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Adopting the manifestation of low frequency and low mass for the scalar perturbation, we perform a
semiclassical analysis of the superradiance phenomenon for a rotating hairy Horndeski black hole (BH).
For the spacetime under study enriched by the hairy Horndeski parameter h, in addition to the massM and
spin a, we compute the amplification factor of scalar wave scattering indicating the energy extraction from
the BH. We find that due to the addition of the hairy parameter h in the geometry, the superradiance
scattering and its frequency range enhance compared to the Kerr BH. This implies that Horndeski’s gravity
belongs to those alternative theories of gravity that make the amplification factor larger than the Kerr BH so
that the energy extraction in its framework is more efficient than general relativity. Calculating the outgoing
energy flux measured by an observer at infinity verifies the role of the hairy parameter h in the increase in
energy extraction efficiency from the rotating BH. By implementing the BH bomb mechanism, we present
an analysis of the superradiant instability of the underlying BH spacetime against massive scalar fields. Our
analysis indicates that the hairy Horndeski parameter leaves no imprint on the standard superradiant
instability regime.
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I. INTRODUCTION

The exciting idea of extracting energy from a black hole
(BH) through the amplification process dates back to the
pioneering work of Penrose [1,2], who proposed energy
extraction for a particle falling and decaying into the
ergoregion of a Kerr BH.1 Indeed, the ergoregion is a
region in which a timelike captured particle can have
negative energy, as perceived by an observer at infinity.
According to the energy-conservation law, the swallowing
of the particles with negative energy by a BH means
extracting energy from the BH. This process also can be
generalized to wave scattering off BHs. Using the massless
scalar field, Misner derived the essential inequality,
ω < mΩ, between the frequency of the incitant wave ω
and the rotational frequency of the BH Ω [10]. This, in

essence, is known as superradiant scattering i.e., the
amplification of waves when scattering off a dissipative
rotating body. By analyzing a dissipative system such as an
absorber rotating cylinder subject to scattering of waves,
Zeldovich derived successfully the mentioned condition of
rotational superradiance (ω < mΩ) [11,12]. Indeed, it is
well-known that an incident wave in case of scattering off
any dissipative object is prone to experiencing super-
radiance. In this regard, Teukolsky [13] has shown that
the Misner/Zeldovich amplification process also occurs for
other bosonic fields (electromagnetic and gravitational
waves) provided that satisfies the inequality above.
Further, by analyzing BH superradiance from the perspec-
tive of thermodynamics, Bekenstein derived [14] results in
agreement with previous ones (see also [15]). The mile-
stone of Bekenstein’s study was the discovery of a
fundamental origin for the energy extraction via connecting
it to Hawking’s theorem, expressing that the surface area of
a classical BH cannot decrease [16]. Historically, these
seminal papers on the BH superradiance were the first steps
that later resulted in discovering BH evaporation by
Hawking2 [17]. This, along with some of the newer studies
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1It can be interesting to point out that energy extraction via the

Penrose process is not affordable astrophysical and instead by
regarding the magnetic field around the BH its efficiency
improves [3–5]. Recently, Ref. [6], has shown that the magnetic
field enclosing a rotating BH, via a theoretical mechanism known
as magnetic reconnection, has the potential for energy extraction
with more efficiency, see also followup studies [7–9].

2For this reason, by taking the quantum effects into account,
the rotational superradiance would become a spontaneous proc-
ess and BH would slow down by spontaneous emission of
photons satisfying ω < mΩ.
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on this subject such as [18,19], may support the idea that
superradiant scattering strongly depends on the boundary
conditions at the horizon. This implies that superradiant
scattering is nothing but a boundary condition problem.
However, several evidences reveal that the ergoregion is
an essential component for occurring superradiance phe-
nomena, since it provides required friction as a form of
dissipation [20,21] (see also [22] for review). Based on this,
horizonless compact objects such as stars are also prone to
trigger superradiance [23]. Indeed, due to the probable
existence of viscous matter, stars can be regarded as a
model that may provide requisite dissipation for super-
radiance phenomena to occur [24] (see also [25]).
Apart from the fact that superradiant amplification can be

utilized to explain energy extraction from a BH, it may cause
several important instabilities in BH spacetimes, as well. If
these instabilities occur, due to rotational energy extraction,
the spin of BH slows down and can lead to a hairy BH
solution. Therefore, these instabilities may open a new
window to investigate the no-hair theorem for any new
BH solution [26]. The idea behind superradiant instability is
not complicated and comes from the fact that confinement of
the system subject to perturbation causes unstable environ-
ment against superradiant modes. By amplifying any incom-
ing pulse near the ergoregion by superradiance, and then
confining the pulse via a perfect reflecting surface at some
distance, the amplitude of the pulse exponentially increases
through numerous interactions. It means making instability
in the background subject to some perturbation. Commonly,
a reflecting surface is supplied in two different ways; natural
and artificial. The former can be achieved if there is any
provision for anti–deSitter (AdS) spacetime3 [28–32] and the
massive scalar field [33–39], while the latter can be reached
by placing a mirrorlike surface around BH or confining the
BH into a box with Dirichlet boundary conditions [40–43].
Press and Teukolsky [44] explained the mechanism of the
instability in this way that the initial fluctuation arising from
superradiant modes grows exponentially, leading to an ever-
increasing field density and pressure inside the confinement
region such that finally disrupts the confining surface,
resulting in an explosion. This system is known as the BH
bomb, see Ref. [45] for more details. Another motivation for
studying superradiant instability of BH comes from the fact
that constraining the mass of ultra-light degrees of freedom
may shed light on the dark matter puzzle [46–49].
In recent years, this subject has received a considerable

attention from different perspectives, including astrophysics,
higher-dimension spacetimes, and also alternative theories of
general relativity. The importance of superradiant instability
in the framework of astrophysics originates from the fact that

