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It has recently been shown that the dynamics of perturbed nonrotating black holes (BHs) admits an
infinite number of symmetries that are generated by the flow of the Korteweg-de Vries (KdV) equation.
These symmetries lead to an infinite number of conserved quantities that can be obtained as integrals of
differential polynomials in the potential appearing in the gauge-invariant master equations describing the
BH perturbations, the KdV integrals. These conserved quantities are the same for all the possible potentials,
which means that they are invariant under Darboux transformations, and they fully determine the BHs
transmission amplitudes, or greybody factors, via a moment problem. In this paper we introduce a new
semianalytical method to obtain the greybody factors associated with BH scattering processes by solving
the moment problem using only the KdV integrals. The method is based on the use of Padé approximants
and we check it first by comparing with results from the case of a Pöschl-Teller potential, for which we have
analytical expressions for the greybody factors. Then, we apply it to the case of a Schwarzschild BH and
compare with results from computations based on the Wentzel–Kramers–Brillouin (WKB) approximation.
It turns out that the new method provides accurate results for the BH greybody factors for all frequencies.
The method is also computationally very efficient.
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I. INTRODUCTION

Black holes (BHs) are one of the most radical predictions
of the general theory of relativity [1–3]. They represent the
most extreme gravitational systems and are defined by the
existence of an event horizon that acts as a membrane
causally separating the spacetime in the sense that no
physical signals can get out from the interior of the horizon,
which constitutes a past-future asymmetry [4]. Classical
BHs have been widely studied and there are many text-
books describing their main properties and physical con-
sequences [5–8]. On the other hand, there is accumulating
evidence of the existence of astrophysical systems that are
compatible with the general relativistic model of a BH.
Actually, in some cases the BH model of general relativity
turns out to be the most conservative description in the
sense that alternative models require the introduction of
exotic forms of matter for which there is no observational
evidence. Observations of BH candidates are being made
using different types of astronomical techniques, from radio
observations to the more recent observations by ground-
based gravitational-wave detectors [9–11], including x-rays

(see, e.g., [12]). Binary BHs are probably the main source
of gravitational waves for current detectors, but also for
future ones like third-generation detectors [13,14] and
space-based detectors like LISA [15–18].
BHs are becoming central objects for a number of

research areas within astrophysics and cosmology, and
also in fundamental physics, where progress toward the-
ories that encompass quantum effects and relativistic
gravitation use the study of physical phenomena around
BHs that goes beyond the current established knowledge.
This is partly a consequence of the fact that BHs can have
any mass, from the smallest to the largest scales. The only
thing we need for their existence is a viable physical
mechanism for their formation.
Scattering processes around BHs, together with quasi-

normal mode oscillations of BHs, are one of main physical
processes that can be described using relativistic perturba-
tion theory of BHs (BHPT). Particles and/or fields scattered
by BHs are of great relevance for astrophysics and
fundamental physics as they can provide us with key
information about the properties of BHs. For this reason,
there is a number of studies about BH scattering (see, e.g.,
[19–27]), both within classical general relativity and also in
semiclassical gravity, where we can gain significant insight
into quantum gravitational phenomena.
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In the case of nonrotating BHs, the perturbations can be
expanded in scalar, vector, and tensor spherical harmonics
in such a way that the perturbative equations for each
harmonic mode, and for each of the two possible parities,
decouple from each other. Moreover, for each mode,
the perturbative equations decouple so that the perturba-
tions are governed by a set of master wavelike equations
with a potential that tells us the response of the BH to
excitations [28–34] (see also Ref. [8]). In the case of
scattering processes, the transmission and reflection
probabilities can be obtained from the analysis of the
master equations. Some low- and high-frequency limits
for the greybody factors were obtained in [20,35–37] and
in [21–23] respectively. Other methods to obtain grey-
body factors are: Wentzel–Kramers–Brillouin (WKB)
approximations [38–40] (see also [41–43]); bounding of
Bogoliubov coefficients [44,45]; monodromy techniques
[26,46,47], etc.
Recently [48], we adopted a different point of view to the

computation of BH greybody factors, which profits from
two previous studies, one on the structure of the space of
master functions and master equations [49], and the other
one on the symmetries that one can introduce in that space
[50]. The picture that emerged from these studies is that the
space of possible master functions and equations is much
bigger than what it was previously known, where we can
distinguish two different branches of equations. One branch
corresponds to master equations with the well-known
potentials: the Regge-Wheeler [28] (odd-parity perturba-
tions) and Zerilli [32] (even-parity perturbations) poten-
tials. The second branch contains an infinite number of
master equations with new potentials. In [50] it was shown
that the space of master functions admits different classes
of symmetries. On the one hand, all the master equations
and functions are connected via Darboux transformations,
which shows that all the master functions have the same
spectral properties, in particular the same set of quasinor-
mal modes and the same reflection and transmission
coefficients. On the other hand, one can also introduce
symmetries using the techniques developed for inverse
scattering and integrable systems [51–56]. We showed
[50] that the master equations admit an infinite number
of symmetries generated by the Korteweg-de Vries (KdV)
equation [57] and the associated infinite hierarchy of
nonlinear partial differential equations (PDEs). These sym-
metries translate into conservation laws from which we can
obtain an infinite set of conserved quantities [58–60], the
KdV integrals. Moreover, these symmetries can be seen
as isospectral deformations of the master equations that
preserve both the scattering transmission coefficient and the
quasinormal modes. Finally, the KdV integrals are the same
for all the possible master equations, or in other words, they
are invariant under Darboux transformations.
Building on these ingredients, in [48] it was shown that

the BH greybody factors are completely determined by the

KdV integrals associated with the BH potential barrier.
More specifically, the KdV integrals determine, up to a
multiplicative factor, the moments of a (probability) dis-
tribution function associated with the transmission proba-
bility coefficient. This relationship between moments and
distribution is usually known as a moment problem, the
problem of finding the distribution from the moments. It
was also argued in [48] that the BH moment problem,
where the KdV integrals are determined by the BH
potential, is determinate in the sense that a solution exists
and it is unique. Some other theoretical aspects of this
problem in the context of BH perturbations were also
discussed.
Executive Summary. In this paper, we consider the BH

moment problem formulated in [48] and develop computa-
tional techniques based on Padé approximants to solve the
problem. We first apply these techniques to a case that can
be solved analytically, the case of a Pöschl-Teller potential
[61]. Although this potential does not belong to the class
of potentials describing BH perturbations, it shares some
properties with the BH potential barrier that make it a good
touchstone to test methods to describe BH perturbations.
We compare our results with exact results of the Pöschl-
Teller potential and show that they coincide to a high
degree of approximation. We then apply the technique to
the case of the Regge-Wheeler potential and show some
error estimation indicators. In this sense, it is important to
mention that all the possible BH potentials are physically
equivalent in regard to the description of scattering proc-
esses (the S matrix), and hence any potential would provide
the same results. The error indicators show that our
technique to solve the BH moment problem gives accurate
results and is very competitive as compared with other
techniques, also from the point of view of computa-
tional cost.
Structure of the paper. In Sec. II we briefly review BHPT

for the case of a Schwarzschild BH, introducing the
perturbative master equations. In Sec. III we review the
important role of KdV symmetries of the master equations
describing the BH perturbations and how the associated
KdV integrals uniquely determine the BH greybody factors
via a moment problem. In Sec. IV, we introduce a new
method of computing the greybody factors by inverting the
BH moment problem using Padé approximants. In Sec. V
we discuss the performance of our Padé-based method by
comparing results in the case of a Pöschl-Teller potential
[61], for which we have exact expressions for the greybody
factors. In Sec. VI we apply our Padé-based approximation
to perturbations of Schwarzschild BHs, where in all the
computations we use the Regge-Wheeler potential, but the
results are valid for any potential describing perturbations
of a Schwarzschild BH. In Sec. VII we summarize the main
results of the paper and discuss further applications of
our method and possible avenues for future developments.
The paper contains four appendices: In Appendix A we
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introduce some basic elements of Padé approximants;
in Appendix B we quote results on the computation of
BH greybody factors using the WKB approximation; in
Appendix C we show some results on the Pöschl-Teller
potential; and in Appendix D we list the first KdV integrals
for the Pöschl-Teller potential.
Throughout this paper, otherwise stated, we use geo-

metric units in which G ¼ c ¼ 1.

