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We study photon geodesics in topological solitons that have the same asymptotic properties as
Schwarzschild black holes. These are coherent states in string theory corresponding to pure deformations
of spacetime through the dynamics of compact extra dimensions. We compare these solutions with
Schwarzschild black holes by computing null geodesics, deriving Lyapunov exponents, and imaging their
geometries as seen by a distant observer. We show that topological solitons are remarkably similar to black
holes in apparent size and scattering properties, while being smooth and horizonless. Incoming photons
experience very high redshift, inducing phenomenological horizonlike behaviors from the point of view
of photon scattering. Thus, they provide a compelling case for real-world gravitational solitons and
topological alternatives to black holes from string theory.
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I. INTRODUCTION

The Event Horizon Telescope (EHT) has opened a
new observational window on the environment near black
holes [1]. Its success and future experimental prospects
in imaging could lead to paradigm-changing research in
gravitational phenomenology by providing novel ways to
explore the strong-gravity environment near black holes,
and, as excitingly, the possibility to observe “exotic”
compact objects beyond general relativity (GR).
There is a wide variety of interesting proposals for

beyond-GR objects and phenomena, including boson
stars [2], gravastars [3], firewalls [4], nonlocal interactions
[5], soft hair around the horizon [6], and fuzzballs [7].
Describing their gravitational signature and their observa-
tional differences will offer a promising route for new tests
of gravity through direct observations.
In quantum gravity, black holes correspond to thermody-

namic ensembles of quantum states. The general paradigm
necessary to fully characterize such states is still lacking.
Often, however, quantum states can be coherent enough to
admit classical descriptions. Indeed, many examples of such
states can be constructed from string theory and character-
ized in various theories of gravity. Their existence has led
to some of the most exciting results in theoretical physics
in the last 30 years, such as holography and AdS/CFT [8]
and black hole microstate geometries [9]. The latter objects
appear in the fuzzball proposal, which aims to resolve the
black hole information paradox in string theory [7].

The recent developments in EHT and gravitational-wave
observations raise the prospect of observing individual
coherent states of gravity. These are necessarily smooth,
horizonless, and ultracompact geometries, produced by pure
deformations of spacetime without ordinary matter and
supported by electromagnetic flux. For many years, how-
ever, these states could only be obtained from supersym-
metric theories of gravity and thereby outside the regime of
what we might expect to be astrophysically realistic (see
[10–13] for some analysis of their gravitational signatures).
Until recently, it was not clear whether these coherent states
can be constructed beyond the lamppost of supersymmetry,
and it was widely believed that they could not exist.
With the motivation of potential observations, two of

the authors developed a new framework for constructing
solutions in generic, nonsupersymmetric, classical theories
of gravity with extra compact dimensions that are smooth
and horizonless. The solutions admit gravitational solitons
induced by nontrivial topology in the internal space that
is supported by electromagnetic flux [14–17]. Moreover,
these solutions can be embedded in string theory, where
they can be appropriately interpreted as coherent states of
quantum gravity [17]. They are characterized and distin-
guished by their topological microstructure, which neces-
sitates extra compact dimensions. These are referred to as
topological solitons.
In four dimensions, topological solitons manifest as

singular ultracompact objects that are indistinguishable
from black holes from afar. Their higher-dimensional nature
becomes apparent at small distances from the solitons, which
then resolve the system to smooth and horizonless geometries.
There exist simple building blocks that can be used to

construct complex bound states of topological solitons
that may be astrophysically relevant. These blocks can be
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seen as a new topological phase of matter that is inherently
geometric. The basic unit corresponds to a spherically
symmetric spacetime with a “bubble of nothing” corre-
sponding to a noncontractible two-cycle. It is stabilized by
adding electromagnetic flux which assigns charges to the
bubble [18]. This basic ingredient has been named the
topological star [14].
By considering bound states of topological stars, we

can obtain net-neutral topological solitons with properties
comparable to Schwarzschild black holes [15]. These are
the first smooth horizonless geometries from string theory
that correspond to a Schwarzschild solution far away
without any matter in the interior, and they are aptly called
“Schwarzschild topological solitons.”
In this paper, we are interested in describing the pheno-

menology and gravitational signature of these topological
solitons. This will highlight their possible relevance to
describe convincing observational alternatives to black
holes. As a first step, we derive their imaging phenom-
enology and scattering properties by analyzing the behavior
of null geodesics in these two types of topological solitons.
In contrast to gravitational objects produced by ordinary

baryonic matter, topological solitons are pure deformations
of spacetime with no clear matter delimitation. However,
like black holes, we show that these solitons possess an
unstable outer photon shell that circumscribes the geo-
metry. Therefore, in the same way that a shadow gives a
size to a black hole, we define the apparent size of
topological solitons by their outer photon shell, as seen
by an asymptotic observer.
Furthermore, photons that enter the shadow of a black

hole are absorbed and disappear. The physics is different
for smooth and horizonless geometries: incoming photons
are nontrivially scattered by the topological microstructure,
but reemerge at some point. From the point of view of an
asymptotic observer, the dynamics of these photons carries
information about a possible smooth topological micro-
structure beyond the would-be shadow. We detail the key
mechanisms for which such microstructure can still present
black-hole-like features and induce a phenomenological
horizon behavior for photon scattering (these mechanisms
have been initially analyzed in Ref. [10]). The scattering
properties of topological solitons in the vicinity of their
outer photon shell will thus provide insight into the
common features with black holes in GR, but will also
identify small deviations that could be useful smoking guns
for future imaging experiments.
More precisely, we analyze the properties of the

outer unstable photon shells of topological stars and
Schwarzschild topological solitons by deriving their ap-
parent size and associated Lyapunov exponents. We also
show that the solitons have inner stable photon shells that
are not accessible for photons coming from outside the
solitons. Moreover, we have built our own ray-tracing code
to study their overall gravitational lensing properties, as
they would be perceived by a distant observer.

We show that Schwarzschild topological solitons have
properties remarkably close to those of Schwarzschild
black holes, while being smooth and horizonless. Their
apparent size is strikingly close to the Schwarzschild
shadow. Their Lyapunov exponents, redshift, and the time
elapsed along the geodesics of initially incoming photons
are also remarkably similar. Overall, they provide the first
relevant smooth, horizonless string-theoretic alternatives to
nonextremal black holes in GR.
The paper is organized as follows. In Sec. II, we review

the properties of topological stars and Schwarzschild
topological solitons. In Sec. III, we analytically derive
and analyze their photon shells and some geodesics
trajectories. In Sec. IV, we present our numerical imaging
results. In Sec. V, we summarize our conclusions and
possible directions for future work.

