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We discuss thermodynamical stability for hairy black hole spacetimes, viewed as defects in the
thermodynamical parameter space, taking into account the backreaction of a secondary hair onto the
spacetime geometry, which is modified nontrivially. We derive, in a model independent way, the conditions
for the hairy black hole with the secondary hair to reach a stable thermal equilibrium with the heat bath.
Specifically, if the scalar hair, induced by interactions of the matter fields with quadratic-curvature
corrections, produces an inner horizon in the deformed geometry, a thermodynamically stable configu-
ration will be reached with the black hole becoming extremal in its final stage. We also attempt to make
some conjectures concerning the implications of this thermal stability for the existence of a minimum
length in a quantum spacetime.
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I. INTRODUCTION

Black holes are celestial objects within general relativity
(GR) and have been extensively studied in the literature,
both from a classical and a quantum physics point of view.
The recent observations of gravitational waves (GWs) [1–5],
which were generated during the collision of two black
holes or neutron stars, is leading to a new understanding of
extreme gravity conditions. During the final stages of
massive stars, astrophysical black holes can be formed
while in the early universe density inhomogeneities may
produce primordial black holes. Most importantly, black
holes can be viewed as thermodynamic configurations that
have temperature and entropy and emit radiation from the
black hole horizon. The quantum effects in a curved
spacetime are responsible for the Hawking evaporation
mechanism, which has been studied extensively (for reviews
see [6,7]). The quantum gravitational effects are expected to
be dominant during the last stages of the evaporation, when
the semiclassical approach breaks down.
The stability of black holes is a central issue in GR, and it

has been studied for a long time starting from the pioneer-
ing work by Regge and Wheeler [8] and, in most cases, it
was found that the black holes are stable. The most well-
known method to study the stability of black holes is to
calculate the quasinormal modes (QNMs) and their qua-
sinormal frequencies (QNFs) [9–12]. The calculation of
QNMs and QNFs may give information about the stability

of matter fields that perturb a region outside of a black hole,
which, however, they do not backreact on the metric. These
perturbations allow for a probing mechanism of the black
hole configuration, because they depend on the black hole
charges (mass, electromagnetic charge, and angular
momentum) and the fundamental constants of the gravita-
tional theory.
Modified gravity theories, which are resulting from the

presence of high curvature terms and from scalar fields
coupled to gravity, known as scalar-tensor theories have
been intensely studied. An important question in all such
theories concerns their structure, the behavior of black hole
solutions, and their stability. If the scalar field coupled to
gravity backreacts on the background metric, then hairy
black hole solutions can be generated in scalar-tensor
theories [13]. One of the first hairy black holes was
discussed in [14], but it was found that it was unstable [15].
To cure this problem a new scale was introduced through a
cosmological constant, and hairy black hole solutions were
found [16–23].
Another type of modified gravity theories occurs when a

scalar field is directly coupled to a curvature topological
term. One such theory is constructed by the coupling of a
scalar field with the Gauss-Bonnet term in four dimensions
[24], which allows for the existence of hairy black holes
due to the violation of the energy conditions, bypassing in
this way the no-hair theorem [25–39]. A second important
example is the Chern-Simons (CS) gravitational theory that
contains a nontrivial (pseudo)scalar field coupled to the
topological Pontryagin density, which is a consistent
Lanczos-Lovelock gravity theory (for a review on general
CS gravities, see [40]). In [41], black hole solutions with
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well-defined anti–deSitter (AdS) asymptoticswere extracted
in CS gravities, while in d-dimensional solutions, the
stability of CS black holes under scalar perturbations was
investigated in [42]. CS gravity slowly rotating Kerr-like
black hole solutions have been found and studied in [43,44].
Another interesting issue in modified gravities concerns

the thermodynamic behavior of black holes. Recently
in [45] the thermodynamical stability of black holes has
been conjectured as a defect in thermodynamical parameter
space. Specifically, by employing a generalized off-shell
free energy, the authors of [45] constructed appropriate
vector fields in the black hole thermodynamical parameter
space, which vanish for the specific solutions of various
gravitational models, thus leading to the interpretation of
the black hole as a defect in the thermodynamic parametric
space.1 By working out some concrete examples, they
classified stable (unstable) black holes as corresponding to
appropriately defined positive (negative) winding numbers
corresponding to the defects. The sum of the winding
numbers for all the black hole branches at an arbitrary given
temperature is found to be a universal number (topological
charge) independent of the parameters of the pertinent
black hole geometry, but depends only on the thermody-
namic asymptotic behavior of the black hole temperature at
small and large black hole limits (compared to the Planck
size black holes). Different black hole systems are char-
acterized by three classes via this topological number
(positive, zero, and negative), which thus can be used
for a better understanding of the black hole thermodynam-
ics, and, as the authors of [45] conjecture, it may even shed
light on such fundamental issues as the nature of quantum
gravity, to which black holes are expected to play a
fundamental role (e.g., in certain spacetime foam situations,
microscopic black holes play a crucial role [46,47]).
Verification of the conjecture of [45] has also been given
for the case of rotating black holes of both Kerr (in dþ 1
spacetime dimensions) and Kerr-Newman [in (3þ 1)
spacetime dimensions] types in [48], including AdS rotat-
ing black holes [49], and also higher-curvature black holes
of Lovelock [50] or higher-dimensional Gauss-Bonnet
(GB) AdS type [51].
In this work, we first elaborate and explain the conjecture

itself in its generality. Then, we go beyond the above black
hole examples and examine black holes with secondary
hair, backreacting on the black hole spacetime, which is
thus deformed. Making use of the results of the conjecture,
we determine the conditions under which such hairy black
hole systems can be thermally stabilized; i.e., they are

characterized by a positive winding number, and hence
leave a stable remnant. However, it is well-known that exact
analytic solutions in modified gravities with higher curva-
ture couplings are not always accessible. To this end, we are
presenting a model independent form of the hairy black
hole metric with respect to a dimensionless parameter that
controls the strength of the backreaction on the black hole
geometry. We discuss the conditions that have to be
satisfied, such that a thermodynamically stable black hole
branch appears, which is due to the strength of the higher
curvature interaction.
Thevalidity of the formof themetricwe are conjecturing is

supported by several examples in (3þ 1)-dimensional
spacetimes: one concerns a Schwarzschild black hole
with dilaton secondary hair, in dilaton (ϕ) GB (3þ 1)-
dimensional higher-curvature gravitational theory with a
linear in ϕ-GB interaction [52], which admits perturbatively
known analytic solutions. This is in contrast to the string-
inspired Schwarzschild black hole in the case of an expo-
nential in ϕ-GB interactions [25], where the solutions have
been determined only numerically. This stringy case is also
discussed here from the point of view of thermodynamical
stability. The second example deals with rotating black holes
in a string-inspired (3þ 1)-dimensional CS gravity [53–57]
with axion secondary hair backreacting on the geometry,
which thus deforms the slowly rotating Kerr solution [43].
Such deformations are only formally known through recur-
sive relations order by order in perturbation theory. A final
example is the (3þ 1)-dimensional extended GB gravity
[58], which includes the coupling of a conformal scalar to a
GB curvature combination.
All examples point nontrivially to the fact that the

strength of the backreaction is controlled by a dimension-
less parameter, which is the ratio of the dimensionful higher
curvature coupling with respect to the black hole size. As
such, when the black hole decreases in size and becomes
comparable with the length scale that the coupling constant
introduces, the backreaction terms cease being subdomi-
nant and may in principle stabilize the thermodynamic fate
of the black hole.
The work is organized as follows: in Sec. II we review

the behavior of a black hole embedded in an external
thermal bath, corresponding to a temperature T, and present
thermodynamical stability arguments, which will hopefully
shed more light to the stability criterion of [45]. In Sec. III
we review the work of [45] and verify the conjecture that
associates the local thermodynamical stability with an
appropriate topological charge. In Sec. IV, we focus on
hairy black holes, exploring the conditions under which the
interaction between gravity and matter fields may lead to a
stable black hole branch of a positive winding number. We
also make conjectures on the implications of such stability
on the existence of a potential minimal length in the
quantum gravity spacetime. Finally, Sec. V contains our
conclusions and outlook.

