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We have studied analytically the approximate solutions to the gapped mode equations in the
hydrodynamic regime for a class of binary Bose-Einstein condensate acoustic black holes. The horizon
from the transonic flow is formed by manipulating the phonon sound speed and the flow velocity with the
experimentally accessible parameters. The asymptotic modes of various scattering processes are
constructed from which to obtain scattering coefficients and then to further decompose the field operator
in terms of the asymptotic states. Also, the Unruh state is introduced to be the appropriate state for the
description of gravitational collapse of the black hole. The particle densities of the outgoing modes are
computed. The effective energy gap term in the dispersion relation of the gapped excitations introduces the
threshold frequency w, in the subsonic regime, below which the propagating modes do not exist. Thus, the
particle spectrum of the analogous Hawking modes in the exterior of the horizon of the subsonic region
significantly deviates from that of the gapless cases near the threshold frequency due to the modified
graybody factor, which vanishes as the mode frequency is below @,. However, in the interior region of the
horizon of the supersonic region, the spectrum of the particle production of the Hawking partner has
the nonthermal feature. The correlators between the analog Hawking mode and its partner of relevance to
the experimental observations are also investigated and show some peaks near the threshold frequency w,

resulting from the gap energy term to be seen in future experiments.
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I. INTRODUCTION

The evaporation of black holes has been predicted by
Hawking through the emission of a thermal flux of
radiation, thereby reducing its mass [1]. However, the
expected Hawking temperature is of order of Ty = 6.0 x
1078 K for an astrophysical black hole, which is several
orders of magnitude smaller than the cosmic microwave
background temperature 7., & 3 K. Thus, the detection of
Hawking radiation in an astrophysical context is extremely
unlikely. The program of the analog models of gravity due
to the pioneering work of Unruh is an attempt to implement
laboratory systems to mimic various phenomena that
happen in the interplay between general relativity and
quantum field theory such as in black holes and the early
Universe. The aim is for devising experiments of real
laboratory tests that provide insights in phenomena and
further probe the structure of curved-space quantum field
theory. From a prospective of analog gravity, Unruh
realized that sound waves in a moving fluid can be
analogous to light waves in curved spacetime where the
supersonic fluid can generate acoustic black holes with
acoustic horizons [2]. Thus, the existence of analogous
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photonic Hawking radiation can be theoretically demon-
strated. The work of Ref. [3] is a first experimental obser-
vation of Hawking radiation extracted from correlations of
the collective excitations that agree with a thermal spectrum
with the temperature estimated from analog surface gravity.
Also, the time dependence of the Hawking radiation in an
analog black hole is observed in Ref. [4].

With the advent of the experimental study of binary
Bose-Einstein condensates (BECs) in Refs. [5,6], the
condensates of cold atoms at zero temperature in such
tunable systems have been explored with the Rabi tran-
sition between atomic hyperfine states where the system
can be represented by a coupled two-field model of gapless
excitations and gapped excitations. The binary BECs have
been adopted as an analog model to theoretically mimic
quantum phenomena in the early Universe and/or black
holes [7-10]. In our previous work [10] we set up the
configuration of the supersonic and subsonic regimes with
constant flow velocity where the acoustic horizon is
established between them in the elongated two-component
BECs, trying to stimulate analogous Hawking radiation, in
particular due to the gapped excitations. In this work, we
consider the same model where the sound speed and flow
velocity profiles are spatial dependent to generate the
acoustic horizon with reference to the experiments in
Refs. [3,11] and the theoretical studies in Refs. [12,13].

© 2023 American Physical Society
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Here we briefly review in what conditions of the coupling
constants and condensate wave functions of the spatial
dependence two collective excitations can be decoupled by
following the work of Ref. [7]. We then consider the
dispersion relation of the gapped modes with the k> term in
a very long wavelength approximation that behaves rela-
tivistically. Some profiles of the spatial-dependent sound
speed and the flow velocity are specified where the
approximate analytic solutions of the mode equations of
the gapped excitations can be treatable. The Unruh state is
introduced as the appropriate state for the description of
gravitational collapse of the black hole. The particle
spectrum of the outgoing modes and their correlators are
computed from which to further discuss the relevance to the
experimental measurements.

We organize this paper as follows. In Sec. II, we
introduce the model of a binary BEC system and give a
review of the approach to decouple the gapless and gapped
excitations. The particular sound speed and flow velocity
profiles later are introduced to establish the acoustic
horizon of the black hole. In addition, various asymptotic
modes are identified. In Sec. III, the approximate analytical
solution to the mode equations of the gapped excitations of
interest is found from which the reflection and transmission
coefficients for each scattering process are obtained. Also,
the Unruh state is introduced. In Sec. IV, the field of the
gapped excitations is expanded in terms of either incoming
or outgoing modes whereas the corresponding S-matrix and
the Bogoliubov transformations of the creation and anni-
hilation operators between the incoming and outgoing
modes are constructed. Section V is devoted to obtaining
the particle density of outgoing modes and their correlators.
We conclude the work in Sec. VL.