II. THE GEOMETRIES

We consider classes of solutions in five- or six-
dimensional Einstein-Maxwell theory with a generic action
of the form [14,15]

SD ¼ 1

16πGD

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
R −

1

2
jFj2

�
: ð1Þ

The solutions are asymptotic to R1;3 × S1 or R1;3 × T2,
a product of four-dimensional Minkowski spacetime
with a circle or a torus. We parametrize these extra
compact dimensions as y1 and y2, and consider that they
have a finite and small size asymptotically. The solutions
admit nontrivial topology supported by electromagnetic
flux (since we are only interested in uncharged null
geodesics in these backgrounds, we will not specify the
flux; we refer the interested reader to Refs. [14,15] for
more details). They correspond to pure states of gravity
that are induced by the dynamics of the extra compact
dimensions. Moreover, they can be embedded in string
theory and admit a description in terms of bound states of
strings and branes [17]. Note that the charges under the
gauge fields can be interpreted as “hidden dark charges,”
such that they only interact gravitationally with ordinary
baryonic particles and are not ruled out by current
observations [10,13,19].

A. The topological star

Topological stars are five-dimensional horizonless geo-
metries that are spherically symmetric and static. They can
be labeled by two parameters rB > rS ≥ 0 and they have
a metric

ds25 ¼ −
�
1 −

rS
r

�
dt2 þ dr2

ð1 − rS
r Þð1 − rB

r Þ
þ r2dΩ2

2

þ
�
1 −

rB
r

�
dy21; ð2Þ
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where dΩ2
2 ¼ dθ2 þ sin2 θdϕ2 is the line element of a two-

sphere. The solutions carry a magnetic charge [14]

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3rS rB

p
; ð3Þ

where we have considered that the electric coupling is
e ¼ ð16πG5Þ−1=2. The spacetime is smooth and terminates
at r ¼ rB where the y1 circle smoothly collapses, defining
the origin of an R2 space. In this region, the geometry has
an R2 × S2 topology and thus admits an S2 bubble with
radius rB.Regularity imposes an algebraic constraint between
rB, rS, and the extra-dimension size Ry1 . However, adding a
conical defect at the bubble allows rB and rS to decouple
from Ry1 [14]. We depict a typical geometry in Fig. 1.
Upon compactifying on the y1 circle, topological stars

can be described by singular four-dimensional solutions
with Arnowitt-Deser-Misner (ADM) mass (in units where
G4 ¼ 1)

M ¼ 2rS þ rB
4

: ð4Þ

The solutions correspond to classically and thermodynami-
cally metastable states of the theory of gravity (1) if and
only if [18]

rS < rB < 2rS; ð5Þ

which we assume from now on. Topological stars admit
an extremal limit when rS → rB, where they approach
extremal black string solutions [14].
Finally, it is also useful to parametrize the solitons in

terms of asymptotic quantities measurable at infinity: the
mass and the charges. In the range (5), there exists one
topological star at given mass and charge,

rS¼Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−

1

6
Q2

r
; rB¼2

�
M−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−

1

6
Q2

r �
: ð6Þ

We consider solutions in the range

4ffiffiffi
3

p < μ <
ffiffiffi
6

p
; μ≡ Q

M
: ð7Þ

The extremality bound is at μ ∼ 4=
ffiffiffi
3

p
, while the stability

bound is at μ ∼
ffiffiffi
6

p
.

As objects labeled by mass and charge, the domain of
validity of the topological stars differs from Reissner-
Nordström black holes (which exist for μ ≤ 1) and from
the five-dimensional black string in this same theory (which
exist for μ ≤ 4ffiffi

3
p ). In this paper, we will study geodesics of

topological stars and compare them to Schwarzschild black
holes of the same mass.

B. The Schwarzschild topological soliton

The Schwarzschild topological solitons constructed
in Ref. [15] are six-dimensional smooth horizonless solu-
tions that are axially symmetric and static. They correspond
to net-neutral bound states of three topological stars in six
dimensions. They consist of a chain of three bubbles
where the y1 and y2 circles smoothly degenerate. The
two outermost bubbles carry opposite charges, while
the one in the middle is uncharged. We have depicted
the profile of the geometry in Fig. 2.
In contrast to the single topological star, the present

soliton is neutral while being supported by electromagnetic
flux and is therefore in the same regime of mass and charge
as a Schwarzschild black hole. The solutions are given in
terms of two mass parameters l and m and a parameter q
related to the amplitude of the internal charges. Since
we are dealing with bound states of three bubbles, we
introduce three local spherical coordinates centered around
each bubble,

FIG. 1. Schematic description of a topological star. The
spacetime is smooth and terminates at r ¼ rB where the y1
circle degenerates. This induces a large topological bubble of
charge Q that can be considered as the “surface” of the star.

FIG. 2. Schematic description of a Schwarzschild topological
soliton. It is a neutral bound state of three topological stars.
The spacetime is smooth and terminates at r ¼ lþ 2σ where the
y1 and y2 circles degenerate alternatively. This induces a large
topological bubble that can be considered as the surface of the
soliton.
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r1 ≡ rð0Þ− þ rð1Þ−

4
− σ; cos θ1 ≡ rð0Þ− − rð1Þ−

4σ
;

r2 ≡ rð1Þ− þ rð1Þþ
4

−
1

2
ðl − 2σÞ; cos θ2 ≡ rð1Þ− − rð1Þþ

2ðl − 2σÞ ;

r3 ≡ rð1Þþ þ rð0Þþ
4

− σ; cos θ3 ≡ rð1Þþ − rð0Þþ
4σ

; ð8Þ

where we have defined 2σ to be the size of both outermost bubbles and four distances ðrð0Þ� ; rð1Þ� Þ that depend on the main
spherical coordinates ðr; θÞ as follows:

σ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − qðq − 2γÞ

q
; γ ≡ 2mq

lþ 2m
;

rð0Þ� ≡ 2r − ðlþ 2σÞð1� cos θÞ;
rð1Þ� ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð2ðr − σÞ − lÞ cos θ � ð2σ − lÞÞ2 þ 4rðr − l − 2σÞsin2θ

q
: ð9Þ

Smooth and regular solutions exist when the parameters satisfy the conditions [15]

l > 2m; q < m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m
l − 2m

r
: ð10Þ

The second inequality corresponds to the extremal bounds of the two outer bubbles, where they degenerate into extremal
black holes.
The metric is given by

ds26 ¼
1

Z

�
−dt2 þ r1r3

ðr1 þ 2σÞðr3 þ 2σÞ dy
2
1

�
þ r2Z
r2 þ l − 2σ

dy22 þ Z

�
f

�
rdr2

r − l − 2σ
þ r2dθ2

�
þ r2sin2θdϕ2

�
; ð11Þ

where we have introduced the functions

Z≡ ðr1 þ σ þmÞðr3 þ σ þmÞ þ ðq − γð1þ cos θ3ÞÞðq − γð1 − cos θ1ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðr1 þ 2σÞ2 þ γ2sin2θ3

