
Revisiting the matching of black hole tidal responses:
A systematic study of relativistic and logarithmic corrections

Mikhail M. Ivanov 1,* and Zihan Zhou 2,†

1School of Natural Sciences, Institute for Advanced Study,
1 Einstein Drive, Princeton, New Jersey 08540, USA

2Department of Physics, Princeton University, Princeton, New Jersey 08540, USA

(Received 18 November 2022; accepted 22 March 2023; published 18 April 2023)

The worldline effective field theory (EFT) gives a gauge-invariant definition of black hole conservative
tidal responses (Love numbers), dissipation numbers, and their spin-0 and spin-1 analogs. In the first part of
this paper we show how the EFT allows us to circumvent the source/response ambiguity without having to
use the analytic continuation prescription. The source/response ambiguity appears if relativistic corrections
to external sources overlap with the response. However, these corrections can be clearly identified and
isolated using the EFT. We illustrate that by explicitly computing static one-point functions of various
external fields perturbing the four-dimensional Schwarzschild geometry. Upon resumming all relevant
Feynman diagrams, we find that the relativistic terms that may mimic the response actually vanish for static
black holes. Thus, the extraction of Love numbers from matching the EFT and general relativity (GR)
calculations is completely unambiguous, and it confirms previous results that the Love numbers vanish
identically for all types of perturbations. We also study in detail another type of fine-tuning in the EFT, the
absence of Love numbers’ running. We show that logarithmic corrections to Love numbers do stem from
individual loop diagrams in generic gauges, but cancel after all diagrams are summed over. In the particular
cases of spin-0 and spin-2 fields the logarithms are completely absent if one uses the Kaluza-Klein metric
decomposition. In the second part of the paper we compute frequency-dependent dissipative response
contributions to the one-point functions using the Schwinger-Keldysh formalism. We extract black hole
dissipation numbers by comparing the one-point functions in the EFT and GR. Our results are in perfect
agreement with those obtained from a manifestly gauge-invariant matching of absorption cross sections.
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I. INTRODUCTION AND MAIN RESULTS

A. Background

The detection of gravitational wave signals with the
LIGO/VIRGO interferometer have started the era of pre-
cision strong field gravity [1]. This remarkable experimental
success has also motivated many new theoretical studies.
One of the key parameters affecting the shape of the
gravitational wave signal are tidal deformability coefficients,
called Love numbers. In the context of neutron stars, the
measurement of Love numbers offers a way to probe the
neutron star equation of state [2–5]. As far as black holes
(BHs) are concerned, their Love numbers have been found to
vanish identically in four dimensions, which has interesting

phenomenological and theoretical implications. In particular,
Love numbers appear as Wilson coefficients in the point-
particle worldline effective field theory. Hence, their vanish-
ing implies a fine-tuning problem that is reminiscent of the
notorious cosmological constant problem [6].
The effective field theory (EFT) of gravitational wave

sources is a theoretical tool for systematic calculations
of gravitational waveforms [7–12]. Within the EFT each
compact object of an inspiraling binary is represented as an
effective point particle. The finite-size structure is then
captured by means of higher-derivative effective worldline
couplings. This approach is similar to the multipole
expansion in classical electrodynamics. The leading
finite-size effects of compact objects are captured by
worldline operators quadratic in curvature. The correspond-
ing Wilson coefficients can be shown to reduce to
“classical” Love numbers in the Newtonian limit. As
mentioned above, the black hole Love numbers are zero,
which means that the worldline EFT exhibits a strong fine-
tuning when applied to black holes.
In four dimensions, the Love numbers were shown to

vanish for both the Schwarzschild (static) [13–16] and
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rotating (Kerr) BHs [17–20]. The situation is more
intricate for higher dimensional static BHs, where Love
numbers can vanish, be order-one constant, or exhibit
classical renormalization group running depending on the
multipole index l and the number of spacetime dimen-
sions [16,21]. This behavior is also quite unnatural from
the perspective of Wilsonian naturalness. Importantly,
spin-0 and spin-1 analogs of Love numbers also follow
the same patterns as the spin-2 gravitational perturbations.
This hints that the vanishing of Love numbers should have
a general geometric origin. Recently, the naturalness
paradox associated with the strange behavior of Love
numbers has been addressed by a new symmetry of
general relativity called the Love symmetry [22] (see
[23,24] for alternative proposals).
The literature on BH Love numbers is vast, but there are

