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In this paper, we use the publicly available observational data of 17 stellar stars orbiting Sgr A* to test
the quantum extension of Schwarzschild spacetime in loop quantum gravity (LQG). For our purpose,
we transform the geodesical evolution of a massive particle in the quantum-extended Schwarzschild black
hole to the perturbed Kepler problem and calculate the effects of LQG on the pericenter advance of the
stellar stars. With these effects, one is able to compare them with the publicly available astrometric and
spectroscopic data of stellar stars in the galactic center. We perform Monte Carlo Markov Chain (MCMC)
simulations to probe the possible LQG effects on the orbit of S-stars. No significant evidence of the
quantum-extended Schwarzschild black hole from LQG is found. Among the posterior analyses of 17
S-stars, the result of S2 gives the strongest bound on the LQG parameter Aλ, which places an upper bound
at 95% confidence level on Aλ to be Aλ < 0.302.
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I. INTRODUCTION

Over the past century, general relativity (GR), as a
successful theory of gravity, has passed all the experimental
and observational tests, such as the perihelion shift of
astrophysical bodies [1,2], the deflection of light [3], the
time dilation [4], the observations of binary pulsars [5,6],
the black hole image [7,8], and the detection of gravita-
tional waves [9]. However, there are still some problems
with the observations, especially at galactic and cosmo-
logical scales. The components of dark matter and dark
energy are still not clear and waiting to be clarified.
Therefore, in some ways, one can say that GR is still an

incomplete theory. For example, GR predicts the existence
of spacetime singularities where the theory itself ceases
to be valid [10]. To solve the singularity problem, we are
now pinning our hopes on some quantum effects. A major
challenge in solving such problems is figuring out how to
formulate a consistent quantum theory of gravity. In the
past decades, several approaches toward quantum gravity
have been developed, such as loop quantum gravity (LQG),
canonical quantum gravity [11], string theory [12], and
Euclidean path integral [13–15]. Since none of these

methods are complete in themselves, from a more phe-
nomenological point of view, it is recommended to con-
sider effective quantum corrections that may help correct
GR when considering systems with large curvature scales.
This modified theory of gravity can be viewed as valid,
or as a semiclassical approximation to the unknown full
quantum theory of gravity. Among the various approaches,
in this paper, we will consider the LQG scenario and focus
on the effective black hole model in this approach.
As a candidate theory of quantum gravity, LQG is a

nonperturbative and background-independent approach to
quantizing gravity which is based on the Ashtekar-Barbero
variables, namely the SUð2Þ connection Ai

a and the
densitized triads Ea

i [16,17]. With respect to this conjugate
pair, a classically background-independent �-algebra,
known as the holonomy-flux algebra, is constructed and
the classical Hamiltonian and diffeomorphism constraints
are expressed in terms of the holonomies and the fluxes.
A quantum representation of the holonomy-flux algebra
leads to LQG. One of the key predictions of LQG concerns
the discrete spectra of the volume and area operators
which shed light on the intrinsic properties of quantum
geometry [18,19]. In particular, the lowest nonzero
eigenvalue of the area operator plays a vital role in a
self-consistent formulation of standard loop quantum
cosmology in a spatially-flat Friedmann–Lemaître–
Robertson–Walker (FLRW) universe [20]. Although the
Hamiltonian constraint operator can be written explicitly in
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terms of the holonomy and volume operators, due to its
complexity, the dynamics of full LQG is still left unraveled.
In LQG, Dirac observables are physical observables that
are invariant under the gauge transformations generated by
the Hamiltonian constraint [21]. These observables are
significant because they are the only ones that have a well-
defined evolution in time in the quantum theory. They
represent measurable quantities that are independent of the
choice of the reference frame, which is a fundamental
requirement in any theory of gravity. Examples of Dirac
observables in LQG include the area and volume operators
of spatial sections and the holonomies of connections along
curves. By constructing and studying the properties of
Dirac observables, LQG provides a framework for under-
standing the quantum nature of spacetime and its geometry.
The general idea behind building efficient models in LQG
is that one expects some nonperturbative quantum geom-
etry corrections, which will modify the Einstein equations.
One would expect to write down such semiclassical
corrections that, when considering the full quantum theory,
the expected value of the operator would appear in some
well-defined semiclassical state [22].
With the above motivations, the effective models for

describing black holes in the framework of LQG have
attracted a lot of attention recently [23–35]. In practice, for
effective versions of a black hole in LQG, one typically
uses a polymerlike quantization inspired by LQG, in which
the quantum theory of black hole is achieved by replacing
the canonical variables ðb; cÞ in the phase space of the
black hole spacetime with their regularized counterparts,
b → sinðδbbÞ

