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Energy conservation has the status of a fundamental physical principle. However, measurements in
quantum mechanics do not comply with energy conservation. Therefore, it is expected that a more
fundamental theory of gravity—one that is less incompatible with quantum mechanics—should admit
energy nonconservations. This paper begins by identifying the conditions for a theory to have an energy-
momentum tensor that is not conserved. Then, the trajectory equation for pointlike particles that lose
energy is derived, showing that energy nonconservation produces a particular acceleration. As an example,
the unimodular theory of gravity is studied. Interestingly, in spherical symmetry, given that there is a
generalized Birkhoff theorem and that the energy-momentum tensor divergence is a closed form, the
trajectories of test particles that lose energy can be found using well-known methods. Finally, limits on the
energy nonconservation parameters are set using Solar System observations.
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I. INTRODUCTION

Energy conservation is regarded as one of the most
fundamental pillars in physics [1]. However, energy can fail
to be conserved during a quantum-mechanical measure-
ment [2]. An evident example is given by a wave packet
that is wide in energy. When an energy measurement is
performed, the state collapses into an energy eigenstate,
and the Hamiltonian expectation value will, most likely,
change. Usually, it is argued that energy conservation is
restored when considering the interaction with the
(classical) measuring apparatus. However, using entangled
states, it is easy to devise examples where this cannot occur,
since the energy exchange with the measuring apparatus
can be arbitrarily small when compared to the change in the
Hamiltonian expectation value [2]. What is more, in several
quantum theories that try to solve the measurement
problem, like most dynamical reduction models [3,4],
energy is explicitly not conserved, and similar issues show
up in semiclassical gravity [5].
Nowadays, general relativity (GR) is the paradigmatic

theory for gravitation. In GR, there is no generic notion of
gravitational energy, and, thus, no energy conservation law
can be proposed [6] (see Refs. [7,8] for examples of
situations where gravitational energy can be defined).
Yet, the energy of matter1 is conserved in the sense that
the energy-momentum tensor has vanishing divergence. In

turn, this is a consequence diffeomorphism invariance, and
it played a key role in the construction of GR [9].
One of the main challenges of modern physics is to

consistently couple gravity with quantum-mechanical mat-
ter [10]. This, together with the prediction of spacetime
singularities [11] and the necessity to add dark matter [12]
and dark energy [13], strongly suggests that GR may be
replaced by a more fundamental theory. This has motivated
the community to propose alternative theories of gravity,
some of which remain in the framework of pseudo-
Riemannian geometry.
The most popular alternative theories of gravity lie within

the fðRÞ framework [14], which gives rise to conventional
matter energy conservation. However, there are other mech-
anisms to construct alternative theories of gravity that lead to
energy nonconservation. In fact, one could argue that theories
with unconventional conservation laws should be “less
incompatible”with quantummechanics.As such, it is relevant
to verify if energy nonconservation can be incorporated into
the relativistic framework: This is the main goal of the paper.
For concreteness, attention is set on the propagation of

pointlike particles that do not comply with energy con-
servation. Of course, pointlike particles play a key role in
the construction of any geometrical theory [15,16], and, in
GR, it is well understood how these particles lose energy
through gravitational radiation [17–19]. In this paper, the
energy-loss mechanism is assumed to be general and
should be thought to arise from more fundamental physics.
Also, notice that gravitational backreaction is not a priori
neglected, even though it is not considered in the examples
in the last part of the paper.

*bonder@nucleares.unam.mx
1Matter refers to all nongravitational fields.
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Throughout the text, the notation and conventions of
Ref. [20] are followed. Use is made of abstract indexes,
which are denoted with lowercase Latin characters from the
beginning of the alphabet: a; b; c;…. Component indexes
are represented by Greek characters. As is customary, a pair
of repeated indexes indicates the corresponding contrac-
tion. Moreover, the spacetime metric is denoted by gab, and
g, without indexes, stands for the determinant of gμν. When
convenient, indexes are raised (lowered) with the inverse
metric gab (gab). The metric-compatible and torsion-free
derivative operator is ∇a, and Rabc

d is the Riemann tensor
associated with it. The Ricci tensor is Rab ≡ Racb

c, and
R≡ gabRab is the curvature scalar. Finally, pairs of indexes
in between parentheses represent its symmetrical part
weighted by 1=2. Units where G ¼ 1 ¼ c are used, how-
ever, c is reintroduced when it helps to make certain
approximations.
A description of the structure of the paper may be useful:

In the next section, the conditions for a theory to have a
divergence-free energy-momentum tensor are deduced. In
Sec. III, the equation for the trajectory of a pointlike particle
that loses energy is derived. To make concrete calculations,
the assumptions of staticity and spherical symmetric are
considered in Sec. IV. Section V deals with the application
of the formalism to the unimodular theory of gravity, and,
in Sec. VI, some empirical bounds are set using Solar
System data. The concluding remarks are presented in
Sec. VII.

II. WHEN IS THE ENERGY-MOMENTUM
TENSOR DIVERGENCE-FREE?

This section is devoted to the conditions that lead to a
vanishing divergence of the energy-momentum tensor. It is
assumed that gravity is geometrical, that spacetime is four
dimensional, and that matter is described by conventional
tensor fields,2 which are standard assumptions in most
alternative theories of gravity. The additional hypotheses
under consideration are as follows.
(1) Gravity is completely described by the metric.
(2) Minimal coupling: The total action can be naturally

separated as

S½g;ψ � ¼ 1

2κ
SG½g� þ SM½g;ψ �; ð1Þ

where κ is the gravitational coupling constant. Also,
SG and SM are, respectively, known as the gravita-
tional and matter actions.

(3) The theory is invariant under general diffeomor-
phisms. In particular, SM is invariant under such
transformations.