its development due to the extraction of energy and angular
momentum from the BH results in the formation of a
nonspherical bosonic cloud near the BH and subsequently
gravitational-wave emission [50–52] (see also recent
papers [53,54]). The application of the gravitational wave
emitted by the cloud is that creating specific quasimono-
chromatic signals would address the existence of ultralight
bosons. In otherwords, the superradiant instabilities allow us
to use astrophysical BHs as effective detectors [55] to look
for new particles [56]. It was argued that the superradiant
instability at interplaywith theBH shadow can potentially be
used to constrain the ultralight boson candidates [57–60].
Other studies [61–65] propose the possibility of probing
ultralight bosons using the superradiant clouds around the
supermassive BHs recorded recently by the Event Horizon
Telescope. The investigations on the superradiant phenome-
non for higher-dimensional models are well-motivated since
according to these models in particle accelerators such as
LHC (Large Hadron Collider) there is a chance to produce
micro BHs [66]. By serving the scalar and vector perturba-
tions, the efficiency of superradiant amplification as well as
its instabilities for higher-dimensional rotating BHs have
been addressed in [67–73]. Similar investigations have been
performed for nonrotating charged BHs [74–76].
Another domain of interest for studying the superradiance

phenomena of BHs is modified gravity, which we shall
address by utilizing one of the well-known models beyond
Einstein’s gravity. In other words, BH superradiance is not a
prerogative of general relativity, rather any relativistic
gravitational theory that admits BH solutions, is prone
potentially to it. Despite the agreement of the recent gravity
experiments in the strong field regime [77–79] with the
standard Kerr BH, due to the statistical error in current
observations, the possibility of admitting the Kerr BH
solutions modified by some alternative theories of gravity
is still not ruled out. In general, the details of the superradiant
energy extraction are affected by two factors; BH geometry
and the wave dynamics in the alternative theory of gravity.
The motivation for the study of superradiance within the
modified gravities is twofold. First, Einstein’s gravity, despite
all its admirable achievements, cannot be a reliable theory at
all scales due to some shortcomings, and it is expected that it
needs somemodifications [80]. Second, finding the imprint of
corrections imposed to the standard model of gravity on the
superradiance efficiency and its instabilities is also potentially
interesting. In recent years, we are seeing a variety of research
on this topic (see e.g., [81–94]) which compared to standard
general relativity enhances or subsidizes. Such investigations
allow us to separate those modified gravities which are in
favor of superradiance from those that are not. Despite these
studies, there is still room for some classes ofBHsolutions. In
the present work, we focus on hairy rotating BHs that arise
from Horndeski theory of gravity.
Introducing the scalar field is one of the well-known

ways to extend gravity to overcome cosmological issues,
including dark energy, dark matter, and the evolution of the

3In Ref. [27] it has shown that the asymptotically Godel
spacetime is also similar to AdS which can play the natural role of
a timelike boundary. Note that no timelike particle can reach
spatial infinity, therefore any background similar to AdS can be
considered as a confining system.
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Universe in early- and late-time epochs. There are some
modified gravity theories that are mathematically equiv-
alent to a gravitational theory with degrees of freedom
containing the metric gμν and one or more scalar fields ϕ
[95–98]. The scalar-tensor theories are likely the simplest,
most consistent, and nontrivial extensions of general
relativity [99]. One of the most famous four-dimensional
scalar-tensor theory is the Horndeski gravity proposed in
1970 [100]. In the light of some leading research [101,102],
it was argued that Horndeski gravity is equivalent to the
Galilean theories which, in essence, are the scalar-tensor
theories with Galilean symmetry in flat spacetime
[103,104]. Indeed, due to propagating one scalar degree
of freedom by general second-order field equations in the
Horndeski gravity, it is free of Ostrogradski instabilities. In
Refs. [105,106], authors have shown that gravitational
waves are an efficient and robust tool for distinguishing
the models of the Horndeski theory describing the cosmic
accelerating expansion. One of the freedoms that appear in
Horndeski’s theories is that, unlike the standard general
relativity, there is no requirement that gravitational waves
(tensor speed cT) travel at the speed of light in the vacuum
i.e., cT ¼ c. Apart from the key physical reason giving rise
to such anomalous propagation, gravitational waves when
analyzed in the framework of modified gravity no longer
travel on null geodesics of the background metric as
photons do [107]. The release of the observational data of
GW170817 and whose optical counterpart GRB170817A,
have placed very tight constraints on the deviation from the
speed of light [108]. In general, the results ofGW170817 and
GRB170817A indicate that the deviation of the tensor speed
(gravitational waves) from the speed of light is no more than
one part in 1015 i.e., jcT − 1j≲ 1015. Thanks to this tight
constraint, it is possible to test the validity of Horndeski’s
descriptions of late-times cosmological evolution (e.g., see
Refs. [109–111]). Cosmological consequences of this theory
such as alleviating the cosmological constant problem [112]
and other interesting features [113–118] have been studied.
While, observational constraints on the parameters of
Horndeski theories have been carried out in [119–124],
thermodynamics of BH solutions of this theory were
explored in [125–130]. Taking hairy BH solution4 [138]

derived from the quartic scalar field version of theHorndeski
gravity, the role of adding a hairy parameter on the strong
gravitational effects such as lensing [139], deflection of
light [140], and BH shadow [141] have been explored.
In line with what is mentioned above, in the present

work, we investigate the influence of the hairy para-
meter, admitted by the quartic scalar field Horndeski
gravity, on massive scalar field superradiant amplification,
and the relevant stability linked with it. This study is well-
motivated in the sense that it allows us to address the
phenomenological imprint induced by the correction in the
geometric structure of spacetime. Throughout this paper,
we use the signature convention ð−;þ;þ;þÞ and work in
the units where c ¼ 1 ¼ κ ¼ 8πGN .
This paper is structured as follows. In Sec. II, by serving

the quartic Horndeski scalar field model, we present the
rotating counterpart for the spherically symmetry hairy BH
solution [138], as already was released in [140]. Section III
consists of three parts. We first address the conditions of
massive scalar superradiant scattering, and then by serving
a semiclassical technique, we compute analytically the
amplification factor to look for the role of hairy Horndeski
in strengthening/weakening of scalar wave. In the third
part of Sec. III, we investigate the energy extraction from
the rotating Horndeski BH. In Sec. IV, by analyzing the
effective potential in the framework of the BH bomb
mechanism, we discuss the superradiant instability of the
dynamics of the massive scalar fields. We finish with
closing remarks in Sec. V.

