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We have studied analytically the approximate solutions to the gapped mode equations in the
hydrodynamic regime for a class of binary Bose-Einstein condensate acoustic black holes. The horizon
from the transonic flow is formed by manipulating the phonon sound speed and the flow velocity with the
experimentally accessible parameters. The asymptotic modes of various scattering processes are
constructed from which to obtain scattering coefficients and then to further decompose the field operator
in terms of the asymptotic states. Also, the Unruh state is introduced to be the appropriate state for the
description of gravitational collapse of the black hole. The particle densities of the outgoing modes are
computed. The effective energy gap term in the dispersion relation of the gapped excitations introduces the
threshold frequency ωr in the subsonic regime, below which the propagating modes do not exist. Thus, the
particle spectrum of the analogous Hawking modes in the exterior of the horizon of the subsonic region
significantly deviates from that of the gapless cases near the threshold frequency due to the modified
graybody factor, which vanishes as the mode frequency is below ωr. However, in the interior region of the
horizon of the supersonic region, the spectrum of the particle production of the Hawking partner has
the nonthermal feature. The correlators between the analog Hawking mode and its partner of relevance to
the experimental observations are also investigated and show some peaks near the threshold frequency ωr

resulting from the gap energy term to be seen in future experiments.
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I. INTRODUCTION

The evaporation of black holes has been predicted by
Hawking through the emission of a thermal flux of
radiation, thereby reducing its mass [1]. However, the
expected Hawking temperature is of order of TH ¼ 6.0 ×
10−8 K for an astrophysical black hole, which is several
orders of magnitude smaller than the cosmic microwave
background temperature Tcmb ≈ 3 K. Thus, the detection of
Hawking radiation in an astrophysical context is extremely
unlikely. The program of the analog models of gravity due
to the pioneering work of Unruh is an attempt to implement
laboratory systems to mimic various phenomena that
happen in the interplay between general relativity and
quantum field theory such as in black holes and the early
Universe. The aim is for devising experiments of real
laboratory tests that provide insights in phenomena and
further probe the structure of curved-space quantum field
theory. From a prospective of analog gravity, Unruh
realized that sound waves in a moving fluid can be
analogous to light waves in curved spacetime where the
supersonic fluid can generate acoustic black holes with
acoustic horizons [2]. Thus, the existence of analogous

photonic Hawking radiation can be theoretically demon-
strated. The work of Ref. [3] is a first experimental obser-
vation of Hawking radiation extracted from correlations of
the collective excitations that agree with a thermal spectrum
with the temperature estimated from analog surface gravity.
Also, the time dependence of the Hawking radiation in an
analog black hole is observed in Ref. [4].
With the advent of the experimental study of binary

Bose-Einstein condensates (BECs) in Refs. [5,6], the
condensates of cold atoms at zero temperature in such
tunable systems have been explored with the Rabi tran-
sition between atomic hyperfine states where the system
can be represented by a coupled two-field model of gapless
excitations and gapped excitations. The binary BECs have
been adopted as an analog model to theoretically mimic
quantum phenomena in the early Universe and/or black
holes [7–10]. In our previous work [10] we set up the
configuration of the supersonic and subsonic regimes with
constant flow velocity where the acoustic horizon is
established between them in the elongated two-component
BECs, trying to stimulate analogous Hawking radiation, in
particular due to the gapped excitations. In this work, we
consider the same model where the sound speed and flow
velocity profiles are spatial dependent to generate the
acoustic horizon with reference to the experiments in
Refs. [3,11] and the theoretical studies in Refs. [12,13].
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Here we briefly review in what conditions of the coupling
constants and condensate wave functions of the spatial
dependence two collective excitations can be decoupled by
following the work of Ref. [7]. We then consider the
dispersion relation of the gapped modes with the k2 term in
a very long wavelength approximation that behaves rela-
tivistically. Some profiles of the spatial-dependent sound
speed and the flow velocity are specified where the
approximate analytic solutions of the mode equations of
the gapped excitations can be treatable. The Unruh state is
introduced as the appropriate state for the description of
gravitational collapse of the black hole. The particle
spectrum of the outgoing modes and their correlators are
computed from which to further discuss the relevance to the
experimental measurements.
We organize this paper as follows. In Sec. II, we

introduce the model of a binary BEC system and give a
review of the approach to decouple the gapless and gapped
excitations. The particular sound speed and flow velocity
profiles later are introduced to establish the acoustic
horizon of the black hole. In addition, various asymptotic
modes are identified. In Sec. III, the approximate analytical
solution to the mode equations of the gapped excitations of
interest is found from which the reflection and transmission
coefficients for each scattering process are obtained. Also,
the Unruh state is introduced. In Sec. IV, the field of the
gapped excitations is expanded in terms of either incoming
or outgoing modes whereas the corresponding S-matrix and
the Bogoliubov transformations of the creation and anni-
hilation operators between the incoming and outgoing
modes are constructed. Section V is devoted to obtaining
the particle density of outgoing modes and their correlators.
We conclude the work in Sec. VI.

II. REVIEW OF MODE DECOUPLING IN
TWO-COMPONENT BECs

The effective mass term of the quantum field theory can
be considered as the gapped energy term of the gapped
excitations in a binary BEC system in the hydrodynamic
approximation [7,8,10]. Here we consider the binary BECs
of the same atoms in two different internal hyperfine states.
This class of the two-component BEC systems with the
Rabi interaction exhibits two types of excitation on con-
densates: the gapless excitations due to the “in-phase”
oscillations between two respective density waves and
the gapped excitation stemming from the “out-of-phase”
oscillations of the density waves with additional the Rabi
transition, which are respectively analogous of the
Goldstone modes and the Higgs modes in particle physics.
Here we briefly review how two excitations are decoupled
under certain conditions of the spatial-dependent conden-
sate wave functions and the coupling constants [7]. With
the unit ℏ ¼ kB ¼ 1 throughout this paper, the time-
dependent equations of motion in 1þ 3 dimensions are
expressed by