Hypothesis 1 implies that the relevant derivative operator
is ∇a, which, being metric compatible and torsion-free, is
determined by gab (see Chap. 3.1 in Ref. [20]). Moreover,
hypothesis 3 is closely related to the assumption that all the
fields in the action are dynamical [22], and it may be
regarded as an application of the principle of general
covariance [20].
Under these hypotheses, invariance of the matter action

under a generic infinitesimal diffeomorphism produces

0 ¼ δSM½g;ψ � ¼
Z

d4x

�
δLM

δgab
δgab þ δLM

δψ
δψ

�
; ð2Þ

where LM is the matter Lagrangian density. It is clear that,
on shell, δLM=δψ ¼ 0. In addition, the energy-momentum
tensor is defined as

Tab ≡ −
2ffiffiffiffiffiffi−gp δLM

δgab
¼ TðabÞ: ð3Þ

Since the action variation is taken with respect to an
infinitesimal diffeomorphism along an arbitrary vector
field ξa, the inverse metric variation is the corresponding
Lie derivative, namely, δgab ¼ −2∇ðaξbÞ. Inserting these
results into Eq. (2) leads to

0 ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
ξb∇aTab; ð4Þ

where an integration by parts is performed and the
boundary term is ignored; these terms are disregarded
throughout the manuscript. Since Eq. (4) is valid for
all ξa, it follows that ∇aTab ¼ 0. Therefore, any theory
that satisfies the three listed hypotheses gives rise to a
divergence-free energy-momentum tensor. In particular,
Lovelock’s theorem [23] implies that GR with a cosmo-
logical constant is the only theory that satisfies that above
listed conditions and that leads to second-order equations
of motion. On the other hand, fðRÞ theories, where SG ¼R
d4x

ffiffiffiffiffiffi−gp
fðRÞ for a given function f, satisfy the listed

hypotheses, and, therefore, the corresponding energy-
momentum tensor is conserved.
This work is devoted to theories where at least one of the

listed hypotheses is not met. In such cases, a generalization
of the previous argument can be used to find the modified
conservation law; these laws are referred to as “energy
nonconservation” conditions. A particular example for
when hypothesis 1 is negated is to consider an independent
connection Cc

ab. The matter action variation, in this case,
takes the form2An example of unconventional fields is bitensorial fields [21].
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0 ¼ δSM½g; C;ψ �

¼
Z

d4x

�
δLM

δgab
δgab þ δLM

δCc
ab
δCc

ab þ
δLM

δψ
δψ

�

¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
ξd½∇aTad þ Σab

c ∇dCc
ab

þ∇cðΣab
d Cc

abÞ −∇aðΣab
c Cc

dbÞ −∇bðΣab
c Cc

adÞ�; ð5Þ

where Σab
c ≡ −ð1= ffiffiffiffiffiffi−gp ÞðδLM=δCc

abÞ and δCc
ab is given by

the Lie derivative ofCc
ab, which is expressed in terms of∇a.

Clearly, for Eq. (5) to be valid for all ξa, it is necessary that
what is inside the brackets vanishes, leading to the
corresponding energy nonconservation law. Notice that
the key condition for energy nonconservation, in this case,
is that the matter action depends on additional gravitational
degrees of freedom. Other theories with additional gravi-
tational degrees of freedom include the Degenerate Higher-
Order Scalar-Tensor theories [24], among others.
When hypothesis 2 is invalid, there is no clear definition

of Tab and, hence, no reason for it to have a vanishing
divergence. Still, there are theories, like that of Ref. [25],
where there is a natural energy-momentum tensor that
does not have vanishing divergence. Finally, when invari-
ance under diffeomorphisms is explicitly broken, ξa is not
general, and it is impossible to conclude, from Eq. (4), that
∇aTab ¼ 0. Restricted diffeomorphisms appear in theories
with nondynamical fields, such as the unimodular theory
of gravity or in the parametrization of Lorentz violation
known as the Standard Model Extension [26–28] (for
concrete examples see Refs. [29–32]). In fact, to produce a
conventional energy conservation law, many studies in the
context of the Standard Model Extension assume that
Lorentz and diffeomorphism invariance are spontaneously
broken [28,33–37].

III. POINTLIKE PARTICLES

In this section, the equation for the trajectory of
a pointlike particle that loses energy is derived
following Papapetrou’s method [38]. It is assumed that
the particle’s energy loss is given by j̃b ≡∇at̃ab, where
t̃ab ≡ ffiffiffiffiffiffi−gp

tab is the tensor density associated with the
particle’s energy-momentum tensor, tab ¼ tba. Note that,
in this section, the spacetime metric is considered to be
known.
The method begins by assuming that the particle is

much smaller than the characteristic radius of the gravi-
tational field, where the “size” of the particle is extracted
from the support of tab. Eventually, the limit where the size
of the particle goes to zero is considered, which eliminates
the dependence on the foliation and the spatial coordinates.
As the particle evolves, it traces a world tube. Within this
world tube, an arbitrary smooth temporal curve X is
chosen. Fermi normal coordinates associated with X are

used.3 Inside the support of tab, these coordinates generate
a foliation by constant t hypersurfaces, Σt (see Fig. 1). In
what remains of this section, these coordinates are utilized,
as it is emphasized by the use of Greek indexes.
From its definition, it is possible to see that

j̃α ¼ ∂μ t̃αμ þ Γα
μνt̃μν: ð6Þ

Multiplying by xβ, taking the symmetric part, and adding
t̃αβ yields

t̃αβ þ xðαj̃βÞ ¼ t̃αβ þ xðα∂μt̃βÞμ þ xðαΓβÞ
μνt̃μν: ð7Þ

Introducing a Kronecker delta as ∂μxα, the last equation
takes the form

FIG. 1. Papapetrou’s method (t − x1 plane). The gray region
represents the world tube of the particle that is given by the
support of its energy-momentum tensor. The arbitrary curve X
and the t ¼ t0 hypersurface Σt0 are depicted.

3These Fermi normal coordinates are defined as follows: The
curve X is affinely parametrized by t, and an arbitrary ortho-
normal basis, whose timelike vector is parallel to the curve
tangent ua, is specified at a certain point on X. Then, this basis is
transported along X in such a way that the basis is kept
orthonormal and its timelike vector always coincides with ua
[39]. Finally, to give coordinates to a point q, it is necessary to
find the point p ∈ X and the vector va at p such that gabuavb ¼ 0
and the geodesic that emanates from p with tangent va “lands” on
q after an affine distance 1. The coordinates of q are x0 ¼ t and
the three spatial coordinates x1, x2, and x3 are the nonzero
components of va in the transported basis. Notably, there always
exists a neighborhood of X where these coordinates are well
defined [39], and here it is assumed that such a region contains
the particle’s world tube.
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∂μðxðαt̃βÞμÞ ¼ t̃αβ þ xðαj̃βÞ − xðαΓβÞ
μνt̃μν: ð8Þ