II. REVIEW OF MODE DECOUPLING IN
TWO-COMPONENT BECs

The effective mass term of the quantum field theory can
be considered as the gapped energy term of the gapped
excitations in a binary BEC system in the hydrodynamic
approximation [7,8,10]. Here we consider the binary BECs
of the same atoms in two different internal hyperfine states.
This class of the two-component BEC systems with the
Rabi interaction exhibits two types of excitation on con-
densates: the gapless excitations due to the “in-phase”
oscillations between two respective density waves and
the gapped excitation stemming from the “out-of-phase”
oscillations of the density waves with additional the Rabi
transition, which are respectively analogous of the
Goldstone modes and the Higgs modes in particle physics.
Here we briefly review how two excitations are decoupled
under certain conditions of the spatial-dependent conden-
sate wave functions and the coupling constants [7]. With
the unit 7 = kg = 1 throughout this paper, the time-
dependent equations of motion in 1+ 3 dimensions are
expressed by

. I =2 . S e
zdl‘P, = —%V —I—Vl(x)—|-g”‘l’1‘l’1 +912‘P2‘P2

A A

x ¥ _qub (1a)

A = . A s
i0,¥, = ~m V™ + Vo (X) + g V5 W, + 9P
¥, (1b)

where m is atomic mass and V| and V, are the external
potentials on the hyperfine states 1 and 2, respectively.
Additionally, g1, g5, and g;, are the interaction strengths of
atoms between the same hyperfine states and different
hyperfine states, respectively. The coupling strengths are
related with the scattering lengths. Experimentally, the values
of scattering lengths can be tuned using Feshbach resonances
such as two hyperfine states of 8Rb [14-17]. We also
introduce a Rabi coupling term by shining the laser field
or applying the radio wave with the strength given by the
Rabi frequency Q [18,19]. The condensate wave functions

A

are given by the expectation value of the field operator (\¥;):

(W) = piein (2)

with the chemical potential 4. The condensate flow velocities

are given by %,-(x) /m = v;(x) (i = 1,2). The equations for
p; and 0; of the condensate wave functions can be found in
Refs. [7,9,10]. The perturbations around the stationary wave
function are defined through

P = (P (1 + ). 3)

where the fluctuation fields in (3) can be decomposed in terms
of the density and the phase as

b; = 6h; + 160, = P + i80);. (4)

2p;
Substitutions of (3) and (4) into (1) give the coupled equations
of two states 1 and 2. For the general spatial-dependent
condensate wave functions as well as the coupling strengths,
it is found that the above equations can be decoupled by
choosing py = py = p, 0y = 6, =0, and g; = g5, = g [7].
The chosen scattering parameters in the binary systems
can have a miscible state of background condensates
[20,21]. The detailed analysis of the choice of the parameters
can be found in our previous work [22]. One can therefore
define

R [, .

5nd/p = 75 (5}’11 + 5]’12), (Sa)
~ 1 A ~

59(1/]) - 72 ((361 Zl: 592), (Sb)
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where the subscript d (p) refers to the density (polarization)
fluctuations. The decoupled equations are shown to be

A 1 = = L = o .
0,004 = 5—V - (pVény) = v- V0, —2(g + g12)pdiy,
2mp
(6a)
1 — — A L =
6,5ﬁd = - V . (pVéGd) — V- Véﬁd, (6b)
2mp
and
~ 1 — = .. L o=
0,60, = 2mp (pVén,)—v-Vé0,—[2(g9 - gn)p
+ QJén,,, (7a)
R 1 — — R ~
0,01, :—%V -(pV80,)—v-Vén, +Qo0,.  (7b)

The analog Hawking radiation arising from the gapless modes
has been studied in the literature [23—-26]. Here we mainly
focus on the gapped modes given by the polarization
excitations in (7) where from now on the subscript p is
dropped out for simplifying the notation. In this paper, we
consider the transonic flow, which is accelerated by manipu-
lating the condensate density p(x) with the spatial depend-
ence obtained from a sharp external potential [3,11] and
spatial-dependent interaction strength g;,(x). The experi-
mentally spatial variation of the interaction strengths is
challenging but feasible [27-29].
One thus combines (7a) and (7b) to obtain

= P N\ n P Zn N

—(al+vy)—2(0,+yv)59+V—vae—ngzéezo
mc m

(8)

with the spatial-dependent sound speed c¢(x) =
V(g = g12)p(x) + Q]/m. To further express (8) as the

form of the Klein-Gordon equation, the equation can be
rewritten as

mm? A 1 A mm2, -
O——=<ff )56 = 9,(/—gg'a,60) ——Ls6=0
( ) \/—_g"( 58 ) pc

)

with the gapped energy n g (x)=/2(9—g12)p(x)Q+Q? =

V/2mc?(x)Q. The acoustic metric is

ds* = —[—(c? = v?)dr* = 20 - dXdt + dx* + dy* + dz?],
(10)

where we choose the direction of the flow along the x

direction, ¥(x) = —v(x)% [v(x) > 0]. It is then assumed
that the system can be treated in the pseudo-one-dimension

by applying a strong cigar-shape trap potential where the
size of the trap L, along the axial direction, say in the x
direction, is much larger than the size of L, along the radial
direction [6,20,21]. Later, we will choose the profile of the
sound speed and the flow velocity so that the Klein-Gordon
equation can be treatable analytically in some approxima-
tions to be discussed later [12,30,31]. Using the trans-
formation to define the time 7z from the laboratory time # as

v
T—t—/dxcz_vz (11)

to rewrite the metric (10) restricted in one dimension along
the x direction as

dst =2 {—(c2 —v?)d7? —1—67241)62} (12)
me c? =2 ’

the corresponding Klein-Gordon equation becomes

—c ct—1? mie]
e o) o —o
(13)