certain conceptual and technical difficulties that are yet to
be addressed. Broadly, these are the problems with the
definition of Love numbers in general relativity, and the
extraction of Love numbers from black hole perturbation
theory (BHPT) calculations. The main goal of this paper
is to show how these problems can be resolved in the
worldline EFT approach. Let us describe these problems in
more detail.
Definition of Love numbers in GR: Source/response

ambiguity. Love numbers were originally defined in the
context of Newtonian gravity. Imagine a nonrotating fluid
star of massM perturbed by an external tidal field of a small
body. In the absence of the external perturbation the star
would be spherical. The tidal forces, however, deform
the star, and it acquires internal multipole moments IL.
The total gravitational potential around the star will look
like [25]

ϕðxÞ ¼ M
r
−
X
l¼2

�ðl − 1Þ!
l!

ELnLrl −
ð2l − 1Þ!!

l!
ILnL

rlþ1

�
;

ð1:1Þ

where EL are the multipole moments of the tidal potential,
L ¼ i1 � � � il is the multi-index, and nL ¼ ni1 � � � nil is
the tensor product of unit direction vectors ni ¼ xi=r.
In linear response theory the induced mass multipoles
must be proportional to external perturbations, IL ¼
−klR2lþ1 ðl−2Þ!

ð2l−1Þ!! EL, where R is the size of the star that

we insert in accordance with dimensional analysis. The
total potential then takes the form

ϕpertðxÞ¼−
X
l¼2

ðl−1Þ!
l!

ELnLrl
�

1|{z}
source

þkl
R2lþ1

r2lþ1|fflfflfflffl{zfflfflfflffl}
response

�
; ð1:2Þ

where we have subtracted the monopole component.
We stress that there is a clear separation between the
source and response contributions in the Newtonian

theory. The Love number is a coefficient in front of
the r−l−1 term in the Newtonian potential profile.
Since we will be discussing BHs, we replace R → rs
(Schwarzschild radius) in what follows.
There are several ways to define the Love number in

general relativity. Ideally, one wants a definition that would
be gauge and coordinate invariant and that would also
reproduce Eq. (1.2) in the Newtonian limit. One common
way is to extend the expression (1.2) to full general relativity.
For instance, one may look at the temporal metric compo-
nent h00 ¼ ðg00 − 1Þ=2 in the body’s local asymptotic rest
frame [26], which takes the following form [16]:

hpert00 ðxÞ ¼
X
l¼2

ðl − 1Þ!
l!

ELnLrl
��

1þ c1

�
rs
r

�
þ � � �

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

source

þ kl

�
R
r

�
2lþ1

�
1þ b1

�
rs
r

�
þ � � �

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

response

�
; ð1:3Þ

where c1 and b1 are some calculable Oð1Þ coefficients. The
terms in the first line above represent post-Newtonian (PN)
corrections1 to the source generated by gravitational non-
linearity. We call them the “source series.” The second line
above contains the response contribution plus PN corrections
to it. We call them the “response series.” An obvious
problem with the above definition is a possible ambiguity
due to an overlap between the source and response series
[16,20,27]. If this is the case, the coefficient in front of the
r−l−1 term in the generalized Newtonian potential is actually
given by

c2lþ1 þ klm: ð1:4Þ

Now it is not uniquely defined by the Love number. A
popular way to get around this ambiguity is to do an analytic
continuation for l from the physical region l ∈ N to the
unphysical region l ∈ R [16,19,20,27]. This is motivated
by the observation that for general noninteger l the source
and response series in Eq. (1.3) do not overlap. This is
generically true for BH perturbations in a number of
spacetime dimension greater than four [16]. Some physical
interpretation of this procedure in four dimensions is given in
Refs. [19,20] in the context of the renormalized angular
momentum [28–30]. The analytic continuation of the
angular multipole number is, however, still an ad hoc
prescription whose validity is not under rigorous theoretical
control. In addition, the analytic continuation can work only

