
Particle motion in the Einstein-Euler-Heisenberg rotating black hole spacetime

Daniel Amaro ,1,2,* Claus Lämmerzahl,1,† and Alfredo Macías 2,‡

1ZARM, University of Bremen, Am Fallturm, 28359 Bremen, Germany
2Physics Department, Universidad Autónoma Metropolitana–Iztapalapa,

PO. Box 55–534, C.P. 09340, CDMX, México
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We study the motion of charged test particles and photons in the gravitational field of the rotating
electrically charged Einstein-Euler-Heisenberg black hole solution. This describes a nonlinear electro-
magnetic generalization of the Kerr-Newman solution, which endows the vacuum with an effective
dielectric constant. The orbits of photons are analyzed by means of the effective Plebański pseudometric
related to the geometrical metric and to the electromagnetic energy-momentum tensor. The QED induced
modifications of the shape of the shadow are presented and discussed.
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I. INTRODUCTION

Quantum electrodynamical (QED) vacuum corrections to
the Maxwell-Lorentz theory can be accounted for by an
effective nonlinear theory of the electromagnetic field
derived by Euler and Heisenberg (EH) [1,2] using the
Dirac electron-positron theory. Schwinger reformulated this
result within a gauge invariant formulation of QED [3].
When the electric fields are stronger than the critical value,
Dc ≡m2c3=ðeℏÞ, spontaneous electron-positron pair pro-
duction takes place, lowering the vacuum energy. The
vacuum is treated as a specific type of medium, the
polarizability and magnetizability properties of which are
determined by clouds of virtual charges surrounding the real
currents and charges [4]. This effect can be interpreted as an
effective dielectric constant of the vacuum. This theory is a
valid physical theory [5], and a possible direct measurement
of the EH induced effects has been proposed by Brodin
et al. [6].
The gravitational collapse of a star to a Kerr-Newman

(KN) black hole, with all the aspects of nuclear physics
and electrodynamics involved is a complex problem in
astrophysics [7]. Astrophysical black holes are more likely
to be neutral, but during gravitational collapse there is
expected to be a process of charge separation, when the
gravitational energy of the collapsing core is transformed
into electromagnetic energy and eventually in electron-
positron pairs created by vacuum polarization. Such QED
effects have been studied by Ruffini et al. [8–11] in the
powering mechanism of gamma-ray bursts by means of
black hole energy extraction and using observational data.

The observation of stars, in particular of the S2 star, around
SgrA* [12] as well as the direct observation of gravita-
tional waves [13] give overwhelming evidence for the
existence of black holes. Moreover, also the observations
of a shadow of the compact object at the center of the
galaxy M87 as well as SgrA* at the center of the
Milky Way reported in 2019 and 2022, respectively, by
the Event Horizon Telescope team [14] are perfectly
explained through the existence of black holes.
Ruffini et al. [15] considered the contributions of the EH

effective Lagrangian in order to formulate the Einstein-
Euler-Heisenberg theory (EEH) and studied the static
spherically symmetric black hole solutions endowed with
electric and magnetic charges. They reduced the problem to
screened Reissner-Nordström solutions, where the non-
linear corrections were collected in the screening terms of
the electromagnetic charges. Another approach was studied
by Yajima et al. [16], in which the EH Langrangian is
considered as the low-energy limit of the Born-Infeld
theory [17], and the nonlinearity parameters are treated
as free parameters.
Plebański introduced a class of nonlinear electrodynamic

theories [18], which contains Born-Infeld and EH nonlinear
electrodynamics (NLED) as special cases [4]. In the
framework of the EEH theory, Amaro et al. [19] derived
an electrically charged static black hole solution in terms of
the Plebański dual variables and studied the trajectories of
test particles and the shadow of the black hole. Furthermore,
Bretón et al. [20] followed the QED interpretation of Ruffini
et al. [15] for obtaining the screened KN black hole
solution. They used the ansatz for a Kerr-like metric and
for the electromagnetic Plebański dual variables, considered
the symmetries for Petrov type-D metrics, and solved
the Einstein equations. The nonlinearity introduces virtual
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charges that lead to a screening of the real charges and also
affect the geometry of the underlying spacetime.
In this paper we first analyze how the EH modifications

affects the charged particle motion: we also consider a
screened charge for the test particle and discuss the
resulting structure of the effective potential for its motion.
Second, we study photon propagation in the spacetime
endowed with EH NLED as well as the modifications of the
shape of the shadow of the black hole. The outline of the
paper is as follows: in Sec. II, the EEH theory and its
formulation in terms of the dual Plebański variables are
revisited. In Sec. III, the EEH rotating electrically charged
black hole solution is reviewed. In Sec. IV, the charged
particle motion is studied. In Sec. V, the light geodesics and
the shadow of the black hole are analyzed. Finally, the
summary and conclusions of the work are presented
in Sec. VI.

