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We present mlgw_bns, a gravitational waveform surrogate that allows for a significant improvement in
the generation speed of frequency-domain waveforms for binary neutron star mergers, at a negligible cost
in accuracy. This improvement is achieved by training a machine-learning model on a dataset of waveforms
generated with an accurate but comparatively costlier approximant: the state-of-the-art effective-one-body
model TEOBResumSPA. When coupled to a reduced-order scheme, mlgw_bns can accelerate waveform
generation up to a factor of ∼35, outperforming all other approximants of similar accuracy. By analyzing
GW170817 in realistic parameter estimation settings with our scheme, we showcase an overall speedup
against TEOBResumSPA greater than an order of magnitude. Our methodology will bear a significant
impact on the scientific program of next generation detectors by allowing routine usage of accurate
effective-one-body models.
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I. INTRODUCTION

Bayesian analyses of gravitational wave (GW) data from
compact binary mergers rely on extensive explorations of
the posterior probability distribution of detected signals
[1,2] and chiefly hinge on accurate waveform models. The
latter represent the prediction of a GW signal originated
from a system described by a certain set of parameters θ. As
the sampling of the posterior distribution for a single GW
event typically requires the generation of ≳107 waveforms,
speed in their generation is essential. This is especially
compelling in view of next generation (XG) GW detectors,
for which the rate of events will be dramatically higher than
the current one. The in-band duration of signals will also
increase and, due to their low mass, long signals emitted by
binary neutron star (BNS) mergers will be most signifi-
cantly affected. Reducing the computational cost for
this class of signals, maximizing the scientific output of
future large-scale experiments, is a goal of the utmost
importance—this is the focus of the present work.
For general relativistic waveform models, speed and

accuracy are often at odds. For example, very fast wave-
form generation can be obtained with analytical Post-
Newtonian (PN) approximants [3,4], but such templates

lack in accuracy and tend to bias parameter estimation (PE).
Indeed, Bayesian analyses of BNS signals in XG detectors
[5–7] have been demonstrated only using phenomenological
[8] or PN approximants [9]. These waveform templates
include only partial physical information, and are therefore
expected to strongly bias PE with XG detectors [7,10]. For
example, phenomenological approximants model the effect
of spin precession, but do not contain unequal-mass tidal
corrections, with the binarymatter effects entirely determined
by one single effective tidal parameter. Post-Newtonian
models are unreliable close to merger and are only available
(in the frequency domain) for binaries with spins aligned
with the orbital angular momentum. Incorporating the whole
physics content of advanced waveform models (including
higher harmonics, precession, eccentricity, self-spin inter-
actions, beyond leading order adiabatic electric andmagnetic-
type tidal effects, and dynamical tides) will be key to avoid
biases, but currently can only be accomplished at a great
increase in computational cost.
In particular, here we are interested in leveraging the

effective-one-body (EOB) approach [11–20], one of the
most accurate state-of-the art frameworks for waveform
generators. In this framework, the Hamiltonian description
of the two-body problem in General Relativity (GR) is

PHYSICAL REVIEW D 107, 084037 (2023)

2470-0010=2023=107(8)=084037(22) 084037-1 © 2023 American Physical Society

https://orcid.org/0000-0002-8206-8089
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.084037&domain=pdf&date_stamp=2023-04-25
https://doi.org/10.1103/PhysRevD.107.084037
https://doi.org/10.1103/PhysRevD.107.084037
https://doi.org/10.1103/PhysRevD.107.084037
https://doi.org/10.1103/PhysRevD.107.084037


mapped to an effective problem of a single body orbiting in
a Kerr-like deformed metric. The effective metric potentials
are determined by suitably resummed PN expressions that
make the model predictive in the fast-motion and strong-
field merger regime. Gravitational waveforms are natively
generated in the time domain using the solution of the
EOB equations of motion and a particular factorized and
resummed analytical expression of the multipolar PN
waveform [21]. The EOB approach has the advantage
of being both accurate to Einstein’s equations, and flexible
to the addition of analytical (e.g., PN) information.
The faithfulness of inspiral-merger-ringdown models is
increased by suitably informing them with Numerical
Relativity (NR) data, see, e.g., Refs. [22,23] for recent
work targeted at XG detectors. Analogously, BNS inspiral-
merger waveforms are obtained by augmenting the effec-
tive interbinary potential and waveform multipoles with
tidal terms [24–31]. Full inspiral-merger-postmerger BNS
waveforms can be constructed by hybridizing the model
with NR-informed post-merger models [32,33].
The practical usage of the above EOB model is ham-

pered by the requirement of numerically solving an ODE
system, which brings a constant-time overhead and con-
strains the maximum rate of waveform generation. For
current BNS analyses, generating the ≳107 templates
required easily takes several weeks of CPU time. A crucial
element to improve the EOB model efficiency is the
post-adiabatic method, introduced in Ref. [34] for the
TEOBResumS model. The post-adiabatic iterative method
yields an efficient yet accurate approximation of the EOB
Hamiltonian flow, removing the need to solve the related
ODE for all but the very last stages of the inspiral. This
technique provides a significant speedup (a factor of ten or
more for typical BNS signals in the LIGO-Virgo [35,36]
band), but it is currently applicable only to quasicircular
mergers. To further optimize the waveform generation, a
desirable feature for a fast approximant is to yield wave-
forms in the frequency domain, since the likelihood takes a
simple form in the Fourier space, when assuming a Gaussian
and stationary noise background. A time-domain approx-
imant, such as the one mentioned above, needs to be Fourier-
transformed before use, which typically entails a slowing-
down up to an order of magnitude. For this reason, a
stationary phase approximation (SPA) was introduced within
the EOB model TEOBResumS, yielding a fast and accurate
frequency-domain approximant called TEOBResumSPA
[37], which has been successfully applied to the analyses
of GW170817 and GW190425 data, see, e.g., Refs [37,38].
The evaluation of a frequency-domain waveform approx-

imant typically scales as twaveform ≈ toverhead þ Npointstpoint,
where Npoints is the number of grid points it is evaluated at.
The per-frequency-point time tpoint is typically on the order
of few hundreds of nanoseconds, cannot be reduced below
the CPU clock speed times the number of floating point
operations required, and varies much less than toverhead across

models. Thanks to the combination of SPA and the post-
adiabatic approach, the overhead time for TEOBResumSPA
has been reduced to only tens of milliseconds. The
fundamental limitation in reducing this number is that,
even when evaluating the waveform at few frequency
points, the full Hamiltonian flow must still be computed in
a complete radial grid. In current BNS analyses the second
term is typically dominant. This leads to PE times on the
order of a few days on a modern computer cluster, which
is acceptable for current event rates, but will not be for
XG detectors. A key observation is that Reduced Order
Quadratures (ROQs) [39] techniques can decrease the
required value of Npoints so much that the linear term
becomes negligible compared to the constant one. The
driving requirement behind this work is therefore to build
a model with a much lower toverhead—which leads to a
significantly faster PE if combined with ROQ—while
remaining faithful to the predictions of EOB; this will
enable accurate analyses of data from XG detectors.
One of the most promising approaches to achieving the

necessary increase in efficiency is template acceleration
through machine learning (ML). The last few years saw a
sharp rise in studies on this topic, a review of which can be
found in Ref. [40]. Most of these efforts, however, focused
on binary black hole (BBH) signals. A pioneering study on
this was the one of Ref. [41], which developed a neural
network to compute the liner combination coefficients of a
generic BBH represented on a basis of waveforms. Along
the lines of this work, Ref. [42] also reached high perfor-
mance, while retaining faithfulness, compared the training
waveforms. Reference [43] used instead a principal compo-
nent analysis (PCA) to drastically reduce the number of
basis functions required for waveform reconstruction, while
Ref. [44] applied automated learning to select the best
performing regression scheme (although varying only the
BBH mass ratio q) and Ref. [45] extended the latter effort
to spin-precessing signals. Finally, Ref. [46] used a deep
generative model for waveform generation. It is worth noting
that the models listed above work in the time-domain; while
this ensures a smooth (hence more easily learnable) physical
representation of the BBH signal, a Fourier transform is still
required to use the model in PE applications. The literature is
less rich in the field of binary neutron star (BNS) modeling.
Reference [47] developed a nonspinning surrogate model in
the time domain, and extended it to aligned-spin BNS using
Gaussian process regression [20]. Their parameter space is
the same one we use, as discussed later. Subsequently,
Ref. [20] built a fast frequency-domain surrogate of the spin-
aligned model SEOBNRv4T [29,30], again using Gaussian
process regression.
In this work, we boost the efficiency of accurate EOB