1There is a useful analogy from condensed matter physics, in
which a defect is considered as the absence of a specific localized
field excitation; e.g., a hole is considered as the “absence” of an
electron at a certain spacetime point. Such an absence may be
represented by the vanishing of an appropriate field quantity at
that point, which indicates the corresponding vacancy implied by
the “absence” of an electron.
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II. BLACK HOLES IN A THERMAL BATH AND
STABILITY ARGUMENTS

In this section wewill review the thermodynamic stability
of asymptotically flat black holes. One can distinguish two
thermodynamic regimes that affect the stability properties of
a black hole, henceforth denoted as high and low temperature
regimes. It is known from statistical physics, that the high
temperature regime can be treated classically, in the sense
that such systems have vanishingly small quantum contri-
butions. In the high temperature regime, we can have a fully
classical framework in which the black hole is large and a
semiclassical regime for small black holes.
To better understand the role of the temperature to the

stability of a black hole, we consider a black hole in a heat
bath which means that the total system is in thermal
equilibrium with temperature T. This leads to the following
thermodynamic statement:

TBH ¼ T; ð2:1Þ

indicating that the black hole can be described in terms of
the canonical ensemble. On the other hand, we know from
the black hole physics that the temperature of a black hole
corresponds to a geometric quantity, the surface gravity, κg,

TBH ¼ κg
2π

: ð2:2Þ

Combining Eqs. (2.1) and (2.2), we get

κg ¼ 2πT; ð2:3Þ

which combines a geometric quantity of the black hole
(surface gravity) with the temperature of the heat bath T,
which can vary freely and independently of the black hole.
As we consider the canonical ensemble, charges of the

black hole beyond the mass are assumed to be fixed. Thus,
we can express the surface gravity as a function of rh,
κg ¼ κgðrhÞ. This means that rh plays the role of an
independent parameter that characterizes the black hole
by its size. In this sense, Eq. (2.3) corresponds to an
equation that relates the size of the black hole and the
temperature of the heat bath. For different black holes, the
surface gravity has a different dependence on rh, which
consequently leads to different configurations for black
holes that can be in thermal equilibrium with the heat bath.
For example, we know that the surface gravity of the
Schwarzschild black hole is given by

κSchwg ¼ 1

2rh
: ð2:4Þ

In view of (2.3) the event horizon of the Schwarzschild
black hole is related with temperature of the heat bath, by
the following equation:

τ ¼ 4πrSchwh ; ð2:5Þ

which is a linear dependence between τ and rh, where
τ ¼ T−1, with dimensions of time. Thus, assuming the
Schwarzschild black hole in a given temperature via an
appropriate heat bath, there exists only one size for the
event horizon; i.e., there is only one size configuration
available for the black hole. On the other hand, the surface
gravity of the Kerr-Newman black hole is given by

κKNg ¼ rKN;h − r−
2ðr2KN;h þ α2Þ ; r− ¼ M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − α2

p
;

ð2:6Þ

where α is the rotation parameter (angular momentum per
unit mass). Combining again with (2.3), we have

τ ¼ 4π
r3KN;h þ α2rKN;h
r2KN;h −Q2 − α2

; ð2:7Þ

which is a cubic equation, meaning that, in general, there is
not a 1-1 correspondence between the size of the black hole
and a given heat bath temperature. For the Reissner-
Nordstrom (α ¼ 0) and the Kerr black hole (Q ¼ 0) the
above reduces to the following expressions:

τ ¼ 4πr3RN;h
r2RN;h −Q2

∶ Reissner-Nordstrom; ð2:8Þ

τ ¼ 4π
r3K;h þ α2rK;h
r2K;h − α2

∶ Kerr: ð2:9Þ

To understand the physical significance of the relation of
the temperature and the size of the black hole, we plot in
Fig. 1 the relations between τ and rh for different black
holes corresponding to Eqs. (2.5), (2.8), (2.9), from which
we can distinguish the possible branches of black holes for
each specific case. As we already mentioned, the
Schwarzschild black hole in a given heat bath temperature
yields only one possible size. Beyond this, we see that the
introduction of charge (Reissner-Nordstrom) or rotation
(Kerr) introduces two branches, one for small and one for
larger black hole configurations. According to these
branches, there is an upper bound for the temperature,
above which thermal equilibrium is impossible to be
achieved. Moreover, there is also a lower bound for the
size of the black hole, beyond which a black hole cannot
exist in thermal equilibrium. Of course, the corresponding
critical values for the temperature and the size of the black
hole depend on the details of the black hole system that is
considered. However, it is of great interest to investigate
under which conditions the above qualitative behavior can
appear.
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To investigate the stability of the black hole we observe
from Fig. 1 that the large black hole branch corresponds to
a negative slope of rh, ∂rh=∂T < 0, while the small one
corresponds to a positive one, ∂rh=∂T > 0. The crucial
quantity that helps us to investigate the local stability issue
is the heat capacity which is defined by

CQ ¼ T
dS
dT

; ð2:10Þ

and by the chain rule that can be written as

CQ ¼ T
∂rh
∂T

∂S
∂rh

: ð2:11Þ

Since, the entropy increases with an increasing surface, its
derivative with respect to rh has to be positive-definite,
which consequently means that the sign of the heat capacity
is determined by the sign of ∂rh=∂T. Thus, in general, for
the system of two branches of the above form:

(i) Large black hole branch: CQ < 0 → Unstable
branch,

(ii) Small black hole branch: CQ > 0 → Stable branch,
since ∂rh=∂T < 0 for the large black hole branch and
∂rh=∂T > 0 for the small one.
Let us consider a large system of temperature T with all

of its parts in thermal equilibrium. Deviations� δT from
the temperature of the heat bath T might appear in small
parts of the system, in the form of thermal fluctuations as
can be seen in Fig. 2. In such a case, a heat transfer occurs
between the total system and the irregularities from the hot
to the cold. A system with positive heat capacity decreases/
increases its temperature, when it emits/absorbs thermal
energy, while a system with negative heat capacity behaves
conversely. Thus, when small temperature deviations
appear in parts of the positive heat capacity, the deviation
will rapidly vanish and equilibrium is recovered. On the
other hand, when small temperature deviations appear in
parts of the negative heat capacity, the deviation grows up
and the thermal equilibrium breaks down. In this sense, the
parts of positive/negative heat capacity are in a stable/
unstable thermal equilibrium with the heat bath, depending
on the evolution of small perturbations in temperature.
Stable and unstable thermal equilibrium is also related to

the free energy of the canonical ensemble, which is defined
as follows:

F ¼ E −
S
τ
; ð2:12Þ

FIG. 1. Branches of static, stationary, and charged black holes
in general relativity.

FIG. 2. Initially, all the parts of the system are in thermal equilibrium, with the same temperature T. When thermal fluctuations appear,
deviations in temperature will appear in small parts of the system. Small temperature deviations for parts of positive heat capacity will
vanish fast implying thermal stability. On the other hand, small temperature deviations for parts of negative heat capacity are enhanced,
thus leading to thermally unstable configurations.
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where E is the total energy of the system, S is the entropy,2

and τ is the freely varying parameter introduced previously,
τ ¼ T−1. Since we consider the canonical ensemble, every
charge beyond the mass M of the black hole is considered
fixed. Thus, we can consider E and S and consequently F
as functions only of M, with electric charge and angular
momentum or any other charge as fixed. This is equivalent
as to consider the above quantities as functions of the black
hole radius rh, as we already stated.
By construction, the free energy is defined in such a way

that for any transition of the system, from one state to
another, its free energy cannot increase [60]. This means
that the minima of the free energy correspond to a stable
state, while its maxima to an unstable one. The free energy
is expressed in terms of rh, and thus its extremum points are
determined by its derivatives, rh. Thus, at an rh ¼ R, where
∂F=∂rhjrh¼R ¼ 0, we have

1.
∂
2F
∂r2h

����
rh¼R

> 0 → Stable equilibrium;

2.
∂
2F
∂r2h

����
rh¼R

< 0 → Unstable equilibrium:

The above stability statements in terms of the free energy
are related to perturbations of F and rh. However, in view
of Fig. 2, perturbations of rh can be realized as perturba-
tions of the temperature. In this sense, the stability criteria
that we previously present in terms of the heat capacity and
the temperature correspond to those we stated to the free
energy and the size of the black hole. This can easily be
verified from Fig. 3, in which we see the free energy of the
Schwarzschild, Reissner-Nordstrom, and Kerr black holes
for a given temperature T, for which the two branches
appear. As we can see, the branch of the small black hole

corresponds to a local minimum, while the large black hole
corresponds to a local maximum, in agreement with the
previous discussion.