II. THE EINSTEIN-EULER-HEISENBERG
THEORY

We revisit the basic features of the Einstein theory
coupled with the EH NLED [1] in the formalism introduced
by Plebański [18]. The action for Einstein gravity mini-
mally coupled to a linear or nonlinear Maxwell theory
reads [1,21]

W ¼ 1

16πG

Z
M4

d4x
ffiffiffiffiffiffi
−g

p
RþWMðX; YÞ; ð1Þ

where R is the Ricci curvature scalar, g the determinant
of the metric gμν, and G the Newton’s constant, which we
will take G ¼ 1. The variables X and Y are the only two
independent relativistic invariants constructed from the
Maxwell field in four dimensions, i.e.,

X ¼ 1

4
FμνFμν; Y ¼ 1

4
Fμν

�Fμν: ð2Þ

Fμν ¼ ∂νAμ − ∂μAν is the Faraday tensor and Aμ the
electromagnetic four potential. Its dual is defined as
�Fμν ¼ 1

2
ffiffiffiffi−gp ϵμνσρFσρ, with ϵμνσρ being the completely

antisymmetric tensor that satisfies ϵμνσρϵ
μνσρ ¼ −4!. The

components of Fμν are the electric field E, and the
magnetic field strength B. Then the two invariants read
X ¼ ðE2 −B2Þ=2 and Y ¼ −E · B.
In the case of a EH NLED we have

WM ¼ 1

4π

Z
M4

d4x
ffiffiffiffiffiffi
−g

p �
−X þ 2α2

45m4
e
f4X2 þ 7Y2g

�
; ð3Þ

where me is the electron mass and α the fine structure
constant.
The EH field equations derived from this action (1)

are more easily written in terms of the Legendre dual

description of NLED [18], which involves the introduction
of the Plebański tensor Pμν defined by

dLðX; YÞ ¼ −
1

2
PμνdFμν; ð4Þ

where LðX; YÞ is the Lagrangian density for the NLED. In
general it is given by

Pμν ¼ −ðLXFμν þ LY
�FμνÞ; ð5Þ

where subscripts on L denote differentiation. The Plebański
tensor Pμν coincides with the Faraday tensor Fμν for the
linear Maxwell theory. In our case it reads

Pμν ¼ Fμν −
4α2

45m4
e
f4XFμν þ 7Y�Fμνg: ð6Þ

The components of Pμν are given by the electric field
strength D and the magnetic field H. Accordingly, (6) can
be interpreted as constitutive or material relations of the
EH NLED.
We denote by s̃ and t̃ the two independent invariants in

terms of the dual Plebański variables Pμν

s̃ ¼ −
1

4
PμνPμν; t̃ ¼ −

1

4
Pμν

�Pμν; ð7Þ

where the dual tensor is given by �Pμν ¼ 1
2
ffiffiffiffi−gp ϵμνσρPσρ. In

terms of D andH the two invariants read s̃ ¼ ðD2 −H2Þ=2
and t̃ ¼ −D ·H. The structural function Hðs̃; t̃Þ is given by

Hðs̃; t̃Þ ¼ −
1

2
PμνFμν − L; ð8Þ

which for the EH theory (up to terms of higher order in α)
reduces to

Hðs̃; t̃Þ ¼ s̃ −
2α2

45m4
e
f4s̃2 þ 7t̃2g: ð9Þ

To obtain the original variables we use the constitutive
relations

Fμν ¼ Hs̃Pμν þHt̃
�Pμν ¼ Pμν −

16α2

45m4
e

�
s̃Pμν þ

7

4
t̃�Pμν

�
;

ð10Þ

where the subscripts on H denote differentiation.
The equations of motion for the EEH theory are the

Faraday, the Maxwell, and the Einstein equations [22]:

d�F ¼ 0; dP ¼ 0; Rμν −
1

2
Rgμν ¼ 8πTμν; ð11Þ

AMARO, LÄMMERZAHL, and MACÍAS PHYS. REV. D 107, 084040 (2023)

084040-2



with the energy-momentum tensor

Tμν ¼
1

4π
½Hs̃Pμ

βPνβ þ gμνð2s̃Hs̃ þ t̃Ht̃ −HÞ�: ð12Þ

Fμν and �Pμν are curls and then can be written as a gradient
of an electromagnetic potential. The energy-momentum
tensor for the EH NLED is given by

Tμν ¼
1

4π

��
1 −

16α2

45m4
e
s̃

�
Pμ

βPνβ

þgμν

�
s̃ −

2α2

45m4
e
f12s̃2 þ 7t̃2g

��
: ð13Þ

III. ROTATING EINSTEIN-EULER-HEISENBERG
BLACK HOLE

The rotating electrically charged EEH black hole sol-
ution has been derived in [20]. Using the ansatz for a Kerr-
like spacetime with the EH NLED as a source, the obtained
spacetime appears as a screened KN solution.
In Boyer-Lindquist coordinates, the potential of the

electromagnetic part of EEH for the dual Plebański
variables is given by the ansatz

B ¼ Bαdxα ¼ −
Qa cos θ

Σ

�
dt −

ðr2 þ a2Þ
a

dϕ

�
: ð14Þ

The dual Plebański 2-form �P ¼ dB reads

�P ¼ 2Q
Σ2

ar cos θdr ∧ ðdt − asin2θdϕÞ

þ Q
Σ2

ðr2 − a2cos2θÞ sin θdθ ∧ ½adt − ðr2 þ a2Þdϕ�:
ð15Þ

The components satisfy the relations �Prϕ ¼ asin2θ�Ptr and
a�Pθϕ ¼ ðr2 þ a2Þ�Ptθ. The Plebański 2-form is