II. MASTER EQUATIONS FOR BH
PERTURBATIONS

The scattering of test fields, including the gravitational
field, and particles by a BH, and also quasinormal oscil-
lations of BHs, are physical processes that can be described
by BHPT. In the case of a nonrotating BH, the static
background is the Schwarzschild metric

ds2 ¼ gμνdxμdxν ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð1Þ

in which

fðrÞ ¼ 1 −
rs
r
; ð2Þ

where rs is the location of the event horizon, the
Schwarzschild radius: rs ¼ 2GM=c2 ¼ 2M. Perturbations
around a Schwarzschild BH can be decomposed into scalar,
vector, and tensor spherical harmonics thanks to the
spherical symmetry of the background. The perturbative
Einstein equations decouple for each harmonic ðl; mÞ and
for each parity.1 The result is a set of ten linear but coupled
PDEs for the ten metric perturbations of each harmonic and
parity. Gauge choices can help to simplify the problem, but
the most important realization is that we can find master
functions, Ψeven=odd

lm , i.e. linear combinations of the metric
perturbations and their first-order derivatives, that decouple
the system of PDEs for the perturbations. In other words,
these master functions satisfy master equations where
no other combinations of perturbations appear. It turns
out that these master equations are wave-type equations
(see, e.g., [49,62,63]):

�
−
∂
2

∂t2
þ ∂

2

∂x2
− Veven=odd

l

�
Ψeven=odd

lm ¼ 0; ð3Þ

where: x is the tortoise coordinate, defined by
dx=dr ¼ 1=f; Veven=odd

l ðrÞ is a potential constructed from
the Schwarzschild background and depends on the

harmonic number l and the parity; the master functions
Ψeven=odd

lm ðt; rÞ depend on both harmonic numbers, the
parity and the coordinates of the time-radial sector of
the metric, which constitutes a true Lorentzian metric.2

In [49], all the possible master equations with master
functions linear in the metric perturbations and their first-
order derivatives were determined. In this space of possible
master functions and equations one can distinguish two
branches: The standard branch, which is characterized by
having the known potentials, namely the Regge-Wheeler
potential [28] for odd-parity perturbations

VRW
l ðrÞ ¼

�
1 −

rs
r

��
lðlþ 1Þ

r2
−
3rs
r3

�
; ð4Þ

and the Zerilli potential [32] for even-parity perturbations

VZ
lðrÞ ¼

f
λ2

�ðl − 1Þ2ðlþ 2Þ2
r2

�
lðlþ 1Þ þ 3rs

r

�

þ 9r2s
r4

�
ðl − 1Þðlþ 2Þ þ rs

r

��
; ð5Þ

where λ is a function of r given by

λðrÞ ¼ ðl − 1Þðlþ 2Þ þ 3rs
r

: ð6Þ

Regarding master functions, it was found [49] that in
the odd-parity case the most general master function is a
general linear combination of the Regge-Wheeler [28] and
the Cunningham-Price-Moncrief [29–31] master functions.
For the even-parity sector, it was found that the most
general master function is a general linear combination of
the Zerilli-Moncrief master function [32,34], and another
master function that appears to be new [49].
The second branch of master functions and equations,

named the Darboux branch, is described in [49]. It was
shown that it contains an infinite number of different master
equations of the form of Eq. (3). As a consequence, there is
an infinite family of possible potentials that have to satisfy
a nonlinear ordinary differential equation. A remarkable
aspect of this branch is that the master functions depend
explicitly on the potential. Indeed, for each potential, the
master functions are written in terms of the metric pertur-
bations and an integral containing the potential (see [49] for
the explicit expressions).
The structure of this infinite landscape of master equa-

tions and functions was investigated in [50]. It was shown
that all the pairs ðV;ΨÞ are connected by Darboux trans-
formations (DTs). From a more physical point of view,
DTs are isospectral transformations, which means that they
preserve the spectrum of the frequency domain operator

1A given harmonic component, Olm, is said to be of the
even-parity type if, under a parity transformation ðθ;ϕÞ →
ðπ − θ;ϕþ πÞ, transforms as Olm → ð−1ÞlOlm, while it is said
to be of the odd-parity type when it transforms as Olm →
ð−1Þlþ1Olm.

2In what follows, for the sake of simplicity, we drop the
harmonic numbers ðl; mÞ from the master functions.
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associated with the master equation, as well as the
reflection and transmission coefficients [50,64]. Indeed,
let us consider single frequency solutions, i.e. let us take
the following form of the master function: Ψðt; rÞ ¼
eiktψðx; kÞ. Then, the master equation (3) becomes a
time-independent Schrödinger equation of the form

ψ ;xx − Vψ ¼ −k2ψ : ð7Þ

It was shown in [50] (see also [48]) that DTs map a time-
independent Schrödinger equation to a physically equiv-
alent one, with different potential barrier and master
function, but with the same spectrum.

III. BH GREYBODY FACTORS AND THE
KORTEWEG-DE VRIES INTEGRALS

We have mentioned that the different possible master
equations describing the first-order perturbations of non-
rotating BHs are connected by DTs, which turn out to be
isospectral transformations. In addition, there is another
type of transformations of the master equations that are
isospectral. They consist in deformations [48,50] of the
time-independent Schrödinger equation that follow the
Korteweg-de Vries (KdV) equation and the associated
infinite hierarchy of KdVequations. The KdV deformations
consist in introducing, in the time-independent Schrödinger
equation (7), a dependence on a parameter τ, that is

ψðxÞ → ψðτ; xÞ; VðxÞ → Vðτ; xÞ; k → kðτÞ; ð8Þ

in such a way that the potential Vðτ:xÞ follows the KdV
equation

V;τ − 6VV;x þ V;xxx ¼ 0; ð9Þ

which is a nonlinear PDE. It is precisely the fact that the
deformation of the potential follows the KdV equation
that makes the spectrum conserved [50] (see also [48])
under the KdV flow, that is: ðk2Þ;τ ¼ 0. This result holds
for the continuous spectrum, bound-states and resonances
(or quasinormal modes), although in the case of the
Schwarzschild BHs, where the potential is positive every-
where, there is no discrete spectrum.
The KdV deformations constitute symmetries of our

problem. These symmetries lead to conservation laws
which, in turn, lead to conserved quantities [58–60], the
so-called KdV integrals. In [48], we have showed different
paths to these conserved quantities. A particularly interest-
ing approach is the Hamiltonian formulation of the KdV
equation, which was first studied by Gardner [65]. Soon
afterwards, Zakharov and Faddeev [59] showed that the
results by Gardner and collaborators [52,65] can be seen
from the point of view of action-angle variables. The
action-angle variables associated to the Hamiltonian for-
mulation of the KdV equation appear naturally when we

look at the scattering problem associated with the time-
independent Schrödinger equation. In this way, Zakharov
and Faddeev [59] were able to show that the KdVequation
constitutes a completely integrable Hamiltonian system.
Following this line of thought, we can introduce an infinite
hierarchy of KdV evolution equations, associated with
the infinite chain of KdV conservation laws, using the
Hamiltonian formulation of the KdV equation (see also
[66]). The conserved quantities, i.e. the KdV integrals, can
be obtained in terms of integrals of differential polynomials
of the potential V (that is, polynomials in V and its
derivatives). The explicit expressions of the infinite series
of KdV integrals is given by (see, e.g., [59]):

Kn ¼
Z

∞

−∞
dxκnðxÞ: ð10Þ

where the densities κnðxÞ are obtained from the following
recurrence relation

κ1ðxÞ ¼ VðxÞ; ð11Þ

κnðxÞ ¼ −
d
dx

κn−1ðxÞ −
Xn−1
k¼1

κn−k−1ðxÞκkðxÞ; ðn ¼ 2;…Þ:

ð12Þ

In summary, the potential of a time-independent
Schrödinger equation (7) has associated an infinite
sequence of conserved quantities, the KdV integrals,
generated by the KdV flows. We have also seen that BH
perturbations admit an infinite number of descriptions in
terms of master functions and equations [50]. The obvious
question is how the KdV integrals change for the different
master equations (for fixed l). The answer to this question
is very simple: The KdV integrals are the same for all the
possible potentials that appear in the master equations
describing BH perturbations. In other words, the KdV
integrals are invariant under DTs [50] (see also [48] for
more details).
This interplay between BHPT, inverse scattering theory,

and integrable systems, in particular the key role of DTs
and the KdV equation, is what has motivated the research
program initiated in [50], and which has led to the result
[48] that the KdV integrals determine completely the
BH greybody factors. This is what has been called the
BH moment problem, that is, the problem of finding the BH
greybody factors from the KdV integrals.
BH greybody factors are defined in the context of BH

scattering processes, and they are nothing but the modulus
square of the transmission coefficient through the BH
potential barrier. To see this in more detail, let us consider
the scattering of a wave coming from x → −∞ (the BH
horizon) by the BH potential barrier. After interacting with
the potential barrier, part of the wave is transmitted, goes to
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x → ∞, and part is reflected, going back to x → −∞. In
mathematical terms, this can expressed in the following
way:

ψðx; kÞ ¼
�
aðkÞeikx þ bðkÞe−ikx for x → −∞;

eikx for x → ∞;
ð13Þ

The coefficients aðkÞ and bðkÞ are usually known as the
Bogoliubov coefficients. They completely determine the
BH scattering matrix as well as the reflection and trans-
mission coefficients as follows

tðkÞ ¼ 1

aðkÞ ; rðkÞ ¼ bðkÞ
aðkÞ : ð14Þ

The transmission and reflection probabilities, or greybody
factors, are given by the modulus square of the correspond-
ing coefficients, i.e.

TðkÞ ¼ jtðkÞj2; RðkÞ ¼ jrðkÞj2: ð15Þ

For real k they satisfy the unitarity condition

TðkÞ þ RðkÞ ¼ 1: ð16Þ

In Ref. [48], it was shown that the KdV integrals and
the BH greybody factors are related by an infinite set of
integral relations, the so-called trace identities [59], which
play an important role in the spectral theory of the time-
independent Schrödinger equations (see, e.g., [67] and
references therein). These identities can be written in the
following form

μ2j ¼
Z

∞

−∞
dkk2jpðkÞ: ð17Þ

Here, the μj are positive constants that coincide with the
standard definition of the moments of the (distribution)
function pðkÞ. The remarkable fact is that they are propor-
tional to the KdV integrals as follows

μ2j ¼ ð−1ÞjK2jþ1

22jþ1
; ð18Þ

and the distribution function pðkÞ only depends on the
transmission amplitude TðkÞ

pðkÞ ¼ −
lnTðkÞ
2π

; ð19Þ

where the minus sign guarantees that we are expressing
everything in terms of positive quantities. Therefore, the
problem of finding the greybody factors of a given potential
barrier (without bound states) is equivalent to a moment
problem [68–70].

The moment problem is a long standing problem in
mathematics and it appears in a large variety of physical
situations. Roughly speaking, the moment problem consists
in inverting equation (17) to find the probability distribu-
tion pðkÞ (only) from the knowledge of the moments μi. In
our case, the moments are proportional to the KdV integrals
associated with the BH potential, and the distribution is a
logarithmic function of the greybody factors [see Eqs. (18)
and (19)].
To be more precise, the moment problem we are facing is

known in the mathematical literature as a Hamburger
moment problem (see [48] for more details), since the
interval in which the distribution function pðkÞ is defined
corresponds to the whole real line, and the moments are
computed as integrals over it [see Eq. (18)]. Furthermore,
Eq. (17) defines a special case of the Hamburger moment
problem, namely the symmetric Hamburger moment prob-
lem [70], as the probability distribution pðkÞ appears to be a
symmetric function of k, that is pð−kÞ ¼ pðkÞ, so that all
the odd moments vanish: μ2jþ1 ¼ 0. This is an interesting
property of the integral equations (17) whose nature can
be related to the fact that only the odd integrals (10)
correspond to the true first integrals of the KdV equation
(see [48] for more details), that is, to the first integrals
that arise from the Hamiltonian formulation of the KdV
equation.
The symmetric Hamburger moment problem can be

uniquely mapped into an associated Stieltjes moment
problem (there is actually a bijective correspondence [70]
between the two moment problems). The Stieljes moment
problem has the particularity that the distribution function
pðkÞ is defined in the positive real line. Indeed, we can
rewrite Eq. (17) in the following form

μ2j ¼ 2

Z
∞

0

dkk2jpðkÞ: ð20Þ

We can now introduce the following change of variable:

ξ ¼ σ2k2; ð21Þ

where σ is constant with dimensions of length that makes ξ
to be a dimensionless quantity. Then, we can write

μ2j ¼
1

σ2jþ1

Z
∞

0

dξξjp̃ðξÞ≡ μ̃j; ð22Þ

where

p̃ðξÞ ¼ pðξÞffiffiffi
ξ

p ¼ pðkÞ
σk

: ð23Þ

The associated Stieltjes distribution has nonvanishing odd
and even moments μ̃j, both defined by the even moments
μ2j of the Hamburger moment problem. We can also
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introduce dimensionless moments from Eq. (22) in the
following way

mj ≡
Z

∞

0

dξξjp̃ðξÞ ¼ σ2jþ1μ̃j; ð24Þ

which provides a formulation of the moment problem in
terms of dimensionless quantities only. Finally, it is worth
mentioning that it is possible to show [70] that when the
symmetric Hamburger moment problem (18) has a unique
solution, so does the associated Stieltjes problem of Eq. (22).

IV. SOLVING THE MOMENT PROBLEM USING
PADÉ APPROXIMANTS

The connection between the scattering trace formulas
and the moment problem opens a new avenue to develop
novel methods to calculate the transmission (and reflection)
coefficients of any potential barrier that does not have
bound states (as in the case of positive potential barriers as
it happens for nonrotating BHs). In Ref. [48], the moment
problem approach has been used to show that the KdV
integrals, which are proportional to the moments, com-
pletely and uniquely determine the greybody factors of the
BH potential barrier. In other words, the BH moment
problem associated to the calculation of the BH greybody
factors has a unique solution.
Moreover, in Ref. [48] it was described how, when

analytical expressions are available, the moment problem
can be solved with the use of the Stieltjes-Perron inversion
formula [71] (see also [68–70]). This was illustrated
by considering the particular case of a Pöschl-Teller
potential [61].
However, since it is quite unrealistic to think that we

can have analytic expressions for a general potential, as
we do for the Pöschl-Teller case, we present here a general
approach to construct approximations to the BH greybody
factors. In this sense, it is important to remark that in the
literature there is no a unique general solution method
for the moment problem, but various approximate and/or
numerical approaches that have been explored during the
last century like, for instance: The method of moments
and its generalizations [72,73]; kernel density functions
approximation [74]; maximum entropy methods [75,76]
(see also [77,78] for some reviews); etc.
Since we are interested in exploiting the connection

between KdV integrals and greybody factors in a semi-
analytical way, we choose to follow the approach of
Ref. [79], where the authors show how to find a probability
distribution function starting from the asymptotic form of
the corresponding moment generating function (MGF) in
combination with the use of Padé approximants (see also
Ref. [80]). This choice is further motivated by the particular
features of the Padé approximants to a Stieltjes series. The
reason is that for Stieltjes series the convergence of diagonal
and subdiagonal Padé approximants is guaranteed [80,81].