III. BLACK HOLES AS THERMODYNAMICAL
TOPOLOGICAL DEFECTS

We are now well equipped to review in this section the
topological approach of [45] for investigating the different
branches of black holes in thermal equilibrium with the
heat bath. Specifically, the properties of the black hole
solutions are studied through the notion of topological
defects, that is, zero points of some vector field,Φaðx⃗Þ. The
defects are being thermodynamic because the fieldΦaðx⃗Þ is
defined through thermodynamic parameters of the black
hole. Precisely, the generalized free energy of the canonical
ensemble is introduced as in (2.12). Then, the field Φa is
constructed as follows:

Φa ¼ ðΦrh ;ΦΘÞ ¼
�
∂F
∂rh

;− cotΘ cscΘ
�
; ð3:1Þ

where rh is the location of the event horizon and Θ is an
auxiliary parameter defined in 0 ≤ Θ ≤ π. With this choice
for ΦΘ, the zeros of Φa always lie on the horizontal axis
Θ ¼ π=2 of the rh − Θ plane. Thus, the defects are specified
by Θ ¼ π=2 and ∂F=∂rh ¼ 0. The parameters of the black
hole that are introduced are its horizon, rh, and the black hole
temperature, TBH. These defects correspond to the black
hole, since the condition τ ¼ T−1

BH is equivalent with the
condition ∂F=∂rh ¼ 0. For τ ≠ T−1

BH the generalized free
energy is off-shell; i.e., it does not correspond to a solution of
the Einstein equations. Thus, by taking τ ¼ T−1

BH, we set the
free energy on-shell and consequentlyΦa ¼ 0 correspond to
the zeros of the tensor field Eμν ¼ Gμν − κ2Tμν ¼ 0. In this
sense, the roots ofΦa correspond to the black hole solutions
of Eμν. To proceed, the following topological current is
introduced [61,62]:

jμ ¼ 1

2π
ϵμνρϵab∂νna∂ρnb where μ; ν; ρ ¼ 0; 1; 2

and a; b ¼ 1; 2; ð3:2Þ
with the notation ∂ν ¼ ∂=∂xν for xν ¼ ðτ; rh;ΘÞ, while ϵ
correspond to the Levi-Civita symbols in the appropriate
spaces. Moreover, the unit vector n is defined as
na ¼ Φa=jjΦjj, where Φ1;2 ¼ Φrh;Θ. The presence of the
Levi-Civita symbol in the topological current makes it by
definition divergenceless (conserved), ∂μjμ ¼ 0, which
allows us to define a topological charge as

Q ¼
Z
Σ
d2xj0; ð3:3Þ

where Σ is some region on the parameter space ðrh;ΘÞ,
while its boundary, ∂Σ, is a curve in the rh − Θ plane.

FIG. 3. The free energy for static, stationary, and charged black
holes in general relativity.

2For a black hole, the total energy of the system corresponds to
the ADM mass, while the entropy in an arbitrary diffeomorphism
invariant theory is given by the well-known Wald formula [59].
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Following [62], one can show that the topological current
(3.2) reads

jμ ¼ δðΦ⃗ÞJμ
�
Φ
x

�
; Jμ

�
Φ
x

�
≡ 1

2
ϵabϵ

μνρ
∂νΦa

∂ρΦb;

ð3:4Þ

where we used that the two-dimensional Laplacian
ΔΦa ln jjΦ⃗jj ¼ 2πδðΦ⃗Þ. Equation (3.4) means that the topo-
logical current is nonzero only at the zeros of Φa. Thus, the
topological charge in nonzero only for regions, Σ, in the
parameter space that include a defect. If Σ does not include
any defect, then Q ¼ 0. Thus, as we have attached every
defect with a black hole solution, this topological charge is
attached with the corresponding black holes. Moreover, it
turns out that3

Q ¼
XN
i¼1

wi; ð3:5Þ

where i ¼ 1; 2;…; N counts for the defects that ∂Σ encloses
and wi is the winding number of ∂Σ for the ith defect.
Consequently, we can define a local and a global topological
charge depending on the curve in rh − Θ that we choose to be
the boundary, ∂Σ, ofΣ. Suppose that there areN zeros ofΦa.
If ∂Σ encloses only the ith zero of Φa, then the topological
charge accounts only for the ith defect and specifically is
equal to wi. This is the local topological charge. If ∂Σ
encloses all of the parameter space, then it accounts for all the
zeros ofΦa. This is the global topological charge. However,
if someone calculates the winding number for each defect,
then, to find the global topological number, one just has to
sum all the winding numbers of each defect.
The correspondence between the topological charges and

the thermodynamic stability of each branch is conjectured
in [45]. Namely, it is conjectured that branches with
winding number þ1 (−1) correspond to a stable (unstable)
branch, respectively.4 As we have mentioned previously,
local stability of each branch is determined by the sign of
∂
2F=∂rh2. So in [45], it is conjectured that the winding
number of each defect is related to the sign of ∂2F=∂rh2. In
other words, the aforementioned conjecture states that

wi ¼ sgn

�
∂
2F
∂r2h

����
i

�
: ð3:6Þ

To verify this, one has to notice that the information of
∂
2F=∂rh2 lies on the derivative ∂Φrh=∂rh. Then, if we
substitute (3.4) into (3.3), we get

Q ¼
Z
Σ
drh dΘδðΦrhÞδðΘÞJ0

�
Φ
x

�
⇒ Q ¼

Z
Σ
drh dΘδðΦrhÞδðΘÞ

∂Φrh

∂rh

∂ΦΘ

∂Θ
: ð3:7Þ

Recall the identity of the delta function

δðfðxÞÞ ¼
X
i

δðx − ziÞ
j dfdx jzi

; ð3:8Þ

where zi are those that fðziÞ ¼ 0. Then, we can write

Q ¼
����� ∂ΦΘ

∂Θ

����
Θ¼π=2

�
−1 Z

dΘδðΘ − π=2Þ ∂ΦΘ

∂Θ

×
X
i

����� ∂Φrh

∂rh

����
rh¼zi

�
−1 Z

drhδðrh − ziÞ
∂Φrh

∂rh

⇒ Q ¼
X
i

sgn

�
∂Φrh

∂rh

����
i

�
; ð3:9Þ

since the only zero of ΦΘ lies at Θ ¼ π=2 and
∂ΦΘ=∂Θjπ=2 ¼ 1 > 0. Moreover, if Σ includes only the
ith defect, then the above sum reduces to the local topological
charge of the corresponding defect, wi. In addition, since
Φrh ¼ ∂F=∂rh, we have that ∂Φrh=∂rh ¼ ∂

2F=∂r2h, which
implies (3.6), and therefore the conjecture appears to be true.
Having verified the conjecture, we shall now proceed with
the analysis of hairy black hole spacetimes and test whether
the secondary hair components may lead to a stable black
hole branch, which, as follows from the previous discussion,
is assigned to a positive winding number (3.6).

IV. BACKREACTION OF SECONDARY HAIR AND
BLACK HOLE THERMODYNAMICAL STABILITY

In this section, we will investigate the conditions under
which black hole thermal stability can be achieved as a result
of an effective interaction between the matter and the
gravitational field, which in turn dresses the black hole with
secondary hair. To this end, we first note that the Einstein-
Hilbert action can be considered as the action of the free
gravitational field. Considering only spherically symmetric
black holes, the Schwarzschild solution describes the black
hole of the free gravitational theory.We shall be interested in
interactions of the gravitational field with matter fields that
have the form of a higher curvature coupling, with the
strength of the interaction measured by a dimensionful
coupling constant A. We can write the general Lagrangian as

L ¼ LEH þ Lmatter þ ALint; ð4:1Þ

where LEH is the Einstein-Hilbert action, Lmatter the kinetic
terms for the matter fields, while Lint accounts for the
possible interactions between the matter fields and the

3For more details about the proof of these statements, see
[45,63].

4Of course, the winding number depends on the orientation of
the boundary ∂Σ. So, we follow the convention introduced in [45],
and we always refer to counterclockwise curves.
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gravitational field. Working in natural units where
ℏ ¼ c ¼ 1, all the physical quantities are reduced into units
of length or energy. In this respect, the introduction of a
dimensionful coupling constant introduces a new length
scale that characterizes the interaction of matter with gravity;
if it is not itself of length dimension, the length scale can be
defined by some power of it in order to acquire the
appropriate dimension. We will keep the coupling constant,
A, to be of the length dimension for notational convenience.
It is well-known that if such interactions are present, they

may produce nontrivial hairy black hole spacetimes, thus
violating the no-hair theorem. However, the coupling
constant A which denotes the strength of the interaction
is not the only parameter that determines the impact that
such an interaction has in a black hole. This is because a
black hole has a characteristic scale determined by its event
horizon radius, rh. We claim that the impact of an
interaction to a black hole can be realized by the dimen-
sionless parameter γ,

γ ¼ Aκ
r2h

: ð4:2Þ

This parameter contains the coupling constant of the
interaction A, the Planck length (through κ), and the size
of the black hole, through rh. For a fixed coupling constant,
γ becomes larger for smaller black holes. This means that as
the black hole shrinks (for example, through Hawking
radiation), its interaction with the matter fields becomes
more and more important and especially with an inverse
square relation of its radius. Thus, in the large black hole
regime the interactions can be treated perturbatively, in the
sense that we are able to keep terms up to first order in A
and consequently in γ. In this sense, one finds perturbative
solutions for the black hole around the solution of the free
gravitational field. However, this is not true for black holes
of small size because the effects of the interaction are no
longer subdominant and a perturbative expansion to first
orders is not valid.