models by introducing mlgw_bns, the first frequency
domain BNS surrogate model relying on a neural network.
The key advancements introduced by our training algo-
rithm rely on a combination of data compression
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techniques and analytical knowledge exploitation. Its
salient characteristics are: training on TEOBResumSPA
waveform residuals relative to a PN baseline, multistep
waveform downsampling, and a final PCA compression
stage. This way, the neural network must only learn a much
simplified relation between the BNS parameters θ and a
low-dimensional representation of the waveform, which
allows it to be shallow, in the end significantly decreasing
the waveform computational overhead. Synergic usage of
this model with ROQ compression techniques allows us to
showcase more than an order of magnitude improvement
in the analysis of current BNS signals. Most importantly,
our technique immediately provides speedups up to ∼103
for wider bandwidth analyses, enabling future studies to
systematically exploit highly accurate EOB models in full
Bayesian PE analyses involving XG detectors.
This paper is organized as follows. In Sec. II, we describe

the details of our method, while Sec. III is devoted to the
performance analysis of our model in terms of timing
and accuracy. The improved capabilities of the resulting
model are illustrated in Sec. IV, where we show the results
of a realistic PE analysis on the BNS transient GW170817
[48,49], additionally making use of a reduced order
quadrature scheme to fully exploit the potential of our
technique. Section V presents final remarks and future
research directions.
Software availability.—Our model is released within the

public Python package mlgw_bns, available at pypi.org/
project/mlgw-bns/. The description in this paper refers to
version 0.12.0. The package contains both the trained
model described here, which can be used to generate
waveforms out of the box, and the full functionalities
required to train new models at will (e.g., by using a
different approximant than TEOBResumSPA, or different
parameter ranges). The training time and memory require-
ments are both relatively small: a model can easily be trained
on a laptop in a few hours. The software we developed to
achieve the frequency compression applied in the PE stage is
available at: github.com/GCArullo/JenpyROQ.
Conventions.—We work in geometric units, setting G ¼

c ¼ 1. The total binary mass is denoted as M¼m1þm2,
the mass ratio as q ¼ m1=m2 ≥ 1, and the symmetric mass
ratio as ν ¼ m1m2=M2. The dimensionless spin vectors are
denoted as χ i for i ¼ 1, 2 and the spin components aligned
with the orbital angular momentum L are labeled as
χi ¼ χ i ·L=jLj. The effective spin parameter is defined
as χeff ¼ ðχ1m1 þ χ2m2Þ=M. The quadrupolar tidal polar-
izability parameters are defined as Λi ¼ ð2=3Þk2;iC−5

i for
i ¼ 1, 2, where k2;i and Ci are the second Love number and
the compactness of the ith star, respectively. The reduced
tidal parameter,

Λ̃ ¼ 16

13

ðM1 þ 12M2ÞM4
1

M5
Λ1 þ ð1 ↔ 2Þ; ð1Þ

determines tidal interactions at leading post-Newtonian-
order [50,51]. Masses, spins, and tidal parameters are
collectively called the intrinsic parameters of a BNS
system, i.e., θint ¼ fM; q; χ1; χ2;Λ1;Λ2g. The location
and orientation of the source are identified by the extrinsic
parameters θext ¼ fDL; ι; α; δ;ψ ; tc;ϕcg, i.e., luminosity
distance DL, inclination angle ι, right ascension angle α,
declination angle δ, polarization angle ψ , time of coales-
cence tc, and phase at the merger ϕc.

1

The frequency-domain waveform from a compact binary
coalescence can in general be written as

hþðfÞ − ih×ðfÞ ¼
1

DL

X∞
l¼2

Xl
m¼−l

hlmðfÞð−2ÞYlm
ðι;φÞ; ð2Þ

where the functions ð−2ÞYlm
are the spin-weighted spherical

harmonics, given, e.g., by Equations (II.7) and (II.8) of
Ref. [52], while the complex functions hlmðfÞ are the
frequency-domain modes of the GW strain.
The discussion in this paper is restricted to the

ðl; mÞ ¼ ð2; 2Þ mode; focusing on it, the two GW polar-
izations can be simply written as

hþðfÞ ¼
1

DL

ffiffiffiffiffiffi
5

4π

r
h22ðfÞ

cos2ιþ 1

2
ð3aÞ

h×ðfÞ ¼
1

DL

ffiffiffiffiffiffi
5

4π

r
h22ðfÞ cos ι: ð3bÞ

A relevant scalar product in waveform space is the
Wiener product

ðajbÞ ≔ 4ℜ
Z

∞

0

a�ðfÞbðfÞ
SnðfÞ

df; ð4Þ

where Sn is the power spectral density (PSD) of a
given detector. Results shown in Sec. III are computed
considering Sn to be the expected Einstein Telescope PSD,
ET-D [53,54].
In terms of this, the optimal match (or faithfulness)

between waveforms a and b is given by

F ða; bÞ ≔ max
t0;ϕ0

ðajbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðajaÞðbjbÞp ; ð5Þ

where the maximum is taken over all possible time and
phase shifts t0 and ϕ0 between the two waveforms. The
mismatch is then defined as F̄ ða; bÞ ≔ 1 − F ða; bÞ.

1This is the full extrinsic parameter set required to reconstruct
the hμν tensor, but within mlgw_bns concretely the sky position
parameters α, δ, and ψ are not accepted: the polarizations are
returned in a frame located at Earth and aligned with the source.
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II. MODEL CONSTRUCTION

A. Overview

mlgw_bns is a surrogate waveform approximant based
on a neural network that learns the relation between five
intrinsic parameters of a binary system—mass ratio,
dimensionless spins, and quadrupolar tidal polarizabilities,
collectively denoted as θ ¼ fq; χ1; χ2;Λ1;Λ2g—and
the corresponding frequency-domain waveform mode
h22ðf; θÞ. The binary mass M is not included in θ since
the nontrivial mass scale in the BNS problem is fully
included in the tidal polarizability parameters.2 Concretely,
within mlgw_bns a fixed reference mass of Mref ¼
2.8M⊙ is chosen and waveforms for generic masses are
generated by the appropriate rescaling of both the wave-
form’s amplitude and frequency; this is described in more
detail in Sec. II D. Similarly, the other extrinsic parameters
θext can be neglected when constructing an approximant;
the dependence on them can be included analytically in the
likelihood after a waveform has been generated.
The driving idea behind mlgw_bns is to have the neural

network be as shallow and small as possible while retaining
reconstruction accuracy; this is accomplished by reducing
the dimensionality of the waveform’s description. The first
step to this end is to make a training dataset of residuals
from an analytical PN baseline, which means the network
only has to learn information in the high-frequency region,
where the two models differ; this is described in Sec. II B.
We then employ a reduced frequency grid and perform

a PCA in order to decrease the dimensionality of each
waveform’s representation to about 30 floating point
numbers; this is described in Sec. II C.
Finally, a neural network is trained to reconstruct the

relation between the parameters θ and the ∼30 principal
components, as described in Sec. II E.
The training datasets for all the aforementioned stages

are generated by drawing from the same uniform distri-
bution on the parameters, in the intervals:

q ∈ ½1; 2�; Λi ∈ ½5; 5000�; χi ∈ ½−0.5; 0.5�:

These ranges correspond to a realistic prior choice in GW
analyses of BNS. The random number generator used
for the extraction is deterministically reseeded for every
new dataset, in order to ensure reproducibility as well as
independence of the datasets.
The frequency-domain waveforms currently learned

by mlgw_bns are those generated by the state-of-the-art
EOB model TEOBResumSPA; these will be denoted by a
subscript EOB in the following discussion. We train with
TEOBResumSPA frequency-domain waveforms as opposed

to Fourier transforms of time-domain TEOBResumS wave-
forms for a few reasons: the two are closer than the intrinsic
accuracy of TEOBResumS (F̄ ≲ 5 × 10−4 [37]); the SPA
waveforms are much smoother than the ones calculated
with a fast Fourier transform (FFT), and therefore easier
to represent with small amounts of frequency points (see
Sec. II C 2); the SPAwaveforms can be natively evaluated at
arbitrary frequencies, allowing us to never employ a uniform
frequency grid.
Figure 1 shows a graphical outline of mlgw_bns’s

operation.