P ¼ Q
Σ2

ðr2 − a2 cos2 θÞdr ∧ ðdt − a sin2 θdϕÞ

þ Q
Σ2

ar sin 2θdθ ∧ ½ðr2 þ a2Þdϕ − adt�: ð16Þ

The components are also related by Prϕ ¼ a sin2 θPtr and
aPθϕ ¼ ðr2 þ a2ÞPtθ. From (7) the invariants s̃ and t̃
reduce to

s̃ ¼ Q2

2Σ2
−
4M2r2 cos2 θ

Σ4
; ð17Þ

t̃ ¼ 2Qr cos θ
Σ4

Mðr2 − a2 cos2 θÞ; ð18Þ

where the rotationally induced magnetic momentM ¼ Qa
was introduced [23].
Since the components Bμ are given by (14), then we can

compute the components Aμ of the electromagnetic poten-
tial, using the constitutive relations (10). These equations
relate Pμν and �Pμν with Fμν ¼ ∂νAμ − ∂μAν, and differ
from those for the linear Maxwell case. Hence, the
following solution for A ¼ Aνdxν can be derived

A ¼
�
1 −

10α

225π
D2

Q þ 10α

225π
H2

Q þ 60α

225π
H2

Q

H2
Q

D2
Q

�

×
Qr
Σ

½dt − asin2θdϕ�; ð19Þ

where the square of the radial components of the electro-
magnetic fields read

D2
Q ¼ Q2

Σ2D2
c
; H2

Q ¼ M2 cos2 θ
Σ3D2

c
; ð20Þ

where Dc ¼ m2
ec3=ðeℏÞ is the critical field, and where we

used the relation 16α2=ð45m4
eÞ ¼ 20α=ð225πD2

cÞ. For
α ¼ 0, the usual electromagnetic potential for the KN
black hole solution is recovered.
Moreover, only two contravariant components of the

energy-momentum tensor Tμν for the EH NLED (13) are
independent

8πTrr¼−
ΔQ2

Σ3

�
1−

16α2

45m4
e
s̃

�
−
16α2

45m4
e

Δ
Σ

�
s̃2þ7

4
t̃2
�
; ð21Þ

8πTθθ ¼ Q2

Σ3

�
1 −

16α2

45m4
e
s̃

�
−

16α2

45m4
e

1

Σ

�
s̃2 þ 7

4
t̃2
�
; ð22Þ

while, due to the underlying symmetry [20], the rest of
the nonvanishing components are linear combinations of
these [20]:

Ttt ¼ −
ðr2 þ a2Þ2

Δ2
Trr þ a2 sin2 θTθθ; ð23Þ

Ttϕ ¼ −
ðr2 þ a2Þa

Δ2
Trr þ aTθθ; ð24Þ

Tϕϕ ¼ −
a2

Δ2
Trr þ 1

sin2 θ
Tθθ: ð25Þ

According to the QED interpretation of the EH NLED,
the vacuum polarization acts as clouds of virtual charges
screening the real electric charge and thus the rotationally
induced magnetic moment, affecting the geometry only
through the screened values of the real charges [15].
Therefore, in [20] the effects of the vacuum polarization
are nearly constant and affect only the electric charge of the
EH NLED as in flat spacetime [7]. The solution to the
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Einstein field equations is the rotating EEH black hole
spacetime

ds2 ¼ −
�
1 −

2Mr − Q̃2

Σ

�
dt2 þ Σ

Δ
dr2

−
ð2Mr − Q̃2Þ2a sin2 θ

Σ
dtdϕþ Σdθ2

þ
�
r2 þ a2 þ ð2Mr − Q̃2Þa2 sin2 θ

Σ

�
sin2 θdϕ2;

Σ ¼ r2 þ a2 cos2 θ;

Δ ¼ r2 þ a2 − 2Mrþ Q̃2; ð26Þ

which represents a screened KN-like black hole. The
screened charge of the black hole is defined as

Q̃2 ¼ Q2

�
1 −

5α

225π

�
D2

Q − 4H2
Q

�
1 −

a2cos2θ
Σ

�

×

�
7 − 12

a2cos2θ
Σ

þ 12
a4cos4θ

Σ2

���
: ð27Þ

From the condition Δ ¼ 0, the event horizon rþ and the
inner horizon r− are given by

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 − Q̃2

q
; ð28Þ

which is an example of a quantum effect changing the
geometry, as mentioned above. The ergoregion is the region
rþ < r < rst between the event horizon and the static limit
surface rst defined by

rst ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − Q̃2 − a2 cos2 θ

q
: ð29Þ

Hence, the features of a KN black hole are recovered, but
with a screened black hole charge (27). The static screened
Reissner-Nordström solution is recovered for a ¼ 0 [19].