In what follows we use this method to obtain semianalytical
expressions for the BH greybody factors in terms only of the
KdV integrals associated to the BH potential barrier.
The procedure we follow consists in determining the

Padé approximants corresponding to the asymptotic series
of the MGF and then to take the inverse Laplace transform.
We first illustrate how this can be done in practice and then
we apply it to the well-known Pöschl-Teller potential
barrier, in Sec. V, where we compare our results with
exact expressions. Once we show that the method works
properly we apply it, in Sec. VI, to the BH potential barrier,
the potential that appears in the master equation for
perturbations of the Schwarzschild metric.
Let us start with the formulation of the Stieltjes moment

problem in terms of dimensionless quantities [see Eq. (24)].
We have computed analytically a few KdV integrals both
for the Pöschl-Teller potential [61] and also for the Regge-
Wheeler potential (and hence for any potential in any of the
master equations describing Schwarzschild perturbations).
The ones for the Pöschl-Teller potential are given in
Appendix D while the ones for the Regge-Wheeler poten-
tial are given in Appendix E of Ref. [48]. The constant σ, in
the case of the Pöschl-Teller potential can be taken to be
σ ¼ 1=α, while for the Regge-Wheeler potential we can
choose it simply as σ ¼ rs.
The MGF for the moments mj corresponding to the

distribution p̃ is usually defined as the Laplace transform of
the (probability) distribution [82]

MðtÞ ¼
Z

∞

0

dξe−tξp̃ðξÞ≡ Lðp̃Þ; ð25Þ

where L denotes the Laplace transform operator. By
expanding the exponential inside the integral in a Taylor
series in t, we get the asymptotic behavior of MðtÞ

MðtÞ ¼
X∞
n¼0

mn

n!
ð−tÞn: ð26Þ

Notice that the nth moment can be found as the nth
derivative of MðtÞ at t ¼ 0, i.e.,

mn ¼ ð−1ÞnMðnÞð0Þ; ð27Þ

which is the reason why this function is called the MGF.
The series in Eq. (26) is a formal expression that does
not necessarily need to converge for our procedure to
work [80,81].
The step by step procedure to find the probability

distribution starting from its moments that we are going
to use in this work follows the method proposed in
Ref. [79] (see also [80]). This method consists in two
basic steps: First, to construct the Padé approximants for
the asymptotic expansion of the MGF [Eq. (26)]. And
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second, to take the Laplace inverse of the Padé approxi-
mation to find p̃ðξÞ.
As is well known, the Padé approximants are approx-

imations by means of rational functions to a power series,
in such a way that the order of accuracy depends on the
degree of the polynomials in the numerator and denomi-
nator of the rational function (see Appendix A for the basic
ingredients of Padé approximants that are relevant for this
work). Then, the Padé approximants, for the series of MðtÞ
in Eq. (26), of order K þ L, where K and L are positive
integers, are written as follows

½K=L�ðtÞ ¼ PðtÞ
QðtÞ ¼

XKþL

n¼0

mn

n!
ð−tÞn: ð28Þ

where PðtÞ and QðtÞ are polynomials of order K and L
respectively, that is,

PðtÞ ¼
XK
n¼0

Pntn; QðtÞ ¼
XL
n¼0

Qntn: ð29Þ

As expected [see Eqs. (A4) and (A5) in Appendix A], all
the coefficients of the polynomials Pn and Qn are com-
pletely determined by the KdV integrals. In this work we
only consider the diagonal (K ¼ L) and subdiagonal
(K ¼ L − 1) Padé approximants because they play a
particular role in the convergence of the Padé sequence
as, for example, they provide upper and lower bounds to
any Stieltjes series and if the problem is determinate they
converge to the unique solution [81]. In order to put
ourselves in a situation that would allow us to perform
easily the Laplace inversion of Eq. (25), we need to first
find the poles of the Padé approximants, t ¼ −ti. In this
way, we can decompose the Padé approximants in partial
fractions, that is, we can write them in the form

½K=L�ðtÞ ¼
XL
i¼1

λi
tþ ti

: ð30Þ

Here K ¼ L, L − 1 and the λi’s are the residues of the
poles, i.e.

λi ¼
Pð−tiÞ
Q0ð−tiÞ

; ð31Þ

where here the prime denotes differentiation with respect to
t. The poles of the Padé approximants are expected to be
located on the negative half-plane in t ∈ C, therefore we
expect ℜðtiÞ > 0 [80]. Then, as a general rule, whenever
we encounter a Padé approximant for which ℜðtiÞ < 0 for
some i (a pole in the positive half-plane), we should discard
it as an unacceptable approximation since it clearly has
the wrong analytic structure [80]. Moreover, since the
distribution function is real, we must have either real poles

or complex ones coming in pairs together with the complex
conjugate.
The last step is to carry out the inverse Laplace transform

of the Padé approximant. This is a simple task since we
know that (see, e.g., [83])

L−1
�

1

tþ ti

�
¼ e−tiξ: ð32Þ

Therefore, we have the following approximated expression
for the distribution function associated with the BH grey-
body factors

p̃ðξÞ ≃
XL
i¼1

λie−tiξ; ð33Þ

from where it is straightforward to obtain an expression
for the transmission probability TðkÞ. Indeed, taking into
account Eqs. (23) and (33) we get

pðkÞ ≃ σk
XL
i¼1

λie−tiσ
2k2 : ð34Þ

Finally, using Eq. (19) we obtain the following approximate
form for TðkÞ

TðkÞ ≃ exp

�
−2πσk

XL
i¼1

λie−tiσ
2k2
�

≡ T ½K=L�ðkÞ: ð35Þ

From these expressions it becomes clear that if we allow
for poles with positive real part, the solution would be
unphysical as it would either describe an infinitely growing
greybody factor or decaying one, depending on the sign
of the residue. The expression in Eq. (35) constitutes a
semianalytic approximation for the transmission probabil-
ity associated with a potential barrier, a BH barrier in our
context, exclusively in terms of their KdV integrals. Indeed,
all the coefficients in the approximation are evaluated
solely from the KdV integrals (10). To show this explicitly
we evaluate the first two Padé approximants. The first is the
Padé approximant ½0=1�:

½0=1�ðtÞ ¼ P0

1þQ1t
; ð36Þ

It depends only on the first two moments as the coefficients
P0 and Q1 are given by

P0 ¼ m0; Q1 ¼
m1

m0

: ð37Þ

There is a single real pole, which is given by
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t1 ¼
m0

m1

; λ1 ¼
m2

0

m1

; ð38Þ

where λ1 is the associated residue. Therefore, the greybody
factor (35) has the following simple expression

T ½0=1�ðkÞ ¼ exp

�
−2π

m2
0

m1

σke−
m0
m1
σ2k2

�
: ð39Þ

The second Padé approximant is ½1=1�:

½1=1�ðtÞ ¼ P0 þ P1t
1þQ1t

; ð40Þ

which contains only the first three moments

P0 ¼ m0; P1 ¼
m0m2 − 2m2

1

2m1

; Q1 ¼
m2

2m1

: ð41Þ

Again, there is a single pole which, together with the
corresponding residue, are given by

t1 ¼
2m1

m2

; λ1 ¼
4m3

1

m2
2

; ð42Þ

and the greybody factor (35) adopts the following expres-
sion

T ½1=1�ðkÞ ¼ exp

�
−2π

4m3
1

m2
2

σke−
2m1
m2

σ2k2
�
: ð43Þ

These expressions do not provide the most accurate results
but may be helpful in cases in which a simple analytical
expression is needed.
We can summarize the method we just have shown for

constructing approximations for the BH greybody factors
in a schematic way as an algorithmic list of steps:
(1) Evaluate the first n KdV integrals for the chosen

potential.
(2) Obtain the moments from the KdV integrals and

construct the MGF by using the expansion (26) at
order n.

(3) Construct Padé approximants of order ½K=L�,
with K þ L ≤ n.

(4) Evaluate the poles and residues [see Eq. (31)] of the
Padé approximants and discard those with poles that
have positive real part.

(5) Apply the Laplace inversion formula (32) to finally
obtain the approximations [see Eq. (35)] for the
greybody factors.

V. GREYBODY FACTORS FOR THE
PÖSCHL-TELLER POTENTIAL

In order to test our method for the computation of
greybody factors, it is convenient to compare our results

with a case in which we have analytical expressions for
them. In the case of BH perturbations we do not have
exactly solvable potentials, and for this reason we consider
the well-known case of the Pöschl-Teller potential [61]:

VPTðxÞ ¼
U0

cosh2ðαxÞ ¼
α2ðβ2 þ 1

4
Þ

cosh2ðαxÞ ; ð44Þ

where β is a dimensionless constant given by

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0

α2
−
1

4

r
> 0: ð45Þ

This is one of the few cases of a potential, defined on the
whole real line, in which the time-independent Schrödinger
equation (7) is exactly solvable [84] (see Appendix C for a
summary of the main relevant results). The greybody factors
for the Pöschl-Teller potential are given by Eq. (C5), i.e.

