðQ̂D; P̂DÞ of the measurement
apparatus. In the present analysis, we do not specify details
of the apparatus. The interaction Hamiltonian between the
field operator and the apparatus is

Hint¼
X
j¼A;B

λjðtÞgjðQ̂D;P̂DÞ⊗
Z

dxwjðxÞΠ̂ðtþxÞ; ð38Þ

where gjðQ̂D; P̂DÞ is a function of canonical variables of
the measurement apparatus, wjðxÞ is a window function
defining a spatial local mode of the field at xA;B, and λjðtÞ is
a switching function of the interaction. After acting on
the apparatus state, this interaction causes a change of the
“reading” of the apparatus depending on the state of the
quantum field Π̂ at xA;B. In the present analysis, we do not
introduce details of measurement protocols but just pay
attention to the behavior of the local mode of the quantum
field introduced by the spatial window function wA;BðxÞ.
For the purpose of observing spatial correlations of the

field, we define a canonical pair of variables corresponding
to the local spatial mode of the field at xA and xB:

Q̂jðtÞ ¼
Z

dxwQðx − xjÞΠ̂ðtþ xÞ;

P̂jðtÞ ¼
Z

dxwPðx − xjÞΠ̂ðtþ xÞ; j ¼ A;B: ð39Þ

We assume the window functions wP;QðxÞ have nonzero
values only in a compact spatial region x ∈ ½−l=2;l=2�.
Requiring these variables to be canonical pairs, equal time
commutators between these variables should be

½Q̂j;P̂k�¼
i
2

Z
dxwQðx−xjÞw0

Pðx−xkÞ≡ iδjk; j;k¼A;B;

ð40Þ

½Q̂j; Q̂k� ¼
i
2

Z
dxwQðx − xjÞw0

Qðx − xkÞ≡ 0; ð41Þ

½P̂j; P̂k� ¼
i
2

Z
dxwPðx − xjÞw0

Pðx − xkÞ≡ 0: ð42Þ

These equations provide conditions for window functions
and are independent of the state of the quantum field. Thus,
the local spatial modes ðQ̂A; P̂AÞ, ðQ̂B; P̂BÞ associated with
spatial regions A and B can be introduced by using suitably
chosen window functions wQðxÞ and wPðxÞ irrespective of
the states of the quantum field (Fig. 4). Regions A and B are
assumed to have no overlap and their separation is dx.
Locality of the spatial modes is guaranteed if we adopt
window functions with compact support. The center of
each region is assumed to be

xA¼−
L
2
−
3l
2
−dx; xB¼−

L
2
−
l
2
; xB−xA¼lþdx:

ð43Þ
We choose the following window functions in our analysis
Fig. 5:

wQðxÞ ¼
2ffiffiffi
π

p cos

�
πx
l

�
; wPðxÞ ¼

2ffiffiffi
π

p sin

�
πx
l

�
;

x ∈ ½−l=2;l=2�: ð44Þ
These window functions satisfy the condition (40) and the
window functions defining the bipartite state for canonical
variables ðQ̂A; P̂A; Q̂B; P̂BÞ do not have spatial overlap for
xB − xA ≥ l. Equal time correlations of these canonical
variables are

hQ̂AQ̂B þ Q̂BQ̂Ai ¼
Z

dxdywQðx − xAÞwQðy − xBÞ

× hfΠ̂ðtþ xÞ; Π̂ðtþ yÞgi; ð45Þ

FIG. 4. Setup of defining spatial regions A and B. The center of
each region is xA ¼ −L=2 − 3l=2 − dx and xB ¼ −L=2 − l=2.
xB − xA ¼ lþ dx.