δb
and c → sinðδccÞ

δc
[36]. Here δb and δc are two

quantum polymeric parameters that control the relevant
scales of the quantum effects of LQG. However, as we do
not yet have a complete quantum gravity, a full picture for
determining δb and δc is still lacking.
There are several different choices of δb and δc, which

can be divided into three classes [37]: the μ0-scheme
[38–42], μ̄-scheme [13,23,43–47], and the generalized
μ̄-scheme [11,26]. For μ0-scheme, the two polymetric
parameters are treated as constants and the corresponding
effective LQG black hole has been explored in [39,41].
In μ̄-scheme δb and δc are treated as phase space functions
that depend on the canonical variables [13,43]. And in the
generalized μ̄-scheme, δb and δc are considered as Dirac
observables [11,26]. Very recently, a quantum extension of
the Schwarzschild black hole is constructed based on a
specific μ̄-scheme [48,49]. In such an effective quantum
spacetime, similar to the case in loop quantum cosmology,
the spacetime singularity of the classical Schwarzschild
black hole can be replaced by a quantum bounce that
connects the black hole region and the white hole region.
In this picture, the quantum effect is controlled by the
parameter Aλ which sensitively depends on δb and δc and its
exact value in LQG has not been determined yet. It is
interesting to see if the experiments or observations can

lead to any bounds on it. Based on this quantum-extended
Schwarzschild black hole, a rotating spacetime with the
LQG effects has been constructed by the Newman-Janis
algorithm [50].
Naturally, one might wonder if there is any experiment

or observations to test the LQG effects on this quantum-
extended Schwarzschild black hole. In fact, many obser-
vational/phenomenological tests have been done to
constrain the LQG effects on black holes. For example,
in [51], how quantum effects can influence primordial
black hole formation within a quantum gravity framework
has been discussed in detail. In addition, people have also
tested the LQG black holes with the Event Horizon
Telescope observations [52,53] and constrain the parameter
arises in LQG black hole with the observational data of
M87* and Sgr A* [30,54,55]. Some other phenomeno-
logical studies on testing LQG black holes can be found
in [50,56–60] and references therein.
The main purpose of this paper is to explore the LQG

effects of the quantum-extended Schwarzschild black hole
on the orbits of the stellar stars orbiting the supermassive
black hole Sgr A* in the galactic center. We calculate the
effects of LQG on the pericenter advance of the stellar stars
and compare the orbits with the publicly available astro-
metric and spectroscopic data of stellar stars (S-stars) in the
galactic center to obtain the constraints on the LQG
parameter. For our purpose, we consider recent observa-
tions of 17 S-stars

fS1; S2; S4; S8; S9; S12; S13; S14; S17;
S18; S19; S21; S24; S31; S38; S54; S55g

orbiting around Sgr A* to constrain the parameter Aλ

arising in the quantum-extended Schwarzschild spacetime
in LQG. These stars orbiting around the black hole give us
an opportunity to probe gravity in a strong field regime to
test GR [61,62]. Also, these observations also allow us to
constrain black holes in different gravitational theories,
for example, see Refs. [62–65]. Not only that, more works
have been done like testing the no-hair theorem [66,67],
and studying a black hole with dark energy interaction [68].
The plan for the rest of the paper is as follows. Section II

provides a brief introduction to the quantum extension of
the Schwarzschild spacetime in LQG, followed by an
analysis of the geodesic equations for massive objects in
this spacetime. Using these equations, we present a detailed
derivation of the effects of the loop quantum parameter Aλ