TPT ¼ sinh2ðπkα Þ
cosh2ðπkα Þ þ sinh2ðπβÞ : ð46Þ

Exact solvability, together with the similarity in shape3 with
the BH potential barrier, makes it a perfect playground
to get deeper insight on the BH scattering (see e.g.
Ref. [86,87]). In this section, we exploit this comparison
to test our approximation based on Padé approximants.
Let us now apply the method we described in Sec. IV

(the steps involved are outlined at the end of the section) to
find approximations for the greybody factors of the Pöschl-
Teller potential barrier. We start with the computation of
the KdV integrals. The first ten nonzero integrals for the
Pöschl-Teller potential are given in Appendix D. From
these integrals, we find the moments, construct the Padé
approximants together with their poles and residues, and
finally apply the inverse Laplace transform. If we consider
the first six nonzero KdV integrals, the T ½2=3�ðkÞ approxi-
mation to the transmission coefficient is given by (we set
the Pöschl-Teller parameter β ¼ 5):

T ½2=3� ≃ exp

�
−
2πk
α

�
14.895e−0.256

k2

α2 sin

�
0.093

k2

α2

�

−5.586e−0.256
k2

α2 cos

�
0.093

k2

α2

�
þ19.167e−0.743

k2

α2

��
;

ð47Þ

3We can adjust the Pöschl-Teller potential parameters to have a
potential barrier that looks quite similar to the Schwarzschild BH
potential barrier. Nevertheless, both potentials differ in the decay
to zero near spatial infinity, which has important consequences
for the time-dependent response to perturbations: In the BH case
the long-term behavior is dominated by power law tails [85] in
contrast with the Pöschl-Teller case, where there are no tails.
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where the trigonometric functions appear due to the
presence of pairs of complex conjugate poles. A similar
structure is shared by the other T ½K=L� functions. Different
comparisons of the approximations obtained with our
method with the exact solution for TðkÞ [see Eq. (46)
and Appendix C] are given in Fig. 1 for different values of
the parameter β. As we can see, the approximation (35)
proves to be highly accurate, even when we use low-order
Padé approximants. Indeed, we can see in Fig. 1 that the
approximations based on the first Padé approximants are
almost indistinguishable from the exact solution.
The main drawback of the semianalytic approximation

represented by Eq. (35) is the not so good behavior at small
frequencies (small k). However, as one can see in Fig. 2, the
region in which the behavior deviates from the expected
one is pushed toward the origin as we include more KdV
integrals in the approximation. Or in other words, the
region were the approximation gets worse is shrunk toward
the origin as we use high-order Padé approximants. This

suggests that the approximation given by Eq. (35) con-
verges also at low frequencies in the limit in which we
include infinite moments (an infinite number of KdV
integrals).
In order to obtain a better quantitative understanding of

the behavior of our approximation technique, we need to
find appropriate error estimates. The fact that we are using
the Pöschl-Teller potential to test our method allows us to
make direct comparisons with the exact greybody factor in
Eq. (46) and have a better insight of the convergence
properties of the procedure. In this sense, let us consider the
following k-dependent error function

δTPTðkÞ ¼
			TPTðkÞ − T ½K=L�ðkÞ

			; ð48Þ

that is, the absolute difference between the exact solution
and our approximation. Plots of this error estimate are
shown in Figs. 3 and 4 for different values of the parameter
β. As we can see from these plots, both diagonal and
subdiagonal Padé approximants to the MGF seem to

FIG. 1. Greybody factors for the Pöschl-Teller potential barrier
[61] with respect to the wave number k obtained from the Padé
approximation of Eq. (35) and compared with the exact solution
in Eq. (46) for β ¼ 1.8 (top panel) and β ¼ 5 (bottom panel). The
notation T½N=M� means that the greybody factor is computed
from the ½N=M� Padé approximant to the MGF asymptotic series.

FIG. 2. Plots of the behavior of the greybody factors for the
Pöschl-Teller potential in the low-frequency (low k) regions
obtained by zooming near k ¼ 0 in the plots of Fig. 1 for both
β ¼ 1.8 (top panel) and β ¼ 5 (bottom panel).
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produce a converging approximation to the exact value.
Apart from the region near the origin k ¼ 0, the error
estimate in the intermediate region appears to be slightly
worse than in the rest of the k line. Nevertheless, we still
obtain a very good degree of precision in that intermediate
region, and this improves with the number of KdV integrals
that we include in the approximation.
Regarding the error coming from the low-frequency

behavior (low k), the results shown in Figs. 3 and 4 clarify
that the deviations become significant only in a small area
close to the origin k ¼ 0. The size of this region decreases
as we increase the order of the approximation (or the
number of KdV integrals used), so that we can say that we
obtain an accurate description also at small frequencies
(small k).
The comparison between Figs. 3 and 4 further shows that

the higher the potential barrier is the better is the approxi-
mation of Eq. (35) to the exact value TPT, both at low and
high frequencies, while it provides slightly worse results in
the intermediate region (see also Figs. 1 and 2). On the
other hand, it is worth mentioning that due to the shape of

TPTðkÞ and T ½K=L�ðkÞ, the relative error would not provide a
fully meaningful estimate. Indeed, since TPT goes to zero
when k does, the contributions from small frequencies to
the relative error grow near k ¼ 0 and hence, we would
obtain a misleading measure of the error with respect to the
exact solution.
The integration of δTPTðkÞ over k provides a global error

indicator that can also inform us about the improvement of
the approximation. Then, we define

ΔTPT ¼
Z

k∞

k0

dkδTPTðkÞ; ð49Þ

where k0 is a cutoff at low frequencies and k∞ at high
frequencies. The low-frequency cutoff k0 is introduced to
separate the very low-frequency contributions, where our
approximations may misbehave, but without changing the
global qualitative behavior. The high-frequency cutoff k∞
is introduced instead for computational convenience, since
the greybody factors become almost constant for large k
and hence, integrating all the way to k → ∞ may produce

FIG. 3. Plots of the error estimate δTPTðkÞ [see Eq. (48)],
in logarithmic scale of base 10, for the diagonal (top panel)
and subdiagonal (bottom panel) Padé-based approximation of
Eq. (35) for the greybody factors with β ¼ 1.8.

FIG. 4. Plots of the error estimate δTPTðkÞ [see Eq. (48)], in
logarithmic scale of base 10, for the diagonal (top panel) and
subdiagonal (bottom panel) Padé-based approximation of
Eq. (35) for the greybody factors with β ¼ 5.
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meaningless results from the numerical point of view. In
Fig. 5 we show results of the computation of ΔTPT, where
we can see that, irrespective of the details of the approxi-
mate greybody factors [see Eq. (35)] at each range of
frequencies, the convergence of both diagonal and sub-
diagonal Padé approximants is guaranteed.
The diagonal and subdiagonal Padé approximants pro-

vide two different kinds of approximations for the greybody
factors in terms of convergence of our Padé-based approxi-
mation to the real function (46). Each of them follow its
own pattern of convergence. This can clearly be seen when
studying Stieltjes sequences [80,81], as already mentioned
in Sec. IV. However, for our purposes, it can be useful to
study the improvements in the approximation when con-
sidering the addition of just one more KdV integral. This
turns out to be crucial when the exact solution is not
provided, as in the relevant case of a BH potential barrier
(see Sec. VI). To that end, we can introduce an error
estimator for successive approximations as follows

δT ½K=L�ðkÞ ¼
			T ½ðKþdÞ=K�ðkÞ − T ½K=L�ðkÞ

			; ð50Þ

where either L ¼ K and d ¼ −1 or L ¼ K þ 1 and d ¼ 0.
This is a measure of how much the Padé-based approxi-
mation of Eq. (35) improves every time that we include in
the analysis one more moment/KdV integral. The results
are shown in Fig. 6, where we can see how the convergence
of the approximation with nþ 1 moments improves up to
more than one order of magnitude with respect to the one
calculated from n moments.
We can introduce a global error estimate associated with

the error estimate in Eq. (50) for successive Padé-base
approximations [see Eq. (35)] by integrating this error
function over k:

ΔT ½K=L� ¼
Z

k∞

k0

dkδT ½K=L�ðkÞ; ð51Þ

where we have introduced again the cutoffs ðk0; k∞Þ for the
same reasons described above. This global error estimate is
shown in Fig. 7. By looking at Figs. 6 and 7 we see that
δT ½K=L�ðkÞ and ΔT ½K=L� have the same qualitative behavior
as δTPTðkÞ and ΔTPT, thus the same conclusions can be

FIG. 5. Plots of the error ΔTPT [Eq. (49)] as computed from
diagonal (blue line) and subdiagonal (black line) Padé approx-
imations with cutoffs ðk0; k∞Þ ¼ ð0.25; 20Þ and with Pöschl-
Teller parameter β ¼ 1.8 (top panel) and β ¼ 5 (bottom panel).