II. ROTATING HORNDESKI BLACK
HOLE METRIC

The action of Horndeski gravity consists of the metric
gμν and the scalar field ϕ include four arbitrary functions
Qi¼2;::5ðχÞ of kinetic term χ ¼ −1=2∂μϕ∂μϕ [142].
Adopting the special case in which Q5 ¼ 0, the quartic
action of Horndeski gravity can be expressed as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fQ2ðχÞ þQ3ðχÞ□ϕþQ4ðχÞR

þQ4;χðð□ϕÞ2 − ð▿μ▿νϕÞð▿μ▿νϕÞÞg; ð1Þ

where g, R, □, and ▿ denote the determinant of the metric
tensor, the Ricci scalar, the d’Alembert operator, and the
covariant derivative, respectively.
The spherically symmetric hairy Horndeski BH space-

time has the following line elements [138]

ds2 ¼ −AðrÞdt2 þ B−1ðrÞdr2 þ CðrÞðdθ2 þ sin2θdφ2Þ;
CðrÞ ¼ r2: ð2Þ

By varying the action (1) with respect to ϕ;μ, and gμν, we
obtain

4One can imagine the Kerr hypothesis as a consequence of the
no-hair theorem, meaning that the endpoint of any gravitational
collapse will be nothing but a Kerr BH. However, this is different
in the framework of modified theories and it is expected to there
exist classes of these theories that predict the hairy BH solutions.
Note that the existence of hairy BH solutions always is not
meaning that there is an additional new conserved charge (for a
comprehensive overview refer to Refs. [131,132]). Already
several static and spherically symmetric hairy BHs in the
framework of scalar-tensor theories were obtained which as
the simplest case can mention those solutions with a radial
dependency scalar field [133–135]. Apart from the theoretical
aspects, some of these hairy solutions have also been subjected to
observations [136,137].
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jν ¼ −Q2;χ ϕ;ν −Q3;χ ðϕ;ν□ϕþ χ;νÞ −Q4;χ ðϕ;νR − 2Rνσϕ;σ Þ
−Q4;χ ;χ ðϕ;ν½ð□ϕÞ2 − ð∇α∇βϕÞð∇α∇βϕÞ� þ 2ðχ;ν□ϕ − χ;μ ∇μ∇νϕÞÞ; ð3Þ

and

Q4Gμν ¼ Tμν; ð4Þ

which are respectively the four-current and the field equations with

Tμν ¼
1

2
ðQ2;χ ϕ;μ ϕ;νþQ2gμνÞ þ

1

2
Q3;χ ðϕ;μ ϕ;ν□ϕ − gμνχ;α ϕ;α þ χ;μ ϕ;νþχ;ν ϕ;μÞ

−Q4;χ

�
1

2
gμν½ð□ϕÞ2 − ð∇α∇βϕÞð∇α∇βϕÞ − 2Rσγϕ

;σϕ;γ� −∇μ∇νϕ□ϕ

þ∇γ∇μϕ∇γ∇νϕ −
1

2
ϕ;μ ϕ;ν Rþ Rσμϕ

;σϕ;νþRσνϕ
;σϕ;μ þRσνγμϕ

;σϕ;γ

�

−Q4;χ ;χ ðgμνðχ;α ϕ;α□ϕþ χ;αχ
;αÞ þ 1

2
ϕ;μ ϕ;ν ð∇α∇βϕ∇α∇βϕ − ð□ϕÞ2Þ

− χ;μ χ;ν −□ϕðχ;μ ϕ;ν þχ;ν ϕ;μ Þ − χ;γ ½ϕ;γ∇μ∇νϕ − ð∇γ∇μϕÞϕ;ν −ð∇γ∇νϕÞϕ;μ �Þ: ð5Þ

To have spherically symmetric spacetime, as addressed
by the metric (2), it is essential one set a scalar field
ϕ≡ ϕðrÞ. Without going into the details of [138], by
introducing simple forms forQ2 ¼ α22ð−χÞ3=2,Q3 ¼ 0 and
Q4 ¼ κ−2 þ α42ð−χÞ1=2,5 and satisfying the conditions; a
vanishing radial four-current at infinity jr ¼ 0, finiteness of
the energy of ϕ i.e.,

R
V

ffiffiffiffiffiffi−gp
T0
0d

3x, and utilizing the field
equations (4), the metric components of (2) and the
derivative of the scalar field background take the following
forms, respectively

AðrÞ ¼ BðrÞ ¼ 1 −
2M
r

þ h
r
ln

�
r
2M

�
; ð6Þ

ϕ0ðrÞ ¼ � 2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α42

3AðrÞα22

r
: ð7Þ

If h → 0 (with the mass dimension ½h� ¼ M), the
Schwarzschild solution is recovered. It, in essence, is
related to parameters α22 and α42 respectively in the
functions Q2, and Q4 in the action (1). More exactly, it
reads as h ¼ ð2=3Þ3=2κ2α42

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α42=α22

p
[138]. Recently, the

range of the hairy Horndeski parameter h in the scale of

the supermassive black hole horizon located in the center
of our Galaxy has been scanned [144]. As it is clear from
(7) the derivative of the scalar field is finite and real if
AðrÞ > 0 (i.e., everywhere outside of the black hole) and
α42=α22 < 0. Namely, the current jr (as only nonzero
component of four-current jμ), is not finite exactly on
the horizon, but in the vicinity of it [AðrÞ → 0þ] the
behavior of both ϕ0ðrÞ, and jr are regular. Providing a
more details discussion on this can be helpful to understand
such a behavior of the derivative of the ϕ on the horizon.
For the gravity-Galileon field coupled systems, it is shown
in Ref. [145] by Hui and Nicolis that a no-hair result of
black holes hold under some assumptions: (a) asymptotic
flatness, (b) vanishing derivative of the scalar field at
infinity, (c) the finiteness of norm of the Noether four-
current jμjμ down to the horizon, (d) the presence of
canonical kinetic term χ in the action, (e) the χ-derivatives
of Q2…5 contain only positive or zero powers of χ. In
other words, bypassing one or more of these assumptions
in the no-go theorem above may result in a hairy black
hole solution. In [145] have shown that satisfying the
assumption (c) results in a time-independent but constant
profile for scalar field i.e. ϕðrÞ ¼ constant. The hairy black
hole solution in [138] that we are interested in is, in
essence, obtained from leaving the assumptions (c) and/or
(e), along with taking a time-independent profile but
nonconstant (r-dependent) into account of the scalar field.
Indeed, assumption (c) is replaced with the finiteness of the
Noether four-current jμ at infinity, meaning that the energy
of the scalar field in a volume outside the event horizon, is
finite. Note that the derivative of scalar field (7) is direct
result of imposing condition jr ¼ 0 [as r → ∞ i.e., break of
assumption (c)], which comes from (3)