According to Ref. [12], we perform the further variable
transformation

1 v?
e (D

C

giving the metric

1
ds2 =2 (c? —v?) [—drz +Fdz2} . (15)

mc

We further use the continuity equation of the gapped
excitations wvp = const resulting from the respective
continuity equations for states 1 and 2 with equal phases
and densities between them to set p = 1/v and rewrite (13)
to be

U2 112 ~
{?az — 2+ 07 <1 - ?) ZmQ} 80(z.7) =0.  (16)

The third term of (16) is induced by the gap energy, giving
the analog mass term of the relativistic quantum scalar
field. The mass term is positive (negative) in the subsonic
(supersonic) region, which implies that there will exist the
threshold frequency in the subsonic region beyond which to
have the propagating modes [32,33].

In the supersonic region (v > ¢), we assume that the
sound speed and the flow velocity have the forms [12,13]
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2.2 2,2 ~12
Coup(2) = {Cl ;UO +(Cl 2”0 )tanh (Kz)] . (17a)

(12 =13

2

2 2
vy 4+ v

) tanh (KZ):| v (17b)

with the asymptotic behaviors (vgp, Coup) ;e = (1, ¢;) for
x = —00 and (Vgyp» Coup) ;-0 = (00, V) for x — 0 of the
horizon given from the spatial coordinate transformation
(14). In the subsonic region (¢ > v), they are assumed to be

2 -2 -2 _ -2 -12
cunl@)= [T+ S )| 15
2, .2 2_ .2 1/2
vaol@) = [T L W )| s

2 2
where  (Vgups Csub) 0o = (¥ ¢,) for x — 400 and

(Vsub» Csub)zs—0o = Vo for x — 0 of the horizon again from
(14). The horizon from the transonic flow with the above
profile is formed by manipulating the phonon sound speed
and the flow velocity with the experimentally accessible
parameters [3,11]. In Fig. 1, we show the transonic transition
according to (17) and (18) under the transformation (14).
Thus, in the asymptotical regions, the velocities reach
respective constants where the metric (15) is conformal to
that of the Minkowski spacetime with the spatial coordinate
in terms of the rescaled vdz/c. One can define the incoming
and outgoing states in these asymptotic regions of the
Penrose diagram shown in Ref. [12] and Fig. 2 in this paper.
The location of the analog horizon is at x = 0 with the surface

gravity
K=—""—= (19)

that can be justified by substituting (14), (17), and (18)
into (19).

With the profiles of a transonic flow (17) and (18), the
solutions of (16) in the subsonic and supersonic regions
separately can be cast in a form of 50(z, z) = e "¢, (z), to
therefore rewrite (16) as

4¢3 (2)

M ()i (2) + =5 =0, (20)

where the index “a” refers to “sup” or “sub” for different
regions. The quantity 7,(z) is defined as

n(@) = 11— (), %0 @)

w3 (z) = 2m|ci(z) — v3(2)|Q. (22)

with

2 L
1.5F
’l
1 L
|
. /
05 _ ______---=--- -
O i 1 1 1 1 1 1
-30 -20 -10 0 10 20 30
x
FIG. 1. Profiles of the sound speed c¢(x) (blue dashed line) and

the flow velocity v(x) (solid red line) are depicted from (17) and
(18) with parameters ¢; = 0.4, v; =2, ¢, = 1.34, and v, = 0.6
with the reference value vy =1 at the horizon. The Mach
numbers are chosen to be M; =5 and M, = 0.44, where M, =
1/+/M,; with reference to Refs. [13,26,34].

FIG. 2. Schematic plot of the Penrose diagram.

where + (—) is for the subsonic (supersonic) region. We
also express (20) in terms of the Mach number defined by

M,(z) = . (23)

As aresult of the asymptotic behaviors of (18) and (17),
the function 5, and @, will be saturated to a constant value
in the asymptotic regions where we summarize them as

Nsub 2> Hr =V 1_[0%/602
Wy = @, = /2mci(1 = M7)Q

Mgy > M, =v./c,

for z - oo, (24a)
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Msub = 1
wgp >0 for z > —c0 (24b)
Msub -1
in the subsonic region and
Nsup = M1 =/ 1 +w12/w2
Wsup = @ = 1/ 2mcF (M} — 1)Q for z — co,  (25a)
Msup - M, = Ul/cl
Houp = 1
ap = 0 for z - —o0 (25b)
My, = 1

in the supersonic region.
To make (20) analytically treatable, we approximate the
first term of (20) in a form