Integrating Eqs. (6) and (8) in Σt yields

d
dt

Z
d3xt̃tα ¼

Z
d3x½j̃α − t̃μνΓα

μν�; ð9Þ

d
dt

Z
d3xxðαt̃βÞt ¼

Z
d3x½t̃αβ þ xðαj̃βÞ − xðαΓβÞ

μνt̃μν�; ð10Þ

where the integrals of the spatial divergences are zero by
virtue of the divergence theorem and the fact that the
integrands have compact support and the index t refers to
the component along the t coordinate. Recall that the
integrands are densities, and, thus, the integrals are well
defined.
Importantly, in the point particle approximation (also

known as the monopole approximation), which is the
relevant regime for this work, it is enough to work to
zeroth order in δxα ≡ xα − Xα. Equations (9) and (10), to
zeroth order in δxα, become

d
dt

Z
d3xt̃tα ¼

Z
d3xj̃α − Γα

μνðXÞ
Z

d3xt̃μν ð11Þ

and

dXðα

dt

Z
d3xt̃βÞt þ Xðα d

dt

Z
d3xt̃βÞt

¼
Z

d3xt̃αβ þ Xðα
Z

d3xj̃βÞ

− XðαΓβÞ
μνðXÞ

Z
d3xt̃μν: ð12Þ

These equations can be combined as

Z
d3xt̃αβ ¼ dXðα

dt

Z
d3xt̃βÞt: ð13Þ

Recall that t is an affine parameter along X, and, thus,
uα ≡ dXα=dt is such that uαuα ¼ −1 and ut ¼ 1. What is
more, it is convenient to define Mαβ ≡ R

d3xt̃αβ. Then,
Eq. (13) takes the form

Mαβ ¼ uðαMβÞt; ð14Þ

and its αt component satisfies

Mαt ¼ uαMtt: ð15Þ

By means of Eq. (15), Eq. (14) can be written as

Mαβ ¼ muαuβ; ð16Þ

withm≡Mtt, which is taken as positive invoking the weak
energy condition [20].
With these results, Eq. (11) becomes

uα

m
dm
dt

þ uβ∇βuα ¼ Jα; ð17Þ

where Jα ≡ ð1=mÞ R d3xj̃α. Multiplying by uα yields

−1
m

dm
dt

¼ Jαuα; ð18Þ

where use is made of the fact that
uαuβ∇βuα ¼ ð1=2Þuβ∇βð−1Þ ¼ 0. With all this, Eq. (17)
can be written as

uβ∇βuα ¼ Jα⊥; ð19Þ

with Jα⊥ ≡ Jβðδαβ þ uαuβÞ being components of the projec-
tion of Ja orthogonal to ua. Notice that a projection is
expected by the fact that t is an affine parameter. In
addition, when Jα⊥ ¼ 0, the geodesic equation is recovered.
Yet, in general, due to energy loss, the particle trajectory is
subject to an acceleration Jα⊥. Clearly, for Eq. (19) to be
coordinate invariant, the limit where the size of the particle
goes to zero, while keeping Jα⊥ finite, must be taken. Still,
the result has the form shown in Eq. (19), which is the main
result of this section and whose consequences are studied in
what follows.

IV. STATICITY AND SPHERICAL SYMMETRY

As is well known, the gravitational field produced by the
Sun, which is the relevant environment used here to test the
method, is properly modeled within the assumptions of
staticity and spherical symmetry. The former symmetry
means that there exists a timelike Killing vector field that is
hypersurface orthogonal [20]; thus, if t is the time coor-
dinate such that this Killing field is ð∂=∂tÞa, there is a
t → −t invariance. Spherical symmetry, on the other hand,
can be rigorously defined [20] and it matches the intuitive
notion. Moreover, spherical symmetry gives rise to adapted
coordinates in the constant t hypersurfaces that, in the
regions under consideration, are a generalization of the
conventional spherical coordinates r, θ, and ϕ, with r > 0.
To proceed, an expression for the spacetime metric is

required. Let fðrÞ and hðrÞ be such that the static and
spherically symmetric metric, in the coordinates at hand,
can be brought to the form

ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð20Þ

Importantly, it is assumed that, in the regions of spacetime
that are relevant for this work, f > 0 and h > 0, avoiding
possible singularities.
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In addition, one can verify that any vector field va that is
invariant under these symmetries must have the following
form:

va ¼ AðrÞ
�
∂

∂t

�
a
þ BðrÞ

�
∂

∂r

�
a
; ð21Þ

where AðrÞ and BðrÞ are arbitrary functions. It is assumed
that, for simplicity, the nonconservation current Ja is
subject to these symmetries; thus, it has two independent
components. What is more, the orthogonal current Ja⊥ is
completely characterized by a single function Jr⊥ðrÞ since

Jt⊥ ¼ hur

fut
Jr⊥; ð22Þ

where ut > 0.
Importantly, an equation of the form of Eq. (19), when

staticity and spherically symmetry are imposed, does not
imply that there exists a constant of motion associated with
its time component [see for comparison Eq. (23)]. Still, the
trajectory is restricted to a plane, say θ ¼ π=2, and there is a
constant, along each particle trajectory, associated to the
Killing field ψa ≡ ð∂=∂ϕÞa. This constant is given by
l≡ gabuaψb ¼ r2 sin2 θ _ϕ, where the overdot represents a
derivative with respect to the curve parameter. To see that l
is constant, one must calculate its change along the
trajectory:

ua∇al ¼ ua∇aðubψbÞ ¼ ubua∇ðaψbÞ þ Jϕ⊥ ¼ 0; ð23Þ

where, in the last step, the Killing equation and the fact that
Jϕ⊥ ¼ 0 are used.
The facts that the motion is restricted to a plane and that

there is one constant of motion make the process of solving
Eq. (19) simpler. In addition, it can be seen that the velocity
norm κ≡ uaua is constant along the curve:

ua∇aκ ¼ 2ubua∇aub ¼ 2ubJb⊥ ¼ 0: ð24Þ

Inserting the constants of motion in the velocity nor-
malization condition produces

κ ¼ gabuaub ¼ −f_t2 þ h_r2 þ l2

r2
: ð25Þ

In turn, the last expression can be written as

_t2 ¼ h
f
_r2 þ l2

fr2
−
κ

f
: ð26Þ

To proceed, note that the r component of Eq. (19) takes the
form

̈rþ f0

2h
_t2 þ h0

2h
_r2 −

r
h
_ϕ2 ¼ Jr⊥; ð27Þ

where the prime represents an r derivative. Utilizing
Eq. (26) and the expression for l, Eq. (27) can be written as

̈rþ
�
f0

f
þ h0

h

�
_r2

2
þ f0

2fh

�
l2

r2
− κ

�
−

l2

hr3
¼ Jr⊥: ð28Þ

Note that ̈r ¼ ð1=2Þd_r2=dr, which is a total r derivative.
Still, the remaining terms in Eq. (28) cannot be written as a
total r derivative. Thus, in general, Eq. (28) cannot be
trivially integrated. Remarkably, in unimodular gravity it is
possible perform this integration. For this reason, the
unimodular theory of gravity is studied in what follows.