5It means that the Horndeski model under our attention
throughout the paper just includes Q2 and Q4. Namely, it belong
a subclass of Horndeski theories that at same time has both proprie-
ties; shift symmetric (i.e., symmetric underϕ → ϕþ constant) and
reflection symmetric (i.e., symmetric under ϕ → −ϕ). The pres-
ence ofQ2 is vital for justify the cosmic-accelerating expansion and
the gravitational-wave propagation, simultaneously. More exactly,
constraining the Horndeski theory via simultaneous confronting
with GW170817 and GRB170817A [108], explicitly exclude the
subclass models that contain Q4 without Q2 [143].
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jr ¼ −Q2;χ ϕ0 −
2Q4;χ ;χ

r2
ϕ03: ð8Þ

Because it is expected that the profile of the underlying
time-independent scalar field obeys the metric symmetries,
only the nonzero component of the four-current is radial jr.
The divergence of the derivative of scalar-field profile (7)
on the horizon merely does not restrict to the hairy BH
solution under our attention rather for a wide class of
Horndeski gravity theories, one can find slowly-rotating
black hole solutions with such behavior, see Ref. [146]. In
this direction also by setting coupling functions Q2 ∝ χ,
Q3 ¼ 0 and Q4 ∝ ð−χÞ1=2 in the quartic Horndeski theory,
authors in [142] constructed spherically symmetric and
static BHs with the nonconstant profile for the scalar field
that its derivative diverges on the horizon. As another
example in Ref. [142] one can mention also a special
subclass of Horndeski theories violating assumption (d)
and admitting the standard Kerr metric with a nontrivial
profile for the scalar field that its derivative is regular
everywhere outside of the Kerr BH except at the event
horizon. Here it is required to comment on the irregular
behavior of ϕ0ðrÞ on the horizon. Although ϕ0ðrÞ is not
regular on the horizon, in Ref. [138] authors have discussed
that the components of the energy-momentum tensor (5)
calculated using scalar field profile (7) in agreement with
the components of the Riemann tensor, on the horizon and
outside of it are finite. In this way, the metric of background
solution (6), effectively lets us take a primary step in
direction of finding an intuition of the footprint of the
Horndeski field on the phenomenology of BHs.
Recently, in Ref. [140] provided the following rotational

version for the spherically symmetric spacetime (2) with
laps function (6)

ds2 ¼ gμνdxμdxν ¼ −
�
Δ̃ − a2sin2θ

Σ

�
dt2 þ Σ

Δ̃
dr2

− 2a sin2θ

�
Δ̃ − ðr2 þ a2Þ

Σ

�
dtdφ

þ Σdθ2 þ sin2θ

�ðr2 þ a2Þ − a2Δ̃ sin2θ
Σ

�
dφ2; ð9Þ

where

Σ ¼ r2 þ a2cos2θ; Δ̃ ¼ r2 − 2Mrþ a2 þ hr ln

�
r
2M

�
:

ð10Þ

The metric (9), in essence, has been derived using the
modified Newman-Janis algorithm (i.e., Azreg-Aïnou’s
noncomplexification procedure [147]), without showing
the relevant Horndeski scalar field profile in the rotating
background. As stated above, the scalar field must respect
the symmetries of the metric. This lets us evaluate the

regularity of the Horndeski scalar field on the horizon,
infinity, and along the symmetry axis. Already Ref. [142]
has shown that some subclasses of Horndeski gravity admit
the standard Kerr BH with a nontrivial scalar field profile as
an exact solution. Despite the lack of such studies for the
modified Kerr metric, it is well-known from Ref. [133] that
the scalar-field profile does not affect by the rotation
parameter at first order i.e., Oða2Þ. Besides, since in the
linear order of rotation, the spherical symmetry still holds,
thereby, the only nonzero component of the four-current for
the time-independent scalar field is still radial. As a result,
the expression (8) for the current jr, and subsequently the
derivative of the scalar field in (7), remain unchanged in
slowly rotating BH solutions. However, this argument
works just for moderate BHs, and doing some studies
aimed at deriving the nontrivial scalar field profile for full
rotating BH solutions in Horndeski’s theories is essential.
This deserves comprehensive and separate research in the
future. In any case, the lack of an analytical expression for
the profile of scalar field with axial symmetry does not
prohibit the study of gravitational lensing in [140], and
superradiance scattering here. Since in both one, just the
rotating background metric (9) is essential, not the profile
of the Horndeski scalar field. In particular, concerning the
latter, we will consider a test massive scalar field Φ,
propagating in the background deviated from the standard
Kerr, i.e., (9).
In the limiting case where h ¼ 0, the metric (9) coincides

with the Kerr spacetime. The positions of the event horizon
(reh) and the Cauchy horizon (rch) are given by the solution
of the equation Δ̃ ¼ 0 which can only be solved numeri-
cally due to the presence of the logarithmic term. Outside
the event horizon, there is a region known as the ergo-
sphere, covering the area from the event horizon to the
outer ergoregion i.e., the largest positive real root of gtt ¼ 0
(its smallest root, addresses the inner ergoregion which is
located behind the event horizon).
In Fig. 1 by fixing some different values for the free

parameter h, depicted the location of horizons and ergo-
region of the rotating Horndeski BH, respectively. One
can see the displacements of the location of horizons
relative to the standard Kerr (h ¼ 0). We observe that
for some values of h, the compact object at hand is no
longer BH, since the event horizon disappears. It also
depends on the value of the spin setting so that for instance
by setting a ¼ 0.9M and a ¼ 0.95M, respectively for
values beyond h ¼ −0.27M and h ¼ −0.15M, we indeed
deal with a rotating naked singularity. Given our interest in
the BH case,6 in the following, we have to take care in
setting values of the free parameter of the model.