FIG. 6. Plots of the error estimate in Eq. (51) for successive
approximations to the greybody factor of the Pöschl-Teller
potential, in logarithmic scale of base 10, for β ¼ 1.8 (top panel)
and for β ¼ 5 (bottom panel).
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drawn here. There error estimates are going to be particu-
larly useful in Sec. VI, where we deal with the Regge-
Wheeler potential.
It is also worth mentioning that from these results it

appears that the cases in which we have Padé approximants
that present positive poles, these poles do not completely
spoil the convergence. Instead, they just appear to slow
down the convergence rate of the approximation.
In addition to the comparisons with the exact expressions

that we have for the Pöschl-Teller potential and between
successive approximations, there is a different type of test
of our approximation method that we can carry out, namely
the comparison with WKB approximations for the com-
putations of greybody factors [38–40,43]. The expressions
of the WKB approximations that we use in this work are
shown in Appendix B. The results of the comparisons with
third-order WKB approximations (the fourth order happens
to vanish for the Pöschl-Teller potential) are shown in
Fig. 8. It is clear from these plots that the accuracy of the
WKB approximation depends on the parameter β, which
controls the strength of the Pöschl-Teller potential. Indeed,

it is well known that the WKB approximation works better
for higher values of the angular momentum in the case of
Regge-Wheeler potential [38–40,43]. Since the higher
the angular momentum is the higher the maximum of the
potential barrier becomes, we can apply the same argument
to the case of the Pöschl-Teller potential in terms of the
parameter β. In this sense, our Padé-based approximation
seems to be less sensitive to the potential strength.
On the other hand, our approach differs from the WKB

approximation in the way that we build more accurate
estimations of the greybody factors. In the case of the
WKB method, it is an accumulative process in which we
compute higher orders of an approximation series. The size of
the expression for each order of approximation in the WKB
method grows considerably as we can see in the Appendix B.
In our approach, we can start from an arbitrary number of
KdV integrals (moments) and compute the desired order of
approximation from the associated Padé approximant. The
computational cost of the KdV integrals is quite low as we

FIG. 7. Plots for the global error estimator ΔT ½K=L� [see
Eq. (51)] for successive Padé-based approximations of the
Pöschl-Teller gredybody factors with increasing number of
moments/KdV integrals, with cutoffs ðk0; k∞Þ ¼ ð0.25; 20Þ, for
β ¼ 1.8 (top panel) and β ¼ 5 (bottom panel).

FIG. 8. Plots of the comparison of computations of the grey-
body factors for the Pöschl-Teller potential using the Padé-baed
approximation of Eq. (35), the WKB approximation method of
Eq. (B1), and the exact values in Eq. (C5) for β ¼ 1.8 (top panel)
and β ¼ 5 (bottom panel).
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can see from their explicit expressions in Appendix D (see
also Appendix E in Ref. [48]). Moreover, the computational
cost of our Padé-based approximation is quite affordable
since the evaluation of high-order Padé approximants only
require a few seconds using a computer algebra system like
Maxima [88] on a personal laptop computer.
Finally, it is interesting to note that both approximations,

our Padé-based approximation and the WKB approxima-
tion, fail in a similar way in describing the intermediate
frequency region. In fact, in Fig. 1 we see that, for high
barriers (in the case of the figure β ¼ 5), our Padé-based
approximation, from low to high frequencies, grows up to a
maximum slightly greater than one, in the intermediate
region, before settling down to a constant value equal to
one. The same happens in the case of the WKB approxi-
mation in the low barrier case as one can see by looking
closely at Fig. 8 (in the case of the figure β ¼ 1.8), and it
becomes more evident for lower barriers (see also Figs. 9
and 13 for the Regge-Wheeler case in the next section).

VI. GREYBODY FACTORS FOR
SCHWARZSCHILD BLACK HOLES

The greybody factors associated with gravitational per-
turbations around a Schwarzschild BH background can be
evaluated in an analogous way as we have done in the
previous section for the case of a Pöschl-Teller potential
[61]. We just need to follow the step-by-step procedure
outlined at the end of Sec. IV. There is however a
significant difference between the two potentials, beyond
exact solvability, and it has to do with the decay toward
infinity of the potentials. Indeed, while both potentials
decay exponentially as we go toward x → −∞ (the BH
horizon in the case of the BH potential barrier), the
approach toward x → ∞ (spatial infinity in the case of
the BH potential barrier) is very different. In the case of the
Pöschl-Teller potential, it also decays exponentially, while
in the case of the BH potential barrier, take the Regge-
Wheeler potential as an example, it decays quadratically,
that is VRW ∼ L=r2 ∼ L=x2, where L ¼ lðlþ 1Þ. As we
can see, the so-called angular momentum barrier dominates
at x → ∞ in the BH case. The different decay toward x →
∞ has important consequences for the properties of the
solutions of the time-independent Schrödinger equation (7),
and even more in the time-domain. Indeed, it turns out that
in the case of a nonrotating BH, the structure of the Green
function present a branch cut that is responsible for the
power-law tails that we observe in the time-evolution of BH
perturbations (see [85] for more details), and which are not
present in the case of the Pöschl-Teller potential in Eq. (44).
Nevertheless, for the computation of the KdV integrals that
we need for the greybody factors, both potentials decay
sufficiently fast so that the corresponding integrals are well
defined (finite).
Returning to our procedure to compute the BH greybody

factors, the first step is to find the KdV integrals. To that

end, due to the Darboux invariance of the KdV integrals
(see Refs. [48,50] for details on this symmetry of the space
of master functions and equations), we can use any of the
potentials that appear in the master equations that describe
the perturbations of a Schwarzschild BH, for instance, the
Regge-Wheeler potential (4). The first ten nonvanishing
KdV integrals for this potential can be found in Appendix E
of Ref. [48]. The second step is to build the asymptotic
series for the MGF [Eq. (25)]. For this we need the
moments, which are proportional to the KdV integrals
according to Eq. (17). The third step is to construct the Padé
approximant to the MGF series to the desired degree of
precision. The order of the Padé approximation, ðK;LÞ [see
Eq. (35)] is directly connected to the number of KdV
integrals (moments), n ¼ K þ L, that we use in the
computation. Then, the fourth step consists in finding
the poles and residues of the Padé approximant. This is
done numerically and in our case we use the computer
algebra system Maxima [88]. This leads to the semianalytical
approximation of Eq. (30), in terms of partial fractions, for
the Padé approximant. The last step is to perform the
Laplace inversion, as in Eq. (34), to finally obtain the result
represented by Eq. (35). In Fig. 9 we show the results for
the transmission coefficient using different Padé approx-
imants and for two values of the harmonic number l: l ¼ 2
(top panel) and l ¼ 10 (bottom panel).
The behavior of the Padé approximation for the

greybody factors shown in Fig. 9 appears to be similar
to what we found for the Pöschl-Teller potential in the
previous section. Actually, we observe that the higher
the harmonic number l (angular momentum), and hence
the higher the strength of the potential is, the higher is the
number of moments that we need to include in order to
obtain a good accuracy for intermediate frequencies (inter-
mediate values of k).
On the other hand, in Fig. 10 we show the behavior of