V. UNIMODULAR GRAVITY

A. Basic aspects

The unimodular theory is an alternative theory of gravity
with some interesting features [40–51]. It can be described
as a theory in four spacetime dimensions where, in addition
to the conventional Einstein-Hilbert action term, there is a
Lagrange multiplier that constraints the volume form to
coincide with a nondynamical 4-form. In turn, the presence
of this nondynamical 4-form partially breaks invariance
under diffeomorphisms. Concretely, the unimodular action,
written as the integral of a scalar density, takes the form

S ¼
Z

d4x
1

2κ

h ffiffiffiffiffiffi
−g

p
Rþ λð ffiffiffiffiffiffi

−g
p

− FÞ þ LMðg;ψÞ
i
; ð29Þ

where λ is the Lagrange multiplier, F is a nondynamical
scalar density associated to the nondynamical 4-form, and
ψ collectively represents all the matter fields. The equations
of motion are

Gab −
1

2
λgab ¼ κTab; ð30Þ

ffiffiffiffiffiffi
−g

p ¼ F; ð31Þ

δLM

δψ
¼ 0; ð32Þ

where Gab ≡ Rab − gabR=2 is the Einstein tensor and the
energy-momentum tensor is defined by Eq. (3). Also,
Eq. (31) is known as the unimodular constraint.
The trace of Eq. (30) generates

λ ¼ −
1

2
ðκT þ RÞ; ð33Þ

where T ≡ gabTab. Using this expression, Eq. (30) can be
recast as
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RTL
ab ≡ Rab −

1

4
Rgab ¼ κ

�
Tab −

1

4
Tgab

�
: ð34Þ

It is easy to see that this equation is traceless, and, together
with the unimodular constraint, they comprise a set of ten
equations.
The divergence of Eq. (34) produces

1

4
∇aR ¼ κ

�
∇bTab −

1

4
∇aT

�
: ð35Þ

Therefore, in cases when ∇bTab ¼ 0, Λ̃≡ ðRþ κTÞ=4 is a
constant. Interestingly, inserting Λ̃ into Eq. (34) yields the
conventional Einstein equations with Λ̃ acting as a cos-
mological constant. In other words, unimodular gravity,
with the additional assumption that the energy-momentum
tensor is divergence-free, is dynamically equivalent to GR
with a cosmological constant that arises as an integration
constant. As such, this constant is completely independent
from the vacuum energy of the matter fields, offering
a plausible explanation to the “cosmological constant
problem” [52] (see also Ref. [53]).
Moreover, F, being nondynamical, does not transform

under diffeomorphisms. As a consequence, the action (29)
is not invariant under all diffeomorphisms. To show this,
consider the simpler case when Tab ¼ 0. The action
variation under an infinitesimal diffeomorphism associated
with ξa takes the form

δS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
λ∇a

�
Fffiffiffiffiffiffi−gp ξa

�
; ð36Þ

where the Bianchi identity ∇aGab ¼ 0 is used. On shell,
F ¼ ffiffiffiffiffiffi−gp

, and the action is invariant if and only if
∇aξ

a ¼ 0. Now, to find the conservation law, it is necessary
to express a divergence-free vector field ξa in terms of an
arbitrary tensor. This is achieved through an antisymmetric
tensor αab. Let

ξa ¼ ϵabcd∇bαcd; ð37Þ

where ϵabcd is the metric volume form, i.e., the 4-form such
that ϵabcdϵabcd ¼ −4! and ∇aϵbcde ¼ 0. Then,

∇aξ
a ¼ ∇aðϵabcd∇bαcdÞ

¼ 1

2
ϵabcdð∇a∇b −∇b∇aÞαcd

¼ ϵabcdR½abc�eαed ¼ 0; ð38Þ

where the squared brackets denote the totally antisymmet-
ric part and, in the last step, the identity R½abc�d ¼ 0 is used.
The matter action variation is still given by Eq. (2) but

now the vector field ξa is restricted to be divergence-free.
Expressing ξa in terms of αab yields

0 ¼ δSM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
αdeϵ

bcde∇c∇aTab; ð39Þ

where a double integration by parts is performed. Given
that αab is arbitrary, the corresponding energy nonconser-
vation law can be readily found; it reads

0 ¼ ϵbcde∇c∇aTab: ð40Þ

Clearly, this conservation law is satisfied when ∇aTab ¼ 0,
in which case the theory reduces to GR, as is argued above.
Yet, Eq. (40) has more general solutions. In fact, denoting
ja ≡∇bTab, Eq. (40) implies that the exterior derivative
of ja has to vanish, namely, dj ¼ 0. What is more, using
Poincaré’s lemma [54], it is possible to show that, if
spacetime is contractible, as it is assumed hereon, there
exists a scalar function Φ, called the nonconservation
potential, such that

ja ¼ −∇aΦ: ð41Þ

This fact makes unimodular gravity tractable with the
standard particle trajectory methods. The other result is a
generalization a well-known theorem, which is presented in
the next subsection.

B. Generalized Birkhoff theorem

The Birkhoff theorem states that the only spherically
symmetric solution of the vacuum Einstein equation,
Rab ¼ 0, is the Schwarzschild solution, which is static.
In this subsection, an analogous result is derived in the
context of vacuum unimodular gravity, following the
method presented in Ref. [55], p. 468. The goal is to solve
Eq. (34) in vacuum, namely, RTL

ab ¼ 0, in spherical sym-
metry. In adapted coordinates, the most general spherically
symmetric line element, which is not necessarily static, is

ds2 ¼ −Aðt; rÞdt2 þ 2Bðt; rÞdtdrþ Cðt; rÞdr2
þ r2ðdθ2 þ r2 sin2 θdϕ2Þ; ð42Þ

where A, B, and C are arbitrary functions. With a
coordinate transformation, t̃ ¼ t̃ðt; rÞ, it is possible to
absorb the B function, obtaining

ds2 ¼ −eνðt̃;rÞdt̃2 þ eρðt̃;rÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð43Þ

With this metric, the t̃r component of RTL
ab ¼ 0 is simply

1

r
∂ρ

∂t̃
¼ 0; ð44Þ

which is solved by ρ ¼ ρðrÞ. In addition,

0 ¼ reρ−νRTL
t̃ t̃ þ rRTL

rr ¼ ν0 þ ρ0; ð45Þ
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which implies