6Although, the event horizon as the defining property of BH, in
essence, is not directly observable [148–150], nowadays rotating
BHs are widely admitted as astrophysical objects [151,152].
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III. SCALAR SUPERRADIANCE SCATTERING

The propagation of the test scalar field Φ on a curved
spacetime is described by the following Klein-Gordon
equation [153,154]

ð▽α▽
α þ μ2sÞΦðt; r; θ;φÞ ¼

�
−1ffiffiffiffiffiffi−gp ∂νð

ffiffiffiffiffiffi
−g

p
gμν∂μÞ þ μ2s

�

×Φðt; r; θ;φÞ ¼ 0; ð11Þ

where μs and gμν, respectively, denote the mass of the scalar
field, and the inverse spacetime metric. By adopting the
standard separation of variables method, we use the
following ansatz with the standard Boyer-Lindquist coor-
dinates ðt; r; θ;φÞ

Φðt; r; θ;φÞ ¼ RωjmðrÞΘðθÞe−iωteimφ;

j ≥ 0; −j ≤ m ≤ j; ω > 0; ð12Þ

to separate Eq. (11) into radial and angular parts. Here
RωjmðrÞ is the radial part of the wave function and ΘðθÞ is
the oblate-spheroidal wave function. The symbol j is the
angular eigenfunction, m is the angular quantum number,
and ω is the positive frequency of the field under inves-
tigation as measured by a faraway observer. The ansatz
(12), cause the differential equation (11) to yield two
ordinary differential equations with the following radial
and angular parts

d
dr

�
Δ̃
dRωjmðrÞ

dr

�
þ
�ððr2þa2Þω−amÞ2

Δ̃

�
RωlmðrÞ

− ðμ2sr2þ jðjþ 1Þþa2ω2 −2mωaÞRωlmðrÞ ¼ 0; ð13Þ

and

sin θ
d
dθ

�
sin θ

dΘωjmðθÞ
dθ

�
þ ðjðjþ 1Þsin2θ

− ððaωsin2θ −mÞ2ÞÞΘωjmðθÞ
þ a2μ2ssin2 θ cos2 θΘωjmðθÞ ¼ 0; ð14Þ

respectively. Given that we intend to study the scattering of
the field Φ, just Eq. (13) is under our attention until the end
of this paper. Following the earlier investigations (e.g.,
[153,154]), we may find a general solution of the radial
equation (13). We now apply a Regge-Wheeler-like coor-
dinate r� which is given by

r� ≡
Z

dr
r2 þ a2

Δ̃
;

ðr� → −∞ at event horizon; r� → ∞ at infinityÞ:
ð15Þ

To have the equation into the desired shape, we consider a
new radial function Sωjmðr�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
RωjmðrÞ. A few

steps of algebra yields

d2Sωlmðr�Þ
dr2�

þ VωjmðrÞSωjmðr�Þ ¼ 0; ð16Þ

where the effective potential VωjmðrÞ reads as

VωjmðrÞ ¼
�
ω −

ma
r2 þ a2

�
2

−
Δ̃

ðr2 þ a2Þ2

×

�
jðjþ 1Þ þ a2ω2 − 2maωþ μ2sr2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p d
dr

�
rΔ̃

ðr2 þ a2Þ32
��

: ð17Þ

So, what results now is the study of the scattering of the
scalar field Φ under the effective potential (17). For this

FIG. 1. The location of horizons of the rotating Horndeski BH with various values of hairy parameter h, and spin parameters:
a ¼ 0.9M (left panel) and a ¼ 0.95M (right panel).
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purpose, it is usually studied the asymptotic behavior of the
scattering potential at the event horizon and spatial infinity.
The potential at the limit of the event horizon is

lim
r→reh

VωjmðrÞ ¼ ðω −mΩehÞ2 ≡ k2eh; Ωeh ≡ a
r2eh þ a2

;

ð18Þ

and the same at spatial infinity gives

lim
r→∞

VωjmðrÞ ¼ ω2 − lim
r→∞

μ2sr2Δ̃
ðr2 þ a2Þ2 ¼ ω2 − μ2s ≡ k2∞:

ð19Þ

It is important to observe that the potential shows con-
stant behavior at both extremal points, though the values
of the constants are different at the two extremal points.
As we now know the asymptotic behavior of the potential
at two extremal points, we can proceed to observe the
asymptotic behavior of the radial solution. A few steps of
algebra yield the following asymptotic solutions of the
radial equation (16)

RωjmðrÞ →
8<
:

Peh
in

e−ikehr�ffiffiffiffiffiffiffiffiffiffiffi
r2ehþa2

p for r → reh

P∞
in

e−ik∞r�
r þ P∞

ref
eik∞r�

r for r → ∞:
ð20Þ

Here, Peh
in corresponds to the amplitude of the incoming

scalar wave at the event horizon (reh) and P∞
in is the

corresponding quantity of the incoming scalar wave at
infinity (∞) whereas the amplitude of the reflected part of
scalar wave at infinity (∞) is P∞

ref . Finally, by computing
and equating the Wronskian at the event horizon (Weh) and
spatial infinity (W∞) we obtain the following relation

jP∞
ref j2 ¼ jP∞

in j2 −
keh
k∞

jPeh
in j2: ð21Þ

The featured point in the above relation is that it is free of
the details of the potential VωjmðrÞ in the Schrödinger-like
differential equation (16). The relation (21) tells us that
the scalar wave is superradiantly amplified, if keh

k∞
< 0

i.e., ω < mΩeh.

A. Amplification factor Zjm for superradiance

For our purpose i.e., the study of the cross section of the
scalar field Φ scattering from the Horndeski-based rotating
BH, we employ the asymptotic matching procedure pro-
posed in the seminal papers [155,156]. Despite the lack
of an exact solution for the singularly-perturbed differen-
tial equation (13), providing an approximation solution via

asymptotic expansions in relevant extremal points, is
still possible. More precisely, in this method, one indeed
finds two approximate solutions each one valid for part of
the range of the independent variable so that eventually by
their matching, one acquires a reliable single approximate
solution. It is important to point out that matching is
possible just provided that the relevant expansions have a
domain of overlap, meaning that the exact solutions derived
for two asymptotic regions are matched in an overlapping
region. The mentioned procedure is semianalytical and
based on two assumptions; the slowly rotating aω ≪ 1 and
the gravitational size of the BH is much smaller than the
Compton wavelength of the scalar field Φ i.e.,Mω ≪ 1 (or
μsM ≪ 1). By rewriting the radial equation (13) in the
following form