i∂tΨ̂1 ¼
�
−

1

2m
∇!2 þ V1ðx⃗Þ þ g11Ψ̂

†
1Ψ̂1 þ g12Ψ̂

†
2Ψ̂2

�

× Ψ̂1 −
Ω
2
Ψ̂2; ð1aÞ

i∂tΨ̂2 ¼
�
−

1

2m
∇!2 þ V2ðx⃗Þ þ g22Ψ̂†

2Ψ̂2 þ g12Ψ̂†
1Ψ̂1

�

× Ψ̂2 −
Ω
2
Ψ̂1; ð1bÞ

where m is atomic mass and V1 and V2 are the external
potentials on the hyperfine states 1 and 2, respectively.
Additionally, g11, g22, and g12 are the interaction strengths of
atoms between the same hyperfine states and different
hyperfine states, respectively. The coupling strengths are
relatedwith the scattering lengths. Experimentally, thevalues
of scattering lengths can be tuned using Feshbach resonances
such as two hyperfine states of 87Rb [14–17]. We also
introduce a Rabi coupling term by shining the laser field
or applying the radio wave with the strength given by the
Rabi frequency Ω [18,19]. The condensate wave functions
are given by the expectation value of the field operator hΨ̂ii:

hΨ̂ii ¼ ffiffiffiffi
ρi

p
eiθi−iμt ð2Þ

with the chemical potential μ. The condensate flow velocities

are given by ∇!θiðxÞ=m ¼ v⃗iðxÞ (i ¼ 1, 2). The equations for
ρi and θi of the condensate wave functions can be found in
Refs. [7,9,10]. The perturbations around the stationary wave
function are defined through

Ψ̂i ¼ hΨ̂iið1þ ϕ̂iÞ; ð3Þ

where the fluctuation fields in (3) can be decomposed in terms
of the density and the phase as

ϕ̂i ¼ δn̂i þ iδθ̂i ¼
δρ̂i
2ρi

þ iδθ̂i: ð4Þ

Substitutions of (3) and (4) into (1) give the coupled equations
of two states 1 and 2. For the general spatial-dependent
condensate wave functions as well as the coupling strengths,
it is found that the above equations can be decoupled by
choosing ρ1 ¼ ρ2 ¼ ρ, θ1 ¼ θ2 ¼ θ, and g11 ¼ g22 ¼ g [7].
The chosen scattering parameters in the binary systems
can have a miscible state of background condensates
[20,21]. The detailed analysis of the choice of the parameters
can be found in our previous work [22]. One can therefore
define

δn̂d=p ¼ 1ffiffiffi
2

p ðδn̂1 � δn̂2Þ; ð5aÞ

δθ̂d=p ¼ 1ffiffiffi
2

p ðδθ̂1 � δθ̂2Þ; ð5bÞ
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where the subscript d (p) refers to the density (polarization)
fluctuations. The decoupled equations are shown to be

∂tδθ̂d ¼
1

2mρ
∇! · ðρ∇!δn̂dÞ − v⃗ · ∇!δθ̂d − 2ðgþ g12Þρδn̂d;

ð6aÞ

∂tδn̂d ¼ −
1

2mρ
∇! · ðρ∇!δθ̂dÞ − v⃗ · ∇!δn̂d; ð6bÞ

and

∂tδθ̂p ¼ 1

2mρ
∇! · ðρ∇!δn̂pÞ − v⃗ · ∇!δθ̂p − ½2ðg − g12Þρ

þ Ω�δn̂p; ð7aÞ

∂tδn̂p ¼ −
1

2mρ
∇! · ðρ∇!δθ̂pÞ − v⃗ · ∇!δn̂p þ Ωδθ̂p: ð7bÞ

The analogHawking radiation arising from thegaplessmodes
has been studied in the literature [23–26]. Here we mainly
focus on the gapped modes given by the polarization
excitations in (7) where from now on the subscript p is
dropped out for simplifying the notation. In this paper, we
consider the transonic flow, which is accelerated by manipu-
lating the condensate density ρðxÞ with the spatial depend-
ence obtained from a sharp external potential [3,11] and
spatial-dependent interaction strength g12ðxÞ. The experi-
mentally spatial variation of the interaction strengths is
challenging but feasible [27–29].
One thus combines (7a) and (7b) to obtain

−
�
∂tþ∇!v⃗

� ρ

mc2

�
∂tþ v⃗∇!

�
δθ̂þ∇! ρ

m
∇!δθ̂−2ρΩδθ̂¼0

ð8Þ

with the spatial-dependent sound speed cðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðg − g12ÞρðxÞ þ Ω�=mp
. To further express (8) as the

form of the Klein-Gordon equation, the equation can be
rewritten as

�
□−

mm2
eff

ρc

�
δθ̂¼ 1ffiffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffiffi
−g

p
gμν

∂νδθ̂
�
−
mm2

eff

ρc
δθ̂¼ 0

ð9Þ

with the gapped energymeffðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðg−g12ÞρðxÞΩþΩ2

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mc2ðxÞΩ
p

. The acoustic metric is

ds2 ¼ ρ

mc
½−ðc2 − v2Þdt2 − 2v⃗ · dx⃗dtþ dx2 þ dy2 þ dz2�;

ð10Þ

where we choose the direction of the flow along the x
direction, v⃗ðxÞ ¼ −vðxÞx̂ ½vðxÞ > 0�. It is then assumed
that the system can be treated in the pseudo-one-dimension

by applying a strong cigar-shape trap potential where the
size of the trap Lx along the axial direction, say in the x
direction, is much larger than the size of Lr along the radial
direction [6,20,21]. Later, we will choose the profile of the
sound speed and the flow velocity so that the Klein-Gordon
equation can be treatable analytically in some approxima-
tions to be discussed later [12,30,31]. Using the trans-
formation to define the time τ from the laboratory time t as

τ ¼ t −
Z

dx
v

c2 − v2
ð11Þ

to rewrite the metric (10) restricted in one dimension along
the x direction as

ds2 ¼ ρ

mc

�
−ðc2 − v2Þdτ2 þ c2

c2 − v2
dx2

�
; ð12Þ

the corresponding Klein-Gordon equation becomes

�
−c

ρðc2 − v2Þ ∂
2
τ þ ∂x

�
c2 − v2

ρc
∂x

�
−
m2

eff

ρc

�
δθ̂ðx; τÞ ¼ 0:

ð13Þ

According to Ref. [12], we perform the further variable
transformation

dx ¼ 1

ρ

�
1 −

v2

c2

�
dz; ð14Þ

giving the metric

ds2 ¼ ρ

mc
ðc2 − v2Þ

�
−dτ2 þ 1

ρ2c2
dz2

�
: ð15Þ

We further use the continuity equation of the gapped
excitations vρ ¼ const resulting from the respective
continuity equations for states 1 and 2 with equal phases
and densities between them to set ρ ¼ 1=v and rewrite (13)
to be

�
v2

c2
∂
2
τ − ∂

2
z þ v2

�
1 −

v2

c2

�
2mΩ

�
δθ̂ðz; τÞ ¼ 0: ð16Þ

The third term of (16) is induced by the gap energy, giving
the analog mass term of the relativistic quantum scalar
field. The mass term is positive (negative) in the subsonic
(supersonic) region, which implies that there will exist the
threshold frequency in the subsonic region beyond which to
have the propagating modes [32,33].
In the supersonic region (v > c), we assume that the

sound speed and the flow velocity have the forms [12,13]
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csupðzÞ ¼
�
c−2l þv−20

2
þðc−2l −v−20 Þ

2
tanh ðκzÞ

�−1=2
; ð17aÞ

vsupðzÞ ¼
�
v2l þ v20

2
þ ðv2l − v20Þ

2
tanh ðκzÞ

�
1=2

ð17bÞ

with the asymptotic behaviors ðvsup; csupÞz→∞ → ðvl; clÞ for
x → −∞ and ðvsup; csupÞz→−∞ → ðv0; v0Þ for x → 0 of the
horizon given from the spatial coordinate transformation
(14). In the subsonic region (c > v), they are assumed to be

csubðzÞ ¼
�
c−2r þv−20

2
þðc−2r −v−20 Þ

2
tanh ðκzÞ

�−1=2
; ð18aÞ

vsubðzÞ ¼
�
v2r þ v20

2
þ ðv2r − v20Þ

2
tanh ðκzÞ

�
1=2

; ð18bÞ

where ðvsub; csubÞz→∞ → ðvr; crÞ for x → þ∞ and
ðvsub; csubÞz→−∞ → v0 for x → 0 of the horizon again from
(14). The horizon from the transonic flow with the above
profile is formed by manipulating the phonon sound speed
and the flow velocity with the experimentally accessible
parameters [3,11]. In Fig. 1, we show the transonic transition
according to (17) and (18) under the transformation (14).
Thus, in the asymptotical regions, the velocities reach
respective constants where the metric (15) is conformal to
that of the Minkowski spacetime with the spatial coordinate
in terms of the rescaled vdz=c. One can define the incoming
and outgoing states in these asymptotic regions of the
Penrose diagram shown in Ref. [12] and Fig. 2 in this paper.
The location of the analog horizon is atx ¼ 0with the surface
gravity

κ ¼ dðc − vÞ
dx

				
x¼0

ð19Þ

that can be justified by substituting (14), (17), and (18)
into (19).
With the profiles of a transonic flow (17) and (18), the

solutions of (16) in the subsonic and supersonic regions
separately can be cast in a form of δθðτ; zÞ ¼ e−iωτφωðzÞ, to
therefore rewrite (16) as

ω2M2
aðzÞη2aðzÞφa

ωðzÞ þ
d2φa

ωðzÞ
dz2

¼ 0; ð20Þ

where the index “a” refers to “sup” or “sub” for different
regions. The quantity ηaðzÞ is defined as

ηaðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð�Þa

ω2
aðzÞ
ω2

s
ð21Þ

with

ω2
aðzÞ≡ 2mjc2aðzÞ − v2aðzÞjΩ; ð22Þ

where þ (−) is for the subsonic (supersonic) region. We
also express (20) in terms of the Mach number defined by

MaðzÞ ¼
vaðzÞ
caðzÞ

: ð23Þ

As a result of the asymptotic behaviors of (18) and (17),
the function ηa and ωa will be saturated to a constant value
in the asymptotic regions where we summarize them as8>><
>>:

ηsub → ηr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ω2

r=ω2
p

ωsub → ωr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mc2rð1−M2

rÞΩ
p

Msub →Mr ¼ vr=cr

for z→∞; ð24aÞ

–30 –20 –10 0 10 20 30
0

0.5

1

1.5

2

FIG. 1. Profiles of the sound speed cðxÞ (blue dashed line) and
the flow velocity vðxÞ (solid red line) are depicted from (17) and
(18) with parameters cl ¼ 0.4, vl ¼ 2, cr ¼ 1.34, and vr ¼ 0.6
with the reference value v0 ¼ 1 at the horizon. The Mach
numbers are chosen to be Ml ¼ 5 and Mr ¼ 0.44, where Mr ¼
1=

ffiffiffiffiffiffi
Ml

p
with reference to Refs. [13,26,34].

FIG. 2. Schematic plot of the Penrose diagram.
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8<
:

ηsub → 1

ωsub → 0

Msub → 1

for z → −∞ ð24bÞ

in the subsonic region and

8>>><
>>>:

ηsup → ηl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

l =ω
2

q
ωsup → ωl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mc2l ðM2

l − 1ÞΩ
q

Msup → Ml ¼ vl=cl

for z → ∞; ð25aÞ

8<
:

ηsup → 1

ωsup → 0

Msup → 1

for z → −∞ ð25bÞ

in the supersonic region.
To make (20) analytically treatable, we approximate the

first term of (20) in a form

ðM2η2Þsub= sup ≃
1

2
½M2

r=lη
2
r=l þ 1þ ðM2

r=lη
2
r=l − 1Þ

× tanhðκðzþ δzsub= supÞÞ� ð26Þ

with the shift

δzsub=sup¼
h
ðv20−v2r=lÞðc2r=l−v20Þ

ih
2ω2þð3v20þv2r=lÞ2mΩ

i
4v20ðc2r=l−v2r=lÞðω2þv2r=l2mΩÞ ;

ð27Þ

that the parametrized function matches not only at the
asymptotical values but also at z ¼ 0 (see Fig. 3), although
the shift does not affect the behaviors of the scattering
processes asymptotically. Based upon the asymptotic
regions of the Penrose diagram (see Fig. 2), there are three

incoming modes coming from the past horizon in the right
(left) of the horizon Hr