A. Stable black holes with secondary hair

Let us give some examples in order to proceed into some
general considerations about the backreaction that such
interactions have on a black hole metric. First, consider a
scalar field coupled linearly with the GB topological term
given by the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
ð∂ϕÞ2 þ AϕRGB

�
; ð4:3Þ

where RGB ≡ RμνρσRμνρσ − 4RμνRμν þ R2 denotes the GB
term, which is a topological term in (3þ 1) dimensions.
The coupling constant has itself the right dimensions; i.e., it
has dimensions of length. It is known that hairy spherically
symmetric black holes exist in the nonlinear exponential

dilaton coupling case [25], while an analytic solution for
the linear coupling (weak dilaton approximation) has been
found only perturbatively [52].5 The solution for the gtt
component, up to second order in A (equivalently in γ)
takes the following form:

gtt ¼ −1þ rh
r
þ γ2

�
20

3

�
rh
r

�
7

−
16

5

�
rh
r

�
6

−
22

5

�
rh
r

�
5

−
52

3

�
rh
r

�
4

−
4

3

�
rh
r

�
3

þ 49

5

rh
r

�
þOðγ4Þ; ð4:5Þ

where rh is the radius of the event horizon.
As a second example, we present the dynamical Chern-

Simons gravitational theory, obtained by the following
action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
ð∂ϕÞ2 − AϕRCS

�
ð4:6Þ

where RCS ¼ RμνρσeRμνρσ, with eRμνρσ ¼ 1
2
Rμν

αβεαβρσ the
dual Riemann tensor, and εμναβ the covariant Levi-Civita
symbol, is the Chern-Simons term, which in (3þ 1)
dimensions is also topological.6

This interaction term is turned on only for rotating black
holes, because RCS vanishes in the presence of spherical
symmetry. However, the features of the solution that we are
interested at this point are independent of this fact; we are
interested only in the form of the backreaction. An
analytical solution for this interaction is possible only in
the slowly rotating regime. For the slowly rotating case,
perturbative solutions according to the coupling constant,
A, have been found in the literature [64], while a solution
that accounts for all the powers of γ can be found in [43].

5In the (3þ 1)-dimensional string-inspired case of [25], the
GB action with a canonically normalized dilaton field of mass
dimension þ1 is given by

Lint ¼
α0

8κ2g2s
e−κϕ=

ffiffi
2

p
RGB; ð4:4Þ

with gs the string coupling, and α0 ¼ 1=M2
s the Regge slope, with

Ms the string mass scale. The zeroth-order term in a weak dilaton
expansion is a total derivative and does not contribute to the
action. If we restrict ourselves to classical dilaton fields that
assume sub-Planckian values ϕκ ≪ 1, then we recover the action
(4.3) by truncating the expansion in powers of ϕ to first order.

6In generic Chern-Simons gravity [56,57], A ¼ 1=fϕ, where
fϕ is the axion coupling with mass dimensions þ1, while in
string-inspired Chern-Simons gravity [53–55] of the so-called
gravitational axion, which in (3þ 1) dimensions is dual to the
field strength of the spin-1 antisymmetric tensor field of the
massless gravitational string multiplet, we have

A ¼
ffiffiffi
2

3

r
α0

48κ
: ð4:7Þ
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The backreaction to the metric, up to first order in rotation,
appears only on the tϕ component, and it reads

gtϕðr; θÞ ¼ −
�
rh
r
þ
X
n¼4

dn
2n−2

�
rh
r

�
n−2

�
α sin2θ; ð4:8Þ

where α is the rotation parameter (angular momentum per
unit mass), while the coefficients dn are fully determined by
the following recurrence relation:

dn¼
2ðn−5Þ2ðn−1Þ
nðn−6Þðn−3Þ dn−1þ24

576

nðn−3Þγ
2dn−6; for n≥10

ð4:9Þ

with initial values

d4 ¼ d5 ¼ 0; d6 ¼ −80γ2; d7 ¼ −
960

7
γ2;

d8 ¼ −216γ2; d9 ¼ 0: ð4:10Þ

As a final example, we present the so-called extended GB
gravity [58,65], which is described by the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

2κ2

�
R− βe2ϕðRþ 6ð∇ϕÞ2Þ− 2λe4ϕ

− ãðϕRGB − 4Gμν∇μϕ∇νϕ− 4□ϕð∇ϕÞ2 − 2ð∇ϕÞ4Þ
�
:

ð4:11Þ

The advantage of this theory lies in the fact that a black hole
solution can be obtained analytically. Specifically, for a
spherically symmetric and static spacetime, we get

−gttðrÞ ¼ 1þ r2

2ã

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ã

�
2MG
r3

þ C
r4

�s #
; ð4:12Þ

for which the event horizon lies on

rh ¼ MGþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2G2 − ãþ C

p
: ð4:13Þ

With the action written in the above form, the coupling
constant has dimensions of length square. To define the
coupling constant to have dimensions of length, we just
have to redefine ã → Aκ; then, A is the coupling constant of
the theory with dimensions of length, as previously.
Choosing the following profile for the scalar field [58]:

ϕ ¼ ln

�
c1

rþ c2

�
; ð4:14Þ

we get the following constants and parameters of the
theory: C ¼ 2ã; c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ã=β

p
; c2 ¼ 0, and λ ¼ β2=4ã,

where ãβ < 0. The above theory has again a smooth limit
for a vanishing coupling constant. This allows us to expand
the solution in a series expansion around ã ¼ 0. Then, the
solution takes the following form:

−gttðrÞ ¼ 1 −
rh
r
þ
�
rh
r
− 2

�
rh
r

�
2

þ
�
rh
r

�
4
�
γ

− 2
rh
r

��
rh
r

�
3

− 2

�
rh
r

�
4

þ
�
rh
r

�
6
�
γ2 þOðγ3Þ:

ð4:15Þ
Aside from the differences of the above theories and the
corresponding hairy black solutions, we are interested in
their common features, for which we may state the
following:
(1) The theories support hairy black hole solutions

acquiring a secondary scalar charge; i.e., every
dimensionful quantity that parametrizes the solution
depends on the Arnowitt-Deser-Misner (ADM)
mass, the gravitational constant, and the coupling
constant of the interaction.

(2) The corresponding local solutions have a smooth
limit for a vanishing coupling constant, which
denotes the absence of the interaction.

(3) The dependence of the backreacting terms vanishes
asymptotically, which means that they depend only
to inverse powers of r.

(4) The coupling constant of the interaction appears
only into the dimensionless factor γ, and the r
dependence of the backreaction terms appear only
into x ¼ rh=r.

In the case where the zero coupling limit A → 0
corresponds to the Einstein-Hilbert action,7 the metric
has to coincide with the Schwarzchild solution, i.e.,
γ → 0 (assuming spherical symmetry and staticity).
Then, in such a case, the gtt component of the metric
would have the following form as a series expansion in γ:

gttðrÞ ¼ −ð1 − xÞ
�
1þ

X
n

γnfnðxÞ
�
; ð4:16Þ

where x ¼ rh=r and fnðxÞ are some polynomial functions.
The exterior of the black hole r > rh corresponds to the
interval 0 < x < 1, where x → 0 corresponds to r → ∞
and x ¼ 1 to the horizon r ¼ rh. Thus, asymptotic flatness
implies that fnð0Þ ¼ 0; i.e., there is no constant term to the
polynomials.
Moreover, at the limit of large black holes, the back-

reacting terms relax to zero (as γ → 0 via its denominator)
and the metric is effectively reduced to the Schwarzschild
black hole. At the exterior, the temporal component has to

7For the extended GB theory [58] the absence of the interaction
corresponds to the Einstein gravity with a conformally coupled
scalar field.
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be negative, except for the horizon that has to be zero,
which is guaranteed by the Schwarzschild term, (1 − x).
This implies

1þ
X
n

γnfnðxÞ > 0; for 0 < x < 1: ð4:17Þ

In the interior of the black hole, x > 1, the aforementioned
term may in principle vanish, leading to an inner horizon.
Thus, the condition for the existence of an inner horizon
reads