B. Residuals from a Post-Newtonian baseline

We start with a polar representation of the waveform in
amplitude and phase as hðfÞ ¼ AEOBðfÞe−iϕEOBðfÞ. Instead
of reconstructing the waveform directly, mlgw_bns recon-
structs its residuals from a fiducial PN model. The residuals
are computed as

ΔAðf; θÞ ¼ log

�
AEOBðf; θÞ
APNðf; θÞ

�
ð6aÞ

Δϕðf; θÞ ¼ ϕEOBðf; θÞ − ϕPNðf; θÞ; ð6bÞ
and shown in Fig. 2 for 100 sets of parameters. The
complete waveform is recovered from the predicted resid-
uals ΔApredðf; θÞ;Δϕpredðf; θÞ as

Apredðf; θÞ ¼ APNðf; θÞ expðΔApredðf; θÞÞ ð7aÞ
ϕpredðf; θÞ ¼ ϕPNðf; θÞ þ Δϕpredðf; θÞ: ð7bÞ

We use the TaylorF2 approximant with 3.5PN-accurate
amplitude, pseudo 5.5PN-accurate phase [55] with 7.5PN-
accurate tidal contributions [51,56], and the monopole-
quadrupole 3PN contribution to the phase [[57],
Eqs. (50)–(52)] (see also [[19], Eq. (41)]).
The phase residuals computed as above typically exhibit

large linear trends due to the different choices in the time-
domain alignment between the EOB and PN models (which
corresponds to a linear phase term in the frequency domain).
These trends are not physically meaningful, but even small
differences can result in a large effect; the variation over the
whole frequency spectrum is of the order of 2000 Hz ×
2π × Δt radians (for the reference mass), meaning that even
single millisecond shifts will yield tens of radians in differ-
ence. Typical shifts between the models used within
mlgw_bns are of the order of tens of milliseconds, resulting
in several hundreds of radians of meaningless phase differ-
ence. In order to remove this effect, the average slope
dΔϕ=df is first calculated between the first frequency
sample and some higher frequency (typically chosen to
be low enough to lie in the region of validity of the PN
approximation) and then the corresponding linear term is
subtracted from the residuals. Figure 2 shows residuals with
this procedure already applied.

2As in the scale-invariant binary black hole case, the wave-
form’s frequency dependence is really on the mass-rescaled
parameter Mf ¼ GMf=c3, not on f alone.
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This means that waveforms returned by mlgw_bns
are aligned with the corresponding PN ones, as opposed
to the EOB ones. Since the prediction of the merger time
within mlgw_bns is modeled on the EOB one, this
means that the predicted waveforms’mergers fluctuate by
the same few tens of milliseconds. This is inessential for
the purposes of inspiral-only parameter estimation, but it
can be problematic if we wish to extend the inspiral
model with one for the postmerger [33,58]. A solution to
this could be to reconstruct the time-shift dependence
on the parameters ΔtðθintÞ, and de-shift the predicted
waveforms after generating them with the PN alignment;
this is however not implemented in version 0.12.0 of
mlgw_bns used in this work.

C. Dimensionality reduction

Neural networks can be small and simple if the dimen-
sionality of the data they must operate on is itself small.
Fortunately, the default representation of residuals

(or waveforms) in frequency space contains a large amount
of redundancy; this section discusses our approach to
reducing the dimensionality of its representation.
There are three steps employed within mlgw_bns to

this end: two of them are different techniques of decreasing
the number of points in frequency space the residuals are
sampled at, and the third is PCA.
The orders of magnitude for how many floating point

numbers are needed to represent waveforms or residuals
starting at 5 Hz after each of these steps are as follows (see
also Figs. 3 and 4 for a breakdown of where these points are
used in frequency space):
(1) the default uniform frequency spacing requires

∼2 × 107 points per waveform, scaling with f−8=30 ;
(2) the multibanding approach reduces this to ∼2 × 105,

scaling with f−5=30 [59];
(3) the dataset-dependent greedy downsampling ap-

proach reduces this to ∼3 × 103 for full waveforms
or ∼103 for residuals; and

FIG. 1. Flowchart for the operation of mlgw_bns.
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(4) thePCArepresentation, finally, only requires∼3 × 101

numbers per waveform.
Uniform spacing is never used within mlgw_bns; a

small number of waveforms is generated directly with the
multibanded grid in order to train the greedy downsam-
pling, and once this is done all further waveforms are
generated on the smaller greedy downsampling grid. This
means that, even when starting from a very low initial
frequency, we can easily work with a dataset of waveforms
within the RAM of a laptop.

1. Multibanding

“Multibanding” is the name we give to a technique
of generating a frequency grid which is much smaller
than the uniform one, not very dependent on the specifics
of the dataset, and which may still be used to get a good
representation of compact binary coalescence (CBC)
waveforms.
The starting point is the observation that a CBC signal

will always have a specific chirping profile, with high-
frequency information only contained in a short (in time)
section at the end. The default frequency array used in
signal processing, for a real-valued signal with duration T
and time spacing Δt, will be a uniform array from f ¼ 0
to f ¼ 1=2Δt (the Nyquist frequency), with spacing
Δf ¼ 1=T. As expected, this means there is no information
loss; T=Δt real numbers are mapped to ð2ΔtÞ−1=T−1

complex numbers. This array describes high- and low-
frequency information for all times; in the CBC case this
entails a lot of redundancy, since it is already known ahead
of time that for the overwhelming majority of the signal
there will be no high-frequency information. We may
construct a frequency array which is “aware” of this
behavior [59,60]. We start from the fact that the duration
of a CBC signal starting from a frequency f0 is T ∝ f−8=30 ,
with a proportionality constant that can be analytically
derived at Newtonian (0PN) order and which depends on
the mass and the mass ratio [61]:

T ¼ 5

256
ðπf0Þ−8=3M−5=3=ν: ð8Þ

Then, we can make a frequency array for which the
frequency spacing at each frequency is ΔfðfÞ ≈ 1=TðfÞ.
This will mean we sample the low-frequency region much
more finely than the high-frequency one, but locally each
frequency band is described with the correct level of detail.

FIG. 4. Same as Fig. 3, but training the greedy algorithm to
reconstruct the phase of the same waveforms.FIG. 2. Residuals of 100 EOB waveforms to their PN counter-

parts. The EOB waveforms are chosen according to a uniform
distribution in parameter space.

FIG. 3. Comparison of various ways to sample the amplitudes
of a waveform. We show histograms of the arrays of frequencies
used for the sampling, in the cases of no multibanding (uniform
spacing Δf ¼ const), multibanding (discussed in Sec. II C 1),
and training the greedy algorithm discussed in Sec. II C 2 on 128
waveforms or 128 sets of residuals, computed as discussed in
Sec. II B.
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The approach used within mlgw_bns differs from the
one used by Ref. [59] in two aspects. First, whereas they
approximate the uniformly-varying Δf by dividing the
frequency domain into bands and using a different, uniform
frequency for each of those, we construct a frequency array
with continuously-varying spacing. Second, while they
extend this sampling into the high-frequency regime, we
use it only for frequencies lower than a certain pivot,
typically fpivot ≈ 40 Hz, while for higher frequencies we
use uniform sampling. This is a conservative choice,
motivated by the fact that at high frequency the 0PN
expression for the time to merger cannot be expected to
hold, combined with the fact that a uniform array with the
spacing defined by Δf ¼ 1=Tð40 HzÞ ≈ 0.02 Hz is not a
large computational burden, resulting in only a few tens of
thousands of points. This approach, that we call multi-
banding, needs to know something about the dataset: while
the mass is kept fixed during the training, the mass ratio
cannot be. The dependence is Δf ∝ 1=T ∝ ν, and ν scales
inversely with the mass ratio q (which is >1 here).
Therefore, the smallest Δf we should use as a lower
bound corresponds to the largest q within the dataset; note,
however, that this characteristic is shared by the uniform
sampling, which is also defined by the three quantities fmin,
fmax, and Δf.
Figures 3 and 4 show histograms for the multibanding

approach compared to the standard, uniform-in-frequency
approach, for the case of waveforms starting at 5 Hz. The
uniform-in-frequency grid looks tilted in the histogram
since the bins represent logarithmic frequency intervals,
which increase in absolute width (Δf) as the frequency
increases. The general pattern to observe is that, as we
make more and more assumptions about the waveforms
we need to represent, the frequency array can shrink.
Multibanding is a rather safe choice, since it makes no
more assumptions than uniform sampling, but it still
provides at least an order-of-magnitude improvement in
typical cases. The lower two histograms, labeled
“Waveforms” and “Residuals,” show the numbers of points
that can be achieved when greedily selecting frequencies
by requiring that they allow us to reconstruct full EOB
waveforms or their residuals (described in Sec. II B)
respectively.