FIG. 5. Spatial profile of adopted window functions.
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hP̂AP̂B þ P̂BP̂Ai ¼
Z

dxdywPðx − xAÞwPðy − xBÞ

× hfΠ̂ðtþ xÞ; Π̂ðtþ yÞgi; ð46Þ

hQ̂AP̂B þ P̂BQ̂Ai ¼
Z

dxdywQðx − xAÞwPðy − xBÞ

× hfΠ̂ðtþ xÞ; Π̂ðtþ yÞgi: ð47Þ

As the bipartite state ρAB defined by these canonical
variables is Gaussian, the state is determined by the
covariance matrix

VAB ¼

2
6664
a1 a3 c1 c3
a3 a2 c4 c2
c1 c4 b1 b3
c3 c2 b3 b2

3
7775; ð48Þ

where its components are defined by

c1 ¼
1

2
hQ̂AQ̂B þ Q̂BQ̂Ai; c2 ¼

1

2
hP̂AP̂B þ P̂BP̂Ai;

c3 ¼
1

2
hQ̂AP̂B þ P̂BQ̂Ai; c4 ¼

1

2
hQ̂BP̂A þ P̂AQ̂Bi;

ð49Þ
a1 ¼ hQ̂2

Ai; a2 ¼ hP̂2
Ai;

a3 ¼
1

2
hQ̂AP̂A þ P̂AQ̂Ai; bj ¼ ajðA → BÞ: ð50Þ

We first show temporal behavior of autocorrelation
functions of the local spatial mode in region III. The
behavior of the autocorrelation functions a1;2;3ðtÞ with
different region size l ¼ 1, 2 are shown in Fig. 6. We
can observe a signature of de Sitter expansion in region II as
a change of correlations around 0 < t < 2. These quantities
are measurable as output signals of the detector in our
QH experiment. To obtain a qualitative understanding
of the behavior of the autocorrelation functions, we
evaluate a1ðtÞ ¼ hQ̂2

Ai analytically with a window function
wQðxÞ ¼ w0θðl=2þ xÞθðl=2 − xÞ, where w0 is a normali-
zation constant the value of which is unspecified:

hQ̂2
Ai ¼

1

4π

Z
∞

0

dkk

����
Z

dxwQðxÞf0ðtþ xA þ xÞeikfðtþxAþxÞ
����2e−Δfk

¼ 2w2
0

π

Z
∞

0

dk
k
sin2

�
k
2
ðfðtþ xA þ l=2Þ − fðtþ xA − l=2ÞÞ

�
e−Δfk

¼ w2
0

4π
ln

�
1þ ðfðtþ xA þ l=2Þ − fðtþ xA − l=2ÞÞ2

ðf0ðtþ xAÞϵÞ2
�
: ð51Þ

Using the asymptotic form (16) of fðxÞ,

hQ̂2
Ai ∼

8<
:

w2
0

4π ln½1þ ðlϵÞ2� ≈
w2
0

2π lnðlϵÞ for t → −∞;

w2
0

4π ln
h
1þ ðlϵÞ2

	
sinhðHl=2Þ
ðHl=2Þ



2
i
≈ w2

0

2π lnðlϵÞ þ
w2
0

2π ln
	
sinhðHl=2Þ
ðHl=2Þ



for t → þ∞;

ð52Þ

where we assume that the region size of the detection region is far larger than the UV cutoff and l=ϵ ≫ 1.
The difference of the autocorrelation between t ¼ −∞ and t ¼ þ∞ is

FIG. 6. Behavior of the autocorrelation functions with different region size l ¼ 1 (blue lines) and l ¼ 2 (red lines). (H ¼ L ¼ 1,
ϵ ¼ 0.01).
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a1ðþ∞Þ − a1ð−∞Þ ∼ w2
0

2π
ln

�
sinhðHl=2Þ
ðHl=2Þ

�
: ð53Þ

This quantity is independent of the UV cutoff and its
amount depends only on Hl. Hence, we expect that it
reflects the signature of Hawking radiation from the de
Sitter region. For further understanding of the behavior
of a1 ¼ hQ̂2

Ai we pay attention to its l dependence. We
expand a1ðlÞ as

a1ðlÞ ¼
Z

∞

0

dKã1ðKÞeiKl: ð54Þ

Then, the power spectrum for a1 is obtained as

PðKÞ ¼ Kjã1ðKÞj; ð55Þ

which represents the power of detected signals with wave
number K ¼ 2π=l corresponding to the size l of the
detection region. We see that the power spectrum shows the
Planckian distribution with the temperature TH ¼ H=ð2πÞ.
Using the asymptotic form of a1 in Eq. (52), the Fourier
component of a1ðlÞ is