1
(M*1?) qu) sup = 3 M 07+ 1+ (MG 7y, = 1)
x tanh(x(z + 6Zgupy sup) )] (26)

with the shift
[(vé—vrm(cm )| [207+ (303 +13,)2m)|

vg (et = i) (@ + 07, 2mQ) ’
(27)

5Zsub/ sup —

that the parametrized function matches not only at the
asymptotical values but also at z = 0 (see Fig. 3), although
the shift does not affect the behaviors of the scattering
processes asymptotically. Based upon the asymptotic
regions of the Penrose diagram (see Fig. 2), there are three

30

15+
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I

’
U
’
’
L

0 0

FIG. 3. Comparison of the exact M?(z)5?(z) (blue line) in (20)
computed from the sound speed and the flow velocity in (17) and
(18) and the parametrized function (26) with (red dashed line) and
without (green dotted line) shift (27) in the supersonic (left panel)
and subsonic regions (right panel).

incoming modes coming from the past horizon in the right
(left) of the horizon H” (H.) of the subsonic (supersonic)
region and the past null infinity /_ in the subsonic region
with the following mode functions:

) 1
—twr 1nr — —la)r la)z f Hr 28
dne rom (28)
lwr(pml — 1 l(UT —lwz from Hl (29)
v 4r0’ -

—m)‘r in, r —iwt _”‘IMf”’Z fromI”. 30
(pw I \/;_7;);4; ( )

In the case of the metric given in (15), the mode functions
shown above in the subsonic region (v < ¢) correspond to
the positive frequency modes with respect to the time
coordinate 7 whereas the mode functions in the supersonic
region (v > c) are the positive frequency modes with respect
to the “time” coordinate z. According to (20), the normali-
zation of the mode functions ¢[(z) as well as its frequency
dependence of the mode functions can be chosen from the
standard one @i (z) = et by replacing @ — wM,1,

evaluated either at the horlzon or the past null infinity, which
is consistent with Refs. [12,30,35]. Similarly, there are three
outgoing modes. They are u; and v; modes in the supersonic
region toward the future null infinity in the respective
asymptotic regions in terms of the incoming and outgoing
null coordinates v; = v+ M,z and u; = 7 — M,z realized
from the metric form (15). Also, in the subsonic region, the
u, =7 — M,z mode is involved. The mode functions are

—iwt lu)M,r[,Z toward 7" s 31
W o
la)‘r outl 0t p=ioMimz toward I 32

wu, \/471””11 u,+> ( )

e~iwremioMmz  toward I,

(33)

—1(1)1' out, r
e Do, u,

—za)r outl
e Do, @,

Notice that the correct choice of the normalization of the
mode functions becomes essential to fulfill the unitarity
conditions to be checked later. The detailed mode functions
will be determined in the next section.

III. SOLUTIONS OF THE MODE EQUATIONS

A. Incoming mode 6};"

Firstly, we consider the incoming mode 9;",” from the
right region of the past horizon for @ > w, by evaluating
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FIG. 4. Scattering processes of the incoming mode 9113” (left), Hi,"” (middle), and 9113" (right). According to (22), the green shadow is
depicted for +w2 (z) in the subsonic region and —w?3,,(z) in the supersonic region.

the threshold frequency wg,, in the past horizon in the
subsonic region shown in (24) (see Fig. 2), which then
partially reflects back to the future horizon with the
amplitude Ry, and partially transmits with the amplitude
T}, toward the future null infinity in the subsonic region /1, .
However, for @ < w,, the incident mode will be totally
|

Pih(2) =

The scattering coefficients in (34) can be found from the
approximate solution of (20) with the parametrization
function (26) together with the asymptotic values of
M g phsup (24). We choose one of two independent solutions
given by

i(1=-Mynp)w

sub 2%

PP(2) o 7B (— e 0 ) (K2 ) (2K H0%m) 4 1)

X ,Fi(a,b;c;y), (35)

where ,F, is the hypergeometric function with the
arguments

i(1+Mmn)o

a = Ef’ (363.)
i (1 B Mrnr)w
S I Sl ol o [ VA
b R (36b)
M
¢ =14 20 (36¢)
K
1
y= (36d)

1+ eZK(Z+5Zsub) ’

with M,n, in (24). Since the hypergeometric function
,F (a,b,c;y=0)=1 in the case of 1/(1+e>z+%zw))—0
as 7 — oo, the amplitude in (35) becomes an outgoing mode:

sub(z) x esz,n,z as z — 0o.

(37)

\/ 7= exp (iwz) + Ry /zi-exp (—iwz), 7 — —co.
T;I \/ 47er iy eXp (la)Mrnr )

reflected giving 77, =0 and R}, = 1 toward the future
horizon, which is referred as the boomerang trajectory of
the gapped excitations [33]. The scattering process can be
schematically shown in Fig. 4 (left) with the asymptotic
behaviors of the mode function in a subsonic region (x > 0)
given by

(34)

Z — ©0.