IV. TRAJECTORIES OF CHARGED TEST
PARTICLES

The Lagrangian for a charged test particle which
interacts with an electric field is given by [24]

L ¼ 1

2
gμν _xμ _xν − qAμ _xμ; ð30Þ

where q is the electric charge of the test particle, and the dot
denotes differentiation with respect to the affine parameter
τ. Its coupling with the electromagnetic field is exactly the
same in NLED [18]. The Hamiltonian is given by the
Legendre transformation H ¼ πμ _xμ − L, with the canoni-
cal momentum πμ ¼ gμν _xν − qAμ. It reads [23]

H ¼ 1

2
gμνðπμ þ qAμÞðπν þ qAνÞ: ð31Þ

Since it does not depend explicitly on τ, it is a constant of
motion, H ¼ −μ2=2, determined by the normalizing con-
dition, i.e., μ2 ¼ −gμν _xμ _xν ¼ 1 for timelike geodesics.
From the Hamilton’s equation dxμ=dτ ¼ ∂H=∂πμ, one
obtains the constants of motion,

E ¼ −πt ¼ −gtt_t − gtϕ _ϕþ qAt; ð32Þ

L ¼ πϕ ¼ gtϕ_tþ gϕϕ _ϕ − qAϕ: ð33Þ

In order to determine the additional constant of motion, i.e.,
the Carter constant C [25], the Hamilton-Jacobi equation

−2
∂S
∂τ

¼ gμν
�
∂S
∂xμ

þ qAμ

��
∂S
∂xν

þ qAν

�
; ð34Þ

must be solved. The components Aμ are given by (19). The
charge of the test particle will also be screened. In terms of
At, (34) can be reduced to

−2
∂S
∂τ

¼ −
1

ΣΔ

�
ðr2 þ a2Þ ∂S

∂t
þ a

∂S
∂ϕ

þ qΣAt

�
2

þ 1

Σsin2θ

�
asin2θ

∂S
∂t

þ ∂S
∂ϕ

�
2

þ 1

Σ

�
Δ
�
∂S
∂r

�
2

þ
�
∂S
∂θ

�
2
�
: ð35Þ

In order to get the screened value of the test charge we
require

qΣAt ¼
�
1 −

10α

225π
D2

Q þ 10α

225π
H2

Q þ 60α

225π
H2

Q

H2
Q

D2
Q

�
qQr;

¼ q̃ Q̃ r; ð36Þ

where Q̃ is the screened black hole charge (27), and q̃ is the
screened charge of the test particle

q̃2 ¼ q2
�
1 −

5α

225π

�
3D2

Q þ 4H2
Q

�
1 −

a2cos2θ
Σ

�

×

�
13 − 12

a2cos2θ
Σ

þ 12
a4cos4θ

Σ4

���
; ð37Þ

which depends on DQ and HQ. It is induced by the electric
field generating the clouds of virtual charges.
In order to be able to separate variables, we use the

separation ansatz

S ¼ 1

2
μ2τ − Etþ Lϕþ SrðrÞ þ SθðθÞ; ð38Þ
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with the constants of motion μ, E, and L. The solutions for
Sr and Sθ read

SrðrÞ ¼
Z

r
ffiffiffiffiffiffiffiffiffi
RðrÞp
Δ

dr; SθðθÞ ¼
Z

θ ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
dθ; ð39Þ

where the functions R, P, and Θ are defined by

RðrÞ≡ P2ðrÞ − Δðμ2r2 þ KÞ; ð40Þ

PðrÞ≡ðr2 þ a2ÞE − aL − q̃ Q̃ r; ð41Þ

ΘðθÞ≡ C − ½L2 csc2 θ þ a2ðμ2 − E2Þ� cos2 θ; ð42Þ

with the modified Carter constant K ≡ C þ ½L − aE�2. In
this way, the equations of motion become

Σ_t ¼ ðr2 þ a2Þ
Δ

PðrÞ þ afL − aE sin2 θg; ð43Þ

ðΣ_rÞ2 ¼ RðrÞ; ð44Þ

ðΣ_θÞ2 ¼ ΘðθÞ; ð45Þ

Σ _ϕ ¼ a
Δ
PðrÞ þ fL − aE sin2 θg

sin2 θ
: ð46Þ

These equations of motion are equivalent to those for the
KN case, with the charges replaced by the screened charges
(27) and (37). The complete description of the charged
particle motion in KN spacetimes, as well as the analytical
solutions in terms of Weierstrass elliptic functions, were
presented in detail by Hackmann et al. [26]. Their solutions
and classification can be taken over for the EEH case by
replacing Q and q with Q̃ and q̃.
The turning point of an orbit is given by the condition

_r ¼ 0, which from (44) corresponds to R ¼ 0. Following
Grunau et al. [27], one defines the effective potential as
solution of the quadratic polynomial in E, i.e.,