− (Hl
−) of the subsonic (supersonic)

region and the past null infinity I− in the subsonic region
with the following mode functions:

e−iωτφin;r
ω;HðzÞ ¼

ffiffiffiffiffiffiffiffiffi
1

4πω

r
e−iωτeiωz from Hr

−; ð28Þ

eiωτφin;l
ω;HðzÞ ¼

ffiffiffiffiffiffiffiffiffi
1

4πω

r
eiωτe−iωz from Hl

−; ð29Þ

e−iωτφin;r
ω;I ðzÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMrηr

s
e−iωτe−iωMrηrz from Ir−: ð30Þ

In the case of the metric given in (15), the mode functions
shown above in the subsonic region (v < c) correspond to
the positive frequency modes with respect to the time
coordinate τ whereas the mode functions in the supersonic
region (v > c) are the positive frequencymodes with respect
to the “time” coordinate z. According to (20), the normali-
zation of the mode functions φin

ωðzÞ as well as its frequency
dependence of the mode functions can be chosen from the
standard one φin

ωðzÞ ¼ 1ffiffiffiffiffiffi
4πω

p e�iωz by replacing ω → ωMaηa
evaluated either at the horizon or the past null infinity, which
is consistent with Refs. [12,30,35]. Similarly, there are three
outgoing modes. They are ul and vl modes in the supersonic
region toward the future null infinity in the respective
asymptotic regions in terms of the incoming and outgoing
null coordinates vl ¼ τ þMlz and ul ¼ τ −Mlz realized
from the metric form (15). Also, in the subsonic region, the
ur ¼ τ −Mrz mode is involved. The mode functions are

e−iωτφout;r
ω;ur ðzÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMrηr

s
e−iωτeiωMrηrz toward Irþ; ð31Þ

eiωτφout;l
ω;ul ðzÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMlηl

s
eiωτe−iωMlηlz toward Ilu;þ; ð32Þ

e−iωτφout;l
ω;vl ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMlηl

s
e−iωτe−iωMlηlz toward Ilv;þ:

ð33Þ

Notice that the correct choice of the normalization of the
mode functions becomes essential to fulfill the unitarity
conditions to be checked later. The detailed mode functions
will be determined in the next section.

III. SOLUTIONS OF THE MODE EQUATIONS

A. Incoming mode θin;rH

Firstly, we consider the incoming mode θin;rH from the
right region of the past horizon for ω > ωr by evaluating

0
0

15

30

0

0.2

0.6

1

FIG. 3. Comparison of the exact M2ðzÞη2ðzÞ (blue line) in (20)
computed from the sound speed and the flow velocity in (17) and
(18) and the parametrized function (26) with (red dashed line) and
without (green dotted line) shift (27) in the supersonic (left panel)
and subsonic regions (right panel).
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the threshold frequency ωsub in the past horizon in the
subsonic region shown in (24) (see Fig. 2), which then
partially reflects back to the future horizon with the
amplitude Rr

H and partially transmits with the amplitude
Tr
H toward the future null infinity in the subsonic region Irþ.

However, for ω < ωr, the incident mode will be totally

reflected giving Tr
H ¼ 0 and Rr

H ¼ 1 toward the future
horizon, which is referred as the boomerang trajectory of
the gapped excitations [33]. The scattering process can be
schematically shown in Fig. 4 (left) with the asymptotic
behaviors of the mode function in a subsonic region (x > 0)
given by

φin;r
ω;HðzÞ ¼

8>><
>>:

ffiffiffiffiffiffi
1

4πω

q
exp ðiωzÞ þ Rr

H

ffiffiffiffiffiffi
1

4πω

q
exp ð−iωzÞ; z → −∞:

Tr
H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMrηr

q
exp ðiωMrηrzÞ; z → ∞:

ð34Þ

The scattering coefficients in (34) can be found from the
approximate solution of (20) with the parametrization
function (26) together with the asymptotic values of
Msubηsub (24). We choose one of two independent solutions
given by

φsub
ω ðzÞ ∝ e−

πω
2κ ð−eκδzsubÞiωκ ðeκzÞiωκ ðe2κðzþδzsubÞ þ 1Þið1−MrηrÞω

2κ

× 2F1ða; b; c; yÞ; ð35Þ

where 2F1 is the hypergeometric function with the
arguments

a ¼ i
2

ð1þMrηrÞω
κ

; ð36aÞ

b ¼ 1 −
i
2

ð1 −MrηrÞω
κ

; ð36bÞ

c ¼ 1þ iMrηrω

κ
; ð36cÞ

y ¼ 1

1þ e2κðzþδzsubÞ ; ð36dÞ

with Mrηr in (24). Since the hypergeometric function

2F1ða;b;c;y¼0Þ¼1 in the case of 1=ð1þe2κðzþδzsubÞÞ→0
as z → ∞, the amplitude in (35) becomes an outgoing mode:

φsub
ω ðzÞ ∝ eiωMrηrz as z → ∞: ð37Þ

Furthermore, near the horizon (z → −∞), we use the
identity

2F1ða; b; c; yÞ ¼
ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ
× 2F1ða; b; aþ bþ 1 − c; 1 − yÞ

þ ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ ð1 − yÞc−a−b

× 2F1ðc − a; c − b; 1þ c − a − b; 1 − yÞ
ð38Þ

to rewrite (35) as

φsub
ω ðzÞ ∝ ΓðcÞΓðc − a − bÞ

Γðc − aÞΓðc − bÞ e
iωz þ ΓðcÞΓðaþ b − cÞ

ΓðaÞΓðbÞ e−iωz

as z → −∞ ð39Þ

with 2F1ða; b; c; 1 − y ¼ 0Þ ¼ 1 again since 1 − y ¼ e2κz=
ð1þ e2κzÞ → 0 for z → −∞. Comparing (34), (37) and (39),
we are able to extract the reflection coefficient Rr

H and the
transmission coefficient Tr

H obtained as

Rr
H ¼ Γðc − aÞΓðc − bÞΓðaþ b − cÞ

ΓðaÞΓðbÞΓðc − a − bÞ ; ð40Þ

Tr
H ¼

ffiffiffiffiffiffiffiffiffiffi
Mrηr

p Γðc − aÞΓðc − bÞ
ΓðcÞΓðc − a − bÞ : ð41Þ

FIG. 4. Scattering processes of the incoming mode θin;rH (left), θin;rI (middle), and θin;lH (right). According to (22), the green shadow is
depicted for þω2

subðzÞ in the subsonic region and −ω2
supðzÞ in the supersonic region.
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Consequently they are