1Physically, we are interested in a situation when the external
source is a companion object in the binary. In this case rs

r ∼ v2 is a
PN parameter. By this reason, we will call an expansion in rs=r
“post-Newtonian” in this paper, although we never explicitly
assume that the external source of tides and the BH are bound
objects.
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when it is possible to obtain a closed perturbative solution for
a generic l. This may not be the case for some modified
gravity theories, e.g., [31,32]. This makes it desirable to
develop a systematic and controlled approach that does not
rely on the analytic continuation prescription.
Gauge invariance. The second problem with the defi-

nition (1.3) is that it is given in a particular coordinate
system. Hence, it is not obvious that this definition is gauge
invariant [33].
Logarithmic corrections. In principle, the functional

form of the relevant field profiles can be more complicated
than (1.3). In particular, there could be logs multiplying the
r−l−1 term [16,20]. This additionally obscures the non-EFT
definitions of the Love numbers.
Dissipation numbers. The final ambiguity associated with

(1.3) is the interpretation of the coefficient in front of the
r−l−1 term. In general, the tidal response has conservative
(time-reversal even) and dissipative (time-reversal odd)
corrections. For Schwarzschild BHs this means that the
total time-dependent response can be written as

klðωÞ≡ kl þ iνlrsωþOðr2sω2Þ; ð1:5Þ

where νl is the dissipation number (dissipative response
coefficient) and ω is the frequency in the BH’s rest frame. In
the Newtonian theory of fluid stars νl is proportional to the
fluid’s viscosity [25]. Note that this contribution vanishes in
the static regime. The situation is more complicated in the
case of Kerr black holes, where due to frame dragging, one
needs to replace ω → ω −mΩ (Ω and m being the angular
velocity of the black hole horizon and the magnetic number,
respectively), so that the dissipation is present even for static
external sources [19,20,34]. This effect has caused some
confusion in the previous literature; cf. [17–19,27,35,36].
However, many of these ambiguities can be addressed

within the context of the worldline EFT [7–12]. In this
theory, Love numbers as defined as Wilson coefficients of
the static finite-size action

Sfinite size ¼
X
l¼2

λl
2l!

Z
dτEa1���alE

a1���al ;

Ea1���al ¼ ea1μ1 � � � ealμl∇hμ2 � � �∇μlCμ1jαjμ2jβjivαvβ; ð1:6Þ

where Cμανβ is the Weyl tensor, vα is the point-particle four-
velocity, and eaμ are vectors defining a frame orthogonal to
vα. The h� � �i denotes the procedure of symmetrization and
subtracting traces. In the definition (1.6) Ea1���al are multi-
pole moments measured in the BH frame, and a ¼ 1, 2, 3
are the SOð3Þ indices. One can perform a linear response
calculation with the action (1.6) and find that upon
identification λl ¼ ð−1Þlr2lþ1

s klðπ1=22l=Γð1=2 − lÞÞ, it
precisely reproduces Eq. (1.2) in the Newtonian limit [20].
Within the EFT all gravitational corrections are

computed as relativistic perturbations around the flat

background [7,37,38]. In this regard the EFT is sometimes
referred to as nonrelativistic general relativity. In this
approach, the PN corrections in the source series of (1.3)
are just classical nonlinear graviton corrections to the
external source profile. These corrections, i.e., the coefficient
c2lþ1, can be computed explicitly. After that the whole
external field profile can be matched to a corresponding
BHPT calculation. Therefore, the EFT allows us to get
around the source/response ambiguity without having to use
the analytic continuation of the multipole index.
To extract the Love numbers, one needs to match EFTand

full general relativity (GR) (or BHPT) calculations. The
cleanest way to do so is to compare two gauge-invariant
observables, such as a cross section of the elastic scattering
of gravitational waves off a BH geometry. For that one needs
to know this cross section at least at the 5 post-Minkowskian
(PM) order [7,10].2 However, there is a simpler way to
obtain the Love numbers: one can match static graviton one-
point functions such as (1.3). This procedure is delicate as it
is done in a particular coordinate system.
To overcome a possible issue with coordinate depend-