Δ̃2
d2RωjmðrÞ

dr2
þ Δ̃

dΔ̃
dr

·
dRωjmðrÞ

dr
þ ðððr2 þ a2Þω − amÞ2 − Δ̃ðμ2sr2 þ jðjþ 1Þ
þ a2ω2 − 2maωÞÞRωjmðrÞ ¼ 0; ð22Þ

we derive separate solutions related to the two overlapping
regions, namely the near-region r − reh ≪ ω−1, and the far-
region r − reh ≫ M, and finally, by using the matching
procedure we get a single solution.
With the change of variable z ¼ r−reh

reh−rch
and taking the

approximation aω ≪ 1 into account, the equation (22) for
the near-region turns into

z2ðzþ 1Þ2 d
2RωjmðzÞ
dz2

þ zðzþ 1Þð2zþ 1Þ dRωjmðzÞ
dz

þ ðB2 − jðjþ 1Þzðzþ 1ÞÞRωjmðrÞ ¼ 0; ð23Þ

where B ¼ ðω−mΩehÞ
reh−rch

r2eh. To get the equation above we

used the approximations Qz ≪ 1 and μ2sr2eh ≪ 1, with
Q ¼ ðreh − rchÞω. The latter comes from the consideration
that the Compton wavelength of the scattered scalar field is
much bigger than the size of the BH. The general solution
of the above equation in terms of ordinary hypergeometric
function 2F1ða; b; c; zÞ is written as

RωjmðzÞ ¼ d

�
z

zþ 1

�
−iB

2F1

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jðjþ 1Þp

2
;

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jðjþ 1Þp

2
; 1 − 2iB;−z

�
; ð24Þ

where d is a coefficient. Given that in the matching
procedure we need to observe the large z behavior of
the above expression so the Eq. (24) for case z → ∞
turns into
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Rnear-largez∼d

0
B@ Γð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4jðjþ1Þp ÞΓð1−2iBÞ
Γ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

−2iB
�
Γ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

�z
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
−1

2 þ Γð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þp ÞΓð1−2iBÞ

Γ
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

�
Γ
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

−2iB
�z−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
þ1

2

1
CA:

ð25Þ

Concerning the far-region, by taking approximations zþ 1 ≈ z and μ2sr2eh ≪ 1 into account and dropping all the terms
except those which describe the free motion with momentum j, we get from Eq. (22)

d2RωjmðzÞ
dz2

þ 2

z

dRωjmðzÞ
dz

þ
�
k2qh −

jðjþ 1Þ
z2

�
RωjmðzÞ ¼ 0; ð26Þ

where kqh ≡ Q
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2s

p
. The general solution of Eq. (26) is

Rωjm;far ¼ e−ikqhz
�
f1z

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
−1

2 M

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4jðjþ 1Þp
2

; 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jðjþ 1Þ

p
; 2ikqhz

�

þ f2z−
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
þ1

2 M
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jðjþ 1Þp

2
; 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jðjþ 1Þ

p
; 2ikqhz

��
; ð27Þ

whereMða; b; zÞ is the confluent hypergeometric Kummer function of the first kind. To match the solution above with (25),
we have to find the small z behavior of the solution (25) which within the limit z → 0 results in

Rωjm;far-small z ∼ f1z
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
−1

2 þ f2z−
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2 : ð28Þ

Now, by matching of the two asymptotic solutions (25) and (28) (as they have a common region of interest), we can
determine coefficients f1;2 as follows:

f1 ¼ d
Γð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4jðjþ 1Þp ÞΓð1 − 2iBÞ
Γ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

− 2iB
�
Γ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

� ;

f2 ¼ d
Γð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4jðjþ 1Þp ÞΓð1 − 2iBÞ
Γ
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

− 2iB
�
Γ
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

� : ð29Þ

At this stage, by performing several consecutive analytical steps we will come to jP∞
in j and jP∞

ref j, as two essential
components involved in the extraction of scattering amplification factor Zjm or cross section

Zjm ≡ jP∞
ref j2

jP∞
in j2

− 1: ð30Þ

Expanding Eq. (27) around infinity together with the approximations 1
z ∼

Q
ω · 1r and e�ikqhz ∼ e�i

ffiffiffiffiffiffiffiffiffiffiffiffi
ðω2−μ2sÞ

p
r and matching it

with the radial solution (20), after inserting the expressions of f1 and f2 from Eq. (29), we finally get

P∞
in ¼ bð−2iÞ−1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − μ2s
p ·

Γð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jðjþ 1Þp ÞΓð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4jðjþ 1Þp Þ
Γ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

− 2iB
��

Γ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

��2
Γð1 − 2iBÞk

1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

qh þ bð−2iÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
−1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2s

p

×
Γð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4jðjþ 1Þp ÞΓð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jðjþ 1Þp Þ�

Γ
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

��2

Γ
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

− 2iB
� Γð1 − 2iBÞk

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

qh ; ð31Þ

and
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P∞
ref ¼

bð2iÞ−1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − μ2s
p ·

Γð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jðjþ 1Þp ÞΓð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4jðjþ 1Þp Þ
Γ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

− 2iB
��

Γ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

��2
Γð1 − 2iBÞk

1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

qh þ bð2iÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
−1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2s

p

×
Γð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4jðjþ 1Þp ÞΓð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jðjþ 1Þp Þ�

Γ
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

��2

Γ
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

− 2iB
� Γð1 − 2iBÞk

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jðjþ1Þ

p
2

qh : ð32Þ

To find more details of the trend of the above calculations,
we recommend referring to previous works [86,88,90]
(also, review paper [22]). Concerning Eq. (30), there
will be superradiance phenomena, precisely in the case
jP∞

ref j2
jP∞

in j2
> 1 i.e., when Zjm > 0. Since we are interested in the

occurrence of the superradiant phenomenon, in this paper
we ignore cases where m ≤ 0 as they are nonsuperradiant.
In what follows we will see how the hairy Horndeski
parameter h favorably affects the scalar superradiant
scattering.

Through the display of the plots Z11;22 −Mω we
evaluate the role of Horndeski parameter h on the ampli-
fication factor of BH superradiance. Figure 2 clearly shows
that in the presence of hairy parameter the amplification
factor of superradiance scattering and whose frequency
range becomes larger and wider than the standard Kerr
case, respectively. It means that the hairy Horndeski
parameter h acts as an amplifier of the scalar wave and
enhances the chance of occurrence of superradiance
phenomena.