1þ
X
n

γnfnðx0Þ ¼ 0; for some x0 > 1: ð4:18Þ

What we want to investigate is whether the interactions
between the gravitational field and the matter field content
may lead to a stable black hole branch. Assuming the case
where (4.18) has at most one physically acceptable root,
there might be two asymptotic limits for the black hole in
the τ − rh plane. These asymptotic limits correspond to the
horizon radius for which τ → ∞, i.e., to a vanishing
temperature. In agreement with the above considerations,
we expect that one asymptotic limit corresponds to the case
of the large black hole size, which is effectively the
Schwarzschild black hole (plus a perturbation due to the
interaction), which is the unstable branch. On the other
hand, the stable black hole branch exists if there exists a
finite (nonzero) rh for which τ → ∞, since, if this is the
case, a branch for which ∂rh=∂T > 0 in the rh − τ plane has
to be there, which implies a positive heat capacity and a
corresponding positive topological charge, as was shown in
(3.9). Thus, the existence of the stable branch can be
studied in terms of the vanishing limits for the surface
gravity. The surface gravity for a spherically symmetric
metric is given by

κg ¼
jg0ttj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrr

p
����
r→rh

; ð4:19Þ

where prime denotes differentiation in respect to the
variable r. One has to guarantee that the metric determinant
has to be finite for 0 < x < −∞. This is achieved by
imposing that the term gttgrr is finite. Thus, the surface
gravity tends to zero, for those rh for which jg0ttðrhÞj → 0.
For the general metric component (4.16), we get

g0ttðrhÞ ¼ −
1

rh

�
1þ

X
n

γnfnð1Þ
�
: ð4:20Þ

Thus, g0ttðrhÞ → 0 for rh → ∞, which accounts for the
Schwarzschild limit (free gravitational field) and for those
finite rh that satisfy

1þ
X
n

γnfnð1Þ ¼ 0: ð4:21Þ

This condition describes the limit where the event horizon
and the inner horizon match at r ¼ x0rh, i.e., to the limit
where the condition (4.18) is satisfied for x0 → 1. Thus, if
the interaction between matter and gravity produces an
inner horizon for the black hole, a stable branch appears.
The implication of this is that for the case of small black
holes, where the perturbation theory on the γ parameter
breaks down, the hair contribution on the metric ceases to
be subdominant and may allow for a first-order phase
transition on the thermodynamic configuration space under
(4.21), which in terms implies a jump in the thermody-
namical topological sectors from the negative to the
positive topological charge of (3.9).
As a final note, we consider the inverse procedure to

verify our main result. We will proceed to show that if
(4.21) applies, then the topological charge will conse-
quently always be positive. Let us consider a hairy black
hole metric, whose gtt component is given via (4.16). In
particular, one may consider the following general metric
ansatz for a hairy black hole:

ds2 ¼ −FðxÞdt2 þ r2h
x4

dx2

HðxÞ þ
rh2

x2
dΩ2 ð4:22Þ

extracted by a simple coordinate transformation x ¼ rh
r

from the Schwarzschild coordinates. Additionally, follow-
ing (4.16), one may set that

FðxÞ ¼ ð1 − xÞ
�
1þ

X
n

γnfnðxÞ
�
;

HðxÞ ¼ ð1 − xÞ
�
1þ

X
n

γnhnðxÞ
�
; ð4:23Þ

where, again, asymptotic flatness requires thatX
n

γnfnð0Þ ¼
X
n

γnhnð0Þ ¼ 0: ð4:24Þ

Enforcing (4.21), the surface gravity vanishes, which
implies that τ → ∞ for a finite (nonzero) rh, that is the
minimum horizon radius value, such that the free energy
becomes on-shell. Then, the S

τ term of (2.12) is subdomi-
nant, assuming the natural fact that the entropy will always
be finite for a finite horizon radius. Arbitrarily close to such
an extreme case, the free energy of the system is effectively
reduced to the ADM mass of the black hole, which, due to
asymptotic flatness, is the same as the Komar mass

M ¼ −
1

8πG
lim
x→0

I
S2
∇μKνdSμν; ð4:25Þ

where Kν is the Killing vector associated with time-
translation symmetries, while dSμν is the reduced volume
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form on the 2-sphere at infinity. Then, plugging in our metric
ansatz, it is easy to verify that

M ¼ lim
x→0

rh
2G

g0ttðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðxÞgrrðxÞ

p
¼ lim

x→0

rhððx − 1ÞP∞
n¼1 γ

nf0nðxÞ þ
P∞

n¼1 γ
nfnðxÞ þ 1Þ

2G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
∞
n¼1

γnfnðxÞþ1P
∞
n¼1

γnhnðxÞþ1

r ;

where the prime denotes differentiation with respect to x.
Imposing (4.24), we find that

MðrhÞ ¼
rh
2G

�
1 −

X∞
n¼1

γnf0nð0Þ
�
; ð4:26Þ

We note that, for a physically acceptable solution, the ADM
mass has to be positive, which imposes the inequality

X∞
n¼1

f0nð0Þγn < 1; ∀ rh: ð4:27Þ

Under the paradigm of F≊M, the condition for a thermally
stable configuration simply reads that

∂F
∂rh

����
rh¼r�h

≊∂M
∂rh

����
rh¼r�h

¼ 0;
∂
2F
∂r2h

����
rh¼rh�

≊∂
2M
∂r2h

����
rh¼rh�

> 0;

ð4:28Þ

where r�h corresponds to the on-shell black hole horizon
radius. Essentially, the problem reduces to the following
statement: Given the positiveADMmass of (4.26), assuming
that it contains at least one local extremum (or in principle
more), we need to show that the smaller on-shell radius, i.e.,
forwhich theADMmass yields an extremum, corresponds to
a local minimum. This is actually easily verified from the
very form of the ADM mass function. Indeed, we note that
(4.26) can be expressed as

MðrhÞ ¼
rh
2G

−
rh
2G

O
�
Aκ
r2h

�
−

rh
2G

O
�
Aκ
r2h

�
2

− � � � ; ð4:29Þ

where we used γ ¼ Aκ
r2h
. Therefore,

MðrhÞ→∞ ð∀ rh→0Þ and ð∀ rh→∞Þ: ð4:30Þ

This implies that, from basic arguments on continuity and
differentiability, if a local extremumofMðrhÞ exists, then the
lowest local extremum r�h we obtain will be a local minimum
with ∂

2M
∂r2h

jrh¼rh� > 0. This configuration, under the condition

of vanishing temperature, implies that

∂
2F
∂r2h

����
rh¼rh�

> 0; ð4:31Þ

which, in view of Eq. (3.9), corresponds to a positive
topological charge. This solidifies our understanding that
if the black hole is allowed to become extremal due to the
contribution of secondary hair, the final thermal stage of the
black hole will always be reached through a stable branch of
the positive winding number. The careful reader shall notice
that this procedure breaks down for the case ofP∞

n¼1 f
0
nð0Þγn ¼ 0. Indeed, for this case, the ADM mass

is the same as the Schwarzschild mass and thermal stabiliza-
tion due to the hair contribution cannot be achieved, which is
a result that was missed in the prior analysis. Naturally, to
avoid this, fnðxÞ need to be polynomials that contain at least
one term linear in x.

B. Black hole stability and a potential
minimum length in quantum spacetime

The condition (4.21) implies a lower limit for the black
hole size that can be in thermal equilibrium with the heat
bath. This lower limit is given in terms of the coupling
constant of the interaction, through (4.21), and is the lower
size limit for which the black hole tends to acquire a zero
temperature; in other words, the case for which the black
hole tends to be extremal. The condition (4.21) is acquired
for some critical value of the γ-factor. We can measure the
coupling constant A in terms of the Planck length,
lP ¼ κ=

ffiffiffiffiffiffi
8π

p
, which means that we can introduce a dimen-

sionless parameter eA, in such a way that A ¼ eA2lP. Then,
the lowest possible size of the black hole horizon is of the
following order of magnitude:

rh;min ∼ jeAjlP: ð4:32Þ

From the explicit examples of black holes we have
examined above, it becomes clear that A depends on the
parameters and couplings of the underlying microscopic
theory of gravity and, therefore, whether the stable black
hole minimal size exceeds or not the Planck length depends
on the order of magnitude of the coupling of the pertinent
interaction.
Hawking radiation is one of the main ways a black hole

evolves down to lower sizes. If the interaction produces an
inner horizon in the black hole, then the flow of thermal
energy away from the black hole comes to an end.
Therefore, if an inner horizon exists, as is the case of
our specific examples of Kerr and RN black holes exam-
ined in Sec. II (cf. Fig. 1), then, at the point of maximum
temperature Tmax (occurring at ∂rh=∂τ ¼ ∞; τ ¼ T−1), one
observes that the heat capacity (2.11) diverges at T ¼ Tmax,
and subsequently changes sign, thus signaling a first-order
phase transition. Such a first-order transition is also in
correspondence with our earlier topological considerations
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associated with the discontinuous change of the winding
number from−1 toþ1. Given (4.32), the minimum horizon
size induced by the phase transition should be larger than
the Planck scale for