2. Downsampling

While the multibanding reduces the size of the frequency
arrays by orders of magnitude, especially for very low
initial frequencies, we can do even better if we allow a
heavier dependence on the specific dataset. Specifically, we
can determine a set of points in frequency space such that
any waveform in the dataset, if given at those points only,
can be interpolated and retrieved at all frequencies within a
certain accuracy.
In order to achieve this goal, a greedy optimization

technique is used. First, a set of waveforms is generated on

the grid described in the previous section. These waveforms
are then downsampled to a sparse grid, which can initially
just consist of the endpoints of the domain, and resampled
with a cubic spline.3 The reconstruction error can then be
measured for each of these waveforms; new points are
added to the grid where it is worst. This procedure is
iterated until all the given waveforms can be reconstructed
within a certain tolerance, which we select to be 10−5 for
both amplitude and phase. The downsampling is performed
separately for amplitude and phase.
As the diagram in Fig. 1 shows, when reconstructing

a waveform the “residual recombination” step happens
before the “resampling to user grid” step. This means that
this downsampling procedure, which by itself is a generic
algorithm, is applied to the full EOB waveforms as opposed
to the residuals described in Sec. II B.
While this requires us to use a slightly larger frequency

grid (but still with <104 points), it was found to be
generally faster than the alternative.

3. Principal Component Analysis

Once the waveform has been downsampled, it is repre-
sented with nA numbers for the amplitude and nϕ for the
phase. Its dimensionality can be further reduced using
PCA. We collect all the residuals corresponding to each
waveform in an array x ¼ ½ΔA;Δϕ� ∈ RnAþnϕ and con-
struct a training dataset out of such arrays, fxigi, of
which we may compute the mean μ ¼ hxi and the covari-
ance matrix

C ¼ hðx − μÞðx − μÞ⊤i: ð9Þ

This (symmetric, positive definite) matrix is diagonalized
as C ¼ VDV⊤, where D ¼ diagðλiÞ is a diagonal matrix
containing the eigenvalues of the covariance matrix,
ordered so that λi ≥ λiþ1. The columns of V are the
eigenvectors and, because of the ordering, the first k
eigenvectors correspond to the k largest eigenvalues.
Projecting a vector x onto the span of these k eigenvectors
allows us to approximately represent it with only k
numbers. Specifically, if U is the ðnA þ nϕÞ × k submatrix
of V consisting of the k eigenvectors corresponding to the
largest eigenvalues of the covariance matrix C, we explic-
itly write the forwards and backwards transformations for x
into its low-dimensional representation x̃:

x → x̃ ¼ U⊤ðx − μÞ ð10aÞ

x̃ → x ¼ Ux̃þ μ: ð10bÞ

3Cubic interpolation was found to be a good middle ground
when accounting for computational complexity (which increases
with interpolation order) and greedy grid size (which decreases
with interpolation order).
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The number of principal components to keep can be
tuned depending on the required final fidelity, including
more of them increases the evaluation time of each
waveform.
For simplicity, for the remainder of this work we always

retain 30 principal components. In principle this number
could also be tuned, and its current value was mainly
chosen to be “safely large.” This is confirmed by Fig. 6: the
reconstruction fidelity grows in a roughly linear fashion
with the number of training points and its accuracy is never
hampered by the number of PCA up to fidelities F̄ ≲ 10−5.
As we will discuss in Sec. IV B, even with this possibly
suboptimal value of k our model is fast enough not to be the
bottleneck in the evaluation of the likelihood.

D. Frequency band

As our detectors improve their sensitivity at low fre-
quency, it is crucial to have a model which can be
conveniently evaluated there. In this section, we discuss
the frequency band in which our model is trained, and how
we may overcome the inherent limitation of only training
down to a given frequency.
For the default model, which is provided with version

0.12.0 of mlgw_bns and whose performance is dis-
cussed in this work, the frequency range for which validity
is guaranteed is [5, 2048] Hz, while the range of valid
total masses is ½2; 4�M⊙; this means, as we shall discuss
below, that the reference-mass model is trained in the
range ≈½3.57; 2926� Hz.
When the user requests frequencies within the training

range, the model is able to directly yield a prediction;
however this may be limiting, especially when considering
multiband observations. The waveform at frequencies
lower than the ones in the training range is well described
by the PN approximation; therefore, waveforms predicted
by mlgw_bns are natively hybridized with PN ones at low
frequency, as Sec. II D 3 below describes.

1. Mass rescaling

As mentioned in the introduction, we exclude the total
mass M from the training parameters since the waveform
only depends on the combination Mf; this affects the
frequency band in which we must train our model.
Suppose the user requires a waveform hðf;M; θÞ with

total mass M. Then, the overall waveform is computed
within mlgw_bns as

hðfÞ ¼ M
Mref

h

�
fM
Mref

;Mref ; θ

�
; ð11Þ

which means that the user-given frequency grid will be
shifted by a factor M=Mref.
In order for this to yield a valid waveform, however, the

shifted frequencies must still lie within the model’s training
frequency range.

Therefore, if we want our model to be applicable for
all frequencies in a range ½f1; f2� and for all masses in a
range ½M1;M2� we need to train the reference-mass model
in a range

f ∈
�
f1

M1

Mref
; f2

M2

Mref

�
: ð12Þ

2. High frequency bound

The model we are training on, TEOBResumSPA,
describes the inspiral up to merger, which in the mass
range of interest typically happens above 2 kHz. After the
merger, the remnant (a short- or long-lived neutron star, or a
black hole) will emit a postmerger GW signal for which
models exist [32,33,62–65], but which is considered
separately from the EOB waveform; after the merger
frequency, TEOBResumSPA waveforms are tapered with
a powerlaw in the amplitude, AEOB ∝ f−10=3, and a linear
relation in phase, _ϕEOB ¼ _ϕðfmaxÞ, for f > fmax [[37],
Eqs. (S11) and (S12)]. This scaling is enforced as to ensure
that the inverse Fourier transform of these waveforms is
close to the time-domain waveform. Also, it means that the
amplitude is guaranteed to remain positive (albeit quickly
diminishing) at high frequency.
However, this implies an issue in the residuals compu-

tation of Eq. (6): the baseline PN approximant is written as
a power series in v ¼ ðπMfÞ1=3, which means that there is
no guarantee that APN will remain positive in the high-
frequency regime, and indeed in practice, it often does
become negative, which means that our residuals defined
in Eq. (6) diverge.
We fix this by choosing a maximum frequency for the

validity of the PN model, and setting its amplitude to a
constant value after that. This is not done “sharply,” since
that would propagate a discontinuity to the prediction;
instead, we smoothly connect the expressions within an
interval ½f1; f2� ¼ ½0.01=M; 0.02=M� as follows: for all
f ∈ ½f1; f2� we write

Anew
PN ðfÞ ¼ ð1 − ζðxðfÞÞÞAPNðfÞ þ ζðxðfÞÞC; ð13Þ

where ζ∶ ½0; 1� → ½0; 1� is chosen so its derivative at the
boundaries vanishes; specifically, we use

ζðxÞ ¼ 1

2
ð1 − cosðπxÞÞ; ð14Þ

while

xðfÞ ¼ f − f1
f2 − f1

: ð15Þ

The constant C is chosen to be equal to 20 in natural
units; this is somewhat arbitrary, but it is roughly the value
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attained by AEOB at f ∼ 0.02=M, as demonstrated by
the first panel in Fig. 2: the value at Mf ¼ 0.02 is
logAEOBðMf ¼ 0.02Þ=C, and one can see that it changes
sign as we vary Λ̃.
This shows that C ¼ 20 is a reasonable middle ground

for this parameter. This choice will only have an impact
on the network’s ability to learn the residuals; if they are
reconstructed correctly and the same modified PN model is
used both in training and reconstruction, the specifics of
the modification do not matter, and the high-frequency
continuation of our waveforms is equal to the EOB one
described at the beginning of this section.
For simplicity, for all frequencies higher than the

maximum training one, we return a waveform which is
identically equal to zero.

3. Low-frequency bound

For a typical BNS, a frequency of 5 Hz corresponds to
about two hours before merger. This is close to the lower
frequency limit for a ground-based detector, but for a
multiband observational campaign (including space- or
Moon-based detectors) having a model able to be evaluated
at arbitrarily low frequencies is very convenient.
The architecture in mlgw_bnsmakes this easily achiev-

able: since we are reconstructing residuals from a PN
baseline, we may evaluate the waveform at arbitrarily low
frequencies by setting the residuals to zero and just yielding
the PN waveform, which below 5 Hz is a very good
approximation of the true waveform; as Fig. 2 shows, the
residuals approach zero in the low-frequency regime.
For the phases, by subtracting an arbitrary linear term we

can achieve ϕðfminÞ ¼ 0 exactly, and _ϕðfminÞ ≈ 0 to quite
good accuracy, therefore we can simply yield PN phases
below fmin and our prediction above it. For the amplitudes,
this is not the case, and a discrepancy of the order of
Δ logA ∼ 5 × 10−3 remains.
This discontinuity is fixed by a smoothing procedure: PN

amplitudes corresponding to frequencies between fmin=2
and fmin are rescaled, so that the output of the model is

AðfÞ ¼

8>>><
>>>:

APNðfÞ f < fmin=2

APNðfÞ þ ΔAζ
�

2f
fmin

− 1
�

fmin=2 ≤ f ≤ fmin

AEOBðfÞ f ≥ fmin:

ð16Þ

E. Neural network

A feed-forward neural network is trained to reconstruct
the map θ → x̃, where θ is the vector of the five intrinsic
parameters considered, while x̃ is a 30-dimensional
PCA representation of the residuals corresponding to the
waveform generated by the EOB model with the given
parameters.