�
1þ 2σ

r1

���
ðr3 þ 2σÞ2 þ γ2sin2θ1

�
1þ 2σ

r3

��r ;

f2 ≡ 1

ð1þ 2δÞ2
ðr1ðr1 þ 2σÞ þ γ2sin2θ3Þðr3ðr3 þ 2σÞ þ γ2sin2θ1Þ

ððr2 þ 1
2
ðl − 2σÞÞ2 − 1

4
ðl − 2σÞ2cos2θ2Þðr1 þ σð1 − cos θ1ÞÞðr3 þ σð1þ cos θ3ÞÞ

×
r1ð1þ cos θ1Þ þ r3ð1 − cos θ3Þ
r1ð1 − cos θ1Þ þ r3ð1þ cos θ3Þ

ðr1 þ 2σÞð1 − cos θ1Þ þ ðr3 þ 2σÞð1þ cos θ3Þ
ðr1 þ 2σÞð1þ cos θ1Þ þ ðr3 þ 2σÞð1 − cos θ3Þ

×

�
1þ 2δ

ðq − γÞðr1 − r3Þ þ ðγm − lðq − γÞÞðcos θ1 þ cos θ3Þ
ðq − γÞðr3 − r1Þ þ γmðcos θ1 þ cos θ3Þ

�
2

;

δ≡ m2ðlþ 2mÞ2 þ l2q2

ðlþ 2mÞ2ðl2 − 2m2Þ þ 2l2q2
: ð12Þ

The spacetime is smooth and terminates at r ¼ lþ 2σ. At
this locus, either r1 ¼ 0, r2 ¼ 0, or r3 ¼ 0, depending on the
value of θ. The ranges of θ are delimited by the critical angle
cos θc ¼ l−2σ

lþ2σ. For 0 ≤ θ ≤ θc and π − θc ≤ θ ≤ π, r3 ¼ 0

and r1 ¼ 0, respectively. In these regions, the y1 circle

degenerates. For θc ≤ θ ≤ π − θc, r2 ¼ 0, and the y2 circle
degenerates. Regularity conditions lead to algebraic con-
straints on the parameters in terms of extra-dimension sizes
[15]. In this paper, we restrict to a part of the phase space that
has properties similar to Schwarzschild black holes,
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l ¼ 4M
3

ð1þ ϵ2Þ; m ¼ 2M
3

�
1 −

ϵ2
2

�
;

q ¼ 4M
3

ffiffiffiffiffiffiffi
3ϵ2

p ð1 − ϵ1Þ; ð13Þ

where M is the four-dimensional ADM mass of the soliton

M ¼ 4mþ l − 2σ

4
; ð14Þ

and ðϵ1; ϵ2Þ are infinitesimal parameters related to the ratios
of the extra-dimension sizes with the ADM mass. In this
limit, the two outer charged bubbles are very close to their
extremal limit σ ¼ Oðϵ1MÞ.
Away from the bubbling structure, the solutions are

approximated with extreme precision by a singular vacuum
solution given by the four-dimensional metric (see
Ref. [15] for more details),

ds24 ¼ −
�
1 −

4M
3r

�3
2

dt2 þ r2
�
1 −

4M
3r

�
−1
2

sin2θdϕ2

þ
�
1 − 4M

3r

�1
2

�
dr2 þ r2

�
1 − 4M

3r

�
dθ2

�
h�

1 − 2M
3r

�
2
−
�
2M
3r

�
2
cos2θ

i
2

: ð15Þ

This axially symmetric solution has a naked singularity
at r ¼ 4M=3. Our solitons are indistinguishable up to a
scale infinitesimally close to this locus and resolve the
singularity into a smooth bound state of bubbles in six
dimensions.
The approximated singular solution is not geodesically

complete at r ¼ 4M=3 ∼ lþ 2σ. At this locus, one must
consider the full bubbling solutions given in Eq. (11), for
which the spacetime terminates smoothly there. However,
the approximated geometry is helpful to describe the
dynamics of null geodesics for trajectories that do not
get too close to the soliton surface.

III. NULL GEODESICS

We aim at describing the physics of null geodesics in the
classes of topological solitons introduced above. They are
generically given by the equations

ẍμ þ Γμ
αβ _x

α _xβ ¼ 0; xμ ≡ ðt; r; θ;ϕ; y1; y2Þ; ð16Þ

where Γμ
αβ is the Levi-Civita connection and we have

defined _x ¼ dx
dτ so that τ is an affine parameter. Null

geodesics in backgrounds with four isometries along
ðt;ϕ; y1; y2Þ have five constants of motion: the
HamiltonianH ¼ gμν _xμ _xν ¼ 0 and the momenta associated
with the four commuting Killing vectors pμ ≡ gμν _xν. This
leads to

_t¼ −gtt; _ϕ¼ gϕϕpϕ; _ya ¼ gyayapya ; a¼ 1;2;

grr _r2 þ gθθ _θ
2 ¼ −gtt − gϕϕp2

ϕ − gy1y1p2
y1 − gy2y2p2

y2 ; ð17Þ

where the dependence on y2 must be dropped for the
topological stars.
The momenta along the extra dimensions induce an

effective mass since gyayap2
ya → p2

ya at large distance
r → ∞. The only difference with massive probes is that
this effective mass term increases as the probe approaches
the soliton. This should produce small deviations for
massive trajectories that approach it closely. Moreover,
pya necessarily scales as ðextra-dimensional sizesÞ−1, and a
probe with momentum corresponds to a very massive and
highly excited particle that is unlikely to be produced in any
physical process. Therefore, we will focus on massless
geodesics from a four-dimensional perspective. This requires
py1 ¼ py2 ¼ 0.

A. Photon scattering in topological stars

Topological stars are spherically symmetric back-
grounds, so we limit attention to geodesics in the equatorial
plane without loss of generality. The equations reduce to
the following radial equation [20,21]:

_r2 − VTS ¼ 0; VTS ≡
�
1 −

rB
r

��
1 −

�
1 −

rS
r

�
p2
ϕ

r2

�
:

ð18Þ

1. Photon spheres and Lyapunov exponent

Topological stars have photon spheres, obtained by
imposing _r ¼ ̈r ¼ 0. There are two solutions, labeled by
the radii of the photon sphere ðR1; R2Þ and given by

R1 ¼ rB ¼ 2

�
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

1

6
Q2

r �
;