νðt̃; rÞ ¼ βðt̃Þ − ρðrÞ: ð46Þ

What is more, the θθ component of RTL
ab ¼ 0 becomes

0 ¼ 4

r2
eρRTL

θθ ¼ 2

r2
ðeρ − 1Þ þ ρ02 − ρ00; ð47Þ

whose solution is

ρðrÞ ¼ − ln

�
1 −

2M
r

þ Λr2
�
; ð48Þ

with M and Λ constants known as the mass and the
cosmological constant, respectively.
Using Eqs. (46) and (48), the metric (43) takes the form

ds2 ¼ −eβðt̃Þ
�
1 −

2M
r

þ Λr2
�
dt̃2 þ dr2

1 − 2M
r þ Λr2

þ r2ðdθ2 þ sin2θdϕ2Þ: ð49Þ

Finally, it is possible to change coordinates once again and
introduce t̂ ¼ t̂ðt̃Þ to absorb β, producing

ds2 ¼ −
�
1 −

2M
r

þ Λr2
�
dt̂2 þ dr2

1 − 2M
r þ Λr2

þ r2ðdθ2 þ sin2θdϕ2Þ; ð50Þ

which is the Schwarzschild, Schwarzschild–de Sitter, or
Schwarzschild–anti–de Sitter metric, depending on the sign
of Λ, which are static. In addition, it can be verified that
the metric (50) solves all the components of RTL

ab ¼ 0.
This result is clearly compatible with the fact, discussed
above, that, in vacuum, unimodular gravity reduces to
GR with a cosmological constant. In this sense, this result
is a generalization, relevant for unimodular gravity, of
Birkhoff’s celebrated theorem.

VI. EMPIRICAL CONSTRAINTS

In this section, Solar System observations are used to test
particular models for energy nonconservation. This is done
as a proof of concept; the goal is to show that energy
nonconservation produces physical effects. For simplicity,
a situation where all the calculations can be performed
analytically is chosen. The proposal is to consider the
vacuum propagation of pointlike test particles that lose
energy according to unimodular gravity, in a background
that is a solution of this theory. Also, spherical symmetry is
assumed, for the background metric and for the energy
nonconservation potential, since it is a good approximation
to account for Solar System observations. Moreover, c is
restored to be able to expand in c−2.

Interestingly, vacuum unimodular gravity, under the
symmetries at hand, is a theory where Eq. (28) is a total
derivative, which greatly simplifies the calculations. This
follows from Eq. (41) and from the generalized Birkhoff
theorem, which implies f ¼ h−1. As a consequence, the
following identities can be verified:

f0

f
þ h0

h
¼ 0; ð51Þ

f0

2fh

�
l2

r2
− κ

�
−

l2

hr3
¼ d

dr

�
f
2

�
l2

r2
− κ

��
: ð52Þ

Now, Eq. (41) states that ja ¼ −∇aΦ=c2, where the factor
c−2 is introduced so that the loss of energy is at the same
order than the gravitational effects. Clearly, in spherical
symmetry, Φ ¼ ΦðrÞ, and, thus, the right-hand side of
Eq. (28) is also a total r derivative. Notice that the right-
hand side of Eq. (28), when given by this derivative, should
be regarded as an additional, albeit well-motivated,
assumption, since what appears on the right-hand side of
Eq. (19) is proportional to the integral of ja in the limit
when the particle’s size goes to zero.
Equation (28), with these considerations, becomes

1

2

d_r2

dr
þ d
dr

�
f
2

�
l2

r2
− κ

��
¼ −

1

c2
dΦ
dr

; ð53Þ

which can be integrated to produce

E ¼ 1

2
_r2 þ VeffðrÞ; ð54Þ

where E is an integration constant and

VeffðrÞ≡ f
2

�
l2

r2
− κ

�
þ 1

c2
Φ: ð55Þ

Clearly, Eq. (54) has the form of an energy equation in
conventional Newtonian dynamics for a system of one
degree of freedom.
Before proceeding, note that the observed [56] cosmo-

logical constant Λ is such that, for all the relevant values of
r, Λr2 ≪ 1. Thus, such contributions are neglected and
f ¼ 1–2M=ðc2rÞ. In consequence, the utilized metric is the
Schwarzschild metric and the only unconventional effects
that are considered here are due to Φ. In what follows,
comparisons with Solar System data are performed.

A. Null trajectories

Given that light follows null trajectories contained in a
plane, κ ¼ 0 and θ ¼ π=2. What is more, it is useful to
define b≡ l=

ffiffiffiffiffiffi
2E

p
, which, when Φ ¼ 0, is the impact
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parameter. Assuming4 that l > 0, it is possible to express
Eq. (54) as

1

b2
¼ 1

l2
_r2 þ Vn

eff ; ð56Þ

where

Vn
eff ≡ 1

r2
f þ 2

c2l2
Φn ð57Þ

andΦn is the nonconservation potential for null trajectories.
To proceed, a concrete expression for Φn is necessary.

Such a potential is assumed to vanish as r → ∞ to avoid
sourcing energy nonconservation by objects located arbi-
trarily far away. Moreover, Φn is taken to be such that it
maintains the structure of the maxima and minima of the
effective potential as compared with the Φn ¼ 0 case. This
is because a change in this structure would produce
dramatic effects that have not been observed. Given that
Vn
eff , when Φn ¼ 0, has r−2 and r−3 terms, the following

form for the nonconservation potential is considered:

Φn ¼
bn2
r2

þ bn3
r3

; ð58Þ

where bn2 and bn3 are free parameters. From inspection, it
can be verified that, for these parameters to keep the form of
the effective potential, it is necessary that

l2c2 þ 2bn2 > 0; ð59Þ

Ml2 − bn3 > 0: ð60Þ

These are restrictions on l and on the nonconservation
parameters and are assumed hereon. The qualitative form
of Vn

eff is plotted in Fig. 2. Importantly, in general, the
parameters of this nonconservation potential cannot be
absorbed into M and l.

1. Deflection of light

The deflection of light was the first prediction of GR to
be empirically confirmed, and refinements of this effect
have been proposed, arising, for example, from QED
radiative corrections [57] or from higher-order geometrical
theories [58]. Here, this effect is computed for unimodular
gravity and with the above presented nonconservation
potential.
Light trajectories are described by the angle ϕ as a

function of r. In turn, ϕðrÞ can be found after integrating
dϕ=dr ¼ _ϕ=_r; the numerator is _ϕ ¼ l=r2, and the denom-
inator is obtained from Eq. (54), producing

dϕ
dr

¼ 1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
b2 −

f
r2 −

2
l2c2 Φn

q : ð61Þ

To calculate the total deflection angleΔϕdef , it is customary
to consider that the light beam emerges and returns to
r → ∞. Given the symmetries of the problem, the net effect
is twice the r integral of Eq. (61) from infinity to the radius
of maximal approach, r0, which corresponds to the radius
where _r ¼ 0. From Eq. (56) at r0, it can be seen that

1

b2
¼ 1

r20
fðr0Þ þ

2

c2l2
Φnðr0Þ: ð62Þ

With this, it can be verified that the total deflection angle
satisfies

Δϕdef ¼
Z

∞

r0

2dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ
r2
0

− fðrÞ
r2 þ 2

c2l2 ½Φnðr0Þ −ΦnðrÞ�
q : ð63Þ

To integrate, it is helpful to expand the integrand in
powers of c−2; the leading contribution is

Δϕð0Þ
def ¼

Z
∞

r0

2dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffi
1
r2
0

− 1
r2

q ¼ π: ð64Þ

Moreover, the first correction takes the form

Δϕð1Þ
def ¼

1

c2

Z
∞

r0

drf2Mr3
0

− 2M
r3 − 2

l2 ½Φnðr0Þ −ΦnðrÞ�g
r2ð 1r2

0

− 1
r2Þ3=2

¼ 4ðMl2 − bn3Þ
c2l2r0

−
πbn2
c2l2

: ð65Þ

Considering that Δϕdef ¼ π corresponds to a light beam
that follows a straight trajectory, the relevant deflection
angle is

FIG. 2. Effective potential for null trajectories as a function of
the radial coordinate r. For a given b, there is a radius of maximal
approach, r0.