A=lP ≥ 1 ð4:33Þ

if sub-Planckian horizon sizes are to be avoided.8 As a
result, a thermally stable black hole remnant can occur.
The above concept of the production of an inner horizon

determined by a specific length scale introduced into the
theory is not only a feature of appropriate interactions
between gravity and matter fields with dimensionful
couplings. It is also introduced in theories with a funda-
mental physical length scale. In [66] a length scale θ
introduced through the generalized uncertainty principle
(GUP), in such a way that it regularizes the singularity of a
black hole, while it also leads to a similar thermodynamic
behavior as the one described above, to the production of an
inner horizon, signaling the end of the runaway evaporation
of the black hole. As such, the introduction of quantum
effects, either in the form of an effective theory and
interactions between gravity and matter fields or through
principles of quantum mechanics that we assume to hold
for the spacetime, as the GUP, is able to stabilize thermo-
dynamically the black hole at the late stages of its
evaporation through the production of an inner horizon
inside the event horizon.
It is understood that our semiclassical considerations are

not valid when the size of the minimum inner horizon
approaches the quantum gravity limit of the Planck length;
nevertheless, the whole approach makes it plausible to
conjecture a potential connection of the thermodynamical
criterion of [45] with the field of quantum gravity, in the
sense that the existence of thermally stable microscopic
black holes with minimal horizons of Planck size might
constitute the structure of spacetime foam itself [46].
In the above examples of the linear-dilaton-GB, or

Chern-Simons gravity, we have dealt with analytic expres-
sions for the corresponding black-hole solutions, in which
the backreaction of the hair field to the spacetime geometry
is known only up to first orders with respect to the coupling
constant. Unfortunately this is not the case for the full
stringy case of the black hole with secondary dilaton hair of
[25], characterized by exponential dilaton couplings to the
GB curvature combinations. Thus, the behavior of the
system for smaller sizes of the black hole cannot be
deduced in an analytic fashion. In the case of the GB
interaction some conclusions have been argued, in the

recent literature, but under some special circumstances that
seem to be vague. First, in [25], perturbative solutions near
the black hole horizon have been given in the form of
polynomial expansions in integer positive powers of
ðr − rhÞ. In [67] the near horizon and asymptotic solution
of the theory reveal a lower size limit for which a black hole
solution can exist, but only under the assumption that the
aforementioned coefficients were independent of rh.
Unfortunately, the coefficients of such expansions are
themselves functions of the horizon-radius size rh, which
prevents one from making generic analytic statement on the
existence of a lowest size for which such black hole
solutions can exist. To verify that such constants are indeed
functions of rh, consider the generic metric ansatz (4.16)
and Taylor expand it around x ¼ rh=r ¼ 1, i.e., near the
horizon. Then, the gtt component at the near horizon regime
has the following form:

gttðr ≈ rhÞ ¼ −
1þP

nγ
nfnð1Þ

rh
ðr − rhÞ þOððr − rhÞ2Þ:

ð4:34Þ

As such, the coefficient in front of ðr − rhÞ is indeed a
function of rh due to both the denominator but also, and
more importantly, the numerator, which owes its existence
to the backreaction. It is important to note that the
numerator vanishes if the condition (4.21) for the appear-
ance of the stable branch is true for some critical value of γ.
This means that, if an inner horizon exists, the near horizon
approximation of [67] totally breaks down when the event
horizon tends to coincide with the inner horizon, which is
reasonable because a near horizon approximation does not
take into account the black hole’s interior. In addition, it is
well-known that extremal black holes have a topology of
AdS2 × S2 near the horizon regime, which in turn raises
questions about the validity of the near horizon solution.
Moreover, in [68] a numerical approach is considered in
order to investigate the highly nonlinear effects of the GB
coupling in the string-inspired case of [25], albeit assuming
a Schwarzschild like causal structure of the dilatonic black
hole. Such simulations reveal that indeed a stable branch
appears at the final stages of evaporation, without, however,
an extremal black hole of zero temperature as an end point,
which could be considered unphysical, since, if true, it
would imply either a violation of the first law of thermo-
dynamics or a fixed black hole entropy, which is equally
strange. We expect that such results are misleading for the
fate of the dilatonic black hole, due to the failure of the
numerical method, since the coefficients are horizon
dependent in a nontrivial way. However, according to
the considerations of the present work, the existence of
a minimum black hole size is closely related to the
appearance of a stable branch for the black hole. In this
sense, the numerical methods might indeed be true about
the existence of a minimum size black hole, but the nonzero

8For completion, we mention that, in our specific examples
within the string theory framework, sub-Planckian horizon sizes
are avoided, for the case of Gauss-Bonnet interactions alone,
(4.4), for weakly coupled strings gs ≪ 1 even if α0 ∼ κ2, while for
the corresponding Chern-Simons couplings (4.7) sub-Planckian
horizon sizes are excluded for α0 ≳ κ2.
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temperature at this critical point might be a misleading
result due to the failure of the near horizon approximation
scheme, which as we already stated totally fails close to the
minimum size. Of course, lacking an exact analytic solution
in the model of [25] prevents one from reaching definitive
conclusions on this issue. To extend the analysis of [68] to
include such a case would require the imposition of
appropriate boundary conditions at the origin along with
a precision method of numerical relativity, as well as an
appropriate choice for the range of the pertinent Gauss-
Bonnet coupling. Such a nontrivial analysis falls way
beyond the scope of this paper.

V. CONCLUSIONS AND OUTLOOK

In this work, we have elaborated further on the con-
jecture of [45], which concerns a criterion for the thermo-
dynamical stability of a black hole viewed as a defect in
thermodynamic space by means of the positivity of an
appropriately defined winding number. We have managed
to verify the conjecture in some cases of black hole with
secondary scalar hair that backreacts on the geometry. Our
analysis involved examples of (pseudo)scalar hair induced
by interactions of the matter fields with quadratic-curvature
combinations, which are characterized by dimensionful
couplings with mass dimension −1. We have argued on the
applicability of the criterion of [45] to these examples,
which admit analytic perturbative solutions in the coupling.
These include gravitational theories with linear dilaton-
Gauss-Bonnet coupling, Chern-Simons gravity with pseu-
doscalar fields coupled linearly to the gravitational
anomaly, and also the extended Gauss-Bonnet gravity,
which also involves scalar fields linearly coupled to the
Gauss-Bonnet invariant. All such theories admit black
holes with (pseudo)scalar secondary hair.
We have paid particular attention to discussing the role of

the backreaction of the hair matter fields onto the spacetime
geometry on the stability of the black holes. The strength of
the backreaction is determined by appropriately dimension-
less combinations involving the interaction of the coupling
of matter with the geometry, which has dimensions of
length (we consider examples in which such an interaction
corresponds to a linear coupling of the scalar field to
curvature squared combinations). An important aspect of
the backreaction is the potential appearance of an inner
horizon, which in the case of thermal stability coincides

with the event horizon, thus leading to extremality. It is
important to notice that because of the secondary nature of
the hair, which by the way respects the spirit of the no-hair
conjecture, such contributions on the background geometry
cannot be shed away during Hawking evaporation.
We have demonstrated that such dimensionful couplings

imply the potential existence of minimal inner horizons for
the black holes that are thermodynamically stable, in the
sense of the aforementioned stability criterion. To avoid
black holes with sizes below the Planck length (a sort of
trans-Planckian conjecture) one should obviously impose
certain conditions on the size of the interaction of the higher
curvature coupling, which should be larger than the Planck
length. This in turn imposes restrictions on the range of the
fundamental parameters of the microscopic theory which
enter the expression for this coupling. The existence of such
minimal-size stable black hole remnants lead us to con-
jecture that the quantum spacetime structure of the theory
consists of spacetime foam, involving (quantum fluctuat-
ing) microscopic black holes of Planck size.
An interesting possible direction would be to apply the

above ideas so as to understand stable dark matter remnants
provided, for instance, by primordial black holes in
modified gravity theories involving scalar fields coupled
to higher curvature interactions. Moreover, spacetimes
characterized by nonconstant surface gravity, such as
Vaidya spacetimes, also constitute interesting arenas where
the topological stability conjecture can be tested.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with F. Corelli and P.
Pani on their interestingwork inRef. [68]. Thework ofN. C.
and E.P is supported by the research project of the National
Technical University of Athens (NTUA) 65232600-ACT-
MTG:AlleviatingCosmological TensionsThroughModified
Theories of Gravity; that of P. D. is partially supported by a
NTUA scholarship, while the work of N. E.M. is supported
in part by theUKScience andTechnology Facilities research
Council (STFC) and UK Engineering and Physical Sciences
Research Council (EPSRC) under the research Grants
No. ST/T000759/1 and No. EP/V002821/1, respectively.
N. E.M. also acknowledges participation in the COST
Association Action CA18108 Quantum Gravity
Phenomenology in the Multimessenger Approach
(QG-MM).