R2 ¼
3

2
rS ¼

3

2

�
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

1

6
Q2

r �
: ð19Þ

Their associated angular momenta and angular velocity pϕ

and Ω ¼ _ϕ= _t are p1 ¼ Ω−1
1 ¼ r

3
2
Bffiffiffiffiffiffiffiffiffi

rB−rS
p for the first photon

sphere, and p2 ¼ Ω−1
2 ¼ 3

ffiffi
3

p
rS

2
for the second photon

sphere.
An important observation here is that the “end of

spacetime” locus, i.e., the surface of the star r ¼ rB, is a
photon sphere. Therefore, a photon can be trapped at the
surface of the topological star. This unusual feature is
dramatically different from other compact objects.
The second photon sphere R2 is not always part of the

spacetime if we take into account the stability bound
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of Eq. (5). Thus, depending on whether 3rS is greater or
smaller than 2rB, we have one or two photon spheres. There
are two kinds of topological stars according to this attribute:
the topological stars of the first kind with one photon
sphere and the topological stars of the second kind with two
photon spheres. They exist in different ranges of ðrS; rBÞ,
which can be translated to different ranges of mass-to-
charge ratios, as depicted in Fig. 3.
The photon spheres are stable (unstable) if the second

derivative of the potential with respect to r is negative
(positive). We find that, for both kinds of topological stars,
the outermost photon sphere is unstable. However, for the
topological stars of the second kind, the inner photon
sphere (the surface of the star) is stable. This highlights
long-term trapping effects for such geometries and leads to
an interesting spectrum containing slowly damped quasi-
normal modes [22]. This long-term trapping has been
analyzed in the context of other topological solitons in

string theory that are coherent manifestations of super-
symmetric black hole microstates [11,23]. It is a well-
understood instability in black hole microstates, which is
key to resolve black hole information paradox. Note,
however, that no geodesics coming from outside the outer
photon sphere can be trapped at the inner sphere. This is only
possible for photons that originate in between R1 and R2.
One can derive Lyapunov exponents associated with the

unstable photon spheres. For spherically symmetric space-
times, they are generically given by [24,25]

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2_t2
d2VTS

dr2

s 				
r¼Ra

: ð20Þ

We find

λI¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrB−rSÞð2rB−3rSÞ

p
r2B

; λII¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rS−2rB

p

9r
3
2

S

; ð21Þ

where λI and λII are the Lyapunov exponents of the first
and second kinds of topological stars, respectively. One can
also write the exponents in terms of the mass and charge
using Eq. (6).
We have plotted the Lyapunov exponents as a function

of μ and in unit ofM−1 in Fig. 3. The exponents vary in the
range ½0; 1

4
�. Even if one cannot compare rigorously to

Schwarzschild black holes since we are dealing with
charged geometries, the maximum is larger than the value
of the Lyapunov exponent at the Schwarzschild shadow,
λSch ¼ 1=ð3 ffiffiffi

3
p ÞM−1 ≈ 0.19 M−1.

Therefore topological stars have properties similar to
black holes: they induce strong gravitational lensing, and
they have a photon sphere surrounding the geometry that is
highly sensitive to initial boundary conditions. Note that
this does not necessarily mean that geodesics in topological
stars have chaotic behavior [24]. Indeed, the geodesic
equations are integrable, and the Lyapunov exponents
at the photon spheres just indicate the average rate of
expansion or contraction of adjacent geodesics in the
phase space.
Finally, following Pretorius and Khurana [26], we

compute the critical exponent measuring the ratio between
the Lyapunov instability timescale with the orbital time-
scale, given by

γc ¼
_ϕ

2πλ _t
: ð22Þ

We find that

γcI ¼
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rB

2rB − 3rS

r
; γcII ¼

1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rS

3rS − 2rB

s
: ð23Þ

FIG. 3. Scattering properties of topological stars as a function
of the charge-to-mass ratio μ. Top: the Lyapunov and critical
exponents associated with their outer unstable photon sphere.
Middle: description of the two kinds of topological stars. Bottom:
their apparent size with respect to the Schwarzschild shadow, as
defined in Sec. III A 2.
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These critical exponents are also plotted in the top panel of
Fig. 3. They are always greater than the Schwarzschild
exponent γSch ¼ ð2πÞ−1 and they diverge as Q=M →
12

ffiffiffi
2

p
=7, which is when the stable and unstable photon

spheres merge.
As argued in Ref. [26], the critical exponent γc is

relevant for critical phenomena in binary mergers, in
particular, to understand whether only a fraction of the
total energy of the system can be radiated in the ultra-
relativistic limit [27].
In the encounter of two black holes, three outcomes are

possible. For large values of the impact parameter of the
collision, the black holes just scatter off each other. At
small values of the impact parameter, they merge directly
following a nearly radial plunge. However, there is also an
intermediate regime leading to a delayedmerger, where the
black holes can revolve around each other (in principle) an
infinite number of times by fine-tuning the impact param-
eter around some critical value b ¼ b�.
Reference [26] observed that γc is proportional to the

number of orbits spent in this critical region and conjec-
tured that, in the ultrarelativistic limit, by fine-tuning b
around b�, the two black holes could, in principle, radiate
all of their kinetic energy. The critical exponent plays a
critical role in this conjecture, at least in the extreme mass-
ratio limit [28].
An important observation is in order: while for black

holes we can directly relate the Lyapunov exponents to the
black hole’s quasinormal modes [25], this is not possible
for topological solitons. Indeed, this computation implicitly
requires the presence of a horizon at which the scalar waves
satisfy ingoing boundary conditions. The physics is differ-
ent in the context of smooth horizonless geometries, as we
will discuss in a separate study [22].

2. Apparent size of topological stars

Topological stars, and more generically smooth topo-
logical structures in string theory, are not made of ordinary
matter, but correspond to coherent states of gravity. There is
no stress-energy tensor that can be used to define traditional
features such as their size. Their phenomenological attrib-
utes are inherent to the spacetime itself, in analogy with
horizons for black holes. The geometric size of topological
solitons is given by various topological cycles at the locus
where the spacetime ends.
Another way to associate a size to compact objects such

as black holes is to consider their shadow, i.e., their photon
shell. Topological stars have an outer photon sphere that
surrounds the object and gives them an apparent size.
Unlike black holes, this photon sphere does not delimit
sharp shadows, since geodesics that go in also come out.
The photon sphere is more appropriately seen as a region
for extreme gravitational lensing. This is similar to the
effect of black hole shadows, but with small differences,
which we will highlight in Sec. IV.

Using a simple parallax relation, we define the apparent
size δ of a topological soliton as the size of its outer photon
shell as seen by an asymptotic observer,

δ ¼ lim
r→∞

r2 _ϕ
_r
; ð24Þ

where _ϕ is fixed such that pϕ is the critical momentum
associated with the outer photon sphere. For the
Schwarzschild metric, we have the well-known result

δShadow ¼ 3
ffiffiffi
3

p
M ≈ 5.2M; ð25Þ

while for the two kinds of topological stars we find

δI ¼
r
3
2

Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rB − rS

p ¼
2

ffiffiffi
2

p �
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

6
μ2

q �
3=2

3
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

6
μ2

qr δShadow;

δII ¼
3

ffiffiffi
3

p
rS

2
¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

6
μ2

q
2

δShadow: ð26Þ

We have plotted these apparent sizes as a function of the
charge-to-mass ratio in the bottom panel of Fig. 3.
Topological stars of the first kind are slightly more compact
than topological stars of the second kind. Moreover,
topological stars always look more compact than a
Schwarzschild black hole of the same mass: the aspect
ratios range from0.66 to 0.54. This is perhaps not surprising:
increasing the charge increases the energy density and
thereby should lead to stronger gravitational attraction.

