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In plane wave spacetimes, we find that there will be a precession angle deviation between two free-
falling gyroscopes when gravitational waves passed through. This kind of angle deviation is closely related
to the well-known standard velocity memory effect. Initial conditions such as the separation velocity or
displacement between the two gyroscopes will affect this angle deviation. This result might be understood
as a special relativistic consequence of the velocity memory. The evolutions of the angle deviation are
calculated for different cases. We find that in some extreme circumstances, the angle deviation’s order of
magnitude produced by a rotating compact binary source could be 10−14 rads. Therefore, this memory
effect caused by the gravitational wave is likely to be detected in the future.
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I. INTRODUCTION

After decades of exploration, the gravitational waves
(GWs) from a binary black hole merger were successfully
detected in 2016 [1,2], which marked the arrival of the era
of multimessenger astronomy.
Gravitational wave memory arises from the nonoscillat-

ing components of gravitational waves. The research on
memory effects can be traced back to 1974 [3]. Zel’dovich
and Polnarev claimed that the distance between a pair of
test masses should be changed by gravitational waves.
Further studies have shown that gravitational waves can
also cause the relative velocity change between the two test
masses [4]. These early discovered memory effects are now
commonly considered as ordinary memory since they are
all produced by the final state of the gravitational wave
source. In 1991, Christodoulou et al. found that the
effective energy radiated in gravitational waves would also
produce memory effects, which are generally referred to as
nonlinear memory or null memory of gravitational waves
[5,6]. Later calculations in the post-Newtonian (PN)
approximation [7–9] and numerical relativity [10,11] also
support the existence of null memory effect.
The essence of null memory is that the passage of

gravitational waves (or “soft gravitons”) causes permanent
changes in spacetime, resulting in various observable
phenomena. Up to now, a lot of distinct manifestations
of gravitational memory have been predicted by theoretical
calculation, among which the most classic and most studied
is known as displacement memory [11,12], which is

described as the permanent change of distance between
a pair of free-falling test particles after the gravitational
wave passes through. Other known memory effects include
velocity memory [4,13], spin memory [14,15], center-of-
mass memory [16], and recently gyroscopic memory [17].
The aim of this paper is to reveal a new manifestation of
gravitational memory, which is closely related to the
velocity memory effect.
A more profound perspective on these memory effects is

the correlation with the symmetry group of asymptotically
flat spacetime, the Bondi-Metzner-Sachs (BMS) group
[18,19]. Strominger et al. used an infrared triangle to
depict the corresponding relationship between memory
effects and the soft theorem and the symmetries of null
infinity [20,21]. In recent years, numerous studies on BMS
group and its extensions have linked various memory effects
to various asymptotic conserved charges [15,21–23]. These
insights into gravity symmetry may open the way to the
quantization of gravity.
We shall work in nonlinear plane gravitational wave

spacetimes, although memory effects have been studied
frequently in asymptotically flat spacetimes. As a distant
local approximation to general gravitational waves, plane
waves retain most of the local properties of gravitational
waves and are formally easier to calculate. The main
research objects in this paper are a pair of separated test
gyroscopes placed far away from the source, whose back-
reaction to gravitational waves is negligible. By a natural
way of comparing two separated gyroscopes, we express
the deviation of the two gyroscopes as a relative angle,
which is motion independent and invariant in flat space-
times. Through direct calculation, we show that gravita-
tional waves will permanently change the angle deviation

*Corresponding author.
fengcj@shnu.edu.cn

PHYSICAL REVIEW D 107, 084044 (2023)

2470-0010=2023=107(8)=084044(11) 084044-1 © 2023 American Physical Society

https://orcid.org/0000-0001-5500-4699
https://orcid.org/0000-0001-5286-5223
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.084044&domain=pdf&date_stamp=2023-04-26
https://doi.org/10.1103/PhysRevD.107.084044
https://doi.org/10.1103/PhysRevD.107.084044
https://doi.org/10.1103/PhysRevD.107.084044
https://doi.org/10.1103/PhysRevD.107.084044


between the two gyroscopes, that is, the gravitational
memory effect. Remarkably, the angular deviation between
the gyroscopes naturally corresponds to the velocity
memory effect in plane gravitational wave spacetimes.
This peculiarity may motivate some novel proposals for
detecting gravitational memory. Moreover, as a corollary to
our calculation, we will discuss the dynamics of a single
gyroscope in nonlinear plane wave spacetimes and compare
it to the known gyroscopic memory in asymptotic flat
spacetimes [22], which might be helpful to delimit the
applicable scope of plane gravitational waves.
The paper is organized as follows: Sec. II reviews the