FIG. 2. Percentage amplification factors Z11 and Z22 in terms of frequency for the rotating hairy Horndeski BH with variable values of
hairy parameter h. Here and in the latter figures we take numerical values μs ¼ 0.1 and a ¼ 0.95M for the mass of the scalar-bosonic
field and the rotation-parameter ratio of angular momentum to BHmass, respectively. Values fixed for h in the right panel are the same in
the left panel.

FIG. 3. Outgoing energy flux at infinity in terms of Mω for superradiant modes l ¼ 1 ¼ m (left panel) and l ¼ 2 ¼ m (right panel).
Values fixed for h in the right panel are the same as the left panel.
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B. Energy extraction

Above revealed the role of hairy Horndeski parameter h
on amplifying the scalar wave scattered off a rotating hairy
Horndeski BH. This amplifying scenario is indeed equiv-
alent to energy extraction from a BH. Here, we plan to
show this via the investigation of the impact of the hairy
Horndeski parameter on luminosity. The outgoing energy
flux _E measured by a observer at infinity, namely for
reh ≪ r ≪ μ−1s , can be calculated from the energy-momen-
tum tensor of the field. If the massive scalar field is
monochromatic, one can derive it as follows [22,85]:

_E ¼ ωk∞
2

jP∞
ref j2jP∞

in j2: ð33Þ

By taking the superradiant modes into account of Eq. (33),
we display plot _E −Mω in Fig. 3. One can see the effect of
the enhancement of the extraction of energy from the BH in
comparison with the standard Kerr. Setting different values
for h which ensure the nature of the compact object as a
BH, the energy extraction in peak frequencies that differ
from case h ¼ 0 may boosted up by a few orders of
magnitude. One effective technique to more clearly dis-
tinguish Horndeski’s and Einstein’s theories of gravity is to
integrate from Eq. (33), over the flux contribution of each
mode weighted by the normalized initial mode distribution
nðωÞ i.e.,

_Etot ¼
Z

dω
ωk∞
2

jP∞
ref j2jP∞

in j2nðωÞ: ð34Þ

To determine the function related to nðωÞ, we consider a
thermal spectrum at temperature T for the incident spec-
trum which obeys from

nðωÞ ¼ ω2

2ζð3ÞkBT3ðexp½ω=kBT� − 1Þ ; ð35Þ

where is the normalized black body mode spectrum of a
massless scalar field (μs ¼ 0). Here, ζðxÞ and kB, are the
Riemann zeta function (ζð3Þ ⋍ 1.2), and Boltzmann con-
stant, respectively. By setting the temperature of the
thermal spectrum around CMB (⋍ 2.7 K) as a background

source, in Table I, we list values derived of numerically
solving of Eq. (34) in terms of the hairy parameter h=M for
superradiant modes at hand.7 The main message of the
trend of numbers in the Table I, is that superradiant energy
flux is amplified by parameter h=M, as shown earlier.

IV. SUPERRADIANT INSTABILITY REGIME

In this section, we investigate the effects of the hairy
Horndeski parameter on the stability of rotating BH via a
phenomenon known as the BH bomb [44]. The basic idea
behind this phenomenon is to use and enclose the extracted
rotational energy, by a mirrorlike surface whether natural
(massive scalar field and AdS spacetime) or artificial (any
reflecting surface) outside of BH for gradually growing and
amplifying waves via frequent round trips. More techni-
cally, here superradiant instability is a consequence of
enclosing the massive modes of a system composed of the
Kerr background enriched with hairy Horndeski parameter
(9) and the massive scalar perturbations Φ, inside the
effective potential well placed outside the BH. In other
words, to trigger superradiant instability, the existence of a
potential well outside the BH, apart from the ergoregion, is
essential.
Beginning from the radial equation (13) we get

Δ̃
d
dr

�
Δ̃
dRωjm

dr

�
þ GRωjm ¼ 0; ð36Þ

where for a slowly-rotating BH ðaω ≪ 1Þ

G≡ ððr2 þ a2Þω −maÞ2 þ Δ̃ð2maω − jðjþ 1Þ − μ2sr2Þ:

Following the BH bomb mechanism, we get the following
solutions for the radial equation (36)

TABLE I. Numerical values of _Etot in terms of hairy parameter
h=M for a BH with rotation parameter a ¼ 0.95M, and super-
radiant modes, l ¼ 1 ¼ m and l ¼ 2 ¼ m.

h=M _Etotðl ¼ 1 ¼ mÞ _Etotðl ¼ 2 ¼ mÞ
0 3.5 × 104 3.65 × 107

−0.05 7.3 × 104 8.45 × 107

−0.075 1.3 × 105 2.01 × 108

−0.1 4 × 105 1.11 × 109

−0.125 1.2 × 106 2.13 × 1010

7The one-dimensional integral equation (34) just like other
analyses done in this paper is evaluated by the Mathematica
software with version number (12.2.0.0) [157]. An integration
strategy prescribes how to manage and create new elements of a
set of separate subregions of the initial integral region. Each
subregion might have its own integration rule related to it so that
the integral estimation indeed is the sum of the integral estimates
of all subregions. The integration rules to calculate the subregion
integral estimates, in essence, are created by sampling the
integrand by a set of points so-called sampling points. To improve
an integral estimate it should be sampled at additional points.
There are two main approaches; adaptive and nonadaptive
strategies. In the former is identifies the problematic integration
areas and concentrate the computational efforts (i.e., sampling
points) on them, while in the latter increase the number of
sampling points over the whole region. The default strategy for
numerical solving the integral in the Mathematica software i.e.,
an algorithm to compute integral estimates according to the
precision specified by the user is the so-called “Global Adaptive’
algorithm’. This method, in general, by recursive bisecting the
subregion with the largest error estimate into two halves reaches
the required precision goal of the integral estimate and thereby,
calculates the integral estimate for each half.
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Rωjm ∼

8<
:

e−iðω−mΩehÞr� as r → reh ðr� → −∞Þ
e−

ffiffiffiffiffiffiffiffiffiffi
μ2s−ω

2r�
p

r as r → ∞ ðr� → ∞Þ:

The above solution represents the physical boundary
conditions that the scalar wave at the BH horizon is purely
ingoing while at spatial infinity it is a decaying exponential
(bounded) solution, provided that ω2 < μ2s . With the new
radial function