As our neural network we employ a MLPRegressor
from the SCIKIT-LEARN library [66], and the training is
performed with the Adam algorithm for stochastic gradient
descent [67].
As it is common, the parameters θ are rescaled to have

mean 0 and standard deviation 1. After the PCA reduction,
each component in the vector x̃ natively has comparable
variance, but we may arbitrarily rescale them, which is
equivalent to rescaling the eigenvectors in the matrix U
defined in Sec. II C 3. Also, we know that the eigenvectors
corresponding to the largest eigenvalues λi “matter more,”
in that they explain more variance. Therefore, as a
preprocessing step we introduce a fixed rescaling of the
vector x̃, as x̃i → x̃iλαi for some tunable choice of α ≥ 0.
The distance used during the training is then simply the
Euclidean one between these rescaled x̃.

1. Hyperparameter optimization

Several hyperparameters, which determine the network’s
properties and performance, must be chosen before training,
such as the number and size of hidden layers in the network,
the activation function, the conditions for the termination
of the training, the coefficient for the regularization term, and
the coefficient α defined above. For a complete list, see
Appendix B, which details all the hyperparameters used
within the default network discussed here.
The optimal set of hyperparameters may vary as the

number of training waveforms used to train the network
may change. Heuristically, we might imagine that a
complex network with many layers would be the best
choice with many thousands of training waveforms, while it
would overfit when using only a hundred waveforms
for the training, for which the optimal configuration would
be a smaller network. The specific dependence of the
reconstruction efficiency on these parameters is, however,
high dimensional and hard to explore since evaluating each
point requires us to train the whole network.
We evaluate each possible set of hyperparameters by

computing its average reconstruction error on a validation
dataset, generated independently but from the same dis-
tribution as the training dataset; the reconstruction error is
measured as the distance defined by

dist2ðx̃orig; x̃predÞ ¼
kxorig − xpredk2

nϕ þ nA
; ð17Þ

where nϕ þ nA is the dimensionality of the vector x, as
defined in Sec. II C 3; the distance is written in terms
of the vectors x ¼ ½ΔA;Δϕ�, reconstructed from the
PCA-reduced x̃ predicted by the network.
The hyperparameters are optimized with the Optuna pack-

age [68] using a multiobjective tree-structured Parzen
estimator [69], where the two cost functions being simulta-
neously optimized are
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(1) the average reconstruction accuracy on a validation
dataset measured as in Eq. (17); and

(2) the estimated time required for the generation of the
training waveforms, quantified by 100 ms times the
number of training waveforms, plus the time needed
to train the network.

The training and validation datasets are randomized in
each iteration.
The use of these two “opposed” cost functions allows for

a Pareto front of optimal parameters to be computed. This is
a collection of parameter sets corresponding to different
training dataset sizes; once this optimization has been run,
for any given dataset size we have a set of good hyper-
parameters to train the network.
Such a collection—with dataset sizes ranging from

50 to 105 training waveforms—is provided with version
0.12.0 of mlgw_bns, and Fig. 5 shows the validation
errors as a function of training dataset size. When creating a
new model, a lookup may then be performed to recover the
locally optimal hyperparameters for the amount of data
available to the model. This is efficient since it allows us
to train new networks without rerunning the optimization
when the parameter space utilized remains relatively
similar to the one used during the optimization procedure;
we have however found that with significant changes to
the parameter space (e.g., including versus not including
spin) the optimization had to be rerun since it was giving
suboptimal results.

III. MODEL PERFORMANCE

A. Accuracy

Figure 6 shows the mismatches between the recon-
structed waveforms and the corresponding EOB ones.

The mismatches are computed on validation datasets
generated with the same distribution as the training ones,
but with differently-seeded random number generators.
The mismatches are computed according to the predicted
Einstein Telescope PSD, ET-D [53,54]. As shown by the
figure, the accuracy measured through the mismatch F̄
exhibits a roughly linear behavior F̄ ∼ 1=Ntrain.
The reconstructed residuals corresponding to the best

model of Fig. 6 (trained with 217 ¼ 131072waveforms) are
shown in Fig. 7. As one might expect, the residuals
significantly differ from zero only in the high-frequency
region, like the original residuals. When considering the
magnitude of the phase residuals, note that the logarithmic
frequency axis distorts what may be linear trends: the
temporal alignment chosen in the plot was not optimized to
correspond to the best-match one, but instead to align the
waveforms at low frequency.

B. Speed

The evaluation times for mlgw_bns are shown in Fig. 8
and compared to the evaluation times of TEOBResumSPA.
The significant acceleration provided by mlgw_bns is
maximized when using compressed frequency grids with
a small number of points, where it attains speedup factors

FIG. 6. Kernel Density Estimate representation of the mis-
matches between the waveforms reconstructed by mlgw_bns
and the corresponding ones generated by the reference waveform
generator, TEOBResumSPA, for uniformly-distributed sets of
parameters θint in the training ranges, and with constant total mass
M ¼ Mref ¼ 2.8M⊙. The curve labeled as “PN only” is obtained
by comparing the baseline PN waveforms with the corresponding
EOB ones, i.e., setting the reconstructed residuals to zero; for the
other curves we use the number indicated for both the training of
the PCA and for the training of the network, so the overall
number of waveforms used is twice N. The same 4096 validation
waveforms are used to generate each curve. The mismatch is
computed according to the predicted Einstein Telescope PSD,
ET-D [53,54], within the band [3.57, 2926] Hz (see Sec. II D).

FIG. 5. Pareto front for the hyperparameter optimization. The
vertical axis shows the average error, computed as in Eq. (17).
The flattening observed at large training dataset sizes is not
necessarily real; computational constraints prevented a large
amount of trials to be performed in that region.
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of ∼35. The high template efficiency allows mlgw_bns to
outperform not only TEOBResumSPA in waveform gen-
eration, but also all other state-of-the-art EOB surrogate
models available, as demonstrated in Appendix A.
Both templates exhibit a similar behavior in the number

of sampling points: tðNsampleÞ ∼ to þ tpNsample. There is an
approximately constant cost to evaluate the waveforms at
small values of Nsample, while for large Nsample the evalu-
ation time scales linearly. This is due to the fact that,
for both templates, there are operations that are approx-
imately independent on the number of evaluation points.
For mlgw_bns, these are running the parameters
through the neural network and recomposing the result
through PCA. For TEOBResumSPA, the solution of the

Hamiltonian flow using the postadiabatic EOB iteration (at
fixed number of points) and the subsequent ODE evolution
for the last few orbits before merger [34]. The linear regime
is instead, for both templates, caused by the time to
interpolate the waveform to each of the finely-spaced
user-given frequency points, and performing other linear-
time operations such as combining amplitude and phase
into the Cartesian representation of the waveform.
The linear-time operations taken by the two approxim-

ants are comparable; TEOBResumSPA is implemented in
C and mlgw_bns in Python, but several components in the
latter are just in time compiled thanks to numba [70].
While the constant tp might be whittled down by optimiz-
ing the implementation, the linear term cannot be com-
pletely removed—the program will have to do at least a few
floating point operations for each point we are resampling
at. Therefore, if we want fast waveform evaluation it is
important to use as small a number of points as we can,
while retaining the desired accuracy.
Several approaches have been suggested towards this

goal for PE purposes: the simpler ones are similar in spirit
to what has been discussed in Sec. II C 1, using a smart
coarser sampling than what the “natural” FFT grid would
be. More sophisticated approaches can be ROQs (discussed
below in the context of PE) or relative binning [71,72].
In Tab. I we show a breakdown of the use of time within

an evaluation of mlgw_bns, in the case of 1000 grid points.

IV. PARAMETER ESTIMATION

To showcase the benefits brought by our model in a
realistic setting, we perform PE studies on the binary
neutron star (BNS) transient GW170817 [48,49]. In
Sec. IVA, we first perform a full-scale validation, showing
the compatible results of GW inference using mlgw_bns,
compared to the ones obtained with TEOBResumSPA.

FIG. 7. Residuals of 100 reconstructed waveforms to the
reference EOB ones. The parameters for them are uniformly
distributed.

FIG. 8. Benchmarks of the evaluation time required for one
waveform, with TEOBResumSPA and with mlgw_bns. Details
on the benchmarking procedure can be found in Appendix A. For
both approximants, we also show a fit with a model t ¼ to þ tpN.