ã1ðKÞ ∼
(
− i

k ðγ þ lnðKϵÞ − iπ=2Þ for t → −∞;
H
2K2 ½1 − i 2KH ðγ þ ψð−iK=HÞÞ� for t → þ∞;

ð56Þ

where γ is Euler’s constant and ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ is the
poly Gamma function. For t → −∞, the power spectrum of
the signal is

PðKÞ ∼ − lnðKϵÞ: ð57Þ

For t → þ∞, the power spectrum of the signal is

PðKÞ ∼ π

e2πK=H − 1
for K < H: ð58Þ

Therefore, for long wavelength modes larger than the de
Sitter horizon size H−1, the power spectrum observed in
region III shows the Planckian distribution with temper-
ature TH ¼ H=ð2πÞ originated from Hawking radiation in
the de Sitter region II. Comparing (57) and (58), the power
Pðt ¼ þ∞Þ is larger than Pðt ¼ −∞Þ in the long wave-
length region K < H due to the Hawking radiation. This
enhancement or amplification of the power for long wave-
length fluctuations larger than the de Sitter horizon H−1

has the same physical origin as that of the generation of
primordial quantum fluctuations in cosmic inflation.
To understand the behavior of Hawking radiation in

more detail, we consider the covariance matrix of a single
mode ðQ̂A; P̂AÞ,

VA ¼
�
a1 a3
a3 a2

�
; ð59Þ

and determinant of this matrix, which is the square of
the symplectic eigenvalue ν2 of the reduced state ρA. The
physical condition of the state requires ν2 ≥ 1=4 and
ν2 ¼ 1=4 corresponds to a pure state. As we are consid-
ering a single subregion A of the entire space, the state ρA is
mixed and the mixedness represents the amount of entan-
glement between A and its complement Ā. Temporal
behavior of ν2 (Fig. 7) shows Hawking radiation causes
an increase of mixedness of the mode A and enhances
entanglement between A and Ā. The mode A and Ā
constitutes a pure two mode squeezed state and its amount
of squeezing and entanglement between A and Ā increases
due to the Hawking radiation created by the rapid accel-
erated expansion of the background space.

V. ENTANGLEMENT OF SPATIAL MODES

We investigate behavior of entanglement between spatial
regions A and B in region III (Fig. 4) using associated
spatial local modes ðQ̂A; P̂AÞ and ðQ̂B; P̂BÞ. We can
evaluate entanglement negativity from the symplectic
eigenvalues of the covariance matrix VAB; the covariance
matrix VAB has two symplectic eigenvalues ν� ≥ 1=2, and
the partially transposed covariance matrix ṼAB has two
symplectic eigenvalues ν̃�. Based on the positivity
criterion of the partially transposed covariance matrix for
bipartite Gaussian states [16–18], a measure of entangle-
ment between A and B is given by the logarithmic
negativity defined as [19,20]

EN ≔ −min½log2ð2ν̃−Þ; 0�: ð60Þ

For EN > 0, the bipartite state ρAB is entangled and the
logarithmic negativity represents the amount of entangle-
ment between A and B.

FIG. 7. Evolution of the symplectic eigenvalue of the state ρA.
ν2 − 1=4 represents the mixedness of this state, which also
represents the amount of entanglement between A and Ā.
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A. Minkowski case

Wefirst show thebehavior of entanglement for the case that
region II is static and there is no expanding edge region
(Minkowski case). We confirm that the detection of entan-
glement between A and B is possible using local modes
defined by window functions (44). The left panel of Fig. 8
shows the symplectic eigenvalues as a function of separation
dx of two regions, and the right panel of Fig. 8 shows the
negativity as a functionofdx. There exists a critical separation
and below this separation entanglement between A and B can
be detected. The left panel of Fig. 9 shows the dependence of
the cutoff parameter l=ϵ on negativity with dx ¼ 0. For large
values of the ratio l=ϵ, the bipartite system AB becomes
separable and local modes cannot detect entanglement of the
scalar field. It is possible to understand this behavior from
the viewpoint of entanglement monogamy [21]. Let us
focus on the entanglement entropy of region A which is a
subsystem of the entire spatial region. The entanglement
entropy for a singleGaussianmode ðQ̂A; P̂AÞ is given by [22]