[
Furthermore, near the horizon (z - —o0), we use the

identity

[(c)I'(c—a—b)
[(c —a)l'(c=b)
x,Fi(la,b;a+b+1—-c;1—y)
I'(c)l'(a+b—-c) (1-

[(a)l'(b)
x,Fi(c—a,c—b;l1+c—a—-b;1-y)
(38)

2Fi(a,bscyy) =

y)c—a—b

to rewrite (35) as

I'(c)l'(c—a-Db)
I'(c—a)l'(c-D)

as 7z - —o&0

I'(c)l(a+b—-c)
[(a)l(b)

sub
w

el(l)Z _|_ —lwz

(z) «

(39)

with ,F(a, b, c;1 —y = 0) = 1 again since 1 —y = ¢*</
(1 + e*?) — 0 for z — —oco. Comparing (34), (37) and (39),
we are able to extract the reflection coefficient R}, and the
transmission coefficient 7', obtained as

. Tle—a)l(c—b){atb-0)
R = Tarore—a-s = W
T - Mrnrl—'(c—a)r(c—b) (1)

[(c)l(c—a-b)"
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Consequently they are

9(

T;-IZ \/Mrnr F( an ) O)—C()r), (42)
F( "”)F( 1+M,11, (z))r( 1+M,r/, a))
, 0>, (43a)
(,w ( i(1- M,i], rz))r( i(1- M,r/, a))
=1, o < w,, (43Db)
which satisfy the unitarity relation
Ry [” + T3> = 1. (44)

In (42), 8(w — w,) is the Heaviside step function. Afterward, the mode function with the amplitude R}, that propagates
from the subsonic region to the supersonic region transmits (reflects) to the future null infinity in the supersonic region as in
terms of the » () mode with the following asymptotic behaviors:

R}y /4”0} exp (iwz),
inr

§0m H —

For the supersonic region, the solution has the general
solution

(pzlp(z) x e—g—‘;(_exéz)%’(e:cz)%(e(x(z-s-&zsup)) + 1)—Wm+l)w
x ,Fi(a,b;c;y) (46)
with the arguments
i M — 1o
= 47
a 3 - (47a)
i(Mm -1
b=1-- 47b
5 - (47b)
c=1+2, (47¢)
1

1+ e—21<(z+§z) ’

where M n; is in (25). For z — —o0, giving y — 0, where
,Fi(a,b;c;0) = 1, the solution (46) correctly describes the
incident wave from the future horizon as

QYo' (2) x e™ @ as 7 — —oo. (48)

However, for z - oo, we use the transformation (38) to
rewrite (46) as

T, /471&)%\41171 exp (—ioM n;z) + R, /4mM’7 exp (ioMm,z), 7z — .

7= —00,

(45)

“u F((c—a=b) ., u., Ta+b-c)
RO s v ey L o 1)
X eiwl’]/M[Z as 7 — oo. (49)

Comparing (45) and (49) enables us to extract the scattering
coefficients

CO+rEe) o, (50)

F(i(M,rg+l)a))F(1+ (M,er)u)) H>
K

Tﬁi =\Mm,

P(1 -+ fo)p (et
_ "“’"”2"71‘”)1“(1 _ iw(Mzm—l)>

2k

Ry, (51)

Rﬁ-] = \/MMIF(

For the whole scattering process from the mode function

in,r

®,11(2), the above coefficients satisfy the relation
T = IR, + |y = 1. (52)

where the minus sign is due to the negative norm of the
reflected # mode in the supersonic region.

B. Incoming mode 6}"”

The second incoming propagating mode Hi;” is also
considered for @ > w, from past null infinity /” in the
subsonic region, which scatters into the reflected mode with
the reflection coefficient R} in the future null infinity, and
the transmitted mode with the transmission coefficient 77
toward the future horizon [see Figs. 2 and 4 (middle)].
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The incoming mode Giln’r(r, z) has the asymptotic forms in the subsonic region as

_ T/ exp (—iwz),

¢w,1 -
A /mexp ( iC()MrﬂrZ) + R;\ /4/r(uM 3 exXp (la)M,n,z) 7 — 0.

7 —> —00,

(53)

Then, in the supersonic region, the mode with the amplitude 7'; coming from the future horizon scatters into the transmitted
(reflected) mode to the future null infinity in the supersonic region in terms of the v (1) mode with the following asymptotic

behaviors:

‘ T}\/7=exp (—iwz),
ingr

ol —

Following the same procedure as in Sec. III A to match the
incoming mode go”” of the solutions with the mode
function @™ """ near the horizon and the asymptotic

regions, one obtains the scattering coefficients

F(i(M”;’H)“))F(l + i(M r'7r+1) )
- 0

(1)

i i(14M,n,)a i(14M,n, )
F(_lwﬂzrm)l’*(( +2K'7)’)F<1+ ( +2K'7) )
R;= 0

i r <iw/v1,;7,> r (_ i(M,.n,—l)m) r (1 _ i(M,n,—l)m)
K 2K 2K

T; = (@-,). (5)

(a)_wr)y

(56)

o)

)
()

r(1+ "ﬂ)r(—"“’”’lm)

‘ - i, (58)
M+ 1)w iMmy+Dw\ !