the Regge-Wheeler greybody factor in the low-frequency
(low k) region (by zooming into the plots of Fig. 9), and in
Fig. 11 we plot the error δT ½K=L� for successive Padé-based
approximations, introduced in Eq. (50). By looking at these
plots, we can notice again that the higher the harmonic
number l is, the better the approximation near the origin
becomes. We can also see that the general behavior of the
approximation of Eq. (35) is that it improves as we increase
the number of moments involved in the computation, as
expected. Therefore, following the Pöschl-Teller case as a
guidance, our approximation seems to be very good as we
can see by looking at the order of magnitude of δT ½K=L�
in Fig. 11.
In Fig. 12 we show two plots (for two values of the

harmonic number l ¼ 2, 10) for the global error estimate
(51) for the Regge-Wheeler greybody factor. Using this
error estimate we have a unique measure of the improve-
ment of the approximation with the increase of KdV
integrals/moments. Fig. 12 shows the improvement in
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the approximation as we increase the order of the Padé
approximants used in our computations.
In Fig. 13 we plot our Padé-based approximation against

the fourth-order WKB approximation (see Appendix B for
details). The comparison shows that the two approxima-
tions become almost indistinguishable for high l but differ
more significantly for lower values of l. Figure 13 also
shows that by considering more moments (KdV integrals)
in the construction of the Padé-based approximation (35)
we can reach very good accuracy (see also Fig. 9).
To summarize, we have found that the Padé-based

approximation we have introduced in Eq. (35) provides
accurate estimates for the greybody factors associated with
gravitational scattering processes around a Schwarzschild
BH. The accuracy of the greybody factors computed in this
way is comparable to the one obtained from the WKB
approximation scheme, provided we use sufficient KdV
integrals. In this sense, it is important to mention that
while increasing the WKB order of approximation implies

a rapid growth of the number of terms that appear at
each order [42] (see also Appendix B), the increase in the
Padé order (or in other words, in the number of KdV
integrals/moments used in the computation) appears to be
quite simple and requires a relative quite low increase in
computational cost. Therefore, our Padé-based approxima-
tion can be pushed to very high-order without neither
modifying the procedure nor increasing significantly the
computational cost associated with it.

VII. CONCLUSIONS AND DISCUSSION

In this paper we have introduced a new method to
compute the greybody factors of a potential barrier, in
particular of the gravitational Schwarzschild potential barrier.
The method is based on the main result of Ref. [48], which
tells us that the greybody factors are uniquely determined by
the KdV integrals associated with the BH potential barrier via
a moment problem, what we called the BH moment problem.
This result originates from the study of the space of all the
possible master functions and equations describing BH

FIG. 10. The plot shows the behavior of the Regge-Wheeler
potential greybody factor in the low-frequency (low k) regions
obtained by zooming near k ¼ 0 in plots of Fig. 9 for l ¼ 2 (top
panel) and l ¼ 10 (bottom panel).

FIG. 9. Plots of the greybody factors for the Regge-Wheeler
potential barrier calculated using the Padé approximation of
Eq. (35) for l ¼ 2 (top panel) and l ¼ 10 (bottom panel). The
notation T½N=M� refers to the fact that the greybody factor is
calculated from the ½N=M� Padé approximant to the MGF
asymptotic series of Eq. (26).
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perturbations that was carried out in Refs. [49,50]. In those
works it was found that all the master equations are
connected by Darboux transformations, which preserve
the continuum spectrum (the greybody factors) and the
quasinormal spectrum (the resonances), showing their physi-
cal equivalence. An additional set of symmetries was found,
consisting in deformations that follow the hierarchy of KdV
equations and generate an infinite sequence of conservation
laws with their associated conserved quantities, the KdV
integrals (they are integrals of differential polynomials of the
potential that characterize the master equation). It turns out
that the KdV integrals are the same for all the possible
potentials (for all the possible master equations), that is, they
are invariant under Darboux transformations. In this sense,
the KdV integrals characterize the physics behind the master
equations, as we have seen with the case of greybody factors
and their connection with the KdV integrals via a moment
problem.
There is not a uniqueway of solving/inverting the moment

problem to obtain the greybody factors once the KdV

integrals are given. In this work, we have made the choice
of using Padé approximants mainly because of their intimate
connection to the moment problem, which goes back to
the first studies on continued fractions [71]. Actually, an
important result in this line is that the Padé approximants of a
Stieltjes series converge to the corresponding exact Stieltjes
function when the problem is determinate [80,81], i.e., it
admits a unique solution (see also [48]). Moreover, the Padé
approximants have been also proposed as a tool to carry out
the Laplace inversion [89,90], so that the moment problem
can be solved by inverting the MGF [79], which is in itself a
Laplace transform, to find the distribution function associ-
ated with the moments. As a final remark on the use of
Padé approximants, it is important to mention that they have
been widely used and investigated in the literature and, as a
result of this, a number of useful results are known. For
instance, the use of Shanks transformations, which improves
their convergence rate [81], and/or the multipoint Padé
approximants (see, e.g., [80]) to improve the approximation
near zero frequency.

FIG. 11. Plot of the Regge-Wheeler greybody factor error
δT ½K=L�ðkÞ [Eq. (50)] for various orders of the Padé approximant
used, or equivalently, for different numbers of the KdV integrals
involved in the computation. The top panel shows plots for l ¼ 2
and the bottom panel for l ¼ 10.

FIG. 12. Plot of the Regge-Wheeler greybody factor global
error ΔT ½K=L� [Eq. (51)] for various orders of the Padé approx-
imant used, or equivalently, for different numbers of the KdV
integrals involved in the computation. The top panel shows plots
for l ¼ 2 and cutoffs ðk0; k∞Þ ¼ ð0.05; 20Þ, while the bottom
panel shows plots for l ¼ 10 and cutoffs ðk0; k∞Þ ¼ ð0.2; 20Þ.
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The results of this paper have to be considered as a first
step toward solving the BHmoment problem to find the BH
greybody factors in this new approach to the problem,
introduced in Ref. [48]. Despite the good precision we have
achieved in the computation of the transmission coefficient,
there is still significant room for improvement in the way
we use Padé approximants, or even for introducing more
sophisticated techniques, which may trigger the exploration
of better methods and techniques to solve the BH moment
problem. For instance, one possibility would be to look for
alternative methods to invert the Laplace transform [80,90].
Leaving aside the approach we use in this paper of
introducing the MGF as a main object in the computation,
a number of numerical or semianalytical methods have
been studied to invert the moment problem in other
contexts (see, for instance [72–78]).
Finally, in this paper, we have applied our techniques to

the case of scattering of gravitational perturbations off the
potential barrier of a nonrotating BH. By looking at the
details of the whole procedure, it seems reasonable to think
that with little modifications, the BH moment problem

can be adapted to other physical situations of interest, in
particular to the case of BH perturbations of different
character (spin): scalar, vector and neutrino perturbations.
Other relevant scenarios where it would be worth applying
these techniques include: Perturbations of spinning BHs
in General Relativity; perturbations of compact objects,
in particular of those exotic cases that can mimic BHs;
perturbations of BHs in alternative theories of gravity;
perturbations of BHs in higher dimensions; etc.
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APPENDIX A: BASICS OF PADÉ
APPROXIMANTS

Padé approximants (see Ref. [80]) are a powerful way of
reproducing a power series, in a such a way that the Padé
approximant exhibits in general better convergence proper-
ties. Let us consider the following power series:

fðzÞ ¼
X∞
i¼0

cizi: ðA1Þ

The Padé approximants are a sequence of rational functions
of the form

½K=L�ðzÞ ¼
P

K
i¼0 PiziP
L
j¼0Qjzj

; ðA2Þ

such that each term of the sequence is equal to the power
series expansion up to the order K þ Lþ 1, where the
ðPi;QjÞ are just constant coefficients. The coefficientQ0 in
particular can be fixed to one without losing generality. The
rest of the coefficients are found by matching the expansion
of ½K=L�ðzÞ up to orderK þ Lþ 1with the firstK þ Lþ 1
coefficients of Eq. (A1), i.e.