4The case where l < 0 is related to what is done here by
changing the coordinates’ orientation; radial trajectories, where
l ¼ 0, must be analyzed independently.
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δϕdef ≡ Δϕdef − π ¼ 4ðMl2 − bn3Þ
c2l2r0

−
πbn2
c2l2

: ð66Þ

At this point, it is convenient to use r0 ¼ bþOðc−2Þ,
which is derived from Eq. (62). Also, Eq. (56) in the region
r → ∞ implies l ¼ b, where the fact that _r → 1 is utilized.5

The final expression reads

δϕdef ¼
4M
c2b

−
πbn2
c2b2

−
4bn3
c2b3

: ð67Þ

As expected, δϕdef has the GR term plus modifications due
to bn2 and bn3. The former produces an effect that goes like
b−2, while the latter goes like b−3, in agreement with naive
dimensional considerations.
Bounds on bn2 and bn3 are set by using the well-known

parametrized post-Newtonian formalism (PPN) [59]. In
turn, the PPN bounds are set using light rays that pass
extremely close to the surface of the Sun; therefore, the
impact parameter is approximately the Sun’s radius R⊙.
Moreover, the corresponding PPN expression reads [60]

δϕPPN
def ¼ ð1þ γÞ 2M⊙

c2R⊙
; ð68Þ

where γ is the PPN parameter and M⊙ is the mass of the
Sun. Comparison with Eq. (67) yields

πbn2
2M⊙R⊙

þ 2bn3
M⊙R2

⊙
¼ 1 − γ: ð69Þ

The corresponding PPN bounds are [61]

−2.0 × 10−4 < γ − 1 < 0.4 × 10−4; ð70Þ

which, using R⊙ ≈ 5 × 105M⊙, translate to

−51 < 4.0
bn2
M2

⊙
þ ð1.1 × 10−5Þ bn3

M3
⊙
< 255: ð71Þ

Note that a change in the reference scale, form M⊙ to, say,
GeV ∼ 10−57M⊙, would drastically change the numbers in
Eq. (71). Finally, it is important to emphasize that these
limits are compatible with conditions (59) and (60) pro-
vided that

bn3
M3

⊙
< 2.5 × 1011: ð72Þ

An interesting proposal6 is to find an effective index of
refraction, neff , that describes the effects of gravity and

energy nonconservation. In Ref. [62] a gravitational effec-
tive index of refraction is found by comparing the effects of
a media and those of spacetime curvature in Maxwell’s
equations. Thus, to utilize the methods of Ref. [62], it is
necessary to incorporate energy nonconservation into an
effective metric. For the case at hand, this can be done by
inspecting Eq. (57) and noticing that there is an effec-
tive function feff such that Vn

eff has the same functional
form as in GR but with feff in place of f. This function has
the form

feff ≡ f þ 2r2

c2l2
Φn ¼ 1þ 2bn2

c2l2
−
2M
c2r

�
1 −

bn3
Ml2

�
; ð73Þ

and the corresponding “effective metric” has the form of
Eq. (50) but with feff instead of f. Note, however, that
energy nonconservation is not “geometrizable” in the sense
that feff depends on the light trajectory via l. With this
observation, finding neff reduces to writing the metric in
isotropic coordinates and reading off the time and spatial
components [62]; the result is

neff ¼ 1 −
bn2
c2l2

þM − bn3=l
2

c2r
; ð74Þ

where, for simplicity, an expansion on c−2 is performed.
Equation (74) reduces to the correct results when the
parameters for energy nonconservation are set to zero.
What is more, light trajectories could be found from neff
following the iterative procedure described in Ref. [62].
More interestingly, Eq. (74) could lead to new experiments
to search for static and spherically symmetric forms of
energy nonconservation, particularly in the realm of tab-
letop optics experiments.

B. Time delay

The time delay, as originally devised by Shapiro [63], is
calculated in this subsection for the case where there is
energy nonconservation. This delay concerns the time
spend by a light signal that travels from the Earth to a
reflecting satellite that orbits the Sun, and back, when
the light beam passes close to the Sun. In addition, this
effect is calculated neglecting the change in the position
of the Earth and the satellite. The relevant expression is
t ¼ tðrÞ, which is obtained by integrating dt=dr ¼ _t=_r,
where the fact that _r ≠ 0 is used. From Eq. (26), it is
possible to write

dt
dr

¼ � 1

cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2f

r2 _r2

r
; ð75Þ

where the sign has to be appropriately chosen depending
on whether r grows or decreases. Equation (56)

5Here, b is the geometrical impact parameter up to Oðc−2Þ
corrections, which can be neglected.

6Due to an anonymous referee.
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evaluated at an arbitrary radius r minus the same equation
at r0 is

1

l2
_r2 ¼ 1

r20
fðr0Þ −

1

r2
fðrÞ þ 2

c2l2
½Φnðr0Þ −ΦnðrÞ�: ð76Þ

In turn, this can be used to bring Eq. (75) to the form

dt
dr

¼ � 1

cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=r2

1
r2
0

fðr0Þ − 1
r2 fðrÞ þ 2

c2l2 ½Φnðr0Þ −ΦnðrÞ�

vuut :

ð77Þ

The time it takes the light to travel from r1 to r2 is
obtained through integration:

Δtðr1; r2Þ ¼
Z

r2

r1

dr
dt
dr

¼ �
Z

r2

r1

dr
cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=r2

1
r2
0

fðr0Þ − 1
r2 fðrÞ þ 2

c2l2 ½Φnðr0Þ −ΦnðrÞ�

vuut : ð78Þ

Note that Δtðr1; r2Þ ¼ Δtðr2; r1Þ as the sign that arises
when changing the limits of the integral compensates the
sign associated with _r. This is also clear on physical
grounds (recall that the change of position of the Earth
and the satellite is neglected). The total time traveled by the
light signal is given by Δttot ≡ 2Δtðr0; REÞ þ 2Δtðr0; RSÞ,
where RE and RS are the radius of the orbit of the Earth and
the satellite, respectively. Thus, it is necessary to find
expressions for Δtðr0; RÞ for an arbitrary R > r0.