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116, 061102
(2016).

[2] B. P. Abbott et al. VGW151226: Observation of
Gravitational Waves from a 22-Solar-Mass Binary
Black Hole Coalescence, Phys. Rev. Lett. 116, 241103
(2016).

NIKOS CHATZIFOTIS et al. PHYS. REV. D 107, 084053 (2023)

084053-12

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103


[3] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), GW170104: Observation of a 50-Solar-Mass Binary
Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett.
118, 221101 (2017).

[4] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), GW170814: AThree-Detector Observation of Gravi-
tational Waves from a Binary Black Hole Coalescence,
Phys. Rev. Lett. 119, 141101 (2017).

[5] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), GW170817: Observation of Gravitational Waves
from a Binary Neutron Star Inspiral, Phys. Rev. Lett.
119, 161101 (2017).

[6] W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D
14, 870 (1976).

[7] L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, The
Unruh effect and its applications, Rev. Mod. Phys. 80, 787
(2008).

[8] T. Regge and J. A. Wheeler, Stability of a Schwarzschild
singularity, Phys. Rev. 108, 1063 (1957).

[9] F. J. Zerilli, Gravitational field of a particle falling in a
schwarzschild geometry analyzed in tensor harmonics,
Phys. Rev. D 2, 2141 (1970).

[10] F. J. Zerilli, Effective Potential for Even Parity Regge-
Wheeler Gravitational Pequations, Phys. Rev. Lett. 24,
737 (1970).

[11] K. D. Kokkotas and B. G. Schmidt, Quasinormal modes of
stars and black holes, Living Rev. Relativity 2, 2 (1999).

[12] H.-P. Nollert, TOPICAL REVIEW: Quasinormal modes:
The characteristic ‘sound’ of black holes and neutron stars,
Classical Quantum Gravity 16, R159 (1999).

[13] Y. Fujii and K. Maeda, The Scalar-Tensor Theory
of Gravitation (Cambridge University Press, Cambridge,
England, 2007).

[14] N. Bocharova, K. Bronnikov, and V. Melnikov, Vestn.
Mosk. Univ., Ser. 3: Fiz., Astron. 6, 706 (1970); J. D.
Bekenstein, Exact solutions of Einstein conformal scalar
equations, Ann. Phys. (N.Y.) 82, 535 (1974); Black holes
with scalar charge, Ann. Phys. (N.Y.) 91, 75 (1975).

[15] K. A. Bronnikov and Y. N. Kireev, Instability of black holes
with scalar charge, Phys. Lett. 67A, 95 (1978).

[16] C. Martinez and J. Zanelli, Conformally dressed black hole
in (2þ 1)-dimensions, Phys. Rev. D 54, 3830 (1996).

[17] C. Martinez, R. Troncoso, and J. Zanelli, Exact black hole
solution with a minimally coupled scalar field, Phys. Rev. D
70, 084035 (2004).

[18] N. E. Mavromatos and E. Winstanley, Aspects of hairy
black holes in spontaneously broken Einstein Yang-Mills
systems: Stability analysis and entropy considerations,
Phys. Rev. D 53, 3190 (1996).

[19] T. Kolyvaris, G. Koutsoumbas, E. Papantonopoulos, and G.
Siopsis, A new class of exact hairy black hole solutions,
Gen. Relativ. Gravit. 43, 163 (2011).

[20] C. Charmousis, T. Kolyvaris, E. Papantonopoulos, and M.
Tsoukalas, Black holes in bi-scalar extensions of Horndeski
theories, J. High Energy Phys. 07 (2014) 085.

[21] M. Rinaldi, Black holes with non-minimal derivative
coupling, Phys. Rev. D 86, 084048 (2012).

[22] T. Kolyvaris, G. Koutsoumbas, E. Papantonopoulos, and G.
Siopsis, Phase transition to a hairy black hole in asymp-
totically flat spacetime, J. High Energy Phys. 11 (2013) 133.

[23] E. Babichev and C. Charmousis, Dressing a black hole with
a time-dependent Galileon, J. High Energy Phys. 08 (2014)
106.

[24] J. Polchinski, String Theory (Cambridge University Press,
Cambridge, 2001), Vols. 1\2.

[25] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.
Winstanley, Dilatonic black holes in higher curvature string
gravity, Phys. Rev. D 54, 5049 (1996).

[26] T. Torii, H. Yajima, and K. i. Maeda, Dilatonic black holes
with Gauss-Bonnet term, Phys. Rev. D 55, 739 (1997).

[27] B. Kleihaus, J. Kunz, and E. Radu, Rotating Black Holes in
Dilatonic Einstein-Gauss-Bonnet Theory, Phys. Rev. Lett.
106, 151104 (2011).

[28] V. Cardoso, I. P. Carucci, P. Pani, and T. P. Sotiriou, Matter
around Kerr black holes in scalar-tensor theories: Scalari-
zation and superradiant instability, Phys. Rev. D 88, 044056
(2013).

[29] D. D. Doneva and S. S. Yazadjiev, New Gauss-Bonnet
Black Holes with Curvature-Induced Scalarization in Ex-
tended Scalar-Tensor Theories, Phys. Rev. Lett. 120,
131103 (2018).

[30] H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E.
Berti, Spontaneous Scalarization of Black Holes and Com-
pact Stars from a Gauss-Bonnet Coupling, Phys. Rev. Lett.
120, 131104 (2018).

[31] C. M. Chen, D. V. Gal’tsov, and D. G. Orlov, Extremal black
holes in D ¼ 4 Gauss-Bonnet gravity, Phys. Rev. D 75,
084030 (2007).

[32] G. Antoniou, A. Bakopoulos, and P. Kanti, Evasion of
No-Hair Theorems and Novel Black-Hole Solutions in
Gauss-Bonnet Theories, Phys. Rev. Lett. 120, 131102
(2018).

[33] D. D. Doneva, S. Kiorpelidi, P. G. Nedkova, E.
Papantonopoulos, and S. S. Yazadjiev, Charged Gauss-
Bonnet black holes with curvature induced scalarization
in the extended scalar-tensor theories, Phys. Rev. D 98,
104056 (2018).

[34] N. Andreou, N. Franchini, G. Ventagli, and T. P. Sotiriou,
Spontaneous scalarization in generalised scalar-tensor
theory, Phys. Rev. D 99, 124022 (2019); 101, 109903(E)
(2020).

[35] D. D. Doneva, K. V. Staykov, S. S. Yazadjiev, and R. Z.
Zheleva, Multiscalar Gauss-Bonnet gravity: Hairy black
holes and scalarization, Phys. Rev. D 102, 064042 (2020).

[36] A. Bakopoulos, G. Antoniou, and P. Kanti, Novel black-
hole solutions in Einstein-Scalar-Gauss-Bonnet theories
with a cosmological constant, Phys. Rev. D 99, 064003
(2019).

[37] H. Guo, X. M. Kuang, E. Papantonopoulos, and B. Wang,
Horizon curvature and spacetime structure influences on
black hole scalarization, Eur. Phys. J. C 81, 842 (2021).

[38] S. Kiorpelidi, G. Koutsoumbas, A. Machattou, and E.
Papantonopoulos, Topological Black Holes with curvature
induced scalarization in the extended scalar-tensor theories,
Phys. Rev. D 105, 104039 (2022).

[39] Z. Y. Tang, B. Wang, T. Karakasis, and E. Papantonopoulos,
Curvature scalarization of black holes in f(R) gravity, Phys.
Rev. D 104, 064017 (2021).

[40] J. Zanelli, Lecture notes on Chern-Simons (super-)gravities,
arXiv:hep-th/0502193.