SA ¼ ðνþ 1=2Þ log2ðνþ 1=2Þ − ðν − 1=2Þ log2ðν − 1=2Þ
ð61Þ

with the symplectic eigenvalue ν of the covariance matrix VA
for the mode A. As is shown in the right panel of Fig. 9, SA
behaves∝ logðl=ϵÞ,1 which is the typical scaling behavior of
entanglement entropy of the massless scalar field in the 1þ 1
dimensional case [23,24]. This behavior implies that entan-
glement between region A and its complement becomes
larger as l=ϵ increases. Concerning entanglement between
A and B, because A and its complement and B and its
complement become strongly entangled as l=ϵ becomes
larger, owing to the monogamy property of multipartite
entanglement [21,25], the entanglement between A and B
should become smaller and the entanglement between A and
B vanishes above a some critical value of l=ϵ.

B. De Sitter case

We move on to the expanding edge case which mimics a
de Sitter universe and consider entanglement between
adjacent regions A and B in region III under the influence
of Hawking radiation from the de Sitter region II.

FIG. 8. Left panel: separation dependence of symplectic eigenvalues ν−(blue), ν̃−(red). Positivity of the bipartite state ν− ≥ 1=2 is
preserved for dx ≥ 0. For ν̃− < 1=2, A and B are entangled. Right panel: separation dependence of logarithmic negativity for the
Minkowski case. The bipartite state ρAB becomes separable for large separation (ϵ ¼ 0.01, l ¼ 1, L ¼ 1). The critical separation
depends on the values of the UV cutoff ϵ.

FIG. 9. Left panel: l=ϵ dependence of negativity with dx ¼ 0. Right panel: l=ϵ dependence of entanglement entropy for a single
region A. For l=ϵ ≫ 1, the entanglement entropy behaves as SA ∝ logðl=ϵÞ.

1This behavior is confirmed numerically and we do not derive
this relation analytically.
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Figure 10 shows the evolution of entanglement between
A and B with different sizes of A and B with dx ¼ 0. As we
can observe from Fig. 10, following the transient change of
negativity during 0 < t < 3, which is determined by the
shape of the window function, the negativity becomes
asymptotically constant. The final amount of entanglement
is reduced compared to the initial Minkowski value. The
reduction of entanglement depends on the size of spatial
regions l. For l ¼ 1.0–1.4, a nonzero value of negativity
survives at t ¼ 6. On the other hand, for sufficiently large
region size l ≫ H−1, which corresponds to detection of
long wavelength superhorizon fluctuation in the de Sitter
universe, the entanglement between A and B becomes zero
after arrival of the Hawking radiation. This behavior of
“entanglement death” is the same as that confirmed in
inflationary models [13–15] and is responsible for the
emergence of classical behavior from quantum fluctua-
tions. Thus, using our setup of the QH experiment, it is
possible to simulate “classical to quantum transition”
of primordial quantum fluctuations in a laboratory.

Figure 11 shows the region size dependence of the
negativity at t ¼ 6. For l ≥ 1.65, the negativity becomes
zero and the two regions A and B become separable. The
quantum correlation between the two regions is lost for
large scales compared to the de Sitter horizon length H−1.
For these large scales, spatial correlations between A and B
exist as classical correlations. Therefore, the long wave-
length Hawking radiation can be treated as classical
stochastic fluctuations and we can confirm the classicality
of Hawking radiation originated from zero point quantum
fluctuations of the scalar field.