ence, one needs to make sure that the one-point function
calculations on both EFT and UV sides are carried out in
consistent gauges. In this paper, we define an EFT gauge to
be consistent with the background geometry if the back-
ground EFT one-point function of gravitons (i.e., without
external fields) coincides with a perturbatively expanded
full geometry. Once we have specified a consistent gauge,
we can match the full one-point function including external
perturbations, which will then give us the Love numbers.
Since the EFT Wilson coefficients are universal, results
would be gauge-independent even if some specific one-
point functions are used for the matching are not.
As far as logarithmic corrections are concerned, they can

easily be incorporated within the EFT and interpreted as a
classical renormalization group (RG) running. In particular,
the authors of [16] have carried out such a matching
calculation for a scalar (dilaton) perturbation with a
quadrupolar source. In this work, we build on the ideas
of [16] and investigate the logarithmic running for a general
multipolar index l. As we discuss later, we also find some
diagrams that were omitted in [16], and we argue why this
did not affect their results. The authors of Ref. [16] also
proposed a symmetry explanation of the absence of
logarithmic running of Schwarzschild Love numbers in
D ¼ 4, which we thoroughly scrutinize in our work.

B. Summary of main results

The result of this paper is summarized as follows:
(i) Systematic study of PN corrections: We generalize

the formalism of [16] by computing static one-point

2See [39] for a recent discussion and simplifications in the
context of the near/far zone factorization of the scattering
amplitude.
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functions (profiles) of generic external fields per-
turbing the Schwarzschild geometry in the EFT. We
carry out explicit calculations in terms of EFT
Feynman diagrams for the electric-type (parity even)
spin-0 and scalar graviton3 fluctuations in a general
multipole sector l. For the spin-1 case, we limit
ourselves to the dipole sector l ¼ 1. We show that in
all these cases c2lþ1 ¼ 0, which implies that there is
no mixing between the source and response con-
tributions in the Schwarzschild background. By
comparing our EFT expressions with the BHPT
results, we confirm that the Schwarzschild BH Love
numbers vanish identically. This is yet another
confirmation of the gauge independence of the
vanishing of Love numbers.
We have discovered a diagrammatic recurrence

relation that has allowed us to resum all PN
external source diagrams for a generic multipolar
index l. Our EFT diagrammatic recurrence rela-
tion matches the Frobenius series expansion of the
relevant BHPT solutions. This allows us to com-
pletely reconstruct the BHPT results for one-point
functions using the EFT. This extends and general-
izes the result previously obtained in [16], which
gave an EFT interpretation of the vanishing of
quadrupole-type spin-0 Love numbers and their
RG running.

(ii) Detailed study of nonrenormalization of Love num-
bers: With the Feynman diagram techniques men-
tioned above, we conduct a detailed analysis of
logarithmic corrections to the Love numbers (i.e.,
their RG running). In the context of Wilsonian
naturalness, one may expect that the classical RG
running of Wilson coefficients should be a generic
phenomenon. Indeed, we will confirm this expect-
ation by showing that generic individual EFT loop
corrections to the Love numbers do produce some
logarithmic running for arbitrary gauge choices.
However, the logarithms cancel once we sum over
all loop diagrams. We interpret this miraculous
cancellation as a consequence of the recently dis-
covered Love symmetries [40]. For spin-0 and spin-
2 perturbations the logarithmic corrections to Love
numbers are completely absent if we use the Kaluza-
Klein (KK) metric split [16,37,38] where there are
no interaction vertices that could produce the logs.
To the best of our knowledge, the absence of the RG
running of Love numbers has not yet been explicitly
demonstrated in the literature in full generality,

although this fact is known in the EFT community
[41–43] (see also [16] for the spin-0 quadruple case
results). Our results imply that the structure of
perturbations in the isotropic KK gauge, or the
apparent Z2 symmetry for dilaton field ϕ → −ϕ
[16], in fact does not provide a general IR symmetry
explanation to the nonrenormalization of Love
numbers. Rather, the KK split and the isotropic
gauge simply appear as convenient tools to obtain
this result in the particular cases of spin-0 and spin-2
fields. We demonstrate this explicitly in the case of
spin-1 perturbations, which do not have the Z2

dilaton symmetry, but whose worldline Wilson
coefficient still possesses the nonrenormalization
property. Working in the same isotropic KK gauge,
we find that individual loop diagrams do produce log
corrections to Love numbers, but these corrections
cancel in an intricate manner when all contributions
are summed together. This is a clear example
showing that the Z2 dilaton symmetry, in general,
cannot be interpreted as an IR symmetry enforcing
the nonrenormalization of Love numbers.