general formalism for exact plane gravitational wave
spacetimes and the geodesic motion and memory effect
in it. In Sec. III, we first describe the kinematics of
gyroscopes in plane wave spacetimes, after which we give
the precession equations of the free-falling gyroscope with
respect to a local tetrad and discuss the differences from the
results in asymptotically flat spacetimes. Next, we focus on
the two separated gyroscopes. After illustrating how two
observers at different locations with different speeds can
compare the gyroscopes they carry, we display the perma-
nent angle deviation between the two gyroscopes generated
by gravitational waves. At the end of Sec. III, we discuss
the effects of separation distance and separation velocity on
the deviation angle under a toy model, respectively.
Finally, in Sec. IV, we estimate the amplitude of angle
deviation generated by compact binary gravitational wave
sources.
Notation.—Throughout this paper, we use geometric

units in which c ¼ G ¼ 1. Greek letters ðμ; ν;…Þ denote
the spacetime indices and the range of available values is (0,
1, 2, 3), Latin indices ða; b;…Þ denote the coordinates
indices of the plane of vibration, and the available values is
(2, 3). Hatted letters ðμ̂; ν̂;…Þ are internal Lorentz indices
associated with a local frame established in Sec. III A.
Capital bold letters represent vectors or matrices and will be
explained again after it appears. All the dots above the
letters in this paper represent the derivative with respect to
U unless otherwise stated.

II. EXACT PLANE GRAVITATIONAL WAVE
SPACETIMES

This section briefly reviews the metric of general plane
wave spacetimes and the geodesic motion and memory
effects in it.

A. Metric

Plane gravitational wave spacetime is commonly
described in Baldwin-Jeffery-Rosen (BJR) coordinates
ðu; v; x1; x2Þ or Brinkmann coordinates ðU;V; X1; X2Þ
[12,24]. The general form of metric in BJR coordinates is

g ¼ aijdxidxj þ 2dudv; ð1Þ

where the xi (i ¼ 1, 2) are coordinates on the plane of
vibration, the matrix a with component aijðuÞ are sym-
metric and positive. In this form, the familiar linearized
transverse traceless (TT) gauge can be expressed as
aij ¼ δij þ hTTij , [12] shows that the BJR coordinates have
coordinate singularities, which are typically not global,
while the Brinkmann coordinates are the global coordinates
of plane wave spacetime, and the metric is written as

g ¼ 2dUdV þ δijdXidXj þDdU2; ð2Þ

where D is a scalar function of coordinates ðU;X1; X2Þ
with the form of

D ¼ KijðUÞXiXj

¼ 1

2
AþðUÞððX1Þ2 − ðX2Þ2Þ þ A×ðUÞX1X2; ð3Þ

where AþðUÞ and A×ðUÞ are the amplitude of the
þ and × polarization state. The nonzero components of the
Riemann curvature tensor are RiUjU ¼ −KijðUÞ, and
the only nonvanishing component of Ricci tensor is
Ruu ¼ −K22 − K11 ¼ −TrðKÞ. Therefore, when K is trace-
less, the metric in Brinkmann coordinates strictly satisfies
the vacuum Einstein field equation, that is, the spacetime is
Ricci flat.
There is a transformation relationship between

BJR (1) and Brinkmann (2) coordinates, which can be
expressed as

8>><
>>:

U ¼ u

X ¼ PðuÞx
V ¼ v − 1

4
x · _aðuÞ · x

with

8>><
>>:

a ¼ PTP

P̈ ¼ KP

PT _P ¼ _PTP

; ð4Þ

where bold letters X and x represent column vectors
composed of two coordinates of the plane of vibration,
and all the other bold types represent the 2 × 2 matrix.
Note that to get an explicit coordinate transformation one
still has to solve a second-order ordinary differential
eqution (ODE) of P, which is P̈ ¼ KP. However, many
interesting properties can still be analyzed using the above
form [12]. Since P has one extra degree of freedom, the
coordinate transformation is not a one-to-one mapping if
the initial value of P is not chosen [24].
In fact, the Brinkmann coordinates (2) can be viewed

as the local Lorentz coordinates of plane wave space-
times [13], which makes the geodesic equation to some
extent equivalent to the observed effect of the origin
observer. In contrast to BJR coordinates, the geodesic
motion in Brinkmann coordinates show rich observational
effects of gravitational waves. Moreover, the Brinkmann
coordinates also have computational advantages over BJR
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coordinates. Therefore, the following calculations in this
paper will mainly use Brinkmann coordinates.

B. General geodesic motion

In this part, we rewrite the general solution of geodesic
equations given by [25], but in a more concise form. First,
we consider an arbitrary geodesic ΠðτÞ with tangent vector
u, the geodesic equation for coordinate U is

d2U
dτ2

¼ 0; ð5Þ

with initial value Uðτ0Þ ¼ U0, and the general solution to
Eq. (5) is

U ¼ γðτ − τ0Þ þ U0; ð6Þ

where the parameter γ is a conserved constant along the
geodesic ΠðτÞ. If we use l ¼ ∂V to represent the normal
vector of the null hypersurface parametrized by U, then
γ ¼ u · l. Since there is a linear relationship between U and
τ, we will use the coordinate U instead of the geodesic
affine parameter τ in the rest of the paper. Then, the
geodesic equation of the other three coordinates is as
follows:

Ẍ ¼ KðUÞX; ð7Þ

V̈ ¼ −
1

2
_D − 2 _XTKX: ð8Þ

Hereafter the dot denotes the derivative with respect to U.
After setting the initial coordinates as xμðU0Þ ¼
ðU0; V0;X0Þ, and the initial four velocity as uμðU0Þ ¼
γð1; _V0; _X0Þ, the general solutions to Eqs. (7) and (8) are
then obtained as1

X ¼ PðUÞX0 þ ðU − U0ÞHðUÞ _X0; ð9Þ

V ¼ V0 −
1

2

�
XT _X − XT

0
_X0 þ

1

γ2
ðU − U0Þ

�
; ð10Þ

where P and H are both 2 × 2 matrices and they satisfy the
following equations, respectively,

P̈ ¼ KP; ðU −U0ÞḦ þ 2 _H ¼ ðU −U0ÞKH; ð11Þ

with the boundary conditions PðU0Þ ¼ HðU0Þ ¼ I,
_PðU0Þ ¼ _HðU0Þ ¼ 0. Note that _V0 exists only in the
constant γ, so the velocity in the direction of gravitational

wave propagation has no effect on the motion of the
vibration plane. Without losing generality, the following
discussions will not consider the velocity of propagation
direction but only the two-dimensional motion of the
vibration plane.
Using the solutions (5), (9), and (10) we can easily write

the proper velocity of general geodesic motion as

u ¼ γ

�
∂U −

1

2

�
1

γ2
þ _XT _XþXTKX

�
∂V þ ð _XÞi∂Xi

�
; ð12Þ

where

_X ¼ _PX0 þ ððU −U0Þ _H þHÞ _X0: ð13Þ

Thanks to the properties of the local Lorentz gauge, the
geodesic equations (5), (7), and (8) in Brinkmann coor-
dinates have the same form as the geodesic deviation
equations of the geodesic that maintain X ¼ 0, so the
solutions (6), (9), and (10) are also the solutions to the
geodesic deviation equations, which makes it convenient
for us to give the expressions of displacement memory and
velocity memory. Before that, let us briefly review the
memory effect in plane wave spacetimes.

C. Memory effect

We follow the common analytical methods, consider
sandwich waves, that is, gravitational waves exist only for a
zone like U ∈ ½Ui; Uf�, while the spacetime of U < Ui and
U > Uf are flat but not equivalent. The theoretical foun-
dation of nonequivalence lies in the fact that the flat
condition Rμναβ ¼ 0 does not constrain the linear evolu-
tionary process of spacetime, or Kij ¼ 0 only implies
PðUÞ ¼ P0 þ UP1. In linear theory, it can be expressed as

Rμναβ ¼ 0 ⇒ hijðUÞ ¼ h0ij þUh1ij; ð14Þ

where h0ij and h1ij are both constants. In fact, Eq. (14) only
shows that the spacetime before and after the gravitational
wave zone can be theoretically unequal. Using the
Hamilton-Jacobi method in BJR coordinates, [12] shows
that the spacetime before and after the gravitational wave
zone are indeed not equivalent. In short, if we set
aijðU < UiÞ ¼ δij, we can get

aijðU > UfÞ ≈ δij þ 2

Z
Uf

Ui

du0
Z

u0

Ui

Ri0j0ðu00Þdu0 ð15Þ

at the linear level. This is the physical essence of the
gravitational wave memory effect, the spacetime changes
permanently after the passage of the pulse. This inequiva-
lence of spacetime before and after zone will be discussed
again in Sec. III.

1Note that the solutions (9) and (10) are only formal solutions,
because Eq. (11) is still an unavoidable Sturm-Liouville problem
about second-order ODE [26].
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Consider a static test particle with initial coordinates X0

and using the solutions (9) of the geodesic equations, the
change in position after the passage of a gravitational wave
can be written as

ΔX ¼ ðPðUfÞ − IÞX0; ð16Þ

which is a general form of displacement memory in our
notation. There is more consideration about velocity
memory since the initial position X0 and the initial velocity
_X0 can be taken into account simultaneously. Using
Eq. (13), the change in velocity can be written as

ΔV ¼ _PX0 þ ððUf −U0Þ _H þH − IÞ _X0; ð17Þ

which is a general form of velocity memory in our notation.
See Eq. (11) in the previous section for the definitions of
matrices P and H.
At present, the known manifestations of memory

effect are far more than the above two. Looking for more
manifestations of memory effect will provide additional
possible methods for detecting gravitational memory
effects. In Sec. III, we will show a new manifestation of
memory effect by studying the two separated spin vectors.

III. PRECESSION DEVIATION OF SPIN VECTORS

In this section, we study the evolution of the spin vectors
in general plane wave spacetimes. The first step is to
construct a local tetrad so that we can study the evolution in
a three-dimensional framework. With this framework, we
first discuss the precession of a free-falling gyroscope with
respect to its own internal tetrad. After that, we describe a
method of comparing two separated gyroscopes, which is
then used to study the precession difference between the
two separated gyroscopes due to gravitational waves. And
finally, our results are discussed under a simple gravita-
tional wave model.