Again, the integral can be solved analytically when
expanding in c−2. To lowest order, the integral becomes

Δtðr0; RÞð0Þ ¼
1

c

Z
R

r0

dr
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − r20
p ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r20

q
: ð79Þ

The next order effect is

Δtðr0; RÞð1Þ ¼
Z

R

r0

l2Mðr − r0Þð2rþ 3r0Þ þ rr40½ΦnðrÞ −Φnðr0Þ�
c3l2ðr2 − r20Þ3=2

¼ M
c3

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
R − r0
Rþ r0

s
þ 4 arcsinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
R − r0
2r0

s ��

þ
−πbn2Rr0 þ 4bn2Rr0 arctan

�
R−

ffiffiffiffiffiffiffiffiffi
R2−r2

0

p
r0

�
− 2bn3ð2Rþ r0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R

Rþr0
− 1

q
2c3l2R

: ð80Þ

The “excess time” δt is defined as Δttot minus the flight time in flat spacetime and in a theory with energy conservation
(i.e., when M, bn2, and bn3 vanish). It is given by

δt ¼ 2Δtðr0; REÞ þ 2Δtðr0; RSÞ −
2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
E − r20

q
−
2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
S − r20

q

¼
−πbn2REr0 þ 4bn2REr0 arctan

�
RE−

ffiffiffiffiffiffiffiffiffiffi
R2
E−r

2
0

p
r0

�
− 2bn3ð2RE þ r0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RE

REþr0
− 1

q
c3l2RE

þ
−πbn2RSr0 þ 4bn2RSr0 arctan

�
RS−

ffiffiffiffiffiffiffiffiffi
R2
S−r

2
0

p
r0

�
− 2bn3ð2RS þ r0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RS

RSþr0
− 1

q
c3l2RS

≈
4M
c3

�
1þ ln

�
4RERS

r20

��
−

4bn3
c3r20

; ð81Þ

where, in the last step, an expansion in r0=RE and r0=RS is performed. Also, from Eq. (76) in the r → ∞ limit, it is possible
to show that l ¼ r0 þOðc−2Þ, which is used in the last term of Eq. (81).
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Importantly, it can be verified that the first part of
Eq. (81) coincides with the corresponding GR expression
(see, e.g., p. 214 in Ref. [55]). Moreover, bn3 produces a
shift on δt that is independent on RE and RS, and, at this
level, there are no effects due to bn2. Unfortunately, when
analyzing this type of empirical data, a constant shift in
δt is usually discarded. In fact, the PPN limits [60] are set
using the logarithmic part of δt. Therefore, PPN limits set
with time delay do not lead to limits on bn3, which was
impossible to foresee before making the calculations.

C. Timelike trajectories

Under the symmetries at hand, timelike trajectories,
which describe the propagation of massive pointlike
particles, are also contained in the θ ¼ π=2 plane, but
now κ ¼ −c2. Therefore,

E −
c2

2
¼ 1

2
_r2 þ V t

eff ; ð82Þ

where the superindex t refers to timelike curves. The
effective potential is

V t
eff ¼

f
2

�
l2

r2
þ c2

�
−
c2

2
þ 1

c2
Φt

¼ −
l2M
c2r3

þ l2

2r2
−
M
r
þ 1

c2
Φt: ð83Þ

Here, Φt ¼ ΦtðrÞ is the nonconservation potential for
timelike trajectories. Also, note that a term −c2=2 is
introduced in both sides of Eq. (82) so that the energy
conserving part of V t

eff tends to zero as r → ∞.
The effective potential V t

eff , without energy nonconser-
vation, has terms that are proportional to r−1, r−2, and r−3.
Therefore, for Φt to maintain the form of V t

eff , it is
necessary that

Φt ¼
bt1
r
þ bt2

r2
þ bt3

r3
; ð84Þ

where the free parameters, in this case, are given by bt1, b
t
2,

and bt3. Moreover, it is necessary that the coefficients of
r−3, r−2, and r−1, are, respectively, negative, positive, and
negative, and, for the effective potential to have two
extrema, it is also needed that

Mc2 − bt1 > 0; ð85Þ

c2l2 þ 2bt2 > 0; ð86Þ

Ml2 − bt3 > 0; ð87Þ

and, in addition,

12ðMc2 − bt1ÞðMl2 − bt3Þ ≤ ðl2c2 þ 2bt2Þ2: ð88Þ

The behavior of V t
eff is plotted in Fig. 3. Note that V t

eff
allows the particles to follow orbits, that is, timelike
trajectories that are contained in between two radii r1
and r2 ≥ r1; this happens when E is such that
VeffðrminÞ ≤ E − c2=2 < 0, where rmin is the radius that
minimizes the effective potential. These additional con-
ditions, together with Eqs. (85)–(88), are assumed in what
follows. Again, it can be verified that the free parameters
cannot be all absorbed into effective values for M and l.

1. Perihelion shift

Orbits can be described by the angular coordinate as a
function of the radial coordinate: ϕ ¼ ϕðrÞ. Once again,
this function can be obtained by integrating dϕ=dr ¼ _ϕ=_r.
From the definition of l and Eq. (82), it is possible to write

dϕ
dr

¼ � l=r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E − c2 − 2V t

effðrÞ
p ; ð89Þ

where the sign is positive (negative) whenever _r is positive
(negative). Let r1 > 0 and r2 > r1 be the radii where _r ¼ 0,
which are known as the return points of the orbit.7 From
Eq. (82), it follows that

E −
c2

2
¼ V t

effðr1Þ ð90Þ

and

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2½fðr2Þ − fðr1Þ� þ 2

c2 ½Φtðr2Þ −Φtðr1Þ�
fðr1Þ
r2
1

− fðr2Þ
r2
2

vuut ; ð91Þ

where l is taken as positive.
An orbit is defined as the trajectory from the minimal

radius r1, to r2 > r1, and back. It turns out that the angle
spanned when going from r1 to r2 is equal to that from r2 to
r1, since the change in the integration limits compensates
the global sign. Thus, the angle spanned during a full
orbit is

FIG. 3. V t
eff as a function of r. When E < c2=2, the potential

admits orbits that are confined between r1 and r2.