Tr
H ¼

ffiffiffiffiffiffiffiffiffiffi
Mrηr

p Γ
�
ið1þMrηrÞω

2k

�
Γ
�
1þ ið1þMrηrÞω

2k

�
Γðiωk ÞΓ

�
1þ iMrηrω

k

� θðω − ωrÞ; ð42Þ

Rr
H ¼

Γð− iω
κ ÞΓ

�
ið1þMrηrÞω

2κ

�
Γ
�
1þ ið1þMrηrÞω

2κ

�
Γðiωκ ÞΓ

�
− ið1−MrηrÞω

2κ

�
Γ
�
1− ið1−MrηrÞω

2κ

� ; ω> ωr; ð43aÞ

¼ 1; ω ≤ ωr; ð43bÞ

which satisfy the unitarity relation
jRr

Hj2 þ jTr
Hj2 ¼ 1: ð44Þ

In (42), θðω − ωrÞ is the Heaviside step function. Afterward, the mode function with the amplitude Rr
H that propagates

from the subsonic region to the supersonic region transmits (reflects) to the future null infinity in the supersonic region as in
terms of the v (u) mode with the following asymptotic behaviors:

φin;r
ω;H ¼

8>><
>>:

Rr
H

ffiffiffiffiffiffi
1

4πω

q
exp ðiωzÞ; z → −∞;

Tl
H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMlηl

q
exp ð−iωMlηlzÞ þ Rl

H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMlηl

q
exp ðiωMlηlzÞ; z → ∞:

ð45Þ

For the supersonic region, the solution has the general
solution

φsup
ω ðzÞ ∝ e−

πω
2κ ð−eκδzÞiωκ ðeκzÞiωκ ðeðκðzþδzsupÞÞ þ 1Þ−iðMlηl−1Þω

κ

× 2F1ða; b; c; yÞ ð46Þ

with the arguments

a ¼ −
i
2

ðMlηl − 1Þω
κ

; ð47aÞ

b ¼ 1 −
i
2

ðMlηl − 1Þω
κ

; ð47bÞ

c ¼ 1þ iω
κ
; ð47cÞ

y ¼ 1

1þ e−2κðzþδzÞ ; ð47dÞ

where Mlηl is in (25). For z → −∞, giving y → 0, where

2F1ða; b; c; 0Þ ¼ 1, the solution (46) correctly describes the
incident wave from the future horizon as

φsup
ω ðzÞ ∝ e−iωz as z → −∞: ð48Þ

However, for z → ∞, we use the transformation (38) to
rewrite (46) as

φsup
ω ðzÞ ∝ ΓðcÞΓðc − a − bÞ

Γðc − aÞΓðc − bÞ e
−iωηlMlz þ ΓðcÞΓðaþ b − cÞ

ΓðaÞΓðbÞ
× eiωηlMlz as z → ∞: ð49Þ

Comparing (45) and (49) enables us to extract the scattering
coefficients

Tl
H ¼

ffiffiffiffiffiffiffiffiffiffi
Mlηl

p Γð1þ iω
κ ÞΓðiMlηlω

κ Þ
Γ
�
iðMlηlþ1Þω

2κ

�
Γ
�
1þ iðMlηlþÞω

2κ

�Rr
H; ð50Þ

Rl
H ¼

ffiffiffiffiffiffiffiffiffiffi
Mlηl

p Γð1þ iω
κ ÞΓ

�
− iωMlηl

κ

�
Γ
�
− iωðMlηl−1Þ

2κ

�
Γ
�
1 − iωðMlηl−1Þ

2κ

�Rr
H: ð51Þ

For the whole scattering process from the mode function
φin;r
ω;HðzÞ, the above coefficients satisfy the relation

jTl
Hj2 − jRl

Hj2 þ jTr
Hj2 ¼ 1; ð52Þ

where the minus sign is due to the negative norm of the
reflected u mode in the supersonic region.

B. Incoming mode θin;rI

The second incoming propagating mode θin;rI is also
considered for ω > ωr from past null infinity Ir− in the
subsonic region, which scatters into the reflected modewith
the reflection coefficient Rr

I in the future null infinity, and
the transmitted mode with the transmission coefficient Tr

I
toward the future horizon [see Figs. 2 and 4 (middle)].
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The incoming mode θin;rI ðτ; zÞ has the asymptotic forms in the subsonic region as

φin;r
ω;I ¼

8>><
>>:

Tr
I

ffiffiffiffiffiffi
1

4πω

q
exp ð−iωzÞ; z → −∞;ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4πωMrηr

q
exp ð−iωMrηrzÞ þ Rr

I

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMrηr

q
exp ðiωMrηrzÞ; z → ∞:

ð53Þ

Then, in the supersonic region, the mode with the amplitude Tr
I coming from the future horizon scatters into the transmitted

(reflected) mode to the future null infinity in the supersonic region in terms of the v (u) mode with the following asymptotic
behaviors:

φin;r
ω;I ¼

8>><
>>:

Tr
I

ffiffiffiffiffiffi
1

4πω

q
exp ð−iωzÞ; z → −∞;

Tl
I

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMlηl

q
exp ð−iωMlηlzÞ þ Rl

I

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMlηl

q
exp ðiωMlηlzÞ; z → ∞:

ð54Þ

Following the same procedure as in Sec. III A to match the
incoming mode φin;r

ω;I of the solutions with the mode
function φsub= sup

ω near the horizon and the asymptotic
regions, one obtains the scattering coefficients

Tr
I ¼

Γ
�
iðMrηrþ1Þω

2κ

�
Γ
�
1þ iðMrηrþ1Þω

2κ

�
ffiffiffiffiffiffiffiffiffiffi
Mrηr

p
Γ
�
1þ iω

κ

�
Γ
�
iωMrηr

κ

� θðω − ωrÞ; ð55Þ

Rr
I ¼

Γ
�
− iωMrηr

κ

�
Γ
�
ið1þMrηrÞω

2κ

�
Γ
�
1þ ið1þMrηrÞω

2κ

�
Γ
�
iωMrηr

κ

�
Γ
�
− iðMrηr−1Þω

2κ

�
Γ
�
1− iðMrηr−1Þω

2κ

� θðω−ωrÞ;