A. Spin vector evolution of gyroscopes

Consider a free-falling observer with four velocity
u ¼ uν∂ν while carrying a gyroscope, the gyroscopic spin
vector S obeys Fermi-Walker transport ðu ·∇SÞμ ¼
ðuμaν − uνaμÞSν, and always satisfy S · u ¼ 0. If we con-
struct a local tetrad feμ̂g of the observer by making e0̂ ¼ u,
and eμ̂ · eν̂ ¼ ημ̂ ν̂, then the spin vector is purely spatial in
the tetrad, and the precession equation of the three spatial
components Sî ¼ S · eî (hereafter i ¼ 1, 2, 3) can be
deduced as [17]

dSî

dτ
¼ −uaωî ĵ

a Sĵ ¼ Ωî
ĵ
Sĵ with ωî ĵ

a ¼ eîμ∇aeĵμ; ð18Þ

where ωî ĵ is the spin connection one-form associated with
the tetrad feμ̂g, and Ω can be considered as a 2-form of

angular velocity.2 To calculate Ω, we need to build a local
tetrad for any timelike observer in a plane wave spacetime.
The four velocity in Brinkmann coordinates (2) can be
generally written as3

u ¼ γð1; v1; vaÞ with

u · u ¼ −1 and γ ¼ ð−D − 2v1 − vavaÞ−1=2: ð19Þ

First, we set e0̂ ¼ u, then subtract the part parallel to e0̂
from l ¼ ∂V to get e1̂. Since the vector l ¼ ∂V is tangent to
outgoing null rays, e1̂ is related to the propagation direction
of gravitational waves. And finally, we use the Gram-
Schmidt orthogonalization procedure to get eâ. The whole
tetrad is

e0̂ ¼ u;

e1̂ ¼
1

γ
l þ u;

eâ ¼ ∂a − val: ð20Þ

Then, for the general timelike motion in Brinkmann
coordinates, the spin connection can be calculated by using
Eqs. (18) and (20) as follows:

ωâ b̂
ν ¼ 0;

ω1̂ â
ν ¼ −γ∂νva þ γΓ1

νbδ
ab: ð21Þ

By contracting the spin connection with four-velocity u, we
find two nonvanishing components of angular velocity Ωî ĵ,
they are

Ω1̂ â ¼ γðuν∂νva − uνΓ1
νbδ

abÞ: ð22Þ

B. Free-falling observer

We now discuss the gyroscopic precession that a free-
falling observer carrying a gyroscope might observe. First,
we compute the angular velocity of the free-falling gyro-
scope with respect to the local tetrad (20), the four velocity
of general geodesic motion is given in Eq. (12), then using

2The antisymmetric tensor Ωî
ĵ
can be dualized into a vector

Ωî ¼ − 1
2
ϵî ĵ k̂Ωĵ k̂, then the precession equation (18) can be

simplified to _S ¼ Ω × S.
3Because we are working in U V coordinates, ðv1; vaÞ here

does not represent the three-dimensional velocity. The four
velocity that includes three-dimensional velocity should be set
as u ¼ βð1 − vr;−1þ vr; vaÞ, which is more reasonable, but the
calculation will be more complicated. According to our analysis
in Sec. II B, the velocity in the propagation direction of the wave
does not affect the motion of the plane of vibration, so we do not
consider the velocity in the propagation direction of the wave,
that is, v1 ¼ −1, then va can be regarded as the two-dimensional
velocity. Still writing v1 instead of -1 here just to keep generality.
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the precession angular velocity (22), we find that Ωî
ĵ
¼ 0

(see Appendix A for a detailed calculation). It then follows
from Eq. (18) that

dSî

dτ
¼ 0: ð23Þ

Accordingly, the spin vector component associated with
the local tetrad (20) remains unchanged, which means that a
free-falling observer carrying a gyroscope cannot detect the
plane gravitational waves by observing the precession of
the gyroscope.
In asymptotically flat spacetimes, both the displacement

memory and velocity memory effects appear at order
Oð1=rÞ [27], where r denotes the distance to the source.
The gyroscopic memory associated with spin memory
appears at order Oð1=r2Þ [15,17], and the radial kick
memory arises at Oð1=r3Þ [28]. These gravitational
memory effects all correspond to asymptotic charges
generated by particular asymptotic symmetries [28].
In nonlinear plane wave spacetimes, both the displace-

ment memory and velocity memory effects appear at order
OðhÞ [12,13], where h denotes the magnitude of wave
tensors in standard TT gauge. Equation (23) shows that
there is no gyroscopic memory in plane wave spacetimes.
Moreover, the analysis of the geodesic equation (see Sec. II
B) implies that there is no radial kick memory in plane
wave spacetimes either. These “missing memories” reflect
the fact that the information carried by plane waves is
inherently incomplete. In the PN approximation, the lead-
ing order of the plane gravitational waveform hTTij is
Oð1=rÞ [15]. Thus, at least on the scale of Oð1=rÞ, the
prediction of memory effects in plane wave spacetimes is
coincide with that in asymptotically flat spacetimes (the
calculations for static observers in Appendix B also support
this assertion). So we will keep the order of OðhÞ in the
following calculations.
We now turn our focus on a pair of separated gyroscopes

and it will show that gravitational waves create a permanent
deviation among them. In the beginning, it is necessary to
specify how two observers at different locations with
different speeds can compare the gyroscopes that they
carry. Since gyroscopic spin vectors are spatial for self-
observer, given that parallel transport or Poincare trans-
formation will alter the spatiality, we want a comparison
between spatial vector and spatial vector so that the three-
dimensional relative angle can be directly calculated. A
natural idea is to move them together and have the same
velocity, or to make their geodesics overlap, then the spin
vectors can be compared in the same local tetrad. But for
curved spacetimes, choosing different coincidence routes
will give different results [29]. Fortunately, in flat space-
times, the route can be arbitrary. We will show by a very
brief calculation that the precession generated by an
acceleration in a flat spacetime is path independent.

C. Path-independent precession angle

Consider a worldline ℵðτÞ in a Minkowski spacetime
(see Fig. 1), make the acceleration section in τ ∈ ½τ0; τ1�,
and we do not specify the acceleration, simply write the
boundary conditions as

dℵ
dτ

����
τ¼τ0

¼ u0;
dℵ
dτ

����
τ¼τ1

¼ u: ð24Þ

In the Minkowski spacetime, the tetrad and the angular
velocity are simply a special case of Eqs. (20) and (22). By
taking K ¼ 0, the nonzero angular velocity reads

Ω1̂ â ¼ −uνγ∂νva ¼ −γ
dva

dτ
: ð25Þ

Each component of the angular velocity (25) has a
corresponding plane of rotation. For simplicity, we assume
the acceleration is in the X2 direction (while in general
cases, one can always make the acceleration in the X2
direction by a rotational transformation), then the rotation
angle in the e1̂ ∧ e2̂ plane is obtained by integrating the
angular velocity Ω1̂ 2̂ over the interval:

θ ¼ −
Z

τ1

τ0
γ
dv2

dτ
dτ ¼ −

Z
v2

v2
0

γdv2: ð26Þ

It shows that the precession angle is path independent,
depending only on the starting and ending velocity. Given
this property, it is clear how two observers with different
speeds on different positions can compare the gyroscopes
they carry. All it takes is for them to come together, or, to

FIG. 1. A gyroscope moves along the worldline parametrized
by τ. Outside the interval ½τ0; τ1� is geodesic motion. In Sec. III C,
we show that no matter what acceleration process the gyroscope
undergoes, as long as the starting and ending speeds are the same,
the precession of the gyroscope associated with a local tetrad (20)
will remain unchanged.
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put it more precisely, make their worldlines overlap,
and then we can compare them in the same tetrad.
Obviously, this method is reasonable to apply in realistic
scenarios. More generally, without deflection caused by
force, the angle deviation of two gyroscopes is invariant as
long as the spacetime remains flat no matter how
they move. While the situation in curved spacetimes is
much more complicated. For the method of how to
compare the spin vectors in different positions in curved
spacetimes, one can refer to the affine transport method
given by [29].

D. Permanent angle deviation by separation

In Fig. 2, there are two gyroscopes G0 and G1 separated
by a distance, where G0 is placed at the origin and G1 is
placed at X0 ¼ ðX2

0; X
3
0Þ. Their rotation direction is aligned

at the beginning, and then they move along their geodesics
respectively until the gravitational wave passes through. As
shown in Sec. III B, each gyroscopic spin vector maintains
its orientation within its local tetrad during geodesic
movement. However, the local tetrad of G1 is no longer
aligned with G0 because of the velocity memory effect. To
compare the spin vectors of the two gyroscopes in our
method of comparison, their worldlines should overlap. A
simple choice is to accelerate G0 to the same velocity as

G1. First, accelerate G0 to v2mem in the X2 direction and then
to v3mem in the X3 direction, where vamem denotes the velocity
memory of G1 relative to G0 in the Xa direction. According
to Eq. (26), the precession angle of G0 in the e1̂ ∧ eâ plane
is calculated as

θa ¼ −
Z

vamem

0

ð2 − ðvÞ2Þ−1=2dv ¼ − arcsin

�
vamemffiffiffi

2
p

�
: ð27Þ

In fact, Eq. (27) is the relative precession angle between
two separated gyroscopes. As mentioned in Sec. III C, the
precession angle is path independent, so without deflection
caused by other forces, the angle deviation of the two
gyroscopes will always exist after the wave passes through.
This angle deviation reflects the in equivalence between the
spacetime before and after the wave zone, which is exactly
the memory effect between the two spin vectors.
Since the deviation angle (27) contains only the velocity

memory vamem, it contains the same information as that of
the standard velocity memory. Thus, the precession
deviation between the two separate spin vectors is just a
pattern of manifestation of the velocity memory. Note that
this is only true for plane wave spacetimes, the deviation of
two separated spin vectors in general gravitational wave
spacetimes still needs further research.
Our results actually provide a way to observe the velocity

memory effect statically. Consider two free-falling test
masses, there will be a net change in the relative velocity
between the two test masses after the passage of GWs,
which is known as the velocity memory effect. Since the net
change is dynamic and might be covered by the accel-
eration due to various forces, detecting it is a huge
challenge. However, if we replace the two test masses
with two test gyroscopes and observe the relative preces-
sion angle instead of the relative velocity after the passage
of GWs, because the final precession angle is path
independent as shown in Sec. III C, the observed precession
angle deviation will remain the same when they are at
relative rest.

E. Only the initial separation displacement

In this part, we will discuss the precession deviation with
the only initial separation displacement, and in the next
part, the initial separation velocity will be considered.
Suppose that a detector consists of two gyroscopes and
can compare the angle deviation in real time. A reasonable
consideration is that there is only initial separation dis-
placement between the two gyroscopes. Consider the
simplest case, assuming that the initial separation is only
in the X2 direction and the separation distance is L. Since
the initial separation speed is zero, the constant γ ¼ 1=

ffiffiffi
2

p
.

Note that the gravitational wave region is ½Ui; Uf�. By
using Eq. (17), and P ¼ I þ 1

2
hþ oðh2Þ in linear theory

FIG. 2. The two nearby gyroscopes, G1 and G0, move along
their worldliness in a plane wave spacetime, respectively. The
picture is drawn in the Brinkmann coordinate system (2), while
the coordinate V, which denotes the propagation direction of
waves, is not shown in the picture. The region ½Ui;Uf� represents
the spacetime location of the gravitational waves. The two
gyroscopes are placed with the same orientation at the beginning.
In the process of geodesic movement, each gyroscopic spin
vector maintains its orientation in its local frame as shown in
Sec. III B. After the burst, G1 and G0 are moved together through
an arbitrary acceleration process, and at that time, the angle
deviation between the two gyroscopes could be observed.
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with the transverse traceless gauge, we obtain the angle
deviation at time Uf from Eq. (27):

Δθ ¼ arcsin

�
1ffiffiffi
2

p _P22ðUfÞL
�

¼ 1

2
ffiffiffi
2

p _hþðUfÞLþ oðh2Þ;

ð28Þ

to avoid confusion, the matrix form of Eq. (28) is presented
below,

�
Δθ2

Δθ3

�
¼ arcsin

�
1ffiffiffi
2

p
�

_P22
_P23

_P32
_P33

��
L

0

��

¼

0
B@ arcsin

�
1ffiffi
2

p _P22ðUfÞL
	

0

1
CA: ð29Þ

In this case, Eq. (28) shows that the angle deviation is
approximately proportional to the initial separation dis-
tance L. In fact, the angle deviation at any time U in the
region of ½Ui; Uf� could be given by

ΔθðUÞ ¼ arcsin

�
1ffiffiffi
2

p _P22ðUÞL
�

¼ 1

2
ffiffiffi
2

p _hþðUÞLþ oðh2Þ;

ð30Þ

which is the evolution equation of the deviation angle in the
gravitational wave region in the simplest case.
To show the evolution of the angle deviation, we

calculate Eq. (30) in a toy model of the gravitational
collapse [12], in which

AþðUÞ ¼ 1

2

d3ðe−U2Þ
dU3

¼ ḧþ þ oðh2Þ: ð31Þ

The comparison between the linear approximation and the
numerical simulation is shown in Fig. 3. The result shows
that there is no final angle deviation in the linear approxi-
mation without any leading order velocity memory, while
the numerical simulation demonstrates that there is an angle
deviation when higher-order terms are taken into account.
The numerical simulation steps in this case are as

follows: First, matrix K is given by model (31) and
Eq. (3), then we numerically solve the differential equa-
tion (11) to produce matrix _P, and finally substitute the
matrix component _P22 into the first part of Eq. (30) yields
the numerical results.

F. Initial separation velocity

We now consider two gyroscopes with an initial sepa-
ration velocity. Suppose that a detector can compare the
precession angle between the two gyroscopes in real time

as they move along their geodesics. We assume that both
the gyroscopes G0 and G1 are at the origin at the beginning,
while G1 has the initial relative velocity v0 along
the X2 direction. The final velocity of G1 after the
gravitational wave passes through can be readily found
from Eq. (17):

v ¼ ððUf − U0Þ _H22ðUfÞ þH22ðUfÞÞv0
¼

�
1 −

1

2
hþ þ 1

2
ðUf −U0Þ _hþ þ oðh2Þ

�
v0; ð32Þ

in which we have used

ðU −U0ÞH ¼ ðU −U0ÞI þ
1

2
ðU −U0Þh

−
Z

U

U0

hdU þ oðh2Þ: ð33Þ

We also make G0 catch up with G1 to get the final angle
deviation. By performing the same calculation as that in
Eq. (28), one eventually finds that

Δθ ¼ arcsin

�
vffiffiffi
2

p
�
− arcsin

�
v0ffiffiffi
2

p
�

¼ −
1

2
ffiffiffi
2

p hþðUfÞv0 þ
T

2
ffiffiffi
2

p _hþðUfÞv0 þ oðh2Þ; ð34Þ

where T ¼ ðUf −UiÞ. Equation (34) shows that the
angle deviation is proportional to the initial separation
velocity at the leading order. We repeat the procedure
of the previous part, first replacing Uf with U to estimate
the angle deviation at any time, and then calculate the
linear approximation and numerical simulation using
the toy model (31). The evolution of Δθ is shown
in Fig. 4.

FIG. 3. Evolution of the deviation angle between two gyro-
scopes with initial separation displacement.
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Consider a general case, there are both initial separation
displacement and initial separation velocity between two
gyroscopes. Equation (13) shows that the final velocity has
a linear relationship with the initial separation displacement
and velocity. Thus, the general angle deviation at the
linear level is simply the addition of Eqs. (28) and (34),
yielding

Δθ ¼ 1

2
ffiffiffi
2

p ðT _hmem
þ − hmemþ Þv0 þ

1

2
ffiffiffi
2

p _hmem
þ Lþ oðh2Þ:

ð35Þ

IV. ANGLE DEVIATION FROM COMPACT
BINARY SOURCES

In this section, we specifically estimate the magnitude of
angle deviation memory from compact binary sources
(CBS). The leading-order memory waveform from CBS
in the PN approximation is given by [15]

hmemþ ¼ 1

48r
Mηxfsin2 θð17þ cos2 θÞ þ oðc−2Þ; ð36Þ

whereM is the total mass of the binary and η ¼ m1m2=M2,
x ¼ ðMωÞ2=3, where ω is the orbital frequency and m1 m2

are the masses of two components. The initial separation of
two separated gyroscopes is assumed in the same direction
as theþ polarization direction. Restoring our results (35) to
the standard unit yields

Δθ ¼ 1

2
ffiffiffi
2

p
c
hmemþ v0 þ oðh2Þ; ð37Þ

where c denotes the speed of light. Since the memory term
_hmem
þ of CBS disappears, the leading order term in Eq. (35)

only contains the initial separation velocity v0, while the
contribution from the initial separation displacement is
hidden in the higher order terms. Note that the plane

wave approximation has a restriction on the initial
separation velocity. If we use Lmax to represent the
maximum separation length allowed by the plane wave
approximation and td to denote the gravitational wave
duration, then the constraint of the initial separation
velocity is v ≪ Lmax=td, or else the plane wave approxi-
mation will be invalid. Following the estimation of [13],
Lmax is about 1017 meters in the case of v ≪ c. Assume
that the two gyroscopes have an initial separation velocity
close to the speed of light, then the maximum angle
deviation between the two gyroscopes is estimated at
about 10−14 rads. In such an extreme case, it requires a
very short duration of gravitational waves, for instance,
two supermassive black holes merge will emit a GW
memory burst with an amplitude of 10−15 [30].

V. DISCUSSION

In this paper, we investigated the precession angle
deviation between two separated free-falling gyroscopes
in nonlinear plane wave spacetimes. We first show that a
free-falling gyroscope maintains its orientation with
respect to a local tetrad (20) in general plane-wave
spacetimes, and it does not give the same results as that
in the asymptotically flat spacetimes [17]. We then turn to
discuss two separated gyroscopes. After illustrating how
to compare the local observations of two gyroscopes in
flat spacetimes, we find that gravitational waves will
generate a permanent angle deviation between the two
gyroscopes, and this kind of deviation is another mani-
festation of the well-known standard velocity memory
effect. For compact binary gravitational wave sources, we
expect to generate an angle deviation of about 10−14 rads
between two gyroscopes under the most demanding
conditions.
The guiding implications of our results for gravitational

wave detection warrant further discussion. What we con-
sidered is that two gyroscopes move along their geodesics
in the gravitational wave region, and then accelerate
arbitrarily after the wave passes through to become rela-
tively static. For real situations such as two separated
gyroscopes placed on the ground-based detectors. For
example, the test masses (mirrors) are replaced by the test
gyroscopes in the detectors like LIGO and Virgo [31], and
the detector’s control system will counteract the velocity
memory and then leave a permanent angle deviation
between the test gyroscopes. Another way to detect such
effects is to let the acceleration process occur in the
gravitational wave region. For example, two gyroscopes
connected by a straight rod without a complicated detector
control system must have experienced nontrivial acceler-
ation processes in the gravitational wave region to remain
relatively static after the wave passed through. We will
leave it to our next work.
It would be instructive to conceive of a large Sagnac

interferometer [32], which is comparable in size and

FIG. 4. Evolution of the deviation angle between two gyro-
scopes with initial separation velocity.
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technique to LIGO. Based on the strain distance now
accessible to LIGO, a large Sagnac interferometer might be
able to sense the radian change of 10−25 rad. However,
given the limitations of ground-based detection, it seems
more promising to resort to a space-based gravitational-
wave detector, such as the future LISA [33], which could be
configured as a Sagnac interferometer [34]. If such inter-
ferometers are placed at different locations in space and we
try to compare the strain differences accumulated during
the passage of gravitational waves, then it is possible to
observe this memory effect.
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APPENDIX A: ANGULAR VELOCITY OF A
FREE-FALLING GYROSCOPE

Given the metric (i ¼ 1, 2):

g ¼ 2dUdV þ δijdXidXj þDdU2; ðA1Þ

where

D¼KijðUÞXiXj¼1

2
AþðUÞððX1Þ2−ðX2Þ2ÞþA×ðUÞX1X2;

ðA2Þ

all nonzero components of affine connections and the
curvature tensor are

Γ1
00 ¼

1

2
∂0D; Γ2

00 ¼ −K1aXa ¼ −
1

2
∂2D; Γ3

00 ¼ K2aXa ¼ −
1

2
∂3D;

Γ1
20 ¼ Γ1

02 ¼ K1aXa ¼ 1

2
∂2D; Γ1

30 ¼ Γ1
03 ¼ K2aXa ¼ 1

2
∂3D;

R0i0j ¼ −Kij; R00 ¼ −K22 − K11: ðA3Þ

The proper velocity is given by

u ¼ γð1; v1; vaÞ with u · u ¼ −1 and

γ ¼ ð−D − 2v1 − vavaÞ−1=2: ðA4Þ

Establish a local tetrad as

e0̂ ¼ u;

e1̂ ¼
1

γ
l þ u;

eâ ¼ ∂a − val; ðA5Þ

where l ¼ ∂V and ∂a ¼ ∂Xa . Since the geodesic equation of
U is d2U

dτ2 ¼ 0, γ ¼ Constant. We first expand the spin

connection ωî ĵ
a ¼ eîμ∇aeĵμ, yielding

ωî ĵ
ν ¼ eî

0D∂νeĵ0 þ eî
0
∂νeĵ1 þ eî

1
∂νeĵ0 þ eî

2
∂νeĵ2 þ eî

3
∂νeĵ3

þ eî
0ðΓ1

ν0e
ĵ0 þ Γ1

ν2e
ĵ2 þ Γ1

ν3e
ĵ3Þ

þ eî
2Γ2

ν0e
ĵ0 þ eî

3Γ3
ν0e

ĵ0: ðA6Þ

Then, by using the tetrad (A5), we obtain

ωâ b̂
ν ¼ 0;

ω1̂ â
ν ¼ −γ∂νva þ γΓ1

νbδ
ab: ðA7Þ

Comparing the geodesic equation (7) with Eq. (A3), we
have

Ẍa ¼ Ka
bX

b ¼ −Γa
00; ðA8Þ

the only nonzero component of the spin connection is

ω1̂ â
0 ¼ −γẌa þ γΓ1

0a ¼ γðΓa
00 þ Γ1

0aÞ ¼ 0; ðA9Þ

therefore, the angular velocity Ω is equal to zero.

APPENDIX B: ANGULAR VELOCITY OF A
STATIC GYROSCOPE

In asymptotically flat spacetimes, a static observer means
he/she is static relative to the source, and he/she will
observe a precession velocity of leading order Oð1=rÞ,
which contains the same information as the standard
displacement memory (see Sec. 4.3 of [17]).
In plane wave spacetimes, we consider an observer who

is static relative to the origin of coordinates, this consid-
eration is due to the fact that the origin point of plane wave
spacetime is static relative to the source. We do the same
calculation as in Appendix A: the four velocity that is
relatively static to the origin reads u ¼ 1ffiffi

2
p ð∂U − ∂VÞ, and

the tetrad (A5) now becomes
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e0̂ ¼
1ffiffiffi
2

p ð∂U − ∂VÞ;

e1̂ ¼
1ffiffiffi
2

p ð∂U − ∂VÞ þ
ffiffiffi
2

p
∂V;

eâ ¼ ∂a; ðB1Þ

the spin connection is

ω1̂ â
ν ¼ −e1̂0∂νva þ e1̂

0Γ1
νbδ

ab

¼ 1

2
ffiffiffi
2

p ∂aDdU ¼ 1ffiffiffi
2

p KabXbdU; ðB2Þ

and the nonvanishing component of the angular
velocity is

Ω1̂ â ¼ −
1

2
KabXb: ðB3Þ

Since Kab ¼ −RaUbU, the angular velocity (B3)
contains the same information as the standard displacement
memory in plane wave spacetimes. The result is consistent
with that in asymptotically flat spacetimes at order
Oð1=rÞ [17].
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