TABLE I. Timing breakdown for the evaluation of a waveform
on 1000 grid points with mlgw_bns. Values will fluctuate across
evaluations, this table is only meant to be indicative of the ratios
between them.

Task Time [μs] Subtask Time [μs]

Resampling 841 Spline creation 728
Spline evaluation 113

PN evaluation 653 Amplitude 434
Phase 219

PCAþ NN 397
NN 326
PCA 41
Miscellaneous 30

Postprocessing 289
Include extrinsic 157
Compute h ¼ Ae−iϕ 40
Miscellaneous 90

Total 2180
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Then, in Sec. IV B we discuss and apply compression
techniques capable of reducing the number of frequency
nodes on which mlgw_bns needs to be evaluated for PE
purposes. This step allows us to fully exploit the benefits
of our model, which displays the largest gain compared to
TEOBResumSPA for a smaller number of frequency
nodes (see Fig. 8). Section IV C finally repeats the PE
analysis combining mlgw_bns and such compression
methods, showcasing more than order of magnitude
speed gain obtainable with our ML technique against
TEOBResumSPA in a full-fledged PE analysis.
In particular, we analyze the (deglitched) GWOSC

data of LIGO and Virgo centered around GPS time
1187008857.6 with a sampling rate of 4096 Hz and a
duration of 128 s, considering the frequency range from
[23, 2000] Hz. Our PE relies on the MPI-parallelized Bajes

pipeline [38] and the DYNESTY [73] nested sampler. The
reported errors correspond to the 90% confidence intervals
and the log symbol refers to the natural logarithm. The
mass prior is chosen to be flat in the mass componentsm1;2,
although the sampling is then performed in ðM; qÞ, with

ranges wide enough to capture the full posterior width. We
sample on aligned-spin components, with an isotropic prior
bounded by χ1;2 ≤ 0.5. The prior on the tidal parameters is
uniform in the ranges Λ1;2 ∈ ½5; 5000� and the luminosity
distance employs a volumetric prior in DL ∈ ½1; 75� Mpc.
Other priors are set according to standard prescriptions in
GWastronomy [38]. We do not assume prior knowledge on
electromagnetic counterparts. We include spectral calibra-
tion envelopes with ten logarithmic-spaced nodes for each
detector. For an overview of Bayesian inference of GW
signals see Refs. [2,38,74,75].

A. Full grid mlgw_bns—TEOBResumSPA comparison

Using the settings discussed above, GW170817 is
analyzed with mlgw_bns and TEOBResumSPA in order
to compare performances and verify the consistency of the
results. The sampling employs 3000 live points, an evi-
dence tolerance of 0.1, a maximum number of Markov-
Chain Monte Carlo steps of 12000 and five auto-correlation
times before accepting a point. We analytically marginalize
over the coalescence time tc and phase ϕc.

FIG. 9. Corner plot the posterior distribution for selected parameters reconstructed for GW170817, with mlgw_bns (orange) and
TEOBResumSPA (black). The contours report the 50% and the 90% credibility regions.
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The two waveform approximants achieve compatible
measurements, within the stochasticity of the sampler.
Figure 9 shows the comparison between mlgw_bns
and TEOBResumSPA posterior distributions for selected
parameters of interest.
We recover M ¼ 1.1975þ0.0003

−0.0002M⊙, the mass ratio is
constrained to q < 2.07 at the 90% confidence level and the
reduced tidal parameter corresponds to Λ̃ ¼ 365þ522

−254 . The
recovered posteriors are consistent with previous similar
studies [37,38,48,49,76]. Moreover, the two models recov-
ered similar Bayes’ factors (logB ≃ 482), and signal-to-
noise ratios (SNR ¼ 32), validating the faithfulness of
mlgw_bnswith respect to the training template in a realistic
application. As an additional check, in Fig. 10 we show the
difference in log likelihood computed at all the points in both
posteriors is compatible with zero, with fluctuations of order
Δ logL ∼ 0.1; the small apparent discrepancies between the
posteriors are due to sampler convergence.
We observe only a mild improvement in execution

time for mlgw_bns compared to TEOBResumSPA.
This is expected given the uniform frequency grid with
ðfmax − fminÞ × T ¼ ð2000 − 23Þ × 128 ¼ 253056 evalu-
ation points. In fact, Fig. 8 shows that for this number
of points the advantage in generating waveforms using
mlgw_bns is not enormous. Significant speedups can
instead be achieved by relying on grids smaller than 104

points. This naturally calls for the usage of compression
techniques, capable of restricting the required number of
frequency nodes used in computing the likelihood, the
subject of the remainder of this section.

B. Reduced order quadrature construction

Reduced order modeling, which is referred to as ROQs
in GW astronomy when combined with discrete empirical
interpolation techniques, is a method of eliminating informa-
tion redundancy present in sets of parametric functions (in our
case, the gravitational waveforms as functions of the physical
parameters of the binary system, such as masses and spins)
when evaluated on a discrete set of points (in our case, the
frequency grid). By selecting a small number of waveforms’
“basis elements” and an equal number of discrete interpola-
tion frequency points, ROQs are capable of dramatically
speeding up both waveform evaluation and integrals involv-
ing them, such as the Wiener inner products [see Eq. (4)]
entering the standard GW likelihood. This is achieved
by sufficiently accurate—and fast to evaluate—interpolants,
built on a large training dataset. In the context of GW
astronomy, early development and applications of
ROQs to GW searches were presented in Refs. [77,78].
An extended mathematical analysis (notably, including
convergence estimates) was presented in [79], while the
construction of surrogate models using related techniques
was pioneered in Ref. [39]. Applications to PE were
introduced in [80,81], and the extension to precessing
signals PE was achieved in [60], also including many
improvements such as mass-frequency partitions and an
adaptive frequency sampling strategy. Reduced order
quadrature acceleration of tests of GR was considered
in [82]. Most of the methods used in the aforementioned
applications are implemented in the GreedyCpp code.4 More
recently, ROQs of precessing signals containing higher
harmonics were presented in Ref. [83], while Ref. [5] used
ROQ methods to demonstrate the feasibility of analyzing
BNS merger signals detected by the next generation of
ground-based detectors. The interested reader may refer to
[39,60,79] for an introduction to the concepts used below.
Reference [83] introduced a set of modifications in how

the initial basis elements are constructed compared to
previous literature, aiming at improving the efficiency of
basis construction. The related algorithm was released
in a public Python package, labeled PyROQ.5 We modified
and generalized this algorithm, added numerical stability
checks, and restructured the software to make it more
modular and easily usable with modern (typically Python-
based) waveform approximants. Details of our algorithm,
labeled JenpyROQ,6 and GW170817 ROQ interpolants
construction are presented in Appendix C. For the PE
analysis discussed above, we obtained a sufficiently accu-
rate basis with 267 (10) linear (quadratic) basis elements,
achieving a linear (quadratic) frequency axis reduction
factor of 950 (25300).

FIG. 10. Histogram of the difference in GW170817 likelihoods
evaluated on all points of the TEOBResumSPA and mlgw_bns
posteriors shown in Fig. 9. For each point in the posterior
distributions, the likelihoods are evaluated and compared; the
time and phase shifts are marginalized analytically, therefore we
maximize them for each likelihood independently (finding
slightly different timing, for the reasons discussed in Sec. II B).

4Available at: bitbucket.org/sfield83/greedycpp.
5Available at: github.com/qihongcat/PyROQ.
6Available at: github.com/GCArullo/JenpyROQ.
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C. Parameter estimation with reduced order
quadrature interpolation

To predict the expected speedup on a PE run using the
ROQ interpolants described above, it is sufficient to compute
ttot ¼ twf þ tip, where twf indicates the waveform (Eq. 2)
generation time, while tip indicates the evaluation time of the

likelihood inner products (including interpolants evaluation);
all other operations (e.g., detectors projection) are negligible
compared to these two costs. Typical values for these times
when using an ROQ technique or a full frequency grid
evaluation are reported in Table II. For a single detector, the
predicted ROQ speedup factor is 85.2 ms=4.7 ms ∼ 18. For
three detectors (the case of interest in our realistic applica-
tion), the total speedup becomes 115.7 ms=10 ms ∼ 12.
These numbers imply that when relying on mlgw_bns
and an ROQ scheme, the waveform evaluation cost is no
longer the dominant one. For this reason, the expected PE
speedup (12) is a factor of three smaller than the waveform
evaluation speedup (35) inferred from Fig. 8.
We validate this by repeating the GW170817 analysis in

the previous section, employing mlgw_bns both times but
using either a GW likelihood built with the ROQ inter-
polants constructed above, or a standard likelihood com-
putation. We do not apply time marginalization in this case,
since we have not interfaced the ROQ formulation with the
time-marginalized likelihood, hence we increase the values
of sampler settings to avoid altogether any convergence

TABLE II. Waveform generation (twf) and likelihood inner-
products (tip) timings when using ROQs or a full frequency grid
evaluation. We report results for both a single (Ndet ¼ 1) and three
detector network (Ndet ¼ 3). The total likelihood evaluation time is
simply ttot ≃ twf þ tip, since other likelihood operations costs are
comparatively negligible. The ROQ approximation results in a PE
speedup factor of 18 (12) in the one (three) detector case.