(iii) Off-shell matching of dissipation numbers: We also
study in detail the dissipative response of Schwarzs-
child black holes, especially the off-shell one-point
function matching, without using the analytic con-
tinuation techniques. In the EFT, the dissipation
numbers are generated by internal degrees of free-
dom, which are encapsulated in composite mass
multipole moments on the worldline [44]. In this
paper we establish the explicit connection between
this approach and the recent off-shell GR calcula-
tions of dissipation numbers in Refs. [19,20]. To that
end we compute the imaginary time-dependent part
of the graviton one-point function using the
Schwinger-Keldysh in-in approach [45–49] (also
see [50–53] for reviews). In the EFT, this contribu-
tion is produced by the imaginary part of the
retarded two-point correlator of composite mass
multipole operators. With this calculation we con-
firm that the imaginary part of the coefficient in front
of the r−l−1 term (1.5) is indeed produced by the
dissipation of the BH horizon. This helps resolve
some confusion about the conservative and dissipa-
tive response terms, which was especially acute in
the case of Kerr BHs [18,27].

We explicitly match the dissipation numbers in
the EFT and GR for spin-0, spin-1, and spin-2
external fields in a genetic multipole sector. Unlike
Refs. [19,20], our results here do not rely on the
analytic continuation prescription.

Our calculation explicitly demonstrates the equiv-
alence of off-shell and on-shell extractions of
dissipative responses: the dissipation numbers we
extract from a graviton one-point function agree with

3With some abuse of notation, we will refer to the scalar
graviton (or dilaton, or the generalized Newtonian potential) field
as a “spin-2 field.” This is because the Love number for the scalar
graviton is the same as the Love number for the actual spin-2
metric field.
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the results of the matching at the level of the
absorption cross sections [54,55]. This serves as a
consistency check of the EFT approach and solidly
confirms interpretations of recent GR response
function calculations [18–20,27].

C. Outline

Our paper is structured as follows. We start with a recap
of the nonrelativistic general relativity and the point-
particle EFT in Sec. II. Then we discuss the EFT dia-
grammatic structure and power counting rules in Sec. III.
There we show that logarithmic corrections to Love
numbers are expected from the EFT, in general. In
Sec. IV we explicitly compute the scalar, photon, and
scalar graviton static one-point functions in the EFT in
the isotropic Kaluza-Klein gauge. For the spin-1 field we
show that the logarithmic corrections actually cancel, while
for the spin-0 and spin-2 cases the logs are actually not
present at all in the isotropic Kaluza-Klein gauge. We also
explicitly resum the spin-0, spin-2 dilaton, and spin-1
dipole one-point functions in the EFT to all PN orders.
In Sec. V we compute the same spin-0, spin-1, and spin-2
one-point functions and compare them with the EFT
expressions. This way we establish that Love numbers
vanish identically without any source/response ambiguity.
In Sec. VI we match the dissipation numbers by comparing
the time-dependent one-point functions computed in the
EFT and in BHPT. We draw conclusions in Sec. VII.
Some additional material is presented in several appen-

dixces. In Appendix A we provide Feynman rules used
in our diagrammatic EFT computation. In Appendix B
we collect some useful mathematical relations. In
Appendix C we show that our EFT setup correctly
reproduces the Schwarzschild metric perturbatively. In
Appendix D we provide the details of the spin-1 electric
dipole one-point function calculation. In Appendix E
we derive the static spin-s Teukolsky equations in
Schwarzschild coordinates and isotropic coordinates.
We also show that the dissipation number is the same
in both coordinates, which confirms its gauge invariance.
Finally, in Appendix F we derive the dissipation-
fluctuation relation for Schwarzschild BHs and compute
the graviton absorption cross section in the EFT.