0 ¼ ðΣ_rÞ2 ¼ RðrÞ ¼ ðE − Vþ
effÞðE − V−

effÞ; ð47Þ

with

V�
eff ¼

1

ðr2 þ a2Þ
�
aLþ q̃ Q̃ r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2r2 þ KÞΔ

q �
: ð48Þ

If the charges have the same sign, q̃ Q̃ > 0, then the
effective potential Vþ

eff is always positive. For q̃ Q̃ < 0,

FIG. 1. The potentials V�
eff as a function of r=M for the KN case (dashed line) and the rotating EEH one (continuous line). The figure

on the rhs shows the enlargement of the corresponding region of the figure on the lhs. For the figures on the top, q̃ is the screened value at
the radius of the minimum of the KN potential, while for those on the bottom, q̃ is the screened value at the maximum. The EH effect at
the maximum is more visible since it lays at a smaller value of r. The other parameters are M ¼ 1 × 104M⊙, Q ¼ 0.9M, a ¼ 0.3M,
μ ¼ 1, L ¼ 0.8M, K ¼ 4M2, and q ¼ 0.5.
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both effective potentials V�
eff may take negative values,

which corresponds to negative values of the energy. At
infinity, the limit value of the effective potential is given
by limr→∞ V�

eff ¼ �1.
Both effective potentials V�

eff coincide at the horizons
r� where Δ ¼ 0. The event horizon rþ bounds an inner
region incommunicable to an asymptotically flat world
outside [28], and, in principle, a particle crossing the
horizon would migrate to a different world. Nevertheless,
the region between the two horizons, r− < r < rþ, is not
part of the domain of (48), since here Δ < 0, which also
implies that R > 0. There cannot be any turning points
between the horizons, and there is a turning point at a
horizon only if Pðr�Þ ¼ 0.
Figures 1 to 3 combine both effective potentials V�

eff as
functions of r for different values of the parameters. The
gray areas mark physically forbidden regions. There is a
potential barrier located in the interval 0 < r ≤ r−, while
outside the event horizon, in the region r > rþ, the
existence of maxima and minima of the potential implies
the possibility for stable and unstable bound orbits. An
example is given in Fig. 1.
Due to the screening of the test charge, the EEH effective

potential lays below the KN one, as can also be seen in
Fig. 1. If there is a charged test particle reaching a bound
orbit in the region near the minimum of the KN potential
and virtual charges are generated by the charge of the black
hole, then the test charge will follow the orbit described by
the EEH spacetime, with both q̃ and Q̃ being the screened
values at the radius of this minimum. Something similar
would happen if the test charge reaches the maximum, but
the effect would be increased.
The screening on the effective potential for different

values of the mass M of the black hole is presented in
Figs. 2 and 3. The effect is more visible for smaller values
of M. The potential can be lowered enough such that the
maximum and minimum of the potential disappear. In this
case, the test charge would not reach a bound orbit outside
the event horizon. The latter is shown in Fig. 2. An example
for a bigger value of the test charge is given in Fig. 3.

V. THE LIGHT GEODESICS

In linear Maxwell-Lorentz electrodynamics, the discon-
tinuities of the field propagate according to the equation for
the characteristic surfaces, gμνS;μS;ν ¼ 0, which in standard
optics is known as an eikonal equation. The corresponding
linear photons travel along null geodesics of the geomet-
rical metric gμν.
In EH NLED, photons propagate along null geodesics of

the effective Plebański pseudometric γμν [18] given by

γμν ¼ gμν þ 80α

225D2
c
Tμν; ð49Þ

which differs from the geometrical metric gμν, since it
contains the energy-momentum tensor as well. The propa-
gation equation for the nonlinear electromagnetic field
discontinuities reads

γμνS;μS;ν ¼ 0; ð50Þ

where S;μ are the normal vectors to the characteristic
surface S. Therefore, the energy-momentum tensor Tμν

of the EH nonlinear field is responsible for the fact that
these surfaces are not null surfaces of the geometrical
metric.

A. The equations of motion

The null trajectories of nonlinear photons are then
obtained from the Hamilton-Jacobi equation

∂S
∂τ

¼ −
1

2
γμν

∂S
∂xμ

∂S
∂xν

; ð51Þ

written in terms of the effective Plebański pseudometric (49).
It is proposed a Hamilton function with the form of (38), and
the constants of motion E, L, and C. For light rays, the
normalizing condition reads μ2 ¼ −γμν _xμ _xν ¼ 0, for null
geodesics. The separation of variables for the Hamilton-
Jacobi equation results in the solutions

FIG. 3. The potentials V�
eff as a function of r=M for the KN

case (dashed line) and the EEH one (continuous line), with q̃ the
screened value at the minimum of the KN potential and for a
bigger value of the test charge q ¼ 5. For the figure on the lhs,
M ¼ 4 × 104M⊙, while for that on the rhs, M ¼ 2 × 104M⊙.
The other parameters are Q ¼ 0.9M, a ¼ 0.3M, μ ¼ 1,
L ¼ 0.8M, and K ¼ 4M2.

FIG. 2. The potentials V�
eff as a function of r=M for the KN case

(dashed line) and the EEH one (continuous line), with q̃ the
screened value at the minimum of the KN potential. For the figure
on the lhs, M ¼ 2 × 103M⊙, while for that on the rhs,
M ¼ 1 × 103M⊙. Due to the screening effect on the charges,
there is no maxima and minima. The other parameters are
Q ¼ 0.9M, a ¼ 0.3M, μ ¼ 1, L ¼ 0.8M, K ¼ 4M2, and q ¼ 0.5.
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SrðrÞ ¼
Z

r
�
1þ 10α

225π
D2

Q

� ffiffiffiffiffiffiffiffiffi
RðrÞp
Δ

dr; ð52Þ

SθðθÞ ¼
Z

θ ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
dθ; ð53Þ

where the light rays functions R, P, and Θ are defined by

RðrÞ≡
�
1 −

20α

225π
D2

Q

�
P2ðrÞ − KΔ; ð54Þ

PðrÞ≡ðr2 þ a2ÞE − aL; ð55Þ

ΘðθÞ≡ C − ½L2 csc2 θ − a2E2� cos2 θ: ð56Þ

Again we introduce a modified Carter constant K≡
C þ ½L − aE�2. Then the equations of motion read