Timings [ms]

ðNdet;ROQÞ (1, no) (1, yes) (3, no) (3, yes)

twf 69.8 2.2 69.8 2.2
tip 15.3 2.5 45.9 7.5
ttot 85.2 4.7 115.7 9.7

FIG. 11. Corner plot of the posterior distribution for selected parameters reconstructed for GW170817, in both cases with mlgw_bns,
but when using an ROQ technique or a full frequency grid evaluation. The contours report the 50% and the 90% credibility regions.
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issues. We employ 5000 live points, an evidence tolerance
of 0.1, a maximum number of Markov-Chain Monte Carlo
steps of 12000 and ten auto-correlation times before
accepting a point. We explore tc within the bounds [24.7,
25.0] s, using a discretization composed of 3000 points.
Parameter estimation results obtained with the ROQ
settings discussed above or with the standard likelihood
are statistically indistinguishable, as shown in Fig. 11.
However, with 24 nodes comprising two Intel Xeon
E5-2650v4 12x 2.20 GHz 12-Core CPU each, the sampling
run times and relative speedup are: tROQ¼0

samp =tROQ¼1
samp ¼

49h20m=4h14m ∼ 11.3, in very good agreement with the
predictions presented above. Presampling interpolant con-
struction took nine mins per detector with these settings.
Finally, we stress that the speedup resulting from the

combination of mlgw_bns and ROQ will bear a more
dramatic impact when applied to longer frequency axes.
For example, in the case of full inspiral-merger-postmerger
BNS signals analyses, with a lower frequency bound of
∼5 Hz and reaching up to ∼8 kHz, applications of similar
techniques will provide a speedup larger than three orders
of magnitude compared to a uniform grid.

V. CONCLUSIONS

In this work we have introduced mlgw_bns, a cutting-
edge ML surrogate waveform approximant in the fre-
quency domain for spin-aligned BNS mergers, designed
for applications to both current and future GW detectors.
Our model is trained on highly accurate TEOBResumSPA
EOB waveforms, faithfully represented with a fidelity
larger than the accuracy of the baseline SPA model against
the native time-domain EOB model ðF̄ ≲ 10−5Þ. At the
same time, thanks to several dimensional reductions steps,
mlgw_bns delivers a remarkable increase in efficiency,
achieving the fastest waveform generation among all the
available approximants including comparable physical
information.
By performing careful benchmark tests with varying

frequency grids, we estimate a speedup of ∼30 with respect
to TEOBResumSPA, when evaluated on frequency axes
composed of less than ∼104 points, which can reach up
to ∼35 for less than ∼102 frequency points. Combined
with ROQ techniques, an overall PE acceleration of
more than an order of magnitude is achieved for current
BNS analyses, as we explicitly demonstrated reanalyzing
GW170817 using a reduced basis. Thanks to the improved
performance of our model, in our investigations the like-
lihood cost is no longer dominated by the waveform
generation time, but by inner products’ computations,
making additional decreases in the evaluation time of
our ML model less relevant. If the inner products’ compu-
tation cost can be reduced in future PE implementations, it
will be important to explore further optimizations of the
algorithm, such as tuning the number of PCA components

and the greedy downsampling reconstruction tolerance, or
improving the hyperparameters selection procedure.
Analysis targeting next generation detectors’ observations,

such as PE studies in the ET band, will benefit from evenmore
dramatic improvements. Since the number of empirical nodes
will still be Oð102Þ even at high SNR [5], well into the
plateaux of Fig. 8, ROQ interpolants will allow keeping the
waveformgeneration cost almost identical to the oneof current
analyses. This in turn will lead to a waveform generation
speedup of ∼50, compared to a standard uniform grid when
analyzing a signal starting from 5 Hz. Instead, given the
extremely lowoverheadof ourMLmodel, the combinedusage
of ROQ and mlgw_bns will provide a massive speedup of
more than ∼103 for the same configuration, without loss of
accuracy. Finally, thanks to the usage of PN-hybridization
techniques, our model can be evaluated from arbitrarily low
frequencies, readily allowing analyses exploring the discovery
potential of planned space-based deci-Hertz detectors.
Other than exploiting fast PE techniques, our ML model

can even enable them. In fact, posterior sampling accel-
eration through, e.g., the application of Hamiltonian nested
sampling [84], as well as forecasting with Fisher matrix
studies, can be easily achieved thanks to the intrinsically
differentiable architecture of mlgw_bns: a planned neural
network upgrade is to yield not only the waveform polar-
izations hþ;× but also their derivatives with respect to the
parameters, i.e., ∂hþ;×=∂θi. The knowledge of gradients
can be also exploited in template bank generation [85],
allowing for a fast computation of a metric approximation
for the match and for coverage of a large dimensional
parameter space: our model will facilitate the generation of
the first BNS template bank including tidal effects.
In the future, the baseline model and the physics content

of mlgw_bns will require improvements in order to meet
the accuracy prerequisites of XG observatories. While the
simplicity in retraining mlgw_bns will allow it to remain
up to date with future enhancements of tidal EOB models
(such as self-spin interactions, higher order tidal effects,
dynamical tides), new challenges will be represented by the
inclusion of: higher modes [86], precession [87,88], eccen-
tricity [89,90],7 and a frequency-domain postmerger com-
pletion [33,58]. We leave such extensions of mlgw_bns
to future work, but briefly discuss possible strategies to
tackle them. Higher order (l > 2) modes break the simple
dependence on the inclination angle ι described by Eq. (3),
requiring the modes to be reconstructed separately, with a
corresponding slowdown in waveform evaluation. Graphical
processing unit acceleration [45] could be employed to
ameliorate this. Precession effects could be immediately
included relying on ML-reconstruced higher modes, and

7All these features are already implemented both in the native
time-domain TEOBResumS model and in TEOBResumSPA,
with the exclusion of eccentricity, only available in the time-
domain waveform.
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subsequently applying a twisting [88,91,92] describing
generic spin dynamics. Finally, eccentricity introduces
modulations which make the time-to-frequency map non-
monotonic; this prevents a straightforward application of
SPA, which we use to generate our training datasets. This
problem could be cured by moving from SPA to shifted
uniform asymptotics [93,94].
In summary, mlgw_bns enables an important leap

towards feasible and accurate PE with XG detectors,
immediately providing a very efficient alternative to current
EOB BNS models for present-day analyses.
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APPENDIX A: BENCHMARKING PROCEDURE

In this section we detail the procedure used in order to
compute the benchmarks shown in Fig. 8, and we draw a
comparison to other existing EOB surrogates.

The times we are measuring are quite short and suscep-
tible to fluctuations, therefore we must average over several
trials. Further, the order in which tests are performed may
affect the results, therefore we randomize the trials across
several epochs.
We create a batch of test cases with all possible

combinations of the following:
(1) the Napp relevant approximants;
(2) the Ngrid relevant frequency grid sizes nfreq, chosen

to be integer approximations of a logarithmically
spaced grid; and

(3) Nseed seeds for the parameters—for each seed a
single set of parameters is generated.

For each test case, we define a uniformly spaced8

frequency grid with nfreq points between fmin and
2048 Hz. In Fig. 8 we chose fmin ¼ 5 Hz, while in this
section we choose fmin ¼ 15 Hz in order to compare with
other models, and the results can be seen in Fig. 12. We
then randomly generate a single set of parameters, with the
same procedure used for the generation of the model and
with a different seed. For the generation of Figs. 8 and 12
we use Ngrid ¼ 50, Nseed ¼ 20, and run all tests for ten
epochs, shuffling them each time.
The mlgw_bns model used in Fig. 12 is not the exact

same one whose performance is discussed in the rest of the
paper; the higher initial frequency allows us to use a smaller
reduced frequency grid. Besides this change, however, the
training parameters are the same, and it was also verified to
have mismatches ≲10−5 with its training reference.

FIG. 12. Evaluation times for waveforms starting at 15 Hz
for several approximants. SEOBNRv4_ROM_NRTidalv2 and
SEOBNRv4T_surrogate are called through their LAL Python
interfaces.