II. WORLDLINE EFT FOR SCHWARZSCHILD BHs

In this section we introduce the EFT for Schwarzschild
black holes in a long-wavelength tidal environment. We
systematically describe the tidal response of a black hole
to spin-0, spin-1, and spin-2 electric-type external per-
turbations. We start with a general EFT for GR in the
Newtonian limit, and then we discuss an effective
description of black holes. Importantly, we will show
that the EFT clearly separates between the conservative
and dissipative contributions.

A. Perturbative general relativity

Let us consider gravity coupled to a source, which can be
approximated as a point particle at leading order. They are
described by the following action:

S ¼ SEH þ Spp; ð2:1Þ

where SEH is the standard Einstein-Hilbert (EH) action,
while Spp is the point-particle action that depends on both
the black hole worldline xμðτÞ and the metric,4

SEH ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
R;

Spp ¼ −m
Z

dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxμ

dτ
dxν

dτ
gμν

r
; ð2:2Þ

where τ is a worldline parameter. We also consider the bulk
scalar and electromagnetic fields, which are described by
the standard actions

Sφ ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμν∂μφ∂νφ;

SEM ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
gμνgλρFμλFνρ; ð2:3Þ

where Fμν ¼ ∂μAν − ∂νAμ. To reproduce a Schwarzschild
black hole, we do not couple these test fields to our point
mass. The black hole will still be affected by these fields
through polarization effects.
We will use the “static gauge” choice for the worldline

parameter τ ¼ t. We decompose the spin-0, spin-1, spin-2
fields, and the center of mass coordinate into the back-
ground part and long-wavelength fluctuating parts,

gμν ¼ ημν þ hμν;
dxμ

dt
¼ ð1; viÞ;

φ ¼ φ̄þ δφ; Aμ ¼ Āμ þ δAμ; ð2:4Þ

where hμν; δAμ; δφ are fluctuations of the fields, and vi is
the point-particle spatial velocity component. In the rest
frame of the BH (an equivalent of static gauge), the
computation can be further simplified by setting vi ¼ 0.
Within the EFT both the background BH geometry and

the fluctuations around it are computed perturbatively
starting with a Minkowski background [7,8,10,37,38,56].
To that end we expand the EH and the point-particle actions
over perturbations in hμν, and solve them as an expansion in
m=r in an appropriate gauge [7,8,57,58]. The one-point
function calculation of the metric field hμν perturbatively
recovers the Schwarzschild metric. We perform this com-
putation explicitly in Appendix C. Once we have recovered

4We work in a unit system where ℏ ¼ G ¼ c ¼ 1.
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the Schwarzschild metric, we can consider fluctuations of the
test spin-s fields (s ¼ 0, 1, 2 here) and compute nonlinear,
post-Newtonian corrections to their profiles. The actions (2.2)
and (2.3), however, do not capture finite-size effects of the
black hole. We discuss them in detail now.

B. Finite-size effects

To incorporate BH finite-size effects, such as responses
to spin-s test fields, we use the approach of the point-
particle EFT [8,10,20,34,44]. In the limit when the size of
the body (R) is parametrically smaller than the wavelength
of external perturbations, i.e., jk⃗jR ≪ 1, conservative finite-
size effects can be captured by a most general worldline
action built out of long-distance degrees of freedom, i.e.,
long-wavelength test fields and the center of mass position
xμ, and satisfying symmetries of the problem. In the case of
spherically symmetric spacetimes, such as Schwarzschild,
these symmetries are the diffeomorphism invariance, gauge
invariance for the Maxwell field, worldline reparametriza-
tion invariance, and local rotation symmetry. To explicitly
realize these symmetries, it is convenient to use the four-
velocity vμ ¼ dxμ

dτ , the covariant derivative along it,
D≡ vμ∇μ, and a set of tetrads eμa carrying SOð3Þ indices
a ¼ 1, 2, 3, and defining a frame orthogonal to vμ. They
satisfy gμνe