THERMAL STABILITY OF HAIRY BLACK HOLES PHYS. REV. D 107, 084053 (2023)

084053-13

https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevD.2.2141
https://doi.org/10.1103/PhysRevLett.24.737
https://doi.org/10.1103/PhysRevLett.24.737
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1088/0264-9381/16/12/201
https://doi.org/10.1016/0003-4916(74)90124-9
https://doi.org/10.1016/0003-4916(75)90279-1
https://doi.org/10.1016/0375-9601(78)90030-0
https://doi.org/10.1103/PhysRevD.54.3830
https://doi.org/10.1103/PhysRevD.70.084035
https://doi.org/10.1103/PhysRevD.70.084035
https://doi.org/10.1103/PhysRevD.53.3190
https://doi.org/10.1007/s10714-010-1079-0
https://doi.org/10.1007/JHEP07(2014)085
https://doi.org/10.1103/PhysRevD.86.084048
https://doi.org/10.1007/JHEP11(2013)133
https://doi.org/10.1007/JHEP08(2014)106
https://doi.org/10.1007/JHEP08(2014)106
https://doi.org/10.1103/PhysRevD.54.5049
https://doi.org/10.1103/PhysRevD.55.739
https://doi.org/10.1103/PhysRevLett.106.151104
https://doi.org/10.1103/PhysRevLett.106.151104
https://doi.org/10.1103/PhysRevD.88.044056
https://doi.org/10.1103/PhysRevD.88.044056
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevD.75.084030
https://doi.org/10.1103/PhysRevD.75.084030
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevD.98.104056
https://doi.org/10.1103/PhysRevD.98.104056
https://doi.org/10.1103/PhysRevD.99.124022
https://doi.org/10.1103/PhysRevD.101.109903
https://doi.org/10.1103/PhysRevD.101.109903
https://doi.org/10.1103/PhysRevD.102.064042
https://doi.org/10.1103/PhysRevD.99.064003
https://doi.org/10.1103/PhysRevD.99.064003
https://doi.org/10.1140/epjc/s10052-021-09630-7
https://doi.org/10.1103/PhysRevD.105.104039
https://doi.org/10.1103/PhysRevD.104.064017
https://doi.org/10.1103/PhysRevD.104.064017
https://arXiv.org/abs/hep-th/0502193


[41] D. G. Boulware and S. Deser, String-Generated Gravity
Models, Phys. Rev. Lett. 55, 2656 (1985); J. T. Wheeler,
Symmetric solutions to the Gauss-Bonnet extended Einstein
equations, Nucl. Phys. B268, 737 (1986).

[42] P. Gonzalez, E. Papantonopoulos, and J. Saavedra, Chern-
Simons black holes: Scalar perturbations, mass and area
spectrum and greybody factors, J. High Energy Phys. 08
(2010) 050.

[43] N. Chatzifotis, P. Dorlis, N. E. Mavromatos, and E.
Papantonopoulos, Scalarization of Chern-Simons-Kerr
black hole solutions and wormholes, Phys. Rev. D 105,
084051 (2022).

[44] N. Chatzifotis, P. Dorlis, N. E. Mavromatos, and E.
Papantonopoulos, Axion induced angular momentum re-
versal in Kerr-like black holes, Phys. Rev. D 106, 084002
(2022).

[45] S. W. Wei, Y. X. Liu, and R. B. Mann, Black Hole Solutions
as Topological Thermodynamic Defects, Phys. Rev. Lett.
129, 191101 (2022).

[46] J. A. Wheeler, Geons, Phys. Rev. 97, 511 (1955).
[47] J. A. Wheeler and K. Ford, Geons, Black Holes, and

Quantum Foam: A Life in Physics (W.W. Norton and
Company, London and New York, 2000).

[48] D. Wu, Topological classes of rotating black holes, Phys.
Rev. D 107, 024024 (2023).

[49] D. Wu, Topological classes of rotating AdS black holes,
Phys. Rev. D 107, 084002 (2023).

[50] N. C. Bai, L. Li, and J. Tao, Topology of black hole
thermodynamics in Lovelock gravity, Phys. Rev. D 107,
064015 (2023).

[51] C. Liu and J. Wang, The topological natures of the Gauss-
Bonnet black hole in AdS space, Phys. Rev. D 107, 064023
(2023).

[52] T. P. Sotiriou and S. Y. Zhou, Black Hole Hair in General-
ized Scalar-Tensor Gravity, Phys. Rev. Lett. 112, 251102
(2014).

[53] M. J. Duncan, N. Kaloper, and K. A. Olive, Axion hair and
dynamical torsion from anomalies, Nucl. Phys. B387, 215
(1992).

[54] B. A. Campbell, M. J. Duncan, N. Kaloper, and K. A. Olive,
Gravitational dynamics with Lorentz Chern-Simons terms,
Nucl. Phys. B351, 778 (1991).

[55] B. A. Campbell, M. J. Duncan, N. Kaloper, and K. A.
Olive, Axion hair for Kerr black holes, Phys. Lett. B 251,
34 (1990).

[56] R. Jackiw and S. Y. Pi, Chern-Simons modification of
general relativity, Phys. Rev. D 68, 104012 (2003).

[57] S. Alexander and N. Yunes, Chern-Simons modified general
relativity, Phys. Rep. 480, 1 (2009).

[58] P. G. S. Fernandes, Gravity with a generalized conformal
scalar field: Theory and solutions, Phys. Rev. D 103,
104065 (2021).

[59] R. M. Wald, Black hole entropy is the Noether charge, Phys.
Rev. D 48, R3427 (1993).

[60] E. Fermi, Thermodynamics (Fermi Collaboration), Dover
Books in Physics and Mathematical Physics (Dover Pub-
lications, New York, 1956).

[61] Y. S. Duan and M. L. Ge, SU(2) gauge theory and electro-
dynamics with N magnetic monopoles, Sci. Sin. 9, 1072
(1979).

[62] Y. S. Duan, The structure of the topological current, Report
No. SLAC-PUB-3301, 1984.

[63] S.W. Wei, Topological charge and black hole photon
spheres, Phys. Rev. D 102, 064039 (2020).

[64] K. Yagi, N. Yunes, and T. Tanaka, Slowly rotating black
holes in dynamical Chern-Simons gravity: Deformation
quadratic in the spin, Phys. Rev. D 86, 044037 (2012);
89, 049902(E) (2014).

[65] P. G. S. Fernandes, P. Carrilho, T. Clifton, and D. J.
Mulryne, Black holes in the scalar-tensor formulation of
4D Einstein-Gauss-Bonnet gravity: Uniqueness of solu-
tions, and a new candidate for dark matter, Phys. Rev. D
104, 044029 (2021).

[66] P. Nicolini, Noncommutative black holes, The final appeal
to quantum gravity: A review, Int. J. Mod. Phys. A 24, 1229
(2009).

[67] P. Kanti and K. Tamvakis, Colored black holes in
higher curvature string gravity, Phys. Lett. B 392, 30
(1997).

[68] F. Corelli, M. De Amicis, T. Ikeda, and P. Pani, Non-
perturbative gedanken experiments in Einstein-dilaton-
Gauss-Bonnet gravity: Nonlinear transitions and tests of
the cosmic censorship beyond General Relativity, Phys.
Rev. D 107, 044061 (2023).

NIKOS CHATZIFOTIS et al. PHYS. REV. D 107, 084053 (2023)

084053-14

https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1016/0550-3213(86)90268-3
https://doi.org/10.1007/JHEP08(2010)050
https://doi.org/10.1007/JHEP08(2010)050
https://doi.org/10.1103/PhysRevD.105.084051
https://doi.org/10.1103/PhysRevD.105.084051
https://doi.org/10.1103/PhysRevD.106.084002
https://doi.org/10.1103/PhysRevD.106.084002
https://doi.org/10.1103/PhysRevLett.129.191101
https://doi.org/10.1103/PhysRevLett.129.191101
https://doi.org/10.1103/PhysRev.97.511
https://doi.org/10.1103/PhysRevD.107.024024
https://doi.org/10.1103/PhysRevD.107.024024
https://doi.org/10.1103/PhysRevD.107.084002
https://doi.org/10.1103/PhysRevD.107.064015
https://doi.org/10.1103/PhysRevD.107.064015
https://doi.org/10.1103/PhysRevD.107.064023
https://doi.org/10.1103/PhysRevD.107.064023
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1016/0550-3213(92)90052-D
https://doi.org/10.1016/0550-3213(92)90052-D
https://doi.org/10.1016/S0550-3213(05)80045-8
https://doi.org/10.1016/0370-2693(90)90227-W
https://doi.org/10.1016/0370-2693(90)90227-W
https://doi.org/10.1103/PhysRevD.68.104012
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1103/PhysRevD.103.104065
https://doi.org/10.1103/PhysRevD.103.104065
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1142/9789813237278_0001
https://doi.org/10.1142/9789813237278_0001
https://doi.org/10.1103/PhysRevD.102.064039
https://doi.org/10.1103/PhysRevD.86.044037
https://doi.org/10.1103/PhysRevD.89.049902
https://doi.org/10.1103/PhysRevD.104.044029
https://doi.org/10.1103/PhysRevD.104.044029
https://doi.org/10.1142/S0217751X09043353
https://doi.org/10.1142/S0217751X09043353
https://doi.org/10.1016/S0370-2693(96)01521-3
https://doi.org/10.1016/S0370-2693(96)01521-3
https://doi.org/10.1103/PhysRevD.107.044061
https://doi.org/10.1103/PhysRevD.107.044061