VI. SUMMARY AND SPECULATION

We considered the analog de Sitter universe realized by
the expanding edge of a QH system. We investigated the
behavior of the chiral massless scalar field corresponding to
an edge excitation, and discussed the detection of Hawking
radiation from the de Sitter region. In our setup of the
expanding edge system, the spacetime structure is similar
to that of a black hole formation via gravitational collapse;
the future event horizon is formed and Hawking radiation
with thermal spectrum from the vicinity of the future event
horizon is expected. The entanglement between spatial
regions A and B in the flat region is also evaluated and we
found that Hawking radiation from the de Sitter region
reduces preexistent entanglement before the arrival of
Hawking radiation, and for sufficient large size of detection
regions compared to the Hubble length in the de Sitter
region, the two regions become separable and only classical
correlation survives. This behavior is the same as that
appearing in cosmic inflation. To conduct the UV diver-
gence of the quantum scalar field, we introduced a UV
cutoff as the scale at which the effective field treatment of
the edge excitation breaks down. The correlation functions
of the local spatial modes also contain this cutoff depend-
ence and it is possible to examine the impact of the cutoff
on Hawking radiation using our experiment, which is
related to the trans-Planckian problem in black hole

FIG. 10. Evolution of negativity between regions A and B for the de Sitter case with different spatial region size l (dx ¼ 0, ϵ ¼ 0.01,
H ¼ L ¼ 1). Because of Hawking radiation from the de Sitter region, negativity decreases around t ¼ 0 ∼ 2. The final value of
negativity becomes smaller than the initial negativity in the Minkowski region. For l ¼ 1.8, 2.0, the final value of negativity becomes
zero and entanglement death occurs. For l ¼ 1.6, both death and revival of entanglement are observed.

FIG. 11. Region size dependence of negativity at t¼6 (dx ¼ 0,
L ¼ H ¼ 1, ϵ ¼ 0.01). A and B become separable for large
scales l ≥ 1.65H−1.
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evaporation and cosmic inflations. It is important to inves-
tigate how the effective theory for the edge excitation breaks
down below the cutoff length since the deviation from the
effective theory may introduce corrections to the massless
Klein-Gordon equation adopted in this paper. Beside apply-
ing the expanding edge of the QH system as a simulator of
the quantum cosmology, it is also possible to explore physics
of fundamental aspects of quantum mechanics and quantum
field theory because this system can provide the squeezed
vacuum state by amplification of the vacuum fluctuations
in the expanding edge region. Thus, investigation of the
violation of macrorealism (the Legget-Garg inequality [26])
with the quantum field and the realization of the quantum
energy teleportation [9] are possible.
In this paper, the Hall edges are described by quantum

field theory in curved space in the long wavelength regime
compared to the magnetic length lB. As seen in the above
analysis, the edge can be regarded as a fixed 1þ 1
dimensional universe. It may be interesting to point out
a possibility that the same system can be described by
different effective theories of quantum gravity. For in-
stance, let us consider a static QH system confined in a
circle edge. The edge is regarded as a closed 1þ 1
dimensional universe, the spacetime curvature curvature
of which vanishes. Since the electrons located at the edge
are in a quantum state with position fluctuation, the edge
fluctuates quantum mechanically. This yields quantum
superposition of edge configurations with different edge
lengths. In this sense, quantum universes with different
sizes are quantum mechanically superposed. This suggests
a realization of quantum gravity at the QH edge. Though
the precise model for the static quantum universe has not
yet been specified, the classical action may be given by the
following dilaton gravity model:

S ¼
Z

d2x
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p �
ΦðxÞRðxÞ þ Λ

lB

�
; ð62Þ

where Λ is a positive constant, ΦðxÞ is a real scalar field
referred to as dilaton field, and RðxÞ is the scalar curvature
of the 1þ 1 dimensional universe. Taking the variation of S
with respect to ΦðxÞ yields RðxÞ ¼ 0 as the equation of
motion. Thus, the classical action is evaluated as

SQG ¼ Λ
lB

Z
d2x

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
: ð63Þ

By using a static configuration of φ independent of t, let us
parametrize the edge in the x − y plane as

ðx; yÞ ¼ ðx;lBφðxÞÞ; ð64Þ
where the edge fluctuation occurs in the y direction. The
induced metric for the edge is given by

ds2 ¼ −dt2 þ dx2 þ dy2 ¼ −dt2 þ hðxÞdx2; ð65Þ

where hðxÞ ¼ 1þ l2
Bð∂xφðxÞÞ2. Then the value of SQG is

computed as

SQG ¼ Λ
lB

Z
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

Bð∂xφðxÞÞ2
q

: ð66Þ

It may be worth noting that the above value of SQG can be
reproduced by the classical action of the field theory of
QH edges:

SQH ¼
Z

d2x

�
NðxÞΛ

2

4
þ 1

N

��
∂xφÞ2 þ

1

l2
B

��
; ð67Þ

where NðxÞ is a lapse function. When we take NðxÞ ¼ 1,
SQH yields the action of the quantum field theory for the
edges. By taking the variation of SQH with respect to NðxÞ,
we get

NðxÞ ¼ 2

ΛlB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

Bð∂xφÞ2
q

: ð68Þ

It turns out that substitution of the above NðxÞ into SQH
reproduces the value of SQG in (66). Though the correct
relation between the theories with SQG and SQH remains
vague at present, it may be interesting to explore the
correspondence and quantum gravity effective theory for
the QH edges. In this case, the circular edge corresponds to
a closed universe. The interpretation of the wave functions
of the quantum closed universe, which satisfy the Wheeler-
DeWitt equation, can be developed from the viewpoint of
the many-body wave functions of the QH systems. As a
last comment it is worth mentioning that subtle effects of
quantum gravity, which are predicted by recent holographic
framework based on DS/dS correspondence [27–31]
closely related to the subject of information loss paradox
in black holes, might yield different results in entanglement
calculation from our results based on quantum field theory
in fixed curved spacetime background. Though the analysis
based on the holographic treatment is out of the scope of
this paper, this direction of investigation will reveal the
feature of quantum gravity and we hope the future QH
experiments will be capable of discriminating which
theories are suitable to effectively describe the detected
behavior of entanglement.
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APPENDIX A: DERIVATION OF COORDINATE
TRANSFORMATION

We review coordinate transformation in [12]. The
metric is

region I : L=2 ≤ xI; ds2 ¼ −dxþI dx−I
region II : − L=2 ≤ x ≤ L=2; ds2 ¼ −e2ΘðtÞdxþdx−

region III : xIII ≤ −L=2; ds2 ¼ −dxþIIIdx−III;

where eΘðtÞ is the scale factor in region II. We consider
the coordinate transformation of the form xþ ¼ xþ½xþI;III�;
x− ¼ x−½x−I;III�, which keeps conformal invariance.

1. Regions II and III

We look for coordinates xþIII½xþ�; x−III½x−� which cover
regions II and III. The matching point is x1 ¼ x1III ¼
ðxþIII − x−IIIÞ=2 ¼ −L=2. The matching condition is

xþIII½t − L=2� − x−III½tþ L=2� ¼ −L: ðA1Þ

By taking the derivative with respect to t, we obtain

dxþIII
dxþ

½t − L=2� ¼ dx−III
dx−

½tþ L=2�: ðA2Þ

The matching of the metric between region II and III
(at x ¼ xIII ¼ −L=2) is

e2ΘðtÞ
dxþ

dxþIII

dx−

dx−III
¼ 1 ∴

dxþIII
dxþ

½t − L=2� ¼ eΘðtÞ: ðA3Þ

By shifting the argument of the functions,

dxþIII
dxþ

½xþ� ¼ eΘðxþþL=2Þ; ðA4Þ

and we obtain

xþIII½xþ� ¼
Z

xþ

0

dyeΘðyþL=2Þ

¼
Z

xþþL=2

L=2
dyeΘðyÞ

¼ Φ½xþ þ L=2� −Φ½L=2�; ðA5Þ

where we have fixed the integration constant such that
xþIII ∝ xþ for constantΘ and the functionΦ is introduced by