on the pericenter advance of orbits. In Sec. III, we describe
the dataset used in our Monte Carlo Markov Chain
(MCMC) analysis, which includes the data of positions
and velocity of 17 S-stars, and the orbital precession of S2.
Section IV presents the upper bound on Aλ obtained by
comparing theoretical predictions of the quantum-extended
Schwarzschild black hole in LQG with astrometric and
spectroscopic data of stellar stars in the galactic center from
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an MCMC analysis. Finally, Sec. V summarizes our main
results and provides somediscussion.Additionally, in Sec.VI,
we offer further insights and perspectives on our findings.
Throughout the paper, we use the units to G ¼ c ¼ 1.

II. LOOP QUANTUM BLACK HOLE

In this section, we provide a brief introduction to the
quantum-extended Schwarzschild spacetime in the frame-
work of LQG and derive the equation of motion of a
massive particle orbiting it. In order to calculate the effect
of the LQG on the orbital precession of massive objects, we
transform the geodesic equations of the massive particle
into the perturbed Kepler problem in celestial mechanics.

A. Quantum extension of the Schwarzschild
spacetime in LQG

In this subsection, we introduce the effective quantum-
extended Schwarzschild spacetime in LQG, which arises
from a symmetry-reduced model of LQG corresponding to
homogeneous spacetimes and is geodesically complete.
The metric of this quantum-extended Schwarzschild space-
time is given by [48,49]

ds2 ¼ −fðxÞdτ2 þ dx2

fðxÞ þ h2ðxÞðdθ2 þ sin2θdϕ2Þ; ð1Þ

where the metric functions fðxÞ and hðxÞ are given by

fðxÞ ¼ 8AλM2
B

 
1 −

ffiffiffiffiffiffiffiffi
1

2Aλ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

!
1þ x2

hðxÞ2 ; ð2Þ

h2ðxÞ ¼ Aλffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p M2
Bðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þ6 þM2

W

ðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þ3 : ð3Þ

Here MB and MW correspond to two Dirac observables in
the model, and Aλ is a dimensionless parameter which is
related to MB and MW via

Aλ ≡ ðλk=MBMWÞ2=3=2; ð4Þ

where λk originates from holonomy modifications in LQG.
Without loss of generality, in this paper, we focus on the
most physical and meaningful case with MB ¼ MW ¼ M.
It is convenient to define two new variables, t and y, as

t ¼ τffiffiffiffiffiffiffiffi
8Aλ

p
M

; y ¼
ffiffiffiffiffiffiffiffi
8Aλ

p
Mx; ð5Þ

then metric (1) can be rewritten as

ds2 ¼ −8AλM2fðyÞdt2 þ 1

8AλM2fðyÞ dy
2 þ hðyÞ2dΩ2:

ð6Þ

It is interesting to note that h2ðyÞ represents the
physical radius of the above spherical symmetric space-
time. In this way, one can rewrite the above metric by
changing dy → dhðyÞ. This can be achieved by writing
out the asymptomatic form of the quantum-extended
Schwarzschild metric as

ds2 ¼ −
�
1 −

2M
h

þ 6AλM2

h2

�
dt2

þ
�
1þ 2M

h
þ 4ð1 − 2AλÞM2

h2

�
dh2 þ h2dΩ2: ð7Þ

Note that the metric functions in the above metric are
expanded about M ¼ 0 to the next-to-leading order. It is
easy to verify that the metric for the case Aλ ¼ 0 reduces to
the Schwarzschild metric with a mass M at the asymptotic
region.
We would like to mention here that we only consider

the static black hole spacetime and ignore the effects of
the angular momentum of the black hole. We expect the
observational effects in the stellar stars are expected to be
very small.

B. Equations of motion of massive objects in the
quantum-extended Schwarzschild spacetime

Our purpose here is to study the motion of massive test
particles in the quantum-extended Schwarzschild space-
time, which obeys time-like geodesics. It is convenient to
transform the coordinates ðh; θ;ϕÞ into the isotropic coor-
dinates ðr; θ;ϕÞ, namely

h ¼ r

�
1þM

2r

�
2

: ð8Þ

With the coordinates ðr; θ;ϕÞ, the metric of the quantum-
extended Schwarzschild spacetime is written as

ds2 ¼ −fðrÞdt2 þ gðrÞ½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�; ð9Þ

where

fðrÞ ¼
�
1 −

2M
r

þ 2M2ð1þ 3AλÞ
r2

�
; ð10Þ

gðrÞ ¼
�
1þ 2M

r
−
2M2ð−1þ 4AλÞ

r2

�
: ð11Þ

Let us now consider the motion of a massive object in
quantum-extended spacetime. The massive object, if one
ignores its self-gravitational effects, follows a time-like
geodesic that reads

d2xμ

ds2
þ Γμ

νρ
dxν

ds
dxρ

ds
¼ 0; ð12Þ
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where s is the affine parameter and Γμ
νρ are the Christoffel

symbols of the quantum-extended Schwarzschild spacetime.
For the motions of the stellar stars in the galactic center, it
is convenient to consider the weak field approximation.
Thus, one can derive the equations of motion of the massive
particles by expanding the above geodesics equation in terms
of the small quantities,M and v, with v being the velocity of
the massive particles. In this way, one can transform the
above geodesics equation into a perturbed Kepler problem in
celestial mechanics, which is described by

d2r
dt2

¼ −
M
r2

r
r
þ ð4þ 6AλÞM2

r3
r
r
−
Mv2

r2
r
r
þ 4M

r3
ðr · vÞv:

ð13Þ

Compared to the two-body system described by Newtonian
mechanics,

d2r
dt2

¼ −
M
r2

r
r
; ð14Þ

the effective force acting on a massive test particle in
the quantum-extended Schwarzschild black hole can be
expressed in terms of Newtonian gravitational force plus
a perturbated force F as

d2r
dt2

¼ −
M
r2

r
r
þ F; ð15Þ

with

F ¼ ð4þ 6AλÞM2

r3
r
r
−
Mv2

r2
r
r
þ 4M

r3
ðr · vÞv ð16Þ

which depending on r, v, and t. This perturbed force F
contains contributions from both GR and LQG. If Aλ ¼ 0,
i.e., when the effect of LQG is absent the three components
of F in (16) exactly reduce to those terms arising from GR.
It is well-known that in Newtonian mechanics when the

perturbated force F is absent, the bound orbits of a massive
object that governs by (15) should be a Keplerian elliptical
orbit,

r ¼ að1 − e2Þ
1þ e cosðθ − ωÞ ; ð17Þ

where a is the semimajor axis, e the eccentricity, ω the
argument of pericenter for the elliptic orbit. For such a
Kepler elliptic orbit, one has

_r ¼
ffiffiffiffiffi
M
p

s
e sinðθ − ωÞ; ð18Þ

_θ ¼
ffiffiffiffiffi
M
p3

s
½1þ e cosðθ − ωÞ�; ð19Þ

where _r is the radial velocity, _θ is the angular velocity, and
p ¼ að1 − e2Þ is the semilatus rectum of the elliptic orbit.
To study the effect of the perturbed force F, one can

project F into three directions ðer; eθ; ezÞ,

F ¼ Rer þ Seθ þWez; ð20Þ

where er along r, ez along r × v, and eθ along ez × er. And
the three components R, S, and W are given by

R ¼ ð4þ 6AλÞM2

r3
−
Mv2

r2
þ 4M

r3
ðr · vÞ_r; ð21Þ

S ¼ 4M
r3

ðr · vÞr_θ; ð22Þ

W ¼ 0: ð23Þ

Inserting these three components into the Lagrange
celestial equation of motion [69], one obtains the equations
for the evolution of the orbital elements Xα of the form

dXα

dt
¼ QαðXβðtÞ; tÞ: ð24Þ

For the orbits of stellar stars described by the six elements
ða; e; ι;Ω;ω; fÞ, the evolution equations read [69],

da
dt

¼ 2

ffiffiffiffiffi
a3

M

r
ð1 − e2Þ−1

2½e sin fRþ ð1þ e cos fÞS�; ð25Þ

de
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
Mð1 − e2Þ

r �
sin fRþ 2 cos f þ eð1þ cos2fÞ

1þ e cos f
S
�
;

ð26Þ

dι
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
Mð1 − e2Þ

r
cosðωþ fÞ
1þ e cos f

W; ð27Þ

dΩ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
Mð1 − e2Þ

r
sinðωþ fÞ

sin ιð1þ e cos fÞW; ð28Þ

dω
dt

¼ 1

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

Mð1 − e2Þ
r �

− cos fRþ 2þ e cos f
1þ e cos f

sin fS

− e cot ι
sinðωþ fÞ
1þ e cos f

W
�
; ð29Þ
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df
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð1 − e2Þ

a3

s
ð1þ e cos fÞ2 þ 1

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

Mð1 − e2Þ
r

×

�
cos fR −

2þ e cos f
1þ e cos f

sin fS
�
; ð30Þ

where ι is the orbital inclination, Ω the longitude of
ascending node, f ¼ ðθ − ωÞ the true anomaly of the elliptic
orbit. By using df

dt , one can transform these equations to

da
df

≈ 2
p3

M
1

ð1þ e cos fÞ3 S; ð31Þ

de
df

≈
p2

M

�
sin f

ð1þ e cos fÞ2Rþ 2 cos f þ eð1þ cos2fÞ
ð1þ e cos fÞ3 S

�
;

ð32Þ

dι
df

≈
p2

M
cosðωþ fÞ

ð1þ e cos fÞ3W; ð33Þ

dΩ
df

≈
p2

M
sinðωþ fÞ

sin ιð1þ e cos fÞ3W; ð34Þ

dω
df

≈
1

e
p2

M

�
−

cos f
ð1þ e cos fÞ2 Rþ 2þ e cos f

ð1þ e cos fÞ3 sin fS

− e cot ι
sinðωþ fÞ

ð1þ e cos fÞ3W
�
: ð35Þ

Then the secular changes in the orbital elements μα can
be calculated via

_μα ¼ 1

T

Z
T

0

dμα

dt
dt ≃

1

T

Z
2π

0

dμα

df
df; ð36Þ

where T ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffi
a3=M

p
is the period of an elliptical orbit.

Performing these integrals for each orbital element, one
gets the drift rates of the five orbital elements,

_a ¼ 0; ð37Þ

_e ¼ 0; ð38Þ

_ι ¼ 0; ð39Þ

_Ω ¼ 0; ð40Þ

_ω ¼ 3M3=2ð1 − AλÞ
a5=2ð1 − e2Þ : ð41Þ

It is obvious that only the argument of pericenter ω of the
orbit changes over time, which would cause the pericenter

precession of the massive object orbiting the quantum-
extended Schwarzschild black hole. The precession per
orbit reads

Δω ¼ 6πM
að1 − e2Þ ð1 − AλÞ: ð42Þ

It is evident that when Aλ ¼ 0, the usual Schwarzschild
result is recovered. It is interesting to see that Δω decreases
linearly with the LQG parameter Aλ.

III. DATA AND DATA ANALYSIS
OF THE 17 S-STARS

In this section, we present publicly available data [70] of
the 17 S-stars orbiting around the Sgr A* in our galaxy, and
their orbits with the best-fit values of parameters from our
MCMC analysis are shown in Fig. 1. These S-stars include
{S1, S2, S4, S8, S9, S12, S13, S14, S17, S18, S19, S21,
S24, S31, S38, S54, S55}. These data include the data of
astrometric positions and radial velocities of 17 S-stars and
the pericenter precession of the S2 star. These data are
extracted from Ref. [70].

A. Dataset of positions in the analysis

The dataset includes the positions of the stars on the sky
plane, as well as the corresponding observational times of
light ðXdataðtobsÞ; YdataðtobsÞÞ. By using the Eqs. (17), (18),
(19), (29), and (35), one can obtain the positions of the stars
on the orbital plane and the corresponding emission time of
light. Specifically, the positions on the orbital plane are
given by xLQGðtemÞ ¼ r cos θ and yLQGðtemÞ ¼ r sin θ,
where tem is the time the light is emitted and tobs is the
time when the light is observed.
To obtain the theoretical positions of the stars, one needs

to project their positions in the orbital plane onto the sky
plane. The relation between the sky plane and the orbital
plane is illustrated in Fig. 2. This involves the Thiele-Innes
constants, which relate the star’s motion in space to its
observed motion in the sky. Specifically, the coordinates on
the sky plane ðX; Y; ZÞ are related to the coordinates on the
orbital plane ðx; yÞ as follows:

X ¼ xBþ yG; ð43Þ

Y ¼ xAþ yF; ð44Þ

Z ¼ xCþ yH: ð45Þ

The Thiele-Innes constants are given by:

A ¼ cosΩ cosω − sinΩ sinω cos ι; ð46Þ
B ¼ sinΩ cosωþ cosΩ sinω cos ι; ð47Þ

C ¼ sinω sin ι; ð48Þ
F ¼ − cosΩ sinω − sinΩ cosω cos ι; ð49Þ
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G ¼ − sinΩ sinωþ cosΩ cosω cos ι; ð50Þ

H ¼ cosω sin ι: ð51Þ
Next, we need to solve the time delay problem to obtain

the correct positions of the stars. The Romer time delay
is the main consideration in this work, which can be
expressed as:

tobs − tem ¼ ZðtemÞ
c

; ð52Þ

where c is the speed of light. Using the Eqs. (17), (18), (19),
(29), and (35), one can get the positions on the orbital plane
and the corresponding emission time of light. Projecting
these theoretical positions onto the sky plane using the
Thiele-Innes constants [given by Eqs. (46)–(51)] and
solving for the Romer time delay, one obtains the
projection onto the sky plane of the theoretical positions

in the quantum-extended Schwarzschild spacetime
ðXLQGðtobsÞ; YLQGðtobsÞÞ.

B. Dataset of velocity and analysis

The velocity dataset includes the radial velocity and its
corresponding observational time. It is important to con-
sider the photon’s frequency shift, denoted as ζ, which
affects the radial velocity. This shift can be expressed as

ζ ¼ Δν
ν

¼ νem − νobs
νobs

¼ VR

c
; ð53Þ

where νem is the frequency of the photon at the time of
emission, νobs is the frequency when it is observed, and VR
is the radial velocity of the S-stars.
In our analysis of the photon’s frequency shift, we focus

on two relativistic effects: the Doppler shift ζD and the
gravitational shift ζG. These are defined as follows:

FIG. 1. The fitted orbits of the 17 S-stars orbiting around Sgr A* with the best-fit values of orbital parameters from MCMC analysis.
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ζD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2em

c2

q
1 − n · vem

; ð54Þ

ζG ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

rðM
2rþ1Þ2 þ 6AλM2

r2ðM
2rþ1Þ4

q ; ð55Þ

where vem is the velocity at the time of emission, and n · vem
is the Newtonian line-of-sight velocity. One can then obtain
the total frequency shift ζ as:

ζ ¼ ζD · ζG − 1: ð56Þ

C. Orbital precession of S2

The GRAVITY Collaboration has successfully measured
the orbital precession of S2 per orbit, as reported in [61].
The measured value is given by

Δϕper orbit ¼ 12.1 × ð1.10� 0.19Þ: ð57Þ

Different from the measurement of S2’s orbit by only using
the data of positions and velocities of S2 stars, the
measurement of the orbital procession of S2 has used a
large amount of new data, as mentioned clearly in [61].
Thus in this paper, we treat this result as an independent
measurement and use it independently in our analysis.
This above orbital precession is an important phenomenon
that cannot be explained by the Keplerian orbit under
Newtonian gravity, as shown in (42). In addition to the
effects of classical gravity, the parameter Aλ arising from
the quantum-extended Schwarzschild spacetime also

contributes to the pericenter precession. Therefore, we
can use the measured precession of S2 per orbit to constrain
Aλ from an MCMC analysis.

IV. ANALYSIS OF MONTE CARLO
MARKOV CHAIN

In this section, we perform the analysis of MCMC by
open-source EMCEE package in PYTHON to obtain the
constraints of Aλ in the quantum-extended Schwarzschild
spacetime. The parameter spaces we explored through the
MCMC analysis are summarized below

fM;R; a; e; i;ω;Ω; TP; x0; y0; vx0 ; vy0 ; vz0 ; Aλg; ð58Þ

whereM is the mass of the central black hole in Sgr A* and
R is the distance between the Earth and the black hole, Tp

refers to the time of the pericenter of the osculating
elliptical orbit, which we choose as the starting point of
the calculation. fa; e; ι;ω;Ωg are the five orbital elements
that describe the osculating elliptical orbits of each S-star.
The parameters fx0; y0; vx0 ; vy0 ; vz0g represent the zero-
point offsets and drifts of the reference frame’s center.
To ensure that the parameters are not biased by the

choice of priors, we choose to use uniform priors for all
parameters. The range of the priors is based on previous
results in [70], and we set the prior for Aλ to be [0, 2]. For
the likelihood function L, we use three parts: the positions,
radial velocities, and orbital precession

logL ¼ logLP þ logLVR þ logLpre: ð59Þ

Since the covariance matrix is not available from the public
data we got, we do not consider correlations between
data. Therefore, the likelihood of the positions, logLP, is
defined as

logLP ¼ −
1

2

X
i

ðXi
data − Xi

LQGÞ2
ðσiX;dataÞ2

−
1

2

X
i

ðYi
data − Yi

LQGÞ2
ðσiY;dataÞ2

;

ð60Þ

where Xi
data and Yi

data are the measured positions of the star
at time i, Xi

LQG and Yi
LQG are the corresponding positions

predicted by our model, and σiX;data and σiY;data are the
uncertainties in the measurements. The likelihood of the
radial velocities, logLVR, is defined as

logLVR ¼ 1

2

X
i

ðVi
R;data − Vi

R;LQGÞ2
ðσiVR;data

Þ2 ; ð61Þ

where Vi
R;data is the measured radial velocity of the star at

time i, Vi
R;LQG is the corresponding radial velocity pre-

dicted by our model, and σiVR;data
is the uncertainty in the

FIG. 2. This figure illustrates the coordinate system we used for
describing the orbits of stellar stars in the galactic center. The
Z-axis follows the direction the Solar system points to the galactic
center and the X-axis points east and the Y-axis points north. ω is
the pericenter argument, Ω is the longitude of ascending node,
and ι is the orbital inclination of the precessing elliptical orbit for
S-stars.
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measurement. The likelihood of the orbital precession,
logLpre, is defined as

logLpre ¼ −
1

2

ðΔϕdata − ΔϕLQGÞ2
σ2Δϕ;data

; ð62Þ

where Δϕdata is the measured orbital precession of S2 (57),
ΔϕLQG is the corresponding orbital precession predicted
by our model with the given value of Aλ, and σ2Δϕ;data is the
uncertainty in the measurement.
Since we only have the measurement of S2’s orbital

precession, logLpre will only be used in the MCMC analysis
of S2. By combining these likelihood functions, we can
obtain the overall likelihood function logL as defined in (59).

V. RESULTS

With all preparations made, we performed the MCMC
analysis separately for each of the 17 S-stars to constrain
the LQG parameter Aλ in the quantum-extended
Schwarzschild black hole. It is important to note that we
only added the orbital precession likelihood to the MCMC
analysis of S2, as it is the only star for which we have
detected its orbital procession.
The results of the marginalized posterior distributions

of the LQG parameter Aλ from the analysis with all the 17
S-stars are presented in Fig. 3. The orange curve represents
the result constrained by the data of S2, and the green curve
represents the result constrained by the data of S4. We
observe that only the data of S2 and S4 can lead to
meaningful constraints on Aλ. By comparing the results
from the data of S2 and S4, one observes that the constraint
from S2 is stronger than that from S4. Therefore, we select
the value constrained by the data of S2 to be the final bound
on Aλ, which places an upper limit on Aλ,

Aλ ≲ 0.302 ð63Þ
at 95% confidence level. We also plot the marginalized
posterior distributions of Aλ from S2 in Fig. 4. In this figure,
the vertical dash line denotes the 90% upper limits of Aλ.
In Figs. 5 and 6, we illustrate the full posterior distribu-

tions of our 14-dimensional parameter space of our orbital
model for S2 and S4, respectively. On the contour plots of
both figures, the shaded regions show the 68%, 90%, and
95% confidence levels of the posterior probability density
distributions of the entire set of parameters, respectively.
As expected, the MCMC analysis shows that the data of

S2 gives the best result due to its large data size and the
inclusion of the measurements of the orbital precession.
According to the principle of MCMC, larger data sizes can
result in more accurate results, while the inclusion of the
orbital precession can help break the degeneracy between the
parameters M, a, e, and Aλ as shown by the precession per
orbit function (42). However, it is important to note that the
degeneracy could not be completely broken. Figure 5 dis-
plays contour maps that vary from circular to elliptical,
indicating the presence of degeneracy between some param-
eters. In addition, we would like to mention here that in the
above analysis, we perform MCMC analysis separately for
each of the 17 S-stars. It is interesting to perform a global
analysis with all 17 stars together, which is computationally
expensive due to a large number of orbital parameters. We
expect to come back to this issue in our future works.
Clearly, the result we obtained is not as strong as those

obtained from observations on the scale of the solar system,
such as the gravitational time delay measured by the
Cassini mission or the perihelion precession of Mercury
[33]. However, our result demonstrates that observations at
the galactic center can provide constraints on black hole
parameters beyond those predicted by GR. Our analysis
offers a bound on the black hole parameter in the strong

FIG. 4. The constraint results of Aλ by the data of S2, Aλ <
0.302 at 95% confidence level. We extract the constraint results of
Aλ from Fig. 5 and use a bar chart to show its density distribution
which looks like a half Gaussian distribution. One can see the
peak value is 0 which is consistent with the Schwarzschild result.

FIG. 3. The marginalized posterior distributions of the LQG
parameter Aλ from the analysis with all the 17 S-stars. We
performed kernel density estimation (KDE) on these data and
show them in the same figure to compare the results. One can
easily find out that only the data of S2 and S4 can be used to
constrain Aλ well.
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FIG. 5. The posterior distribution of the orbital parameters of the S2 star and the LQG parameter Aλ of the quantum-extended
Schwarzschild black hole with uniform priors for all parameters. The LQG parameter Aλ is constrained to be Aλ < 0.302 at
95% confidence level.
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gravity regime, which differs from the constraints obtained
from observations in our solar system.

VI. CONCLUSION

In this paper, we introduced the quantum-extended
Schwarzschild spacetime and analyzed the motion of
massive particles in this spacetime using the dynamics

of perturbation. Our findings showed that the orbit of
massive particles in this spacetime is a precessing ellipse,
and the parameter Aλ arising from the quantum-extended
Schwarzschild spacetime affects the pericenter advance
per orbit. To constrain the value of Aλ, we compared the
effects of the quantum-extended of the Schwarzschild
spacetime with publicly available data of 17 S-stars
orbiting around Sgr A* in the central region of the

FIG. 6. The posterior distribution of the orbital parameters of the S4 star and the LQG parameter Aλ of the quantum-extended
Schwarzschild black hole with uniform priors for all parameters. The LQG parameter Aλ is constrained to be Aλ < 0.536 at
95% confidence level.
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Milky Way. We then carried out an MCMC analysis with
all of this data.
To avoid the effects of degeneracy, we gave uniform

priors for all 14 parameters. Additionally, based on the fact
that S2 has the biggest data size and the most accurate data
of precession, we expected S2 to give the most reliable
result. As expected, S2 gave the best constraint result, with
Aλ < 0.302 at the 95% confidence level. It is also worth
mentioning that we ignored the effects of the angular
momentum of this spacetime since we expected the effects
caused by rotation to be very small.
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