B. Photon scattering in Schwarzschild solitons

Schwarzschild topological solitons are axially symmetric
solutions, and thus the geodesic equations are not inte-
grable. Computing photon trajectories is therefore a chal-
lenge. The upside is that this implies a greater diversity of
trajectories and more novel features as compared to spheri-
cally symmetric systems.
Some techniques have been developed in the context

of four-dimensional black hole bound states (see, e.g.,
Refs. [29,30]). However, the aim of this paper is not to have
an exhaustive analytic classification of null geodesics.
We will consider only a few illustrative examples that
allow us to obtain an apparent size given by the outermost
photon shell of the solitons and its associated Lyapunov and
critical exponents.
Null geodesics are given by a two-dimensional potential,

_r2 þ r2
�
1 −

lþ 2σ

r

�
_θ2 − VSTS ¼ 0;

VSTS ¼
�
1 − lþ2σ

r

�
f

�
1 −

p2
ϕ

r2Z2sin2θ

�
; ð27Þ
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where f and Z are defined in Eq. (12). Using a numerical
approach, which we will detail in the next section, we have
observed that the solitons have an outermost photon shell at
r ∼ 8M=3 ∼ 2l. It has an ellipsoidal shape due to the axial
symmetry and is slightly flattened at its poles. Moreover,
it has similar scattering properties to the Schwarzschild
shadow: all trajectories that are slightly outside the photon
shell escape the geometries, while incoming photons
necessarily reach the end of spacetime locus r ¼ lþ 2σ
and remain trapped for a long time.
We will characterize the photon shell numerically in

Sec. IV. To obtain some analytic results, we consider the
scattering properties of this outermost photon shell and its
apparent size by focusing on some trajectories that depend
on one variable only.

1. Outer photon shell and Lyapunov exponent

Since the solitons are Z2 symmetric, θ → π − θ, the
two-dimensional potential necessarily has ∂θVSTS ¼ 0
at θ ¼ π=2. Therefore, we can study geodesics on the
equatorial plane. At θ¼ π

2
, the geodesics are governed by a

one-dimensional potential obtained from (27). We have
VSTS ¼ ∂rVSTS ¼ 0, if and only if

p2
ϕ ¼ r2Z2jθ¼π

2
; ðr − l − 2σÞ∂rðrZÞjθ¼π

2
¼ 0: ð28Þ

The function rZ, defined in (12), has a global minimum
around r ∼ 2l ∼ 8M=3 (13). Thus, there are two photon
orbits on the equator: one at the end of spacetime locus
r ¼ lþ 2σ and another at around twice the distance. The
latter corresponds to the outermost photon shell of the
solitons, restricted to the equatorial plane. Moreover,
the sign of ∂2rVSTS indicates that the outer orbit is unstable
under perturbation along the radial direction, while the
inner one is stable. This is similar to the topological star of
the second kind.
We derive the Lyapunov and critical exponents associ-

ated with the outer photon orbit, which measure the
instability in the equatorial plane. For that purpose, one
can make use of the approximate geometry introduced in
Eq. (15). Indeed, our solitons are almost indistinguishable
from the metric (15) around r ∼ 8M=3 and will therefore
have the same properties (modulo small corrections of the
order of the extra-dimension sizes). The geodesic potential
on the equatorial plane of the metric (15) is given by

Vapp ¼
�
1 − 2M

3r

�
4

�
1 − 4M

3r

�
2

�
1 −

�
1 −

4M
3r

�
2 p2

ϕ

r2

�
: ð29Þ

This potential has indeed a photon orbit at r ¼ 8M
3
satisfying

λSTS ¼
27

128M
; γcSTS ¼

4

9π
: ð30Þ

Its associated angular momentum and angular velocity are
pϕ ¼ Ω−1 ¼ 16M

3
, respectively. Therefore, the two expo-

nents and the angular velocity associated with the unstable
equatorial orbit are remarkably close to the Schwarzschild
values, since we have ðγcSTS; γcSchÞ ≈ ð0.16; 0.14Þ,
ðλSTS; λSchÞ ≈ ð0.21; 0.19Þ M−1, and ðΩ;ΩSchÞ ≈ ð0.192;
0.187Þ M−1. If the angular velocities are almost identi-
cal, the Lyapunov exponent of the soliton is slightly
larger. Therefore, the scattering properties of our neutral
smooth horizonless geometries are remarkably close to
Schwarzschild, but more unstable in the vicinity of its
outermost photon orbit.

2. Apparent size of Schwarzschild topological solitons

As in the case of topological stars, the photon shell
that surrounds the geometry gives an apparent size to
the soliton. On the equator, the photon orbit is at r ¼
8M=3≲ 3M, which is the radius of the Schwarzschild
shadow. While in the spherically symmetric case of the
topological star r is a scalar and defines the physical radius
of a sphere, this is not the case in the axially symmetric
system. Nonetheless, the apparent size of the soliton can be
defined as in Eq. (24), and we find

δSTS ¼
16

3
M ≈ 5.3M: ð31Þ

This value is once again remarkably close to the
Schwarzschild apparent size (25), and so an asymptotic
observer will barely notice the difference between the
parallax angles.
One should a priori do a similar computation out of the

equatorial plane to obtain the total size of the solitons.
Because of the complexity of the geodesic equations, this
is only possible numerically. However, we will see in the
next section that the outer photon shell is actually almost
spherically symmetric and slightly flattened at its poles,
so that the apparent size on the equatorial plane (31) is a
good approximation of the total apparent size of the
Schwarzschild topological solitons.
At first sight the metric of a Schwarzschild topological

soliton, which is well approximated by Eq. (15), is very
different from the Schwarzschild metric. However, its
outer photon shell is remarkably similar in size and
scattering properties to the shadow of a Schwarzschild
black hole. For such gravitational objects without matter
sources, the photon shell or the shadow define the size
and the effective properties of the geometry. We therefore
expect that their images will look very similar. However,
unlike the shadow, all photons that enter the soliton can
come out. This is the main difference, and in the rest
of the paper we will explore numerically how this
difference affects the scattering and imaging properties
of these objects.
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IV. IMAGING

In this section, we study null geodesic trajectories as
seen from a distant observer using numerical ray-tracing
methods. This has been done previously for other exotic
ultracompact geometries (see, e.g., [30] for a review and
[10,31] for a nonexhaustive list of recent work). We
constructed our own code since the ones in the literature
require a four-dimensional metric. Our geometries are
well captured by four-dimensional physics up to the
soliton surface. However, the extra compact dimensions
are needed to resolve the singularity of the effective four-
dimensional system in order to have a geodesically
complete spacetime.
We applied our code to four types of geometries of the

same mass M ¼ 3=4 (this choice ensures that the topo-
logical star of the second kind and the Schwarzschild
soliton both rB ∼ l ∼ 1) and also to empty flat space for
calibration. The four geometries are a Schwarzschild black
hole, the two kinds of topological stars (with charge taken
in their range of validity in Fig. 3), and the Schwarzschild
topological soliton.
Our main results are presented in Fig. 5. Moreover, since

the Schwarzschild topological soliton is not spherically
symmetric, in Fig. 6 we analyze its imaging properties for
different inclination angles of the observer with respect to
the axis of symmetry.