Φ½x� ¼
Z

x

0

dyeΘðyÞ: ðA6Þ

The coordinate function x−IIIðx−Þ can be derived
from (A1) as

x−III½x−� ¼ xþIII½x− − L� þ L

¼
Z

x−−L

0

dyeΘðyþL=2Þ þ L

¼ Φ½x− − L=2� −Φ½L=2� þ L: ðA7Þ

From (A5) and (A7),

dxþIIIdx
−
III ¼ eΘðxþþL=2ÞeΘðx−−L=2Þdxþdx−; ðA8Þ

and the metric in region II can be written as

ds2II¼−e2ΘðtÞdxþdx−

¼−exp½2ΘðtÞ−ΘðxþþL=2Þ−Θðx−−L=2Þ�dxþIIIdx−III:
ðA9Þ

At the boundary x1¼−L=2, xþ¼ t−L=2 and x−¼ tþL=2.
Thus, the metric becomes the flat form ds2II ¼ −dxþIIIdx−III,
and can be extended to the flat region III using coordi-
nates x�III.

2. Regions I and II

The condition of the matching at x1 ¼ L=2 yields

xþI ½tþ L=2� − x−I ½t − L=2� ¼ L: ðA10Þ

The coordinate function is

xþI ½xþ� ¼
Z

xþ

0

dyeΘðy−L=2Þ ¼ Φ½xþ − L=2� −Φ½−L=2�:

ðA11Þ

In a similar way, we obtain

x−I ½x−� ¼ xþI ½x− þ L� − L

¼
Z

x−þL

0

dyeΘðy−L=2Þ − L

¼ Φ½x− þ L=2� −Φ½−L=2� − L: ðA12Þ

From (A11) and (A12),

dxþI dx
−
I ¼ eΘðxþ−L=2ÞeΘðx−þL=2Þdxþdx−; ðA13Þ

and the metric in region II becomes

ds2II¼−e2ΘðtÞdxþdx−

¼−exp½2ΘðtÞ−Θðxþ−L=2Þ−Θðx−þL=2Þ�dxþI dx−I :
ðA14Þ

At the boundary x1¼L=2, xþ¼ tþL=2 and x− ¼ t − L=2.
Thus, the metric becomes the flat form ds2II ¼ −dxþI dx−I ,
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and can be extended to the flat region III using
coordinates x�I .

3. Relation between xI and xIII
Using the function Φ,

xþIII ¼ Φðyþ þ L=2Þ −ΦðL=2Þ;
xþI ¼ Φðyþ − L=2Þ −Φð−L=2Þ; ðA15Þ

x−III ¼ Φðy− − L=2Þ −ΦðL=2Þ þ L;

x−I ¼ Φðy− þ L=2Þ −Φð−L=2Þ − L: ðA16Þ

By eliminating y�, we obtain a connection formula
between xI and xIII:

xþI ¼ Φ½−LþΦ−1½xþIII þΦ½L=2��� −Φ½−L=2�≕ fðxþIIIÞ;
ðA17Þ

x−III ¼ Φ½−LþΦ−1½x−I þ LþΦ½−L=2��� −Φ½L=2� þ L:

ðA18Þ

APPENDIX B: DE SITTER CASE:
GLOBAL CHART

We consider the global de Sitter spacetime. The con-
formal factor is given by

eΘðtÞ ¼ 1

cosðHtÞ ; ðB1Þ

and the function Φ is Fig. 12

ΦðxÞ ¼
Z

x

0

dyeΘðyÞ ¼ 1

2H
ln
1þ sinHx
1 − sinHx

;

Φ−1ðxÞ ¼ 1

H
arcsin tanhHx: ðB2Þ

For π=4 < LH < π=2, from the behavior of the function
xþI , we can obtain the global structure as shown in Fig. 13.
Figure 14 shows a wave form of expð−ikfðxþIIIÞÞ. As xIII
approaches a finite negative value, the wavelength becomes
zero, which reflects a blueshift of waves by the past
horizon H −. On the other hand, for a large value of xþIII,
the wavelength becomes infinite which reflects a redshift of
waves by the future horizon H þ.

FIG. 12. The function ΦðxÞ and xþI ¼ fðxþIIIÞ.

FIG. 13. Penrose diagram for the global de Sitter case with
π=4 < LH < π=2.

FIG. 14. Wave form of expð−ikfðxþIIIÞÞ. The real part (blue) and
the imaginary part (red) of the wave are shown.
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