�XKþL

i¼0

cizi
��XL

j¼0

Qjzj
�
−
XK
i¼0

Pizi ¼ OðzKþLþ1Þ: ðA3Þ

FIG. 13. Comparison between the Regge-Wheeler greybody
factors as computed from the Padé-based approximation with
those computed using the fourth-order WKB approximation
scheme. The top panel shows the l ¼ 2 case while the bottom
panel shows the l ¼ 10 case.
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Then, the coefficients in the denominator of Eq. (A2)
are related to the coefficients of the power series in the
following way

XL
j¼1

CijQj ¼ cKþi; 1 ≤ j ≤ L; ðA4Þ

where Cij ¼ cKþi−j are the element of a L × L matrix. The
coefficients in the numerator are instead found as follows

Pn ¼
Xn
j¼0

cn−jQj; 0 ≤ j ≤ K; ðA5Þ

where Qj ¼ 0 if j > L.

APPENDIX B: WKB APPROXIMATIONS FOR BH
GREYBODY FACTORS

The application of the WKB approximation to the study
of perturbations of BHs [38] provides useful and accurate
expressions for the estimation of quasinormal mode
frequencies and greybody factors. In the particular case
of greybody factors, the result provided by the WKB
approximation can be written as follows [39]:

TðkÞ ¼ 1			1þ e2πiðνðkÞþ1=2Þ
			 ; ðB1Þ

where

νðkÞ þ 1=2 ¼ i
ðk2 − V0Þffiffiffiffiffiffiffiffiffiffiffiffi

−2V 00
0

p −
X
i¼2

Λi; ðB2Þ

and

V0 ¼ Vðx0Þ; VðnÞ
0 ¼ dnV

dxn

				
x¼x0

; ðB3Þ

where x0 is the location of the maximum of the potential
barrier VðxÞ, that is, x0 is defined by the following relation

V 0ðx0Þ ¼ 0: ðB4Þ

The quantities Λi for i ¼ 1;…; 13 can be found in
Refs. [38–42]. In particular, the quantities Λ2, Λ3, and
Λ4, the ones used in this work, are given by

Λ2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

p
�
1

8

�
Vð4Þ
0

V 00
0

��
1

4
þ γ2

�

−
1

288

�
Vð3Þ
0

V00
0

�2

ð7þ 60γ2Þ
�
; ðB5Þ

Λ3 ¼
γ

2V 00
0

�
5

6912

�
Vð3Þ
0

V 00
0

�4

ð77þ 188γ2Þ − 1

384

�
Vð3Þ2
0 Vð4Þ

0

V 003
0

�
ð51þ 100γ2Þ þ 1

2304

�
Vð4Þ
0

V 00
0

�2

ð67þ 68γ2Þ

þ 1

288

�
Vð3Þ
0 Vð5Þ

0

V 002
0

�
ð19þ 28γ2Þ − 1

288

�
Vð6Þ
0

V 00
0

�
ð5þ 4γ2Þ

�
; ðB6Þ

Λ4 ¼
1

597196800
ffiffiffi
2

p
V 007
0

ffiffiffiffiffiffi
V 00
0

p n
2536975Vð3Þ6

0 − 9886275V 00
0V

ð3Þ4
0 Vð4Þ

0 þ 5319720V 002
0 Vð3Þ3

0 Vð5Þ
0 − 225V 002

0 Vð3Þ2
0

×


−40261Vð4Þ2

0 þ 9688V 00
0V

ð6Þ
0

�
þ 3240V 003

0 Vð3Þ
0



−1889Vð4Þ

0 Vð5Þ
0 þ 220V 00

0V
ð7Þ
0

�
− 729V 003

0

h
1425Vð4Þ3

0

− 1400V 00
0V

ð4Þ
0 Vð6Þ

0 þ 8V 00
0



−123Vð5Þ2

0 þ 25V 00
0V

ð8Þ
0

�io
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4976640
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2

p
V 007
0
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V 00
0

p n
348425Vð3Þ6

0

− 1199925V 00
0V

ð3Þ4
0 Vð4Þ

0 þ 57276V 002
0 Vð3Þ3

0 Vð5Þ
0 − 45V 002

0 Vð3Þ2
0



−20671Vð4Þ2
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0V
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�
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0



−489Vð4Þ
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0 þ 52V00

0V
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0

�
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0

h
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0
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where γ ¼ nþ 1=2 and n ¼ 0; 1; 2… is the overtone number.
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APPENDIX C: SOME FORMULAS FOR THE PÖSCHL-TELLER POTENTIAL

Let us consider the time-independent Schrödinger equation (7) for the case of a Pöschl-Teller potential barrier [see
Eq. (44)]. The general solution reads (Refs. [48,84,91]):

ψðx; kÞ ¼ A2ik=α½1 − tanh2ðαxÞ�−ik=2α2F1

�
λ −

ik
α
; 1 − λ −

ik
α
; 1 −

ik
α
;
1 − tanhðαxÞ

2

�

þ B½1 − tanhðαxÞ�ik=2α½1þ tanhðαxÞ�−ik=2α2F1

�
λ; 1 − λ; 1þ ik

α
;
1 − tanhðαxÞ

2

�
; ðC1Þ

where

λ ¼ iβ þ 1

2
: ðC2Þ

By analyzing the asymptotic behavior of the general
solution, both at x → ∞ and at x → −∞, we can find
analytical expressions for the reflection and transmission
coefficients. First, one can obtain the following expressions
for the Bogoliubov coefficients

aðkÞ ¼ Γð1 − ikÞΓð−ikÞ
Γ


1
2
− iðk − βÞ

�
Γ


1
2
− iðkþ βÞ

� ; ðC3Þ

bðkÞ ¼ Γð1 − ikÞΓðikÞ
Γ


1
2
þ iβ

�
Γ


1
2
− iβ

� ; ðC4Þ

where for the sake of simplicity we set α ¼ 1. Then, we can
find the transmission and reflection coefficients from
Eq. (14). The transmission probability can be evaluated
by taking the inverse modulus square of Eq. (C3) for real k
and reads

TðkÞ ¼ sinh2 ðπkÞ
cosh2 ðπkÞ þ sinh2 ðπβÞ ; ðC5Þ

where we used the properties of the gamma functions [92].

APPENDIX D: KdV INTEGRALS FOR THE
PÖSCHL-TELLER POTENTIAL

Here we list the first nonvanishing KdV integrals [see
Eq. (10)] for the Pöschl-Teller potential [see Eq. (44)]:

I1 ¼
α

2
ð4β2 þ 1Þ; ðD1Þ

I3 ¼ −
α3

12
ð4β2 þ 1Þ2; ðD2Þ

I5 ¼ α5ð4β2 þ 1Þ2
�
2

15
β2 −

1

6

�
; ðD3Þ

I7 ¼ −α7ð4β2 þ 1Þ2
�
2

7
β4 −

41

105
β2 −

577

840

�
; ðD4Þ

I9 ¼ α9ð4β2 þ 1Þ2
�
32

45
β6 −

232

315
β4 −

1406

315
β2 −

2683

630

�
;

ðD5Þ

I11 ¼ −α11ð4β2 þ 1Þ2
�
64

33
β8 −

64

99
β6 −

12968

693
β4 −

168668

3465
β2 −

61767

1540

�
; ðD6Þ

I13 ¼ α13ð4β2 þ 1Þ2
�
512

91
β10 þ 12160

3003
β8 −

956096

15015
β6 −

1123952

3465
β4 −

2879438

4095
β2 −

49126459

90090

�
; ðD7Þ

I15 ¼ −α15ð4β2 þ 1Þ2
�
256
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β12 þ 1408

39
β10 −

1057744

6435
β8 −

826544

495
β6 −

303716683

45045
β4 −

406249013

30030
β2 −

813135229

80080

�
;

ðD8Þ
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I17 ¼ α17ð4β2 þ 1Þ2
�
8192

153
β14 þ 157696

765
β12 −

436736

3315
β10 −

755645056

109395
β8 −

116271200

2431
β6 −

134553980488
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β4

−
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153153
β2 −
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I19 ¼ −α19ð4β2 þ 1Þ2
�
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β16 þ 4947968
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β12 −

2947115008
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