JENEE

Rf = \/Mz'lzr(

T} =/Mp

These coefficients obey the relations

. \/ 7 exp (—iwz),

wH —

T, /mexp (—iwMm;z) + R, /4mMr’ exp (ioMmy;z), 7 — oo.

g —> —00,
(54)
IR7]? + T} = 1. (59)
ITiP = [Ri]> + |R}]* = 1. (60)

Notice that this scattering process can only happen as
® > ,. Again, the negative norm of the reflected # mode
in the supersonic region gives the minus sign in the
equation.

C. Incoming mode 67"

The third incoming mode under consideration is o ,
which is incident from the past horizon in the supersonic
region. As seen in Figs. 2 and 4 (right), we have one partial
reflected mode, in particular of the negative norm state
accompanying with reflection coefficient R}, and one
partial transmitted mode with the transmission coefficient
T",. Note that this scattering process has nothing to do with
the subsonic region due to the formation of the analog
horizon where the modes are forced to travel toward
X — —oo away from the horizon and will not escape into
the subsonic region.

The asymptotic behaviors of the incoming mode (p:;l L in
the supersonic region are

= —00,

(61)

T\ amaii; P (—i@M1,2) + Ry [ exp (ioMmz),  z — oo.

It is straightforward to obtain the scattering coefficients by letting 77 = 1 in (57) and (58) as

I(1 + io)r (- i)

(62)

Rf‘{: VM[an(

io(My—1)
=

2K

iw(M/'Il—l)) ’
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1 iwM,
F(l +%)r —’wa'71>

Ty =\/Mn— , . (63)
F(z(M,;;,I:rl)a;>F<1 +I(Mﬂ;[:1)(u)
which satisfy the relation
Thl? = IRy> = 1. (64)

In Ref. [12] where the gapless cases are under consider-
ation, the scattering coefficients are shown only in the
subsonic region where our results are consistent with them
in the limit of 5, — 1(Q — 0).

IV. CONSTRUCTION OF S-MATRIX AND
BOGOLIUBOV TRANSFORMATION

Having all the scattering coefficients from all incoming
modes, we are able to construct the mode expansion of the
field operator in terms of incoming modes

50(z. ) = / da){ ior {(pw g anrgin

+(@y) (p;‘},’;} + H.c.} (65)
or in terms of outgoing modes
o0(r.2) = [ dw{eor{armss + aislon
(@) el | +He. . (66)

according to the asymptotic states defined on the bounda-
ries of the Penrose diagram in Fig. 2. The relation between
incoming and outgoing modes given by (28)—(33) can be
summarized into the § matrix to be

in,r

out,r

PoH Paou,
in, /[ _ out,/x
0. H =S- w,u; B (67)
in,r out,/
(p(u b ®,7;
where
Sur.Hr Sul.Hr Si}l,HV
S = Sur,Hl Sul,Hl Svl,Hl (68)
Sur,[r Sul,[r Sﬂl,]r

The subscript of the element S, ;

indicates the relation

between the i outgoing mode and the j incoming mode.
Substituting (68) into (65) and comparing with (66), the
Bogoliubov transformation can be read off as

AZ)UL: Sur,Hr Sur.Hl Sur,lr &:"ly;]
(&Z)l,lgt,ly = Sul,Hr Sul.Hl Sul,lr (Am oL )T )

ags! Sortr Somr Suvir oy
(69)

where the S-matrix elements are related to all above
transmission and reflection coefficients below:

Sur,Hr = T;l’ Sur,Hl =0, Sur‘Ir = R;’ (703)
SuLHr = R;[’ SuLHZ = T?;v Sul,lr = R;, (7Ob)
Svl,Hr = Tﬁ‘-lv vl HI — RHv Si}l,lr = T; <70C)

When studying a physical effect of some quantum field
in a curved spacetime, an important step is the identifica-
tion of a quantum state or a class of quantum states which
adequately describes the given physical situation. Based
upon the mode expansion in (66) the natural vacuum state
can be defined as the Boulware state, which is anmhllated
by the annihilation operators &™7, 4™, and & ay; !, namely

a)l’

All’l r|B>

a)I A:II)IIr{|B> ’ and &LI;L}{|B> = (71)
Here we consider the Unruh state, a stationary state that can
be thought of as describing a hot body, namely the black
hole, immersed in vacuum. In particular, it contains no
particles coming from the past null infinity, while at the
future null infinity, the particles can be produced. This is
consistent with blackbody radiation at the Hawking temper-
ature. Thus the Unruh state is generally considered to be the
appropriate state for the description of gravitational col-
lapse of the black hole [2]. The positive and negative
frequency modes of the Unruh state are defined with
respect to the Kruskal time U = 4¢ (%) /k where +
(—) corresponds to the supersonic (subsonic) region of the

horizon with the mode function

1 e—ia)K U.
\/ drwg

Thus, the field operator can also be expanded in terms of

in,r,

the mode functions ¢X and ¢

vy = (72)

5@:/da),(( wK(PH+awK(PH)
+ [ dw(aion + @2pyoly).

where the Unruh state is annihilated by the annihilation
operators a,,

(73)

AL
o and dg,:

Gy Uy =0 and a™|U) = 0. (74)
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The Bogoliubov transformations between two sets of the
creation and annihilation operators are expressed as

anr — / dorglaly ol + B ol
al[-r;l / dwK[ mK ® mK + ﬁmk 0] (UK] (75)

with the coefficients [36]

1 w iw
r — = (_ lw/Kl" 76
amk.a) 2Kk a)K( iw ) ( K > s ( a)
1 ® ) iw
roo— (=i )T — 76b
oo =g fatmion o (%2, (60
d, o= 2wy (1 (76¢)
ok " ac N wg X k)’
1 w iw
[ — l{l)/KI“ 76d
ﬂa),( @ 2k wg ( ) < K > ( )

After introducing the appropriate quantum state, we are
ready to compute the particle densities of each mode
produced from the Unruh state as well as the mode mixing
due to the existence of the negative norm state and their
mode correlators.