8As discussed in Sec. II C 1 this is not a good choice for PE,
but this is not an issue since for the purposes of benchmarking the
number of points in the frequency grid is the only relevant
parameter.
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APPENDIX B: HYPERPARAMETERS USED

The hyperparameters used for the network whose per-
formance is discussed in this work are as follows:
(1) the exponent α for the principal components is set

to 0.37;
(2) the network has two hidden layers with sizes 82 and

95 respectively;
(3) the activation function chosen is tanh;
(4) the L2 regularization parameter is set to 10−4;
(5) the batch size for the Adam algorithm is set to 162;
(6) the initial learning rate is set to 1.2 × 10−3;
(7) the fraction of data kept for internal validation

during the training is 7.5% (this refers to the internal
validation step performed automatically by SCIKIT-
LEARN); and

(8) when the accuracy does not improve by more than
2 × 10−15 for 91 epochs the training stops. Note that
this number refers to Euclidean distances across
PCA-reduced residuals, so it has no direct physical
meaning.

The downsampling indices are determined by training
on a dataset of 210 ¼ 1024 waveforms, the PCA is trained
on 216 ¼ 65536 waveforms, the network is trained on
217 ¼ 131072 waveform residuals. All these training data-
sets are independent, extracted from the same uniform
distribution in the ranges of the parameters.

APPENDIX C: ROQ CONSTRUCTION

1. PyROQ summary

We first give a brief recap of the PyROQ algorithm
presented in Ref. [83] (see their “Algorithm 1”), to allow for
an easier comparison with the applied software improve-
ments and differences in our training strategy; we refer the
reader there for a more detailed description. In the first step
of the PyROQ algorithm, a “preselected” dataset of wave-
form vectors (typically referred to as “basis”) is con-
structed. This preselected basis is initially composed of
waveform vectors evaluated at the corner of the parameter
space.9 Corner elements are then augmented by randomly
generating a waveform dataset of 105 elements, and
adding to the basis the element with the largest residuals
after projection onto the basis. This is repeated until a
user-specified tolerance is reached. In a second step, the
preselected basis is enriched by generating four increas-
ingly larger datasets of 104; 105; 106; 5 × 106 elements,
which might have different tolerance thresholds. In each

of these datasets, the element with the largest interpolation
error is added onto the basis, iterating until all the elements
of the dataset can be represented with a given accuracy.

2. JenpyROQ summary

In this section we discuss our updated version of PyROQ,
called JenpyROQ. Compared to PyROQ, we allow for
arbitrary enrichment cycles to be defined by the user, add a
few strategies to avoid ill-conditioning of the interpolants
construction (which is always monitored as a basic sanity
check), and perform a restructuring of the code. The latter
consists of: imposing modularity at all stages; implement-
ing MPI parallelization, generalizing the parameter han-
dling (useful when dealing with flexible models with many
more parameters than standard binaries, e.g., BNS post-
merger models [32,33,58]); extending I/O management;
and adding a generic waveform class capable of interfacing
with modern Python-based models.
Regarding the algorithm itself (again, using as a refer-

ence template “Algorithm 1” of [83]), in the preselection
cycle, we complement the initial corner basis until the total
basis size reaches either a given number of elements Npre or
a specified tolerance ϵpre (which might be different from the
final target tolerance ϵROQ). At each preselection step j,
with j ¼ 1;…; Npre − 2, we generate Nstep new random
waveforms, among which we pick the element worst
represented by projection on the current basis. Later, in
the enrichment steps, we adopt a more flexible scheme and
perform an arbitrary number of enrichment cycles Ncycles,
each with arbitrary size Li, number of outliers Ni

out, and
threshold ϵi, with i ¼ 1;…; Ncycles. Finally, we test the
constructed interpolants on Nout out-of-training datapoints.
By imposing a maximum Nstep in the preselection phase

(which can typically be guessed from rapid exploratory
investigations), we keep the size of the preselection datasets
(Npre × Nstep) small, and so ensure that only a small number
of evaluations are performed until the size of the basis is
already large.10 Only after the preselected basis has a
substantial number of elements, we compare against
increasingly larger datasets in the enrichment steps. This
way, most of the elements are already accurately repre-
sented, and no need of re-evaluating many comparisons
arises, allowing us to keep a small memory footprint.
Furthermore, using a stricter relative tolerance (ϵi=ϵROQ) in
the initial enrichment cycles ensures that an accurate
interpolant is constructed with only a small number of
computations. Given the exponential convergence of the
algorithm, such accuracy typically carries over subsequent,
much larger datasets at the true target tolerance. The9Where the corners are not all the ones of the parameter space

N-cube, but simply the two points consisting of the lower and
upper bounds of each parameter. Also in our algorithm below, we
chose to follow the same strategy, since we found that including
all the N-dimensional cube edges of the physical parameter space
leads to many repetitions which inefficiently increase the number
of total basis elements.

10This does not apply to the cases where ϵpre is reached, but in
such a case only a small number of subsequent evaluations on
larger datasets are expected if ϵpre < ϵROQ, which we typically
impose.
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constructed interpolants are interfaced with the Bajes pipe-
line [38], following the likelihood formulation of [60].
Future planned developments include adaptive frequency
sampling, on the lines of [60] and of Sec. II C 1 of
this work.
Finally, although the interpolants construction is always

formally well defined because the basis matrix in Eq. 16
of [39] is always invertible,11 in some cases the numerical
inversion of the basis matrix can be ill conditioned. This
happens when the algorithm finds the same empirical
interpolant point more than once; they have to be unique
to avoid double counting of frequencies in the likelihood.
Ill conditioning is more frequent for longer waveforms
(corresponding to low-mass binaries), and it is caused by
large disparities in the module of the basis matrix eigen-
values, implying a high conditioning number (when
assuming a Euclidean norm), hence larger numerical
instabilities. Ill conditioning appeared in early attempts
to construct basis relevant to this work as soon as the
segment length was increasing above T ¼ 128 s. An easy
solution we have found to this problem is simply to avoid
applying a Gram-Schmidt procedure to the new basis
elements (which are only strictly required to be indepen-
dent, not orthonormal [39]), using waveform vectors as
basis elements as opposed to Gram-Schmidt residuals [83].
This avoids sparsity in the matrix construction, signifi-
cantly decreasing the conditioning number. For our current
purposes, this simple fix was sufficient to ensure numerical
stability. In case ill conditioning is still present (a situation
which we have not encountered yet in our explorations),
currently the algorithm is forced to proceed, simply
discarding the repeated interpolation point and switching
to the interpolation point with the second worst residual.
We expect this latter procedure to slightly decrease the
efficiency of the basis construction (i.e., to increase the
number of elements required to reach the required pre-
cision), but given the exponential convergence of the

algorithm, a small increase in the number of required
elements does not appreciably affect PE run times. In the
future, we plan to implement a more robust solution to
the above issues by exploring modifications of our naive
Gram-Schmidt algorithm, along the lines of what was
discussed in Appendix A of [39] and their Refs. [66–68]. In
any case, the matrix basis conditioning number is always
monitored in our algorithm, and used to flag an ill-posed
basis construction.

3. Details of GW170817 interpolants construction

We train the ROQ basis on the full range of validity of
mlgw_bns, except for the chirp mass, which is only varied
within the range Mc ∈ ½1.1968; 1.1988�, wide enough to
safely encompass the full posterior of GW170817. This is
not restrictive; the chirp mass can already be reliably
estimated within an even tighter accuracy interval by
low-latency GW searches of BNS signals [100], hence a
similar “targeted” basis could be constructed even for
realistic, new data. We set a tolerance threshold of
10−4ð10−6Þ for the linear (quadratic) basis, ensuring that
the ROQ interpolants are valid up to an SNR ofOð70–100Þ,
see, e.g., Eq. 8 of Ref. [101]. We use a total of 4.1 × 105

training data points, split between the preselection and
the enrichment steps. A preselected basis is constructed
using Npre ¼ 200ð10Þ elements for the linear (quadratic)
case, and Nstep ¼ 1000 points at each step. We set three
enrichment cycles, each composed of ½104; 105; 105� data
points, Ni

out ¼ 0, and a respective relative tolerance of
[0.1,1.0,1.0]. The resulting bases are composed of 267 (10)
linear (quadratic) elements, achieving a linear (quadratic)
frequency axis reduction factor of 950 (25300). We confirm
the accuracy of the constructed interpolants by applying
them to the reconstruction of 5 × 105 validation data points,
finding less than 0.1% outliers and none above the 10−3

threshold. Direct evaluation of 5 × 105 likelihood inner
products confirmed the above tests, always showing errors
smaller than the requested accuracy threshold.
The configuration file used to produce ROQ basis

employed in this work is available at: https://github.com/
GCArullo/JenpyROQ/blob/main/config_files/config_
MLGW-BNS_LVK_GW170817_release.ini.
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