ð56Þ

Rl
I ¼

ffiffiffiffiffiffiffiffiffiffi
Mlηl

p Γ
�
1þ iω

κ

�
Γ
�
− iωMlηl

κ

�
Γ
�
− iðMlηl−1Þω

2κ

�
Γ
�
1 − iðMlηl−1Þω

2κ

�Tr
I; ð57Þ

Tl
I ¼

ffiffiffiffiffiffiffiffiffiffi
Mlηl

p Γ
�
1þ iω

κ

�
Γ
�
iωMlηl

κ

�
Γ
�
iðMlηlþ1Þω

2κ

�
Γ
�
1þ iðMlηlþ1Þω

2κ

�Tr
I: ð58Þ

These coefficients obey the relations

jRr
I j2 þ jTr

I j2 ¼ 1; ð59Þ

jTl
Ij2 − jRl

Ij2 þ jRr
I j2 ¼ 1: ð60Þ

Notice that this scattering process can only happen as
ω > ωr. Again, the negative norm of the reflected u mode
in the supersonic region gives the minus sign in the
equation.

C. Incoming mode θin;lH

The third incoming mode under consideration is θin;lH ,
which is incident from the past horizon in the supersonic
region. As seen in Figs. 2 and 4 (right), we have one partial
reflected mode, in particular of the negative norm state
accompanying with reflection coefficient Rl

H, and one
partial transmitted mode with the transmission coefficient
T l

H. Note that this scattering process has nothing to do with
the subsonic region due to the formation of the analog
horizon where the modes are forced to travel toward
x → −∞ away from the horizon and will not escape into
the subsonic region.
The asymptotic behaviors of the incoming mode φin;l

ω;H in
the supersonic region are

φin;l
ω;H ¼

8>><
>>:

ffiffiffiffiffiffi
1

4πω

q
exp ð−iωzÞ; z → −∞;

T l
H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMlηl

q
exp ð−iωMlηlzÞ þRl

H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πωMlηl

q
exp ðiωMlηlzÞ; z → ∞:

ð61Þ

It is straightforward to obtain the scattering coefficients by letting Tr
I ¼ 1 in (57) and (58) as

Rl
H ¼

ffiffiffiffiffiffiffiffiffiffi
Mlηl

p Γð1þ iω
κ ÞΓ

�
− iωMlηl

κ

�
Γ
�
− iωðMlηl−1Þ

2κ

�
Γ
�
1 − iωðMlηl−1Þ

2κ

� ; ð62Þ
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T l
H ¼

ffiffiffiffiffiffiffiffiffiffi
Mlηl

p Γ
�
1þ iω

κ

�
Γ
�
iωMlηl

κ

�
Γ
�
iðMlηlþ1Þω

2κ

�
Γ
�
1þ iðMlηlþ1Þω

2κ

� ; ð63Þ

which satisfy the relation

jT l
Hj2 − jRl

Hj2 ¼ 1: ð64Þ

In Ref. [12] where the gapless cases are under consider-
ation, the scattering coefficients are shown only in the
subsonic region where our results are consistent with them
in the limit of ηr → 1ðΩ → 0Þ.

IV. CONSTRUCTION OF S-MATRIX AND
BOGOLIUBOV TRANSFORMATION

Having all the scattering coefficients from all incoming
modes, we are able to construct the mode expansion of the
field operator in terms of incoming modes

δθ̂ðτ; zÞ ¼
Z

dω



e−iωτ

�
âin;rω;Hφ

in;r
ω;H þ âin;rω;Iφ

in;r
ω;I

þðâin;lω;HÞ†φin;l�
ω;H

�
þ H:c:

�
ð65Þ

or in terms of outgoing modes

δθ̂ðτ; zÞ ¼
Z

dω
n
e−iωτ

h
âout;rω;urφ

out;r
ω;ur þ âout;lω;vlφ

out;l
ω;vl

þðâout;lω;ul Þ†φout;l�
ω;ul

i
þ H:c:

o
; ð66Þ

according to the asymptotic states defined on the bounda-
ries of the Penrose diagram in Fig. 2. The relation between
incoming and outgoing modes given by (28)–(33) can be
summarized into the S matrix to be

0
B@

φin;r
ω;H

φin;l�
ω;H

φin;r
ω;I

1
CA ¼ S ·

0
B@

φout;r
ω;ur

φout;l�
ω;ul

φout;l
ω;vl

1
CA; ð67Þ

where

S ¼

0
B@

Sur;Hr Sul;Hr Svl;Hr

Sur;Hl Sul;Hl Svl;Hl

Sur;Ir Sul;Ir Svl;Ir

1
CA: ð68Þ

The subscript of the element Si;j indicates the relation
between the i outgoing mode and the j incoming mode.
Substituting (68) into (65) and comparing with (66), the
Bogoliubov transformation can be read off as

0
B@

âout;rω;ur

ðâout;lω;ul Þ†
âout;lω;vl

1
CA ¼

0
B@

Sur;Hr Sur;Hl Sur;Ir
Sul;Hr Sul;Hl Sul;Ir
Svl;Hr Svl;Hl Svl;Ir

1
CA ·

0
B@

âin;rω;H

ðâin;lω;HÞ†
âin;rω;I

1
CA;

ð69Þ

where the S-matrix elements are related to all above
transmission and reflection coefficients below:

Sur;Hr ¼ Tr
H; Sur;Hl ¼ 0; Sur;Ir ¼ Rr

I; ð70aÞ

Sul;Hr ¼ Rl
H; Sul;Hl ¼ T l�

H; Sul;Ir ¼ Rl
I; ð70bÞ

Svl;Hr ¼ Tl
H; Svl;Hl ¼ Rl�

H; Svl;Ir ¼ Tl
I: ð70cÞ

When studying a physical effect of some quantum field
in a curved spacetime, an important step is the identifica-
tion of a quantum state or a class of quantum states which
adequately describes the given physical situation. Based
upon the mode expansion in (66) the natural vacuum state
can be defined as the Boulware state, which is annihilated
by the annihilation operators âin;rω;I , â

in;r
ω;H and âin;lω;H, namely

âin;rω;I jBi ¼ 0; âin;rω;HjBi ¼ 0; and âin;lω;HjBi ¼ 0: ð71Þ

Here we consider the Unruh state, a stationary state that can
be thought of as describing a hot body, namely the black
hole, immersed in vacuum. In particular, it contains no
particles coming from the past null infinity, while at the
future null infinity, the particles can be produced. This is
consistent with blackbody radiation at the Hawking temper-
ature. Thus the Unruh state is generally considered to be the
appropriate state for the description of gravitational col-
lapse of the black hole [2]. The positive and negative
frequency modes of the Unruh state are defined with
respect to the Kruskal time U ¼ �e−κðτ−zÞ=κ where þ
(−) corresponds to the supersonic (subsonic) region of the
horizon with the mode function

φK
H ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

4πωK

s
e−iωKU: ð72Þ

Thus, the field operator can also be expanded in terms of
the mode functions φK

H and φin;r
I :

δθ̂ ¼
Z

dωKðâωK
φK
H þ â†ωKφ

K�
H Þ

þ
Z

dω
�
âin;rω;Iφ

in;r
ω;I þ ðâin;rω;I Þ†φin;r�

ω;I

�
; ð73Þ

where the Unruh state is annihilated by the annihilation
operators âωK

and â†ωK :

âωK
jUi ¼ 0 and âin;rω;I jUi ¼ 0: ð74Þ
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The Bogoliubov transformations between two sets of the
creation and annihilation operators are expressed as

âin;rH ¼
Z

dωK½αrωK;ωâωK
þ βr�ωK;ωâ

†
ωK �;

âin;lH ¼
Z

dωK½αlωK;ωâωK
þ βl�ωK;ωâ

†
ωK � ð75Þ

with the coefficients [36]

αrωK;ω ¼ 1

2πκ

ffiffiffiffiffiffi
ω

ωK

r
ð−iωKÞiω=κΓ

�
−iω
κ

�
; ð76aÞ

βrωK;ω ¼ 1

2πκ

ffiffiffiffiffiffi
ω

ωK

r
ð−iωKÞ−iω=κΓ

�
iω
κ

�
; ð76bÞ

αlωK;ω ¼ 1

2πκ

ffiffiffiffiffiffi
ω

ωK

r
ðiωKÞ−iω=κΓ

�
iω
κ

�
; ð76cÞ

βlωK;ω ¼ 1

2πκ

ffiffiffiffiffiffi
ω

ωK

r
ðiωKÞiω=κΓ

�
−iω
κ

�
: ð76dÞ

After introducing the appropriate quantum state, we are
ready to compute the particle densities of each mode
produced from the Unruh state as well as the mode mixing
due to the existence of the negative norm state and their
mode correlators.

V. PARTICLE DENSITIES AND MODE
CORRELATORS

We first calculate the particle density of the φout;r
ω;ur mode

in the subsonic region, an analog of the Hawking mode
using the Bogoliubov transformations (69) and (75), which
can be expressed as the thermal spectrum

nur ¼ hUjðâout;rω;ur Þ†âout;rω;ur jUi ¼ jTr
Hj2

1

e
ω

Thw − 1
¼ Γω

e
ω

Thw − 1

ð77Þ

with the Hawking temperature Thw ¼ κ=2π even for the
gapped excitations shown in Fig. 5. The accompanying
graybody factor is obtained as

Γω ¼
sinh

�
πω
κ

�
sinh

�
πMrηrω

κ

�
sinh2

�
πωð1þMrηrÞ

2κ

� : ð78Þ

The produced particles are mainly due to the introducing
Unruh state in the past horizon in the r region where the
modes can partially transmit to the future null infinity,
giving the analog Hawking radiation. The obtained gray-
body factor above returns to the expression of the gapless
case in Ref. [12] in the limits of ηr ¼ 1 (Ω ¼ 0). For small

frequency ω ≪ κ, the graybody factor can be approximated
as 4Mrηr=ð1þMrηrÞ2 which is the same as the graybody
factor in the case of the steplike change of the sound speed
in Ref. [10] with the constant velocity set to be v ¼ vr
where the dispersive effects can be ignored in such small
frequencies. The main influences of the gap energy meff in
(9) to the graybody factor (78) can be seen from the
existence of a threshold ωr where nur ¼ 0 if ω < ωr shown
in the inset of Fig. 5. This is just the critical value of
frequency, below which in the subsonic region the modes

FIG. 5. Plot of the spectrum nur; nul, and nvl in (77), (79) and
(80) as the function of ω=κ with various values of the Rabi
frequency Ω=κ ¼ 0 (dashed line), 0.001 (green line), 0.002 (red
line), and 0.003 (blue line). Notice that the comparison is made
between the gapped cases (Ω ≠ 0) and the gapless cases (Ω ¼ 0).
The inset in nur shows the graybody factor Γω in (78). The
parameters are the same as those in Fig. 1.
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from the past horizon in the r region will be totally reflected
toward the future horizon, giving no Hawking radiation in
the future null infinity shown in Fig. 4. This can be realized
to rewrite (20) as the time-independent Schrödinger-like
equation where ω2

a plays a role as the effective potential
term. The relative large value of meff in the subsonic region
driven by the large Rabi coupling constant Ω gives the
relatively large value of ω2

sub (22) that leads to the large
scattering effects, giving smaller transmission coefficient
Tr
H and thus resulting in the smaller graybody factor. When

ω → ∞, Γω → 1 as expected.
Next, we consider particle spectrum of the modes inside

the analog horizon, namely φout;l
ω;vl and φout;l

ω;ul . Let us first
study the behavior of the φout;l

ω;ul mode of the negative norm
state, which is also called the partner of the Hawking mode.
The particle spectrum is obtained as

nul¼hUjðâout;lω;ul Þ†âout;lω;ul jUi¼ 1

e
ω

Thw −1
je ω

2ThwRl
HþT l�

H j2þjRl
Ij2;

ð79Þ

where the coefficients can be substituted from (51), (57) and
(63). Although there is no particle coming from the past null
infinity, the nature of the negative norm state of φout;l