V. PARTICLE DENSITIES AND MODE
CORRELATORS

Out r

We first calculate the particle density of the ¢g.;, mode
in the subsonic region, an analog of the Hawkmg mode
using the Bogoliubov transformations (69) and (75), which
can be expressed as the thermal spectrum

1 I,
eT:n‘w -1

(77)

= (Ul(au)) asli|U) = [T}]? —

e — 1

with the Hawking temperature T}, = /27 even for the
gapped excitations shown in Fig. 5. The accompanying
graybody factor is obtained as

sinh (%) sinh (—”M ;’7 ’“’)
I . (78)

@ Sinh2 (”w<1+Mr’7r))

2K

The produced particles are mainly due to the introducing
Unruh state in the past horizon in the r region where the
modes can partially transmit to the future null infinity,
giving the analog Hawking radiation. The obtained gray-
body factor above returns to the expression of the gapless
case in Ref. [12] in the limits of #, = 1 (2 = 0). For small

1.5 T

nur

0.5

100
80+
60 -

nul

40t
20

100
80
60

nvl

401
207r

0.001 0.01 0.1

FIG. 5. Plot of the spectrum n*", n*/, and n"" in (77), (79) and
(80) as the function of w/x with various values of the Rabi
frequency Q/x = 0 (dashed line), 0.001 (green line), 0.002 (red
line), and 0.003 (blue line). Notice that the comparison is made
between the gapped cases (€2 # 0) and the gapless cases (Q = 0).
The inset in n"" shows the graybody factor ', in (78). The
parameters are the same as those in Fig. 1.

frequency o < k, the graybody factor can be approximated
as 4M,n,/(1 + M,n,)* which is the same as the graybody
factor in the case of the steplike change of the sound speed
in Ref. [10] with the constant velocity set to be v = v,
where the dispersive effects can be ignored in such small
frequencies. The main influences of the gap energy m.g in
(9) to the graybody factor (78) can be seen from the
existence of a threshold @, where n"" = 0 if ® < @, shown
in the inset of Fig. 5. This is just the critical value of
frequency, below which in the subsonic region the modes

084049-10
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from the past horizon in the r region will be totally reflected
toward the future horizon, giving no Hawking radiation in
the future null infinity shown in Fig. 4. This can be realized
to rewrite (20) as the time-independent Schrodinger-like
equation where w? plays a role as the effective potential
term. The relative large value of mg in the subsonic region
driven by the large Rabi coupling constant Q gives the
relatively large value of @2, (22) that leads to the large
scattering effects, giving smaller transmission coefficient
T, and thus resulting in the smaller graybody factor. When
w — o0, I, — 1 as expected.

Next, we consider particle spectrum of the modes inside

the analog horizon, namely 3" and 3", Let us first

study the behavior of the " mode of the negative norm

state, which is also called the partner of the Hawking mode.
The particle spectrum is obtained as
1

eThw _—

= (U|(aghTags!|\U) = 1|eﬁRé,+Tﬁ|2+|R5|2,

(79)

where the coefficients can be substituted from (51), (57) and
(63). Although there is no particle coming from the past null

infinity, the nature of the negative norm state of g%’ in the

supersonic region gives rise to vacuum instabilities due to
the mode mixing, triggering particle production due to the
contribution of Rﬁ. In addition, the scattering of the modes
from the Unruh state in the past horizon (in the [ and r
regions) contributes the particle production due to the
coefficients of R!, and 7%,. The net result of the particle
spectrum exhibits nonthermal. Figure 5 shows the particle
density n*! does not change smoothly across ,. The main
reason is due to the fact that the modes coming from the past
horizon in the r region will totally be reflected to the future
horizon whenw < w,, giving the enhancement of the particle
production of n*/ as compared with the modes with frequen-
cies w > w,. Also, below threshold frequency w,, there does
not exist the propagating incoming mode originally from the
past null infinity in the subsonic region shown in Fig. 4
(middle), giving the vanishing of R} when w < @,. Itis worth
mentioning that in the limit @ — 0, the particle density has a
finite saturated value rather than an infrared divergence for
the gapless case [32]. Also, for large frequency @ > «, it is
expected that the incoming mode from the past null infinity
will travel directly through the future horizon and toward the
future null infinity. Also, the modes from the Unruh states in
the past horizon with such large frequencies will travel to the
future null infinity. As such, e”mwRL — 0, R} — 0, and
T, — 1 render the expression of n*/ having a tail of the
exponential decay in frequency.