μ
aeνb ¼ δab and define the projector

Pμν ¼ δabeaμebν ¼ gμν þ vμvν: ð2:5Þ

In what follows we will consider only the electric-type
(parity-even) perturbations. Generalization to the magnetic
(parity-odd) sector is straightforward. Note that thanks to
the electric-magnetic duality of the Schwarzschild space-
time in four dimensions [59], the Love numbers for the
magnetic perturbations must coincide with the electric
ones [21]. Thus, for the purposes of our work it will be
sufficient to consider the electric sector only.
We can use the above geometric objects to define field

multipole moments,

EðsÞ
L ≡ EðsÞ

μ1μ2���μle
μ1
ha1e

μ2
a2 � � � eμlali; ð2:6Þ

where L denotes the multi-index a1; a2;…; an, and h� � �i
denotes the symmetric trace-free (STF) part. Explicitly, we
have

Eðs¼0Þ
a1���al ¼ ∇ha1 � � �∇aliφ;

Eðs¼1Þ
a1���al ¼ ∇ha1 � � �∇al−1Eali; Ea ¼ eμavνFμν;

Eðs¼2Þ
a1���al ¼ ∇ha1 � � �∇al−2Eal−1ali; Eab ¼ vαvμeβaeνbCαβμν;

ð2:7Þ

where Cαβμν is the Weyl tensor. The effective action is

naturally built from the fields’ multipole moments EðsÞ
L .

In particular, the leading order (quadratic in perturbations)
effective point-particle action is given by

SðsÞ localfinite size ¼
X
l

λðsÞl

2l!

Z
dτEðsÞLðxðτÞÞEðsÞ

LðxðτÞÞ

þ
X
l

λðsÞlðω2Þ
2l!

Z
dτDEðsÞLðxðτÞÞDEðsÞ

LðxðτÞÞ

þ � � � : ð2:8Þ

As usual in the EFT, perturbation theory is organized in
terms of the field strength and the derivative expansion.
Note that since the theory is nonrelativistic, spatial and
temporal derivatives in the body’s rest frame enter effective
operators on different footing; e.g., the first term in (2.8)
does not have time derivatives at all. The frequency of the
perturbation should also be smaller than the object’s inverse
size in order for the EFT to be valid, ωR ≪ 1. We will
suppress the index (s) in what follows.
Note that due to isomorphism between the STF tensors

and spherical harmonics [60], the number of indices in L
corresponds to a multipole index l; i.e., L ¼ ðaÞ describes
the dipole (not present for spin-2 perturbations), L¼ða1a2Þ
describes the quadrupole, L ¼ ða1a2a3Þ—the octupole
moment, etc. The monopole moment (l ¼ 0) may be
present only for spin-0 fluctuations.
The local action (2.8) cannot reproduce absorption.

To incorporate this effect we need to take into account
unknown gapless degrees of freedom X on the worldline.
To that end one introduces composite operatorsQLðXÞ that
correspond to the body’s multipole moments, including
internal degrees of freedom. Then we add a new coupling
between the composite internal moments QL and the long-
wavelength tidal moments of perturbing fields EL, which
yield the following additional action [44]:

SðsÞfinite size ¼ −
X
l

Z
dτQðsÞ

L ðX; τÞEðsÞLðxðτÞÞ: ð2:9Þ

Although we do not know the explicit form of the operator
QL, we can still analyze the structure of its correlation
functions by making use of symmetry and parametrizing it
with some unknown coefficients that are determined
through matching to the UV theory. In general, correlation
functions of QL contain both conservative and dissipative
effects; i.e., they are nonlocal in time in general.
In this paper we focus on the matching of the one-point

functions. Such a matching can be performed for different
physical observables, i.e., correlation functions. In general,
these correlation functions have to be of the Schwinger-
Keldysh (in-in) type; i.e., the corresponding path integral
has to satisfy the in-in boundary conditions. However,
certain observables can be extracted from the usual
in-out path integral; i.e. scattering amplitudes [61–66],
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conservative forces [67,68], and the total radiated power
[69,70]. We will discuss this approach in detail shortly.
To compute the perturbative one-point function, we fix

the retarded boundary condition when computing the Green
function. This is equivalent to using the following linear
response theory