Σ_t ¼
�
1 −

10α

225π
D2

Q

� ðr2 þ a2Þ
Δ

PðrÞ

þ
�
1þ 10α

225π
D2

Q

�
afL − aEsin2θg; ð57Þ

ðΣ_rÞ2 ¼ RðrÞ; ð58Þ

ðΣ_θÞ2 ¼
�
1þ 20α

225π
D2

Q

�
ΘðθÞ; ð59Þ

Σ _ϕ ¼
�
1 −

10α

225π
D2

Q

�
a
Δ
PðrÞ

þ
�
1þ 10α

225π
D2

Q

� fL − aEsin2θg
sin2θ

: ð60Þ

These equations differ from those for massless particles,
namely (43)–(46), for μ ¼ 0 and q ¼ 0. It is worthwhile to
mention the fact that the Hamilton-Jacobi equation can be
completely separated for EH quasiconstant fields. The
electric field DQ ≡Q2=ðD2

cΣ2Þ is considered as a constant
on the photon region.
From (58) we obtain the conditions under which the light

rays reach the photon region at r ¼ rc, i.e., _r ¼ 0 and
̈r ¼ 0, which correspond to the conditions RðrcÞ ¼ 0 and
R0ðrcÞ ¼ 0. Under these conditions, the constants η≡ L=E
and χ ≡ C=E2 are given by

η ¼ r3c − 3Mr2c þ ða2 þ 2Q̃2
cÞrc þMa2

aðM − rcÞ
; ð61Þ

χ ¼ r2c
a2ðrc −MÞ2

�
4Mrcða2 þ Q̃2

cÞ − 4Q̃2
cΔc

−r2cðrc − 3MÞ2 − 20α

225π
D2

QðΣcKNÞð4a2ΔcÞ
�
; ð62Þ

where Δc ¼ r2c þ a2 − 2Mrc þ Q̃2
c. The screening of the

charge is evaluated at the radial distance of the KN photon
region rcKN

Q̃2
c ¼ Q2

�
1 −

5α

225π

�
D2

QðΣcKNÞ − 4H2
QðΣcKNÞ

×

�
7 − 12

a2cos2θcKN
ΣcKN

þ 12
a4cos4θcKN

Σ2
cKN

�

×

�
1 −

a2cos2θcKN
ΣcKN

���
; ð63Þ

where the electric field DQðΣcKNÞ ¼ Q2=ðD2
cΣ2

cKNÞ, the
magnetic one HQðΣcKNÞ ¼ M2 cos2 θcKN=ðD2

cΣ3
cKNÞ, and

ΣcKN ¼ r2cKN þ a2 cos2 θcKN . From (61) we obtain the poly-
nomial of third order

r3c − 3Mr2c þ
h
aðaþ ηÞ þ 2Q̃2

c

i
rc þ aMða− ηÞ ¼ 0: ð64Þ

It has either three real roots or one real root and two
complex roots. The real roots can have multiplicity two or
three, and be either positive or negative. Following
Cardano’s method, we determine the values of the param-
eters for which the polynomial has positive real zeros. The
exact solutions read

A > 0; B ≤ 1∶rc ¼ M þ 2
ffiffiffiffi
A

p
cos

�
1

3
cos−1B

�
;

A > 0; B > 1∶rc ¼ M þ 2
ffiffiffiffi
A

p
cosh

�
1

3
cosh−1B

�
;

A < 0∶ rc ¼ M − 2
ffiffiffiffiffiffiffi
jAj

p
sinh

�
1

3
sinh−1jBj

�
;

ð65Þ

where the functions A and B are defined by

A≡M2 −
1

3

h
aðaþ ηÞ þ 2Q̃2

c

i
; ð66Þ

B≡M
	
M2 − a2 − Q̃2

c



A−3=2: ð67Þ

Besides the black hole parameters, they depend on the
constant η only. Thus, after substituting the solutions (65)
into (62), we obtain a parametric function χðηÞ. This
method was introduced by Cunha and Herdeiro [29].

B. The shadow of the black hole

Following Bardeen et al. [30], we have to consider a set of
local observers who “rotate with the geometry,” called
locally nonrotating frames (LNRFs). The observer’s
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worldlines are perpendicular to the hypersurfaces t ¼ t0, and
his/her coordinates are r ¼ r0, θ ¼ θ0, and ϕ ¼ ωtþ ϕ0,
where t0, r0, θ0, and ϕ0 are constants. Each observer has his/
her locally Minkowskian coordinate basis, an orthonormal
tetrad. In the case of an axially symmetric spacetime (26),
the tetrad for the LNRF is given by

eðtÞ ¼
ffiffiffiffiffiffiffiffi
−gtt

p ∂

∂t
−

gtϕffiffiffiffiffiffiffiffi
−gtt

p ∂

∂ϕ
;

eðrÞ ¼
ffiffiffiffiffiffi
grr

p ∂

∂r
; eðθÞ ¼

ffiffiffiffiffiffi
gθθ

q
∂

∂θ
;

eðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕ −

ðgtϕÞ2
gtt

s
∂

∂ϕ
: ð68Þ

In this case, since the tetrad is carried by the observer, the
geometrical metric has to be used. The Boyer-Lindquist
components of the LNRF basis vector are given by
eðiÞ ¼ eμðiÞ