A. Methodology

We solve numerically the geodesic equations (16) and
impose the null condition gμν _xμ _xν ¼ 0 on the initial data.
To avoid any issues with the geodesics approaching the
degeneracy loci of the solitons, we solve the equations in
terms of the proper radial coordinate, given by ρ2 ¼ r − rB
for the topological stars and ρ2 ¼ r − l − 2σ for the
Schwarzschild topological soliton. Once the geodesic
equations are solved, we switch back to the r coordinate.

The observer is placed on a celestial sphere at a large
radius R where the spacetime is mostly flat (see Fig. 4). We
choose R ¼ 20M in most of the cases, and R ¼ 40M in one
situation that we specify in Fig. 4. We consider a camera
of 106 pixels that is pointing toward the center of the
spacetime, with an angle of view of δφ ¼ 2π=7 when
R ¼ 20M and δφ ¼ π=7 when R ¼ 40M.
The geodesics are numerically integrated backward in

time from the camera to where they originated on the
celestial sphere. More precisely, we shoot 106 geodesics
with different angles ðφ1;φ2Þ in the camera frame and
integrate them until they cross the sphere. To highlight the
gravitational effects of the backgrounds on the null geo-
desics, we track the following physical quantities:

(i) Their original position on the celestial sphere, given
by ðθ;ϕÞ. Note that the original position corresponds
to the ending position from the point of view of the
integration.

(ii) The total time elapsed along the geodesicsΔt, where
t is the time measured on the celestial sphere.

(iii) The maximum redshift maxð−gttÞ experienced by
the geodesics along the trajectory.

(iv) The coordinates of the intersection, if it exists,
between the geodesics and an effective accretion
disk centered around the geometry. The disk has a
π=3 inclination angle with respect to the plane of
the camera and the center of mass, and its radius
is ranging from ð3þ 1=3ÞM to 5M. Note that our
disk is chosen for illustrative purposes only, and it
lies below the Schwarzschild innermost stable cir-
cular orbit bound at 6M. Our objective is more a
conceptual comparison of the solitons and the
Schwarzschild metric than a realistic imaging sim-
ulation for future EHT experiments, which could be
a topic for future projects. As the solitons are very
similar to Schwarzschild, a disk located close to the
“shadow” is needed to highlight possible deviations.

FIG. 4. Illustration of the artificial background grids. The camera (gray point) is on a “celestial” sphere centered around the
gravitational objects (represented as a white ball). The sphere has a large radius with respect to the object size: R ¼ 20M for the three
first backgrounds, and R ¼ 40M for the last. For the first background, the sphere is covered by a quadricolor patch with a grid of
meridians and latitudes of angle π=20. For the second and third backgrounds, the celestial sphere is covered by pictures of the
Milky Way. For the last background, the sphere is totally black, and there is a bright “accretion disk.” The disk has a π=3 inclination
angle with respect to the camera-object plane and the disk radius is in the range ½ð3þ 1=3ÞM; 5M�. The celestial spheres have been
artificially cut here to improve the readability of the figures.
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From these quantities, we construct several illustrative
graphs.
We first highlight the distorted apparent sky seen by the

camera by dividing the celestial sphere into four quadrants,
each painted with a different color and a grid of meridians
and latitudes (leftmost panel in Fig. 4). We assign a definite
color to each pair ðθ;ϕÞ on the celestial sphere and
reconstruct the picture on the camera by taking their
associated ðφ1;φ2Þ after scattering.
Using the same method, we then produced slightly more

“artlike” pictures by covering the celestial sphere with
images of stars in the Milky way (second and third panels
in Fig. 4).
Then we simulate the picture that could be obtained

when a bright accretion disk orbits around the geometries
(right panel in Fig. 4). This is a simple illustration of what
could be seen by the Event Horizon Telescope in the future
[1,13,32]. To reduce the irrelevant gravitational lensing
effect at “short” distance, we double the radius of the
celestial sphere and divide the camera angle by two.
We plot the elapsed time of the geodesics in units of the

mass of the geometry and as a function of the position on the
camera ðφ1;φ2Þ. This estimates the chaoticity experienced
by the geodesics and the failure of the probe approximation.
Indeed, a long elapsed time generally implies a greater
chance for the photon to be absorbed by the geometry.
We also plot the maximum redshift experienced by null

particles along the trajectory normalized to the redshift
at the celestial sphere. This provides, together with the
elapsed time, a measure of how much energy a geodesic
would lose by escaping the soliton [33]. More concretely,
this allows us to go beyond the probe computation and to
estimate a “darkening factor” for highly redshifted trajec-
tories of order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−max gtt

p
[10,33].

We apply these steps to a flat spacetime for calibration
and to four typical spacetimes of identical mass M ¼ 3=4:

(i) A topological star of the first kind with rB ¼ 1.4,
rS ¼ 0.8, and charge Q ≈ 1.83 [Eq. (3)].

(ii) A topological star of the second kind with rB ¼ 1.04,
rS ¼ 0.98, and charge Q ≈ 1.75 [Eq. (3)].

(iii) A Schwarzschild topological soliton with l¼1.005,
m ¼ 0.49875, and q ¼ 8.1496. The parameters are
chosen so that we are in the Schwarzschild regime
given by Eq. (13).

(iv) A Schwarzschild black hole of mass M ¼ 3=4.

B. Results and analysis

Our results are presented in Figs. 5 and 6, which we
analyze here.

1. Gravitational lensing and photon orbits

We first discuss the lensing effect of the smooth
horizonless solitons in comparison to black holes in GR

using the quadricolor imaging and also the more artlike
pictures in Figs. 5 and 6.
As expected, topological stars have a strongly coherent

effect on the trajectories due to the integrable structure
of their geodesic equations. From the point of view of an
asymptotic observer, they are circumscribed by their
outermost unstable photon spheres. Topological solitons
are pure deformations of spacetime, with no ordinary
matter radiating out and indicating the surface of the star.
Thus, like black holes, their apparent size is determined by
the size of their photon shell as seen from an asymptotic
observer: see Eq. (26). However, unlike black holes, the
photon sphere is not a shadow: all trajectories that enter
bounce back. For topological stars, the bouncing is very
simple, so that when the trajectory reaches the end of
spacetime at r ¼ rB, it bounces back with mirror symmetry.
Therefore, topological stars behave like “spherical space-
time mirrors” for lights. However, the trajectories are still
strongly curved, so that they produce nontrivial rings where
photons rotate several times around the solitons. In each
ring, and especially in the central one, the whole spacetime
gets reflected coherently. This feature produces a “water
wave surface” effect in the artlike pictures at the bottom
of Fig. 5.
As argued in Sec. III A, the stable inner photon sphere of

the second kind of topological stars is not visible by the
observer. Therefore, both kinds of topological stars are
relatively similar from afar. Moreover, their apparent sizes
are very much comparable, as we analytically derived in
Sec. III A 2. They are also significantly smaller than the
Schwarzschild shadow, although the comparison of a
charged gravitational object with a neutral one must be
taken with a grain of salt.
On the other side, the imaging of the Schwarzschild

topological solitons can be directly compared to the
Schwarzschild pictures, since they are both neutral. As
expected from Sec. III B, the two geometries look remark-
ably similar in several aspects. The outermost photon shell
of the solitons is extremely close to the Schwarzschild
shadow. While the size has been derived analytically in the
equatorial plane in Eq. (31), we can see now that it has an
ellipsoidal shape that is smaller than the Schwarzschild
shadow along the axis of symmetry.
Moreover, the topological solitons have replaced the

inside of the shadow with regular gravitational structures
inducing chaotic scattering behaviors that are expected
from coherent black hole microstates. First, the quadricolor
screen reveals that increasingly many trajectories traveling
inside the would-be black hole shadow follow chaotic
paths. They are scattered across the celestial sphere and
form fewer coherent structures, as indicated by the larger
chaotically colored regions. This is a direct consequence of
having nonintegrable geodesic equations.
However, the picture still has some remnants of coher-

ence through multiple internal photon rings, as we can see
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FIG. 5. Gravitational lensing effects of the smooth horizonless solitons compared to flat space and a Schwarzschild black hole. From
left to right: the five different backgrounds, flat space, the two kinds of topological stars, the Schwarzschild topological soliton, and the
Schwarzschild black hole. From top to bottom: the quadricolor screen, the elapsed time, the maximum redshift experienced, the two
artlike sky screens, and the accretion disk picture.
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in Fig. 5 (and also in Fig. 6, when the inclination angle
varies). The Schwarzschild topological soliton considered
here is the most primitive neutral soliton supported by
electromagnetic flux one can build: the solutions are axially
symmetric bound states of three bubbles with a dipolar
structure. As a consequence, this dipolar symmetry has an
imprint on the scattering properties, such that some

geodesics can orbit coherently around each individual
bubble and induce the ring patterns we observe.
However, considering more generic and less symmetric
geometries will lead to more chaotic and less coherent
gravitational lensing effects.
The artlike pictures for the Schwarzschild solitons

highlight a more realistic consequence of these chaotic
features. Unlike topological stars, the geodesics that travel
inside the would-be black hole shadow get scattered away
as a blurred homogeneous cloud with a faded coherent
dipolar pattern. Therefore, they provide realistic alterna-
tives for exotic smooth regular geometries from quantum
gravity beyond black holes in GR.
In conclusion, the probe calculation confirms the analyti-

cal results. Schwarzschild topological solitons have scatter-
ing properties very close to those of Schwarzschild black
holes. These include their apparent size, scattering angles,
etcetera. However, the smooth microstructure inside the
soliton reflects the light chaotically, unlike black holes. We
will estimate the fate of these reflections by going one step
beyond the probe picture.

2. Chaoticity, redshift, and effective scrambling

The redshift and elapsed-time plots allow us to go
beyond the probe description of the scattering properties.
Indeed, when backreaction is included, light with nearly
trapped chaotic trajectories and high redshift begins to
interact with the background and lose energy. This pro-
duces an effective scrambling behavior, as expected in
black holes, but caused here by a physically regular
mechanism. The photons in these trajectories, even if they
escape within the probe calculation, are expected to be
significantly redshifted and fall outside the detectable
wavelength range [10,13,33]. Therefore, the elapsed time
and experienced redshift, combined with chaotic motions,
exhibit horizonlike characteristics in smooth topological
geometries without horizons.
In Fig. 5, we show that topological stars are once again

very coherent geometries. They do not induce a long-term
trapping to photons that go inside the geometries, except
for those concentrated on the photon orbits. The redshift
experienced is relatively small, with a maximum value of
order 10 for topological stars of the second kind. Therefore,
generic topological stars do not generate strong black-hole-
like effects on scattering photons.
For the Schwarzschild topological solitons, the photons

crossing the outermost photon shell experience extreme
redshift and time delay and therefore have horizonlike
properties. It is also remarkable how the pictures look
similar to the scattering in supersymmetric classical fuzz-
balls [10], which are known to be gravitational manifes-
tations of quantum microstates of extremal supersymmetric
black holes with very long throats.
From the second row in Fig. 6, we can see that the

regions of high elapsed time correspond to the highly

FIG. 6. Gravitational lensing effects of the Schwarzschild
topological soliton as a function of the angle between the
observer and the axis of symmetry. From left to right: the
observer is on the equatorial plane of the soliton θ ¼ π=2, on
the north-hemisphere side at θ ¼ π=3, and on the axis at θ ¼ 0.
The rows follow the same conventions as in Fig. 5, and the scale
for the elapsed time (second row) and maximum redshift
experienced (third row) are also the same.
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chaotic regions in the quadricolor pictures. They corre-
spond to complicated trajectories that are orbiting back and
forth around the bubbles forming the bound states.
As explained in Sec. II B, the Schwarzschild topological

solitons consist of a vacuum bubble having near-extremal
bubbles with opposite charges at its poles. The latter have
almost zero size and are smooth topological resolutions of
extremal black strings. Therefore, the solitons have a very
high redshift at the location of the charged bubbles (see
Ref. [15] for more details on the exact values of the redshift
in terms of the mass and extra-dimension sizes). In the third
row of Fig. 6, the high-redshift regions correspond to the
trajectories that go very close to these bubbles. Overall, the
redshift experienced by photons that go inside the outer
photon shell ranges from 102 to 104, and it can be even
higher for solutions where the charged bubbles are even
closer to their extremal limit.
Moreover, the energy loss of the photons can be well

approximated by the maximum redshift encountered along
the trajectory. In this sense, the redshift is a good approxi-
mation for the “darkness” that must be added to the probe
computation [33]. According to that property, we could
have therefore darkened the artlike pictures in Fig. 6 by a
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð−gttÞp

to obtain more realistic photon scatter-
ing images. This would make the Schwarzschild topologi-
cal solitons almost indistinguishable from a Schwarzschild
black hole, since all of the patterns inside the photon shell
would barely be visible.
Furthermore, from the EHT measurements [1], the upper

bound on the image brightness at the center of M87* is
<10%. By assuming that this implies a 10−2 redshift on
average, the Schwarzschild topological soliton presented in
this analysis is already within this bound. While it is an
interesting example of what may exist according to string
theory, it excitingly raises the prospect of horizonless
stringy alternative for Schwarzschild black holes in the
real world.

3. Accretion disk

Let us now discuss the last row of Figs. 5 and 6, where
we have done a simple simulation of the image produced
by adding a bright accretion disk orbiting around our
geometries.
For these plots, we have approximately taken into

account the effect of the redshift on the expected luminosity
of the scattered photons. More specifically, we have
reduced the luminosity by 10% for each unit of
max log10ð−gttÞ (for example, the luminosity of a photon
with maximum redshift of 104 is reduced by 40%). This is a
much smaller darkening factor than we might realistically
expect, since we should simply multiply the luminosity
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð−gttÞp

. However, the approximation gives a good
visual idea of the darkening effect, while still allowing

scattered geodesics to be discerned in the high-redshift
region of the geometries.
For a Schwarzschild black hole, the light coming from

the front of the disk goes directly to the observer, so it is
almost undistorted. In contrast, the light coming from the
other side is strongly bent. Because of this lensing, a
significant part of the light is seen at a higher inclination
and a small “tail” appears from below, outlining the shadow
of the black hole [34].
We observe the same generic properties for the solitons

due to their outer photon shell that surrounds the geom-
etries. However, as these are smooth topological geom-
etries, some of the photons are reflected in a nontrivial way
by passing inside the topological solitons and bouncing off.
For topological stars, the reflections are very coherent
circles, as if the light had been reflected by a spherical
spacetime mirror. For the Schwarzschild topological soli-
tons, most of the light that goes in is chaotically scattered,
forming a residual glow from inside the soliton. Some
trajectories, however, still follow the coherent dipolar
patterns formed by the bound states, inducing coherent
ring reflections from the inside.
Remarkably, the image of the Schwarzschild topological

soliton is once again almost indistinguishable from the
image of a Schwarzschild black hole. This similarity would
have been even more striking if we had darkened the
pictures by a more realistic factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð−gttÞp

. The
main difference are the “inner reflections” in the solitons.
This is a remarkable feature since the metrics are very
different, even outside the Schwarzchild horizon. However,
since their outermost photon shell is very much comparable
in size and in terms of Lyapunov exponents, the two classes
of geometries have very similar gravitational lensing
properties. Being able to differentiate them with EHT will
require a great improvement in resolution to detect more
precisely what is scattered from inside the would-be black
hole shadow [32].
The Schwarzschild topological solitons are therefore the

first compelling nonsupersymmetric and nonextremal geom-
etries that are manifestations of quantum gravity states of
matter and that have scattering properties very similar to
Schwarzschild. They are the first bound states of strings and
branes in string theory that demonstrate the existence of a
viable alternative to astrophysical black holes in GR.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have analyzed the properties of four-
dimensional string-theoretic horizonless topological soli-
tons that are nonextremal and can have macroscopic
properties comparable to astrophysical black holes.
These new objects constructed by two of the authors
provide a compelling case for gravitational solitons in
the real world from string theory.
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We considered two types of geometries. The first,
topological stars, are simple spherically symmetric geom-
etries that have a nonzero dark charge [14]. The second,
Schwarzschild topological solitons, are neutral axially
symmetric bound states of topological stars that can
have the same mass and charge as four-dimensional
Schwarzschild black holes [15].
We focused on the physics of null geodesics and light

scattering in these backgrounds, highlighting differences
and similarities with ordinary black hole solutions in GR.
Topological solitons are coherent states of gravity that
emerge from dynamics of extra dimensions, which cannot
be described in terms of any standard dynamics of matter.
However, they still scatter light nontrivially, and therefore
they have gravitational lensing signatures that could be
probed by future experiments.
Just like Schwarzschild black holes, topological solitons

have an outer photon shell that surrounds the geometries
and can be used to define their apparent size. Moreover, this
photon shell is unstable, and we have derived the associated
Lyapunov and critical exponents. For topological stars
these exponents depend on its charge, but they are of
the same order as Lyapunov and critical exponents of
Schwarzschild black holes. However, we have shown that
Schwarzschild topological solitons have an outermost
photon shell with a Lyapunov exponent and a size
remarkably similar to the Schwarzschild shadow. These
similarities are remarkable, taking into account that the two
metrics are very different.
We have pushed the comparison further by building our

own ray-tracing code to study numerically the light-
scattering properties of these solitons. Through various
illustrative plots, we have demonstrated that topological
stars are highly coherent gravitational lenses that can be
described as spacetime mirrors. Despite having a photon
shell, they do not have shadows: photons that “go in”
generally bounce off without experiencing high redshifts or
large time delays. However, scattering in Schwarzschild
topological solitons is much more complex: light that
enters the photon shell of the solitons can have strong
chaotic behavior, very high redshift, and large elapsed time.
These properties are expected to produce an effective
scrambling behavior and a phenomenological horizon
effect from regular gravitational structures. All together,
the Schwarzschild topological solitons have scattering
properties very similar to Schwarzschild black holes.
The main difference will be a residual faded glow that
emerges from inside the would-be shadow.
The present project has shown that topological solitons

from quantum gravity are relevant to describe real-world
physics and as macroscopic alternatives to black holes.
This motivates further studies to better understand to what

extent they are similar or different from black holes. The
presence of smooth topological microstructures beyond
the shadow should also have observational implications
for the tidal stress that geodesics encounter when passing
through the solitons [35], for quasinormal mode spectra
[11,22,23], and potentially also for gravitational-wave
echoes [13,36].
Moreover, our computations have highlighted the pres-

ence of stable inner photon rings deep inside the topologi-
cal microstructures. Even if they are not reachable from
outside the outer photon shell, these trapped surfaces,
where matter can accumulate, radiate, and interact with
the soliton, are associated with nonlinear instabilities
[37,38]. In four-dimensional GR, they can lead to migration
to nonultracompact configurations or collapse to a black
hole [37,39]. In string theory, additional quantum gravity
degrees of freedom can induce geometric transitions and
quantum tunnelings, so that these states may scramble to
less coherent and more generic quantum states. Thus, the
fate of the instability is still to some finite and nonsingular
states. While in the classical limit, it is expected that such
generic states will be more and more indistinguishable from
black holes, our work demonstrates that residual observable
differences might remain.
The accretion disk images we obtain in this paper

were produced to highlight theoretical differences between
black holes and topological solitons, not to be experimen-
tally realistic. In the future, we would like to provide a
more experimentally relevant analysis by modeling plasma
orbiting topological solitons with full radiative transfer
methods [21,40].
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