As compared with the (pﬁ,‘f,‘,‘f mode, the other particle
spectrum of emission inside the analog horizon is (pﬁ,‘f};,l of
the positive norm state where its particle density will have
no contribution from the modes in the subsonic region

because of the lack of mode mixing giving R} = 0, and it
becomes

! = (Ul(@Y | v) =

|e"h R+ T

eThw _—
(80)

with the coefficients in (50) and (62) shown in Fig. 5 given
respectively by the Unruh state in the past horizon in the [
and r regions. The particle densities satisfy n"" + n*! = n*/
for > w, and n*! = n* for w < w,, which can be verified
by using the unitary relation |RL|*> — |75 > + |R}* = —
accompanied with (52) and (64). The particle densities of
n*! and n"! share the same feature that they do not have a
smooth change across w,.

Here we come to study the mode correlator such as the

correlator of the analog Hawking mode (p"“tl in the

subsonic region and its partner (pz,ﬁ';f in the supersonic

region as well as the correlator of the goﬁ,‘f,‘,‘f mode and the

goﬁ,’,utb,l , both of which are in the supersonic regions.

The ul-ur correlator can be computed from

Curul = <U|0m&(:),u0m&({u,u|U>
i
=RiRj +———

el — 1

(T},qu + T;,Rl;;eﬁw), (81)
where the coefficients can be found in (42), (51), (56), (57),

(62), and (63). Nevertheless, the ul-vl correlator can be
obtained as

Colul = <U|OUt Ay.p out&(lu,u|U>

:RI*TI + 1
1 H eﬁ—l

x [R};Tgeﬁ + (T4 Th + RERY) e + T’HRZ} :
(82)

where the coefficients can be found in (42), (51), (56)—(58),
(62), and (63). Both correlators as a function of frequency
are shown in Fig. 6. Because there is no particle production
below the threshold frequency w, in the ¢ mode of the

analog Hawking mode, the correlator c,, ,, vanishes
out,/

although the partner mode of the ¢,,,;, mode of the negative
norm state does have particle production within this
frequency range. For w > w,, the correlator ¢, ,; shows
a peak around the threshold frequency. As for the correlator
of ¢, apart from the large correlation in small frequency,
there exists also a peak near the threshold frequency.
Interestingly, as @ > w,, the magnitude of correlator
|Cur.i| for a gapped mode will be larger than gapless cases,
especially around the threshold frequency. The behavior of
the mode correlators will contribute to the density-density
correlators to be done in our forthcoming work that can be
measured experimentally [3,4,37].

084049-11



WEI-CAN SYU and DA-SHIN LEE PHYS. REV. D 107, 084049 (2023)
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\\\ NN M =5 Q/k=0 M, =5 Q/k=0
NN 3
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FIG. 6. The magnitude of |c,,.,;|* and |c,;,;|* in (81) and (82) are shown in the left and right panels, respectively. We compare the
gapped cases (solid lines) with gapless cases (dashed lines) for various values of Mach number M; = 6.5 (green line), 5 (orange line),
and 3.5 (purple line). The other parameters are fixed as ¢; = 0.4 and ¢, = 1.34.

VI. SUMMARY AND CONCLUSION

We start from considering the condensates of cold atoms
at zero temperature in the tunable binary BEC system with
the Rabi transition between atomic hyperfine states where
the system can be represented by a coupled two-field model
of gapless excitations and gapped excitations. For the
general spatial-dependent coupling constant strengths,
the decoupling of two excitations under certain conditions
of the condensate wave functions and the coupling con-
stants is reviewed. In particular, we will solely focus on the
dynamics of gapped excitations. The dispersion relation of
the gapped modes involves the k> term in a very long
wavelength approximation that behaves relativistically. The
particular spatial-dependent sound speed and flow velocity
with the acoustic horizon in the elongated condensates are
introduced so that the equations of the mode functions can
be analytically treatable. In addition, the horizon generated
from the transonic flow is formed with experimentally
accessible parameters. As compared with the gapless exci-
tations, there exists a threshold frequency w, in the subsonic
region above which the modes can propagate. The asymp-
totic states of the incoming and outgoing modes are identified
where the scattering coefficients between them for various
scattering processes can be achieved. Accordingly, the
Bogoliubov transformations of the creation and annihilation

operators associated with the incoming and outgoing modes
are derived. Also, the Unruh state is introduced to be the
appropriate state for the description of gravitational collapse
of the black hole. The particle spectrum of the analogous
Hawking modes in the exterior of the horizon of the subsonic
region is computed and is shown as a thermal one with
temperature given by the analogous surface gravity x, mainly
due to the introduction of the Unruh state in the past horizon.
The associated graybody factor significantly deviates from
that of the gapless cases near the threshold frequency, which
vanishes as the mode frequency is below ,. In the interior
region of the horizon of the supersonic region, the spectrum
of the particle production of the Hawking partner has
the nonthermal feature. The correlators between the
Hawking mode and its partner of relevance to the exper-
imental observations show some peaks near the threshold
frequency w, resulting from the gap energy term. The
behavior of the mode correlators will contribute to the
density-density correlators that can be measured experimen-
tally to be carried out in our forthcoming work.
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