∂

∂xμ.
Since in NLED the momentum of the light rays is

calculated by means of the effective Plebański pseudo-
metric (49), we have pμ ¼ γμν _xν. Hence, on this basis the
momentum is obtained from

pðiÞ ¼ ηðiÞðjÞeμðjÞγμν _x
ν; ð69Þ

where ηðiÞðjÞ ¼ diagf−1; 1; 1; 1g is the Minkowski metric.
The celestial coordinates in the image plane seen by an
observer are given by ðx; yÞ ¼ ð−rpðϕÞ=pðtÞ; rpðθÞ=pðtÞÞ0,
where the sign on x stands for a black hole rotating from
left to right as seen by the observer [31], and where the
subindex zero denotes the observer’s location ðr0; θ0Þ. For
distant observers, r0 → ∞, they can be reduced to

x ¼ −
η

sin θ0
; ð70Þ

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ − ðη2 csc2 θ0 − a2Þ cos2 θ0

q
: ð71Þ

If the angular position of the observer θ0 is known, then
from (70) one obtains a function ηðxÞ that, via (65)
and (62), allows us to reparametrize the celestial coordinate
yðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðxÞ − ðx2 − a2Þ cos2 θ0

p
. This parametrized

function has the same form as the one for the linear case.
Since (26) corresponds to a KN solution with screened

charge, one may expect that the EEH shadow is equivalent
to that of KN for a smaller black hole charge. This is not the
case since there is an additional nonlinear contribution to
the parametrized equation for the black hole shadow,
coming from the last term in (62). It is the most important
contribution and arises from the fact that the light prop-
agates along null geodesics of the effective Plebański
pseudometric (49), namely, from considering that the
vacuum is endowed with an effective dielectric constant.

The photon orbits and the shadow for the static case, i.e.,
for a screened Reissner-Nordström black hole, were ana-
lyzed in [32], while those in the KN case were studied for
example in [33].
One has to keep in mind that Bardeen’s approach is only

appropriate for observers at large distances. The celestial
coordinates or impact parameters, (70) and (71), have the
dimension of a length, and have to be divided by r0 in order
to be identified as the measured angles in the observer’s
sky [34]. In the following figures, the impact parameters x
and y, will be written in units of the black hole mass M.
Figure 4 displays the shadow of the EEH rotating black
hole for fixed mass and angular momentum, and varying
the charge. The black hole parameters satisfy the event
horizon condition a2 þ Q̃2 ≤ M2. The EEH nonlinear
terms depend on Q̃ since they include the electromagnetic
fields DQ and HQ defined by (20). As expected, for bigger
values of Q̃ the EH effect becomes more visible.
When studying the KN case, a smaller charge Q would

result on a bigger size of the shadow. This can also be seen
from Fig. 4, in which the KN shadow (dashed line) for
Q ¼ 0.2M is bigger than that for Q ¼ 0.8M, for instance.
The EEH charge is screened, i.e., Q̃ < Q. Thus, one would
expect the EEH shadow to be bigger than the KN one,
which is not the case. The latter results from the fact that the
EH theory endows the vacuum with an effective dielectric
constant, as mentioned above. Hence, the light propagates
in this medium described by the effective pseudometric γμν,
and additional EH nonlinear terms arise, e.g., the last term
of (62). The photon propagation in this medium is the
responsible for the EEH shadow to lay inside the KN one.
Figure 5 shows the EEH shadow for different masses and

for fixed parameters Q=M and a=M. For bigger values of
M, the effect is not visible, but for smaller values of M the
effect becomes relevant. For a fixed Q=M, the effect

FIG. 4. The shadow of the EEH rotating black hole (continuous
line) and that of KN (dashed line), for different values ofQ. AsQ
increases, the EEH nonlinear effect becomes more visible. The
parameters are M ¼ 1 × 104M⊙, a ¼ 0.3M, and θ0 ¼ π=2.
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vanishes for big masses. The same happens in the static
case [19]. This would suggest that for supermassive black
holes, the EH effect on the photons propagation is not
visible. One can understand this fact by analyzing the
dimensions of the quantum corrections, all of which are
proportional to α