7There are three solutions to _r ¼ 0; however, one solution does
not correspond to orbits. In addition, circular orbits (r1 ¼ r2) can
be considered by taking, at the end of the calculation, the ϵ → 0
limit, where ϵ is the orbit’s eccentricity.
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Δϕ ¼ 2l
Z

r2

r1

dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V t

effðr1Þ − 2V t
effðrÞ

p ; ð92Þ

where Eq. (90) is used. Moreover, Eq. (91) can be utilized
to replace l, which appears inside V t

eff , by a function of r1
and r2.
To integrate, an expansion in powers of c−2 is performed.

The dominant term is

Δϕð0Þ ¼ 2

Z
r2

r1

dr
ffiffiffiffiffiffiffiffiffi
r1r2

p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − r1Þðr2 − rÞp ¼ 2π; ð93Þ

and the next order effect is given by

Δϕð1Þ ¼
Z

r2

r1

�
2M½rðr1þ r2Þþ r1r2�

c2r2
ffiffiffiffiffiffiffiffiffi
r1r2

p ðr− r1Þ1=2ðr2− rÞ1=2

−
ffiffiffiffiffiffiffiffiffi
r1r2

p ðr1þ r2Þ
c2M

rΦtðrÞ
ðr− r1Þ3=2ðr2− rÞ3=2

þ
ffiffiffiffiffiffiffiffiffi
r1r2

p ðr1þ r2Þ
c2Mðr1− r2Þ

r1Φtðr1Þ
ðr− r1Þ3=2ðr2−rÞ1=2

−
ffiffiffiffiffiffiffiffiffi
r1r2

p ðr1þ r2Þ
c2Mðr1− r2Þ

r2Φtðr2Þ
ðr− r1Þ1=2ðr2− rÞ3=2

�

¼
�
3πM
c2

−
πbt2
c2M

�
r1þ r2
r1r2

−
3πbt3
2c2M

�
r1þ r2
r1r2

�
2

: ð94Þ

Observe that this last expression is independent of bt1.
The deflection angle δϕ is the shift in the orbit’s

perihelion and it is defined as Δϕ minus 2π, which
corresponds to a closed orbit. Moreover, it is customary
to write the result in terms of the length of the semimajor
axis a and the orbit’s eccentricity ϵ, which are such that
r1 ¼ að1 − ϵÞ and r2 ¼ að1þ ϵÞ. Also, units where c ¼ 1
are reintroduced, for simplicity. Taking all this into the
account, it is possible to write

δϕ ¼ 6πM
að1 − ϵ2Þ

�
1 −

bt2
3M2

�
−

6πbt3
Ma2ð1 − ϵ2Þ2 : ð95Þ

Relevantly, when bt2 ¼ 0 ¼ bt3, the general relativistic
effect is recovered. Note that bt2 depends on a and ϵ in
the same way than the GR effect. On the other hand, bt3
goes like a−2ð1 − ϵ2Þ−2. Thus, it is possible to set separate
bounds on these nonconservation parameters using Solar
System data, particularly, if such bounds were set using
data of several planets. In fact, there are reported bounds for
Mercury [64] and Mars [65]; however, such an analysis lies
outside the scope of this paper.
The most stringent PPN bounds arise from studies of

Mercury’s orbit by the MESSENGER spacecraft [64]. The
corresponding PPN expression is [60]

δϕPPN ¼ 2πM⊙

a☿ð1 − ϵ2☿Þ
ð2þ 2γ − βÞ

≈ 4300
�
1þ 2ðγ − 1Þ − ðβ − 1Þ

3

�
; ð96Þ

where γ and β are the PPN parameters and the subindex ☿
stands for Mercury. In the last step, the GR value of nearly
43 arcsec per century for the deflection angle is used, which
corresponds to 2.1 × 10−4 rad per century. In fact, these
limits are actually set on β after assuming γ − 1 ¼
ð2.1� 2.3Þ × 10−5 [66]. The resulting limits are β − 1 ¼
ð−4.1� 7.8Þ × 10−5. With these data

δϕPPN ≈ 4300½1þ ð2.7� 4.1Þ × 10−5�; ð97Þ

which, when compared to Eq. (95), yields

−6.8 < ð3.3 × 104Þ bt2
M2

⊙
þ 1.1

bt3
M3

⊙
< 1.4: ð98Þ

These are the bounds on the nonconservation parameters,
and they are compatible with the inequalities (85)–(88), as
required for consistency.

VII. CONCLUSIONS

In this paper, it is argued that matter energy conservation
could be abandoned in theories that try to reconcile gravity
and quantum mechanics, as in the latter theory there are
processes, associated with measurements, where energy is
explicitly not conserved. It is shown that, to produce a
geometrical theory of gravity that is compatible with energy
nonconservation, it is necessary to have either additional
gravitational degrees of freedom, or nonminimal couplings,
or to consider nondynamical fields.
The core of this papers is devoted to study the trajectories

of pointlike particles subject to energy nonconservation. A
trajectory equation is found using Papapetrou’s method and
the result shows that energy nonconservation generates a
particular acceleration, as expected. This trajectory equa-
tion is further studied under the assumptions of staticity and
spherical symmetry.
Interestingly, the unimodular theory of gravity, which is

a proposal to tackle the cosmological constant problem
through a nondynamical structure, satisfies two conditions
that greatly simplify the trajectories’ study. The first of
these conditions is the existence of a generalized Birkhoff
theorem that can be applied in unimodular gravity. The
second condition has to do with the fact that, in unimodular
gravity, the energy-momentum divergence, when viewed as
a differential 1-form, has to be closed. This, in turn, implies
that the effects of energy nonconservation are encoded
in a scalar function, dubbed nonconservation potential. By
virtue of these results, the trajectories of light and massive
particles, in the test particle approximation, can be studied
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using equations that resemble a system of one degree of
freedom.
To probe the method, concrete nonconservation poten-

tials are proposed for null and timelike trajectories. The
deflection of light, time delay, and the shift in the perihelion
are explicitly calculated, and the results are compared with
Solar System data. These comparisons produce bounds on
the parameters of the nonconservation potentials, implying
that energy nonconservation can generate physical effects.
The ideas presented here can be generalized. Perhaps

the most intriguing of such generalizations is to study
the particles’ trajectory equation to the next order in
Papapetrou’s approximation, where the (classical) spin is
considered. This would allow one to test spin-dependent
models of energy nonconservation, particularly those that
produce an effective cosmological constant that is com-
patible with the observations [67,68]. With the methods

presented here, spin-dependent models could be compared
with Solar System data, producing independent tests. Note,
however, that the models of Refs. [67,68] use the curvature
scalar R as a measure for energy diffusion, and R vanishes
for the relevant symmetries. Still, similar models could be
analyzed, where, for example, the Kretschmann scalar
plays the role of R.
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