ψωjm ≡
ffiffiffiffi
Δ̃

p
Rωjm;

the radial equation (36) yields the Regge-Wheel equation

�
d2

dr2
þ ω2 − V

�
ψωjm ¼ 0;

with

ω2 − V ¼ GþH

Δ̃2
;

where

H ¼ −2a2ðhþ 2rÞ þ rðh2 þ 2hrþ 4M2Þ þ h2r log2ð r
2MÞ − 4hMr logð r

2MÞ
4r

: ð37Þ

By discarding the terms Oð1=r2Þ, the asymptotic form of
the effective potential VðrÞ takes the following form:

VðrÞ ¼ μ2s −
ð2ω2 − μ2sÞð2M − h logð r

2MÞÞ
r

: ð38Þ

As a cross-check, one can see that if h ¼ 0, the above
expression recovers its standard form [34]. The potential
represents trapping well when its asymptotic derivative is
positive i.e., V 0 → 0þ as r → ∞ [34]. By taking derivative
of potential (38), we have

dV
dr

¼ ð2ω2 − μ2sÞð2M þ hð1 − logð r
2MÞÞ

r2
: ð39Þ

Given that by default the hairy parameter is negative
(h < 0), then by demanding logð r

2MÞ ≥ 1 i.e., r≳ 5.5M,
the expression above satisfies condition V 0 → 0þ, if

μs <
ffiffiffi
2

p
ω; ð40Þ

By taking this fact into account that the superradiance
amplification occurs when ω < mΩeh, so the integrated
system of Horndeski BH and massive scalar fields may
experience superradiant instability within the following
regime

μs <
ffiffiffi
2

p
mΩeh; ð41Þ

where is nothing but the standard superradiant instability
regime is expected from aKerr BH.Generally, for the system
at hand, the hairyHorndeski parameterh has nodeterministic
role in the superradiant instability regime.

V. CLOSING REMARKS

In this paper, we first took into account a spherically
symmetric spacetime metric associated with the nonrota-
ting Horndeski BH, and then to study the superradiance

phenomenon we used the rotational version developed
in [140]. This metric is characterized by a hairy Horndeski
parameterh, addressing a spacetimebeyondEinstein’s gravity.
We have studied the superradiant scattering of the massive
scalar test field in the background of the underlying spacetime
and the extraction of energy from it. The motivation to apply
such a modified geometry as a toy model for evaluating
superradiant energy extraction comes from the fact that the
statistical error reported in strong gravity tests potentially
indicates small but detectable deviations from the standard
Kerr BH.
Figure 1 reveals that depending on the suitable choice for

the hairy Horndeski parameter h < 0 in interplay with spin
parameter a, the compact object arising from the metric at
hand is a BH. As has been seen, by fixing the value of a, for
the case of h < 0, the spacing between the Cauchy horizon
and the event horizon reduces, as the value of h becomes
more negative so that after a certain value of h the horizon
disappears i.e., there will be no longer a BH. Note that the
critical value h beyond which the spacetime can not be BH
substantially depends on the rotation of the BH.
Given our interest in superradiant energy extraction from

the BH, until the end of our analysis, we have taken care of
the aforementioned point for choices of the values of h. It is
clear from Fig. 2 that for the rotating Horndeski BH, if the
value of the hairy parameter h becomes more negative,
thereby, the superradiance amplification factor and whose
frequency range rises and widens, respectively, relative to
the standard Kerr case that corresponds to case h ¼ 0. It
means that in an extended framework of gravity as the
Horndeski model, scalar wave-based superradiance scatter-
ing is strengthened. In this direction, by deriving outgoing
energy flux for the faraway observer, we have addressed
explicitly the role of hairy parameter h on energy extraction
from BH. In agreement with the enhancement of the
superradiance amplification factor by hairy parameter h,
we have demonstrated that it causes the increase of energy
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extraction from the rotation BH. It can be easily verified
through Fig. 3 and Table I. As a consequence, the hairy
parameter h amplifies the scalar wave and enhances the
chance of the superradiance. Adding some comments here
to understand the physics behind this phenomenon can be
helpful. Recall that the friction and some negative-energy
states for energy extraction via superradiance are essential.
Concerning rotating BHs both, in essence, are supplied by
the ergoregion as a region near the event horizon in which
the energy of timelike particles is negative [22]. Besides, it
is well-known that the background geometry plays role in
increasing/decreasing the amplification factor of the wave
so that the strengthening/weakening of the scattered waves
from the rotating BHs, understand in terms of the increase/
decrease of the proper volume of the ergoregion. Namely,
between the ergoregion proper volume and the superradiant
amplification factor, there is a correlation, meaning that the
larger the former, the more time the wave spends in the
ergoregion and the more energy it extracts from BH [158].
As a result, the modifications induced on the background
geometry by alternative theories of gravity affect the proper
volume, and the amplification factor subsequently. More
precisely, as the proper volume of the ergoregion increases/
decreases, more/less energy compared to Kerr is extracted
through superradiance scattering. To support this state-
ment, it is enough one calculate the proper volume via V ¼
4π

R π=2
θi

dθ
R rf
ri dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffigrrgθθgϕϕ
p which for case of a < M

ergoregion extends from ri to rf i.e., between the location
of event horizon and outer ergosphere radius [159]. In the
Table II, by setting θi ¼ 0 for two cases a ¼ 0.9M and
0.95M, we release the numerical values of the proper
volume of ergoregion in terms of different values of hairy
parameter h. As can be seen in the presence of the
hairy parameter h correction, the proper volume of the

ergoregion increases compared to standard Kerr BH,
meaning that it behaves as an amplifier of the scalar wave.
The importance and worth of these results become

especially clear when we contrast them with earlier findings
from scalar-tensor theories utilizing Kerr BH surrounded
by the matter profile [81,82]. It was demonstrated that the
amplification factor in scalar-tensor gravity can be higher
than in the typical situation because of scalar-matter
interactions. For Horndeski gravity, as the most general
four-dimensional scalar-tensor theory, this enhancement in
the amplification factor occurs even in the absence of
enclosing the BH by a matter profile.
By analyzing the effective potential within the context of

BH bomb mechanism, we have surveyed the superradiant
instability of the rotating Horndeski BH, subjected to
massive scalar perturbation. We found out that the hairy
Horndeski parameter h leaves no effect on the standard
superradiant instability regime.
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