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In arbitrary higher dimension, we consider the combination of Lovelock gravity alongside a scalar-
tensor action built out of higher order operators and Euler densities. The latter action is constructed in such
a way as to ensure conformal invariance for the scalar field. For the combined version of these theories, we
show the existence of black hole solutions interpreted as stealth configurations within Lovelock gravity
theory. The scalar field solutions are endowed with an integration constant that may be identified as a scalar
charge. In particular, we show that these stealth solutions can be extended to include a time-dependent
scalar field despite the underlying theory being non shift symmetric. Finally, we present a procedure to
obtain a nonconformally invariant action in even dimensions from the considered theory. For the target
theory, the scalar field is not conformally coupled to gravity although the scalar field equation itself is
conformally invariant. By means of this procedure, the black hole stealth configurations are converted into
nonstealth black hole solutions, as discovered recently in four dimensions.
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I. INTRODUCTION

With the given precision of observational data, the theory
of general relativity remains unchallenged. However, given
that general relativity fails to give a self-consistent quantum
gravity theory and the yet unknown nature of dark energy
and dark matter, quite naturally, the scientific community
scrutinizes modified theories of gravity. One of the sim-
plest, nontrivial yet robust modifications consists in intro-
ducing a scalar field, (non)minimally coupled to the metric,
yielding the so-called scalar tensor theory. The search for
black holes for such theories finds its origin with the
pioneering work of Bocharova, Bronnikov, Melnikov [1]
and Bekenstein (BBMB) [2] who were the first to exhibit a
nontrivial, asymptotically flat four-dimensional hairy black
hole with a conformally coupled scalar field. In the Jordan
frame, the action for the scalar field is given by the standard
kinetic term together with a coupling between the scalar
field φ and the scalar curvature R,

S ¼ b1

Z
dDx

ffiffiffiffiffiffi
−g

p �
−
1

2
ð∂φÞ2 − ðD − 2Þ

8ðD − 1ÞRφ
2

�
; ð1Þ

where D stands for the dimension and b1 is a coupling
constant. The solution to the theory (1) in D ¼ 4, coupled
to the Einstein-Hilbert action, is known as the BBMB
solution, with a metric corresponding to an extremal
Reissner-Nordström spacetime while the scalar field is
shown to blow up at the horizon. Note that this pathology
can be cured by adding a cosmological constant with a
conformally invariant self-interacting potential [3,4] and by

adding axionic fields in the case where the (D − 2)-
orthogonal Euclidean space is a plane [5]. To be more
complete, we mention that black hole solutions with a
self-interacting potential breaking the conformal invariance
also exist in four dimensions [6], and these latter can be
generated by a certain mapping from the conformal
solutions [7] (see also [8]).
In higher dimensionsD > 4, the extension of the BBMB

solution is known, but unfortunately the metric has a naked
singularity, which cannot be removed, unlike the four-
dimensional case [9]. More recently, a conformal action
generalizing (1) was proposed in higherD, via nonminimal
couplings of the scalar field with a four-rank tensor built
out of the Riemann tensor and the scalar field [10]. Such a
generalized conformal scalar field coupled to the Einstein
or Lovelock gravity gives rise to an analog of the BBMB
black hole solutions with (anti–)de Sitter [(A)dS] asymp-
totics [11], while the couplings introduced in [10] were
used in [12] as a counterterm for spaces with AdS
asymptotics. The lesson that can be drawn from these
studies is that the conformal invariance of the action of the
scalar field plays an important role, and notably in order to
obtain analytical solutions of the black hole type. One
should note, however, that the full action giving rise to the
BBMB solution and to its extension in higher dimensions is
not conformally invariant, since, apart from the confor-
mally invariant part, the full action contains the Einstein-
Hilbert or Lovelock terms. Strictly speaking, the conformal
symmetry only holds at the level of the equation of motion
for the scalar field. It is then natural to ask whether the
conformal invariance of a part of the action is crucial.
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Indeed, recently it has been shown in D ¼ 4 that this
assumption can be relaxed by requiring only the conformal
invariance of the scalar field equation of motion [13]. In this
case, two classes of black hole solutions with a regular
scalar field (even in the absence of the cosmological
constant) were found for different fine-tuning of the
coupling constants of the theory [13].
In the present paper, we show that the theories con-

structed in [11] admit in addition to the presented solution
there, stealth black hole solutions.1 These are of the
Schwarzschild-(A)dS type for pure Einstein gravity and
Boulware-Deser spacetimes [14] in the Einstein-Gauss-
Bonnet theory: see [15] for the topological case and [16,17]
for general Lovelock theory. In all these cases, our solutions
have a nontrivial profile for the scalar field with an
additional constant of integration that may be interpreted
as an independent scalar charge. This scalar charge never-
theless does not appear in the metric. In other words we
have, apart from the mass of the black hole, an additional
independent charge (not modifying the metric); therefore
the solutions we will describe have neither primary nor
secondary hair. We will refer to this constant simply as
scalar hair. In addition, introducing extra assumptions on
the parameters of the action, stealth configurations defined
on the same black hole spacetimes, albeit with a time-
dependent scalar field, can also be constructed. This result
is all the more surprising since the theories under consid-
eration are not even shift symmetric. We will see how such
a construction is possible even in the absence of symmetry.
Last but not least, we will present a procedure yielding a
nonconformally invariant 4D action for the scalar field
from the generalized conformal scalar of [11] by perform-
ing a singular limit. The resulting action will lead to a
conformally invariant scalar field equation of Ref. [13]. We
show that the singular limit is also compatible at the level of
the black hole solutions and allows us to map the stealth
black hole solutions in higher dimensions to the four-
dimensional nonstealth black hole solutions of Ref. [13].
Similarly, in higher even dimensions, (nonstealth) black
holes in a generalization of the theory [13] are obtained by
means of this singular limit from the stealth black holes.
The plan of the paper is organized as follows. In the next

section, we present stealth black hole solutions of the
theory [11]. The extension of this solution to a time-
dependent scalar field is given in Sec. III. The singular limit
that allows to construct nonstealth black hole solutions in a
theory with conformal scalar equation of motion, from
stealth solutions of the theory [11] is explained in Sec. IV.
A last section is devoted to our conclusions.

II. STEALTH BLACK HOLES WITH A
CONFORMALLY COUPLED SCALAR IN

LOVELOCK THEORY

In order to be self-contained, we recall the useful
formalism and notations of [10,11] used for the construc-
tion of the most general theory of gravity conformally
coupled to a single scalar field and yielding second-order
field equations. This construction is aimed to generalize the
action (1). Indeed, consider a four-rank tensor Sμνγδ

constructed out of the Riemann curvature tensor Rμν
γδ

and the scalar field, ϕ,

Sμνγδ ¼ ϕ2Rμν
γδ − 4ϕδ½γ½μ∇ν�∇δ�ϕþ 8δ½γ½μ∇ν�ϕ∇δ�ϕ

− 2δ½γ½μδ
δ�
ν�∇ρϕ∇ρϕ; ð2Þ

where brackets stand for antisymmetrization. One can
check to see that this tensor, under a conformal trans-
formation gμν → Ω2gμν and ϕ → Ω−1ϕ, transforms cova-
riantly, i.e. Sμνγδ → Ω−4Sμνγδ. In arbitrary dimensionD, the
action we will consider is given by

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p X½D−1
2
�

k¼0

1

2k
δðkÞðakRðkÞ þ bkϕD−4kSðkÞÞ; ð3Þ

where ak and bk are a priori arbitrary coupling constants,2

where δðkÞ is defined as

δðkÞ ¼ ð2kÞ!δμ1½α1δ
ν1
β1
…δμkαkδ

νk
βk�

and where RðkÞ and SðkÞ are given by

RðkÞ ¼
Yk
r¼1

Rαrβr
μrνr ; SðkÞ ¼

Yk
r¼1

Sαrβrμrνr : ð4Þ

The RðkÞ mark Lovelock scalars of increasing rank k (k ¼ 0
cosmological constant, k ¼ 1 Einstein-Hilbert, k ¼ 2

Gauss-Bonnet, etc.) while SðkÞ, the specific scalar tensor
combinations obtained from (2). It is then easy to see that,
due to the covariant transformation of the 4k-rank Sμνγδ, the
different bk parts of the action (3) will independently
acquire conformal invariance. Following [10,11], the met-
ric field equations can be written as Gμν ¼ Tμν, with

Gν
μ ¼ −

X½D−1
2
�

k¼0

ak
2kþ1

δνλ1���λ2kμρ1���ρ2kR
ρ1ρ2

λ1λ2 � � �Rρ2k−1ρ2k
λ2k−1λ2k ; ð5Þ

1In a scalar-tensor theory, a solution is called stealth if its
spacetime coincides with the one from a pure metric theory, while
having a nontrivial scalar field, which means that the energy-
momentum tensor of the scalar field vanishes on shell.

2In order to simplify the notations, we will fix the coupling
a0 ¼ −2Λ and a1 ¼ 1.
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Tν
μ ¼

X½D−1
2
�

k¼0

bk
2kþ1

ϕD−4kδνλ1���λ2kμρ1���ρ2kS
ρ1ρ2

λ1λ2 � � � Sρ2k−1ρ2k λ2k−1λ2k ; ð6Þ

while the scalar field equation reads

X½D−1
2
�

k¼0

ðD − 2kÞbk
2k

ϕD−4k−1δðkÞSðkÞ ¼ 0: ð7Þ

Black hole solutions with secondary hair have been
obtained for this theory in Ref. [11]. We now proceed to
show that the theory (3) admits another class of black hole
solutions with scalar hair, with an ansatz of the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
D−2;γ; ϕ ¼ ϕðrÞ; ð8Þ

where dΣ2
D−2;γ is the metric of a (D − 2)-dimensional

Euclidean space of constant curvature γðD − 2ÞðD − 3Þ
with γ ¼ ð0;�1Þ.
When the ak part of the action only contains the Einstein-

Hilbert term with (potentially) a cosmological constant,
that is ak ¼ 0 for k > 1, two different analytic classes of
solutions can be found for the ansatz (8). These two classes
correspond to two different relations between the coupling
constants of the action. The solutions can be generically
given in terms of the metric functions

fðiÞðrÞ ¼ γ −
M
rD−3 −

2Λ
ðD − 1ÞðD − 2Þ r

2 þ qðiÞ

rD−2 ; ð9Þ

dressed with a scalar field given by

ϕð1ÞðrÞ ¼ N
r
; ð10Þ

ϕð2ÞðrÞ ¼ N
rσγðc�

R
drffiffiffiffiffiffiffiffiffiffi
fð2ÞðrÞ

p Þ ; ð11Þ

where the index (i) denotes the first and the second class of
the solution, and the function σγ depends on the topology of
the base manifold

σ1ðXÞ ¼ coshðXÞ; σ−1ðXÞ ¼ cosðXÞ; σ0ðXÞ ¼ X:

In the above expressions, M is an integration constant
proportional to the mass, while the constant c appearing in
the scalar field, for the second class of solutions (11), is the
scalar hair. The constant N of both scalar fields (10)–(11) is
fixed in terms of the coupling constants of the theory
through the relation

X½D−1
2
�

k¼1

k
bk

ðD − 2k − 1Þ! γ̃
k−1
ðiÞ N2−2k ¼ 0; ð12Þ

while the coupling of the conformal potential bðiÞ0 is fixed in
terms of other couplings as

DðD − 1Þ
ðD − 1Þ! b

ðiÞ
0 þ

X½D−1
2
�

k¼1

ðDðD − 1Þ þ 4ϵðiÞk Þbkγ̃kðiÞ
N2kðD − 2k − 1Þ! ¼ 0; ð13Þ

with ϵð1Þk ¼ k2, ϵð2Þk ¼ k, γ̃ð1Þ ¼ γ, and γ̃ð2Þ ¼ γ − δγ;0.

Finally, for both solutions the constant qðiÞ appearing in
the metric function (9) is fixed in terms of the coupling
constants as

qðiÞ ¼ −
bðiÞ0

ðD − 2ÞN
D −

X½D−1
2
�

k¼1

bkðD − 3Þ!γ̃kðiÞ
ðD − 2k − 2Þ!N

D−2k: ð14Þ

The first class of solutions with i ¼ 1 has qð1Þ ≠ 0 for γ ≠ 0
and corresponds to the black hole with secondary hair
found in [11]. For the second class of solutions for i ¼ 2,
we have qð2Þ ¼ 0, and hence the scalar hair solution can be
interpreted as a stealth solution on the Schwarzschild-(A)
dS spacetime, see Eq. (9). Importantly, the two classes of
spacetimes i ¼ 1; 2 are solutions of distinct theories since

bð1Þ0 ≠ bð2Þ0 as shown by (13).
In the general Lovelock case, where ak ≠ 0 for at least

one k > 1, similar classes of solutions exist. The scalar
field profiles keep the same form (10)–(11) and are
subjected to the same conditions (12) and (13), while
the metric functions fðiÞ have a different form and are now
given by a polynomial equation of order ½D−1

2
�,

X½D−1
2
�

k¼0

akðD − 1Þ!
ðD − 2k − 1Þ!

�
γ − fðiÞðrÞ

r2

�k

¼ MðD − 1ÞðD − 2Þ
rD−1 −

qðiÞðD − 1ÞðD − 2Þ
rD

; ð15Þ

where M is an arbitrary constant related to the mass, and
qðiÞ are given again by (14), meaning in particular that
qð2Þ ¼ 0. It follows then that the second class of solutions
can be interpreted as stealth black holes of Lovelock theory
(see [16,17]). In the quadratic case ak ¼ 0 for k > 2, the
real roots of this polynomial can be easily written down and
we have a Boulware-Deser black hole [14] (see [18] for a
review) while for the other cases, the expression for f is
quite cumbersome, except the case when the polynomial
equation (15) has a single root. This occurs for the
particular choice of the coupling constants
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ak ¼ C
½D−1

2
�

k
ðD − 2k − 1Þ!

ðD − 1Þ! ;

which in an odd number of dimensions corresponds to the
Chern-Simons point. For this particular choice, one can
easily express the solution for metric function in an odd
dimension as

fðiÞðrÞ ¼ γ þ r2 −
�
M̃ −

q̃ðiÞ

r

� 2
D−1

; ð16Þ

while in an even dimension we have

fðiÞðrÞ ¼ γ þ r2 −
�
M̃
r
−
q̃ðiÞ

r2

� 2
D−2

; ð17Þ

where we have defined M̃ ¼ MðD − 1ÞðD − 2Þ and
q̃ðiÞ ¼ qðiÞðD − 1ÞðD − 2Þ. For the second solution
q̃ð2Þ ¼ 0, the spacetime metrics correspond to the black
hole solutions obtained in [19].

III. TIME-DEPENDENT SOLUTIONS IN
THEORIES WITH NO SHIFT SYMMETRY

As it was originally shown in [20], scalar tensor theories
with shift symmetry ϕ → ϕþ const may accommodate
black hole solutions with a scalar field that depends linearly
on time. The underlying idea of this feature is that the field
equations only involve derivatives of the scalar field, and
hence its explicit time dependence does not appear at the
level of the field equations. Here, the action (3) is not shift
symmetric, nevertheless, if b0 ¼ b1 ¼ 0 in the action (3),
the stealth metric function fð2ÞðrÞ with qð2Þ ¼ 0 can be
dressed with a time-dependent scalar field given by

ϕðt; rÞ

¼ exp

 
cþ ζtþ

Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γfð2ÞðrÞþ ζ2r2

q
=fð2ÞðrÞ− 1

r
dr

!
;

ð18Þ

where c and ζ are arbitrary constants. The emergence of
such stealth solutions in spite of the absence of shift
symmetry in the theory under consideration can be under-
stood as follows. The vanishing condition of the energy-
momentum tensor of the scalar field can be schematically
written as

X
k≥2

bkϕD−2kAðkÞ
μν ¼ 0; ð19Þ

where the AðkÞ
μν for k ≥ 2 only depend on the derivatives of

Φ≡ logϕ. One can clearly see that the above expression is
not shift symmetric, since it involves explicit dependence
on the scalar field, in accord with the fact that the action is
not shift symmetric. One can verify however that for the
stealth configuration described by the metric function
fð2ÞðrÞ and the time-dependent scalar field (18), each

AðkÞ
μν vanishes identically, and one gets a solution which

is effectively shift symmetric for Φ ¼ lnϕ, as highlighted
by the form of (18).

IV. FROM CONFORMAL ACTION TO
CONFORMAL EQUATION

Here, we present a limiting process in even dimensions
which breaks the conformal symmetry of the scalar field
action (3) but still preserving the conformal symmetry of
the scalar field equation. Such an action has been recently
proposed in four dimensions [13] and is given in the present
notations by

SF ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R−2Λþb0ϕ4þb1ϕ2

�
Rþ6

ð∂ϕÞ2
ϕ2

�

þb2

�
logðϕÞG−4G

μν
∂μϕ∂νϕ

ϕ2
−4

□ϕð∂ϕÞ2
ϕ3

þ2
ð∂ϕÞ4
ϕ4

��
;

ð20Þ

where G is the Gauss-Bonnet density G ¼ R2 − 4RμνRμνþ
RμνλδRμνλδ. In order to make apparent this limiting process,
let us consider the action (3) in arbitrary dimension D and
rewrite it in a similar way, assuming also ak ¼ bk ¼ 0
for k > 2,

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R − 2Λþ a2Gþ b0ϕD þ b1ϕD−2

�
Rþ ðD − 1ÞðD − 2Þ ð∂ϕÞ

2

ϕ2

�

þ b2ϕD−4
�
G − 4ðD − 3ÞðD − 4ÞG

μν
∂μϕ∂νϕ

ϕ2
− 2ðD − 2ÞðD − 3ÞðD − 4Þ□ϕð∂ϕÞ2

ϕ3

−ðD − 2ÞðD − 3ÞðD − 4ÞðD − 5Þ ð∂ϕÞ
4

ϕ4

��
; ð21Þ
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and let us show how the action (20) can be obtained from
(21) by a singular limit. This is done by rescaling the
coupling constant b2 →

b2
D−4, fixing the Gauss-Bonnet

coupling a2 ¼ − b2
D−4, performing a Taylor expansion of

ϕD−4 at the neighborhood of D ¼ 4, i.e.
ϕD−4 ¼ 1þ ðD − 4Þ logðϕÞ þ oðD − 4Þ, and finally taking
the limit D → 4. This procedure only works for a non-
vanishing Gauss-Bonnet coupling a2, and hence at the level
of the solutions, the limit makes sense only for the two
classes of solutions presented before in the Lovelock case,
and not for the pure Einstein case. One can verify that
following the above prescription, one recovers two classes
of four-dimensional solutions of the action (20) discovered
in [13], from the solutions (10)–(15). In a similar way, the
higher-dimensional time-dependent stealth solution of (21)
with b0 ¼ b1 ¼ 0, with the scalar given by (18), projects to
the time-dependent nonstealth solution of (20) with b0 ¼
b1 ¼ 0 as given in [21].
The same procedure can be easily extended to any even

dimension D ¼ 2p with p ≥ 2 where the Euler density
δðpÞRðpÞ is a boundary term. Indeed, starting from the action
given by (3) with ak ¼ bk ¼ 0 for k > p, one should rescale

bp → bp
D−2p, fix the Euler coupling ap ¼ − bp

D−2p and perform
a Taylor expansion aroundD ¼ 2p, and finally take the limit
D → 2p. The result of this procedure is an action of a
nonconformal scalar field coupled to Lovelock gravity,
yieldinghowever a scalar field equationwhich is conformally
invariant. Some details of this limiting procedure are given in
the Appendix. Two time-independent solutions of the result-
ing action can be read off from Eqs. (10)–(15) by applying
them the described limit. It isworth noting how theprocedure
works for the time-dependent solutions in the general
Lovelock theory in even dimension D ¼ 2p > 4. Indeed,
the energy-momentum tensor (19) must not vanish since the
projected solution yields a nonstealth solution and must not
depend on the time coordinate t since the metric solution is
time independent. In fact, one can see that, in the considered

limit and after rescaling the couplings, all the AðkÞ
μν of (19)

do vanish on the projected solution, except AðpÞ
μν , whose

time-dependent factor ϕD−2p disappears precisely in the
limit D → 2p.

V. CONCLUDING REMARKS

In this paper we presented three main results. First, we
showed that the conformally coupled scalar field in
Lovelock theory admits a class of black hole stealth
configurations, Eqs. (9), (11), and (14) with the subscript
i ¼ 2. The metric in this case is nothing but the Boulware-
Deser spacetime [14] in the quadratic case, or its extension
for higher Lovelock theory [16]. The expression of the
scalar field contains the metric function and a constant of
integration that may be interpreted as the scalar charge of
the field.

We then demonstrated that in the particular case of the
coupling constants b0 ¼ b1 ¼ 0 in the action (3), these
stealth configurations can be endowed with a time-depen-
dent scalar field, Eq. (18).
Finally, a singular limit in even dimension D ¼ 2p was

presented, which allows to obtain a nonconformally
coupled scalar field, starting from a conformally coupled
invariant scalar field in the Lovelock gravity. The obtained
action includes a direct coupling between the scalar
field and the Euler density of order p, which breaks the
conformal symmetry at the level of the action. Nevertheless
for such an action a conformal invariance is kept at the level
of the scalar equation of motion. Within this singular limit,
the black hole stealth configurations (both static and with a
time-dependent scalar) in even dimensions are converted to
solution for black holes with a nonvanishing energy-
momentum tensor of the scalar field. In [22], it was already
mentioned that the nonconformal action (20) can be
obtained from an alternative Kaluza-Klein compactification
of the D-dimensional Einstein-Gauss-Bonnet theory, while
more recently [23] studied a Kaluza-Klein compactification
yielding the same D ¼ 6 action coupling the scalar field
with the cubic Euler density.
There are yet open questions left for future work

concerning dimensional reduction procedures. In particu-
lar, in Ref. [24], it was shown that eternal wormholelike
solutions can also be generated from the four-dimensional
black hole configurations of (20) by means of a disformal
transformation. An interesting question in the context of
our present work is whether these solutions correspond to
some higher dimensional solutions.
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APPENDIX: SINGULAR LIMIT

The action (3) can be decomposed as

S ¼ SðaÞ þ SðbÞ; ðA1Þ

where SðaÞ is the pure metric part with coefficients ak, and
SðbÞ is the scalar-tensor part with coefficients bk and
enjoying the conformal invariance,

SðbÞ½Ω2gμν;Ω−1ϕ� ¼ SðbÞ½gμν;ϕ�: ðA2Þ
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Writing down the vanishing of the variation δSðbÞ under
an infinitesimal transformation Ω ¼ 1þ ϵ, one gets the
identity

2gμνEðbÞ
μν þ ϕEðbÞ

ϕ ¼ 0; ðA3Þ

where

EðiÞ
μν ¼ 1ffiffiffiffiffiffi−gp δSðiÞ

δgμν
; EðiÞ

ϕ ¼ 1ffiffiffiffiffiffi−gp δSðiÞ

δϕ
: ðA4Þ

Using (A3) and taking into account that EðaÞ
ϕ ¼ 0, one gets

that the following combination of the equations of the full
action (noted Eμν, Eϕ with obvious notations) yields a pure
geometric constraint:

2gμνEμν þ ϕEϕ ¼ 2gμνEðaÞ
μν ¼ 0: ðA5Þ

Conversely, it was shown in [13,25] that an action, such
that the combination of field equations given by the left-
hand side of (A5) is a pure geometric equation, is not
necessarily conformally invariant, but has a scalar field
equation which is conformally invariant. Let us therefore
show that the procedure described in Sec. IV transforms the
geometric equation (A5) for D ≥ 2pþ 1 in another geo-
metric equation in the singular limit D → 2p. Note that the
singular limit procedure does not affect the conformal
symmetry of the Lagrangians bkϕD−4kδðkÞSðkÞ for k < p.
Thus, in order to simplify the presentation, we only focus
on actions defined for D ≥ 2pþ 1 with ak ¼ bk ¼ 0 for

k ≠ p. We therefore have EðaÞ
μν ¼ Gμν and E

ðbÞ
μν ¼ −Tμν with

Gν
μ ¼ −

ap
2pþ1

δ
νλ1���λ2p
μρ1���ρ2pR

ρ1ρ2
λ1λ2 � � �Rρ2p−1ρ2p

λ2p−1λ2p ;

Tν
μ ¼

bp
2pþ1

ϕD−4pδ
νλ1���λ2p
μρ1���ρ2pS

ρ1ρ2
λ1λ2 � � � Sρ2p−1ρ2pλ2p−1λ2p ; ðA6Þ

while

EðbÞ
ϕ ¼ ðD − 2pÞbp

2p
ϕD−4p−1δðpÞSðpÞ; ðA7Þ

see Eqs. (5)–(7). On the other hand, the traces yield

Gν
ν ¼

ð2p −DÞap
2pþ1

δðpÞRðpÞ;

Tν
ν ¼ −

ð2p −DÞbp
2pþ1

ϕD−4pδðpÞSðpÞ;

and hence one gets

2gμνEμν þ ϕEϕ ¼ ð2p −DÞap
2p

δðpÞRðpÞ: ðA8Þ

It is then easy to see that, under the redefinitions bp → bp
D−2p

and ap → − bp
D−2p, Eqs. (A7) and (A8) have a regular limit

as D → 2p and that the right-hand side of (A8) is a pure
geometric quantity, thus ensuring the conformal symmetry
of the scalar field equation. As for the metric field
equations (A6), they display a generalized δ-Kronecker
symbol with 2pþ 1 indices, which vanish in D ¼ 2p and
therefore gives rise to a vanishing factor ðD − 2pÞ in
dimensional continuation. This vanishing factor compen-
sates the infinite factor ðD − 2pÞ−1 from the rescaling of ap
and bp, giving rise to finite metric field equations. Here, we
have focused on the field equations and proved that the
limiting scalar field equation is conformally invariant. Let
us now show that the singular limit is also well defined at
the level of the action.
Up to a global factor 2−p

ffiffiffiffiffiffi−gp
, the considered

Lagrangian density is

Lp ≡ apδðpÞRðpÞ þ bpϕD−4pδðpÞSðpÞ; ðA9Þ

and for clarity, we define a function

W ≡ ϕD−4pδðpÞSðpÞ − ϕD−2pδðpÞRðpÞ

¼ ϕD−4pδðpÞSðpÞ − δðpÞRðpÞ − ðD − 2pÞðlogϕÞδðpÞRðpÞ

þ oðD − 2pÞ:

Here and in what follows, the notations oð� � �Þ and Oð� � �Þ
have to be understood in the limitD → 2p. The variation of
the first two terms in the last expression with respect to the
metric are proportional toTμν andGμν, respectively, see (A6).
The resulting expressions contain a generalized δKronecker
with 2pþ 1 indices, which vanish in D ¼ 2p. This means
that these first two terms are a boundary term in dimension
D ¼ 2p. Therefore, up to integration by parts, one has

ϕD−4pδðpÞSðpÞ − δðpÞRðpÞ ¼ OðD − 2pÞ

and

W ¼ ðD − 2pÞW̃;

with W̃ being regular as D → 2p. The Lagrangian Lp can
thus be written as

Lp ¼ ðap þ bpÞδðpÞRðpÞ þ bpðD − 2pÞ
× ½W̃ þ ðlogϕÞδðpÞRðpÞ þ oð1Þ�:

As a consequence, the limiting procedure, namely the

rescaling bp → bp
D−2p, ap → − bp

D−2p followed by the limit
D → 2p indeed yields a well-defined Lagrangian density,

L̃p ¼ bp½W̃ þ ðlogϕÞδðpÞRðpÞ�:
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