ω;ul in the
supersonic region gives rise to vacuum instabilities due to
the mode mixing, triggering particle production due to the
contribution of Rl

I. In addition, the scattering of the modes
from the Unruh state in the past horizon (in the l and r
regions) contributes the particle production due to the
coefficients of Rl

H and T l
H. The net result of the particle

spectrum exhibits nonthermal. Figure 5 shows the particle
density nul does not change smoothly across ωr. The main
reason is due to the fact that the modes coming from the past
horizon in the r region will totally be reflected to the future
horizonwhenω < ωr, giving the enhancement of theparticle
production of nul as compared with the modes with frequen-
ciesω > ωr. Also, below threshold frequencyωr, there does
not exist the propagating incoming mode originally from the
past null infinity in the subsonic region shown in Fig. 4
(middle), giving thevanishing ofRl

I whenω < ωr. It isworth
mentioning that in the limitω → 0, the particle density has a
finite saturated value rather than an infrared divergence for
the gapless case [32]. Also, for large frequency ω ≫ κ, it is
expected that the incoming mode from the past null infinity
will travel directly through the future horizon and toward the
future null infinity. Also, the modes from the Unruh states in
the past horizon with such large frequencies will travel to the
future null infinity. As such, e

ω
2ThwRl

H → 0, Rl
I → 0, and

T l
H → 1 render the expression of nul having a tail of the

exponential decay in frequency.
As compared with the φout;l

ω;ul mode, the other particle
spectrum of emission inside the analog horizon is φout;l

ω;vl of
the positive norm state where its particle density will have
no contribution from the modes in the subsonic region

because of the lack of mode mixing giving Rl
I ¼ 0, and it

becomes

nvl ¼ hUjðâout;lω;vl Þ†âout;lω;vl jUi ¼ 1

e
ω

Thw − 1
je ω

2ThwRl�
H þ Tl

Hj2

ð80Þ
with the coefficients in (50) and (62) shown in Fig. 5 given
respectively by the Unruh state in the past horizon in the l
and r regions. The particle densities satisfy nur þ nvl ¼ nul

for ω > ωr and nvl ¼ nul for ω < ωr, which can be verified
by using the unitary relation jRl

Hj2 − jT l
Hj2 þ jRl

Ij2 ¼ −1
accompanied with (52) and (64). The particle densities of
nul and nvl share the same feature that they do not have a
smooth change across ωr.
Here we come to study the mode correlator such as the

correlator of the analog Hawking mode φout;l
ω;ur in the

subsonic region and its partner φout;l
ω;ul in the supersonic

region as well as the correlator of the φout;l
ω;ul mode and the

φout;l
ω;vl , both of which are in the supersonic regions.
The ul-ur correlator can be computed from

cur;ul ¼ hUjoutârω;uoutâlω;ujUi

¼ Rl�
I R

r
I þ

e
ω

2Thw

e
ω

Thw − 1

�
Tr
HT

l
H þ Tr

HR
l�
He

ω
2Thw

�
; ð81Þ

where the coefficients can be found in (42), (51), (56), (57),
(62), and (63). Nevertheless, the ul-vl correlator can be
obtained as

cvl;ul ¼ hUjoutâlω;voutâlω;ujUi

¼ Rl�
I T

l
H þ 1

e
ω
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2Thw þ T l

HR
l�
H

i
;

ð82Þ
where the coefficients can be found in (42), (51), (56)–(58),
(62), and (63). Both correlators as a function of frequency
are shown in Fig. 6. Because there is no particle production
below the threshold frequency ωr in the φout;r

ω;ur mode of the
analog Hawking mode, the correlator cur;ul vanishes
although the partner mode of the φout;l

ω;ul mode of the negative
norm state does have particle production within this
frequency range. For ω > ωr, the correlator cur;ul shows
a peak around the threshold frequency. As for the correlator
of cvl;ul, apart from the large correlation in small frequency,
there exists also a peak near the threshold frequency.
Interestingly, as ω > ωr, the magnitude of correlator
jcur;ulj for a gapped mode will be larger than gapless cases,
especially around the threshold frequency. The behavior of
the mode correlators will contribute to the density-density
correlators to be done in our forthcoming work that can be
measured experimentally [3,4,37].
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VI. SUMMARY AND CONCLUSION

We start from considering the condensates of cold atoms
at zero temperature in the tunable binary BEC system with
the Rabi transition between atomic hyperfine states where
the system can be represented by a coupled two-field model
of gapless excitations and gapped excitations. For the
general spatial-dependent coupling constant strengths,
the decoupling of two excitations under certain conditions
of the condensate wave functions and the coupling con-
stants is reviewed. In particular, we will solely focus on the
dynamics of gapped excitations. The dispersion relation of
the gapped modes involves the k2 term in a very long
wavelength approximation that behaves relativistically. The
particular spatial-dependent sound speed and flow velocity
with the acoustic horizon in the elongated condensates are
introduced so that the equations of the mode functions can
be analytically treatable. In addition, the horizon generated
from the transonic flow is formed with experimentally
accessible parameters. As compared with the gapless exci-
tations, there exists a threshold frequency ωr in the subsonic
region above which the modes can propagate. The asymp-
totic states of the incoming andoutgoingmodes are identified
where the scattering coefficients between them for various
scattering processes can be achieved. Accordingly, the
Bogoliubov transformations of the creation and annihilation

operators associated with the incoming and outgoing modes
are derived. Also, the Unruh state is introduced to be the
appropriate state for the description of gravitational collapse
of the black hole. The particle spectrum of the analogous
Hawkingmodes in the exterior of the horizon of the subsonic
region is computed and is shown as a thermal one with
temperature given by the analogous surface gravity κ, mainly
due to the introduction of the Unruh state in the past horizon.
The associated graybody factor significantly deviates from
that of the gapless cases near the threshold frequency, which
vanishes as the mode frequency is below ωr. In the interior
region of the horizon of the supersonic region, the spectrum
of the particle production of the Hawking partner has
the nonthermal feature. The correlators between the
Hawking mode and its partner of relevance to the exper-
imental observations show some peaks near the threshold
frequency ωr resulting from the gap energy term. The
behavior of the mode correlators will contribute to the
density-density correlators that can be measured experimen-
tally to be carried out in our forthcoming work.
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