225πD
2
QðΣcKNÞ. For instance, in the static

case it reads α
225πD2

c

ðQ=MÞ2
ðrcKN=MÞ4

1
M2, where the parameter 0 ≤

jQj=M ≤ 1 is restricted by the event horizon condition, and

rcKN=M ¼ 3

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=ð9M2Þ

p �
=2 can only take

values between 2 ≤ rcKN=M ≤ 3; the remaining factor
1=M2 is responsible for the dimension of the quantum
corrections. Hence, for bigger masses the EH effects are
smaller.
The quantum effect on the shadow of the EEH rotating

black hole depends on the value of M, Q, and of the
screening, as in the static case. In the latter, considering
small values of Q would completely reduce the EH effect
on the shadow, which would then approach to the shadow
of the Schwarzschild solution. Nevertheless, in the rotating
case the EH effect additionally depends on the angular
momentum a of the black hole. This can be seen from the
last term of (62). One may consider very small values ofQ,
but together with small values of M and nonzero values of
a, such that the effect on the shadow is still visible. The
latter is shown in Fig. 6, which displays the shadow for
fixed M and Q, and varying a. As a increases, the EEH
nonlinear effect on the shadow grows.
For astrophysical black holes one does not expect big

charges, but the charge of a black hole may be different

FIG. 5. The shadow of the EEH rotating black hole (continuous
line) and that of KN (dashed line), for different values ofM. AsM
decreases, the EEH nonlinear effect becomes more relevant. The
parameters are Q ¼ 0.8M, a ¼ 0.6M, and θ0 ¼ π=2.

FIG. 6. The shadow of the EEH rotating black hole (continuous line) and that of KN (dashed line), for nonvanishing values of a. Even
for a small fixed value of Q ¼ 5 × 10−4M the EEH nonlinear effect is still visible, due to the nonlinear contribution depending on the
angular momentum a, (62). The mass corresponds to that for a stellar black hole, M ¼ 5M⊙. The parameters satisfy the condition
a2 þ Q̃2 ≤ M2. The angle θ0 ¼ π=2.
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from zero during the accretion of charged matter like
plasma. Moreover, during the gravitational collapse of a
star to a black hole, processes of charge separation and
consequent pair production by vacuum polarization occur.
The black holes formed by collapsing stars are the stellar
black holes, with masses within a few solar masses above
the critical mass of neutron stars,M > 3.2M⊙. Hence, for a
stellar black hole the EH effect on the light propagation
becomes relevant as long as it spins and even for a very
small charge, as that in Fig. 6.

VI. SUMMARY AND CONCLUSIONS

QED vacuum corrections to the Maxwell-Lorentz theory
can be accounted for by the effective QED theory after one
loop of nonperturbative quantization, i.e., the EHNLED [1].
The vacuum is treated as a specific type of medium, the
polarizability and magnetizability properties of which are
determined by clouds of virtual charges surrounding the real
charges and currents, this fact can be interpreted as a kind of
dielectric constant of the vacuum.
The EEH generalization of the KN black hole solution

was recently performed by Bretón et al. [20]. They
considered the QED interpretation of the EH NLED and
generated a rotating electrically charged black hole solution
by assuming that the nonlinearity influence only the electric
charge by means of a screening of it. The geometry is only
affected through the screened values of the real charges and
of the induced magnetic dipole moment. The black hole
solution is then interpreted as a screened KN one, as it
happens for the static solution, which is considered as
screened Reissner-Nordström one [15,19].
We first studied the geodesics of massive charged test

particles, which interaction with the electric field is
described by means of the electromagnetic potential Aμ.
The Aμ is obtained by using the material relations of the
EH NLED. When solving the Hamilton-Jacobi equation,
we find the screening of the test particle charge. Hence,
the features of the charged particle motion in a KN
spacetime [26] are recovered. The screening effect causes
the test charge to follow a different kind of orbit than the
one predicted in the KN case.
The size and the shape of the shadow depend on the

properties of the regions through which light travels [34].
Hence, we study the light trajectories by means of the
effective Plebański pseudometric [18], which contains
the energy-momentum tensor of the EH NLED theory.
The Hamilton-Jacobi equation is solved in the framework

of the EEH theory and the null geodesic equations are
presented. We solve the conditions under which light rays
reach the photon region and obtain a parametric function
relating the constants of motion. We also analyze the
shadow of the black hole measured by a distant observer.
The shadow barely shrinks when we consider the EH
effects, i.e., the EEH rotating black hole shadow lays
always inside the shadow of the KN black hole.
Astrophysical black holes are not expected to carry big

charges. In the static case [19], small values of the charge
would lead to extremely small visibility of the EH effects.
Nevertheless, in the rotating case there is a nonlinear
contribution depending on the angular momentum of the
black hole. For small charges and small masses, of the order
of stellar black holes, the EH effect on the shadow would
become relevant. As in the static case, the nonlinear effect
is not visible for large masses, like those from supermassive
black holes.
The charge of a black hole may be different to zero in

some accretion scenarios and during the gravitational
collapse of a star to a black hole. In the latter, processes
of charge separation and consequent pair production by
vacuum polarization occur [7]. The black holes formed by
collapsing stars are the stellar black holes, for which the
EH effects on the light propagation should be considered.
Although presently the observation of the shadow of
stellar black holes is not viable, it would provide further
insights on the aspects of nuclear physics and electrody-
namics in strong gravitational fields, in combination with
other observational programs, such as x-ray heat maps and
gamma ray bursts.
One additional issue remains to be considered in order to

study all the consequences of the screened Kerr-Newman-
like solution [20], i.e., the thermodynamics [35–37] asso-
ciated with the mentioned black hole solution and the
energy dissipation at the horizon [38,39]. This work is in
progress and will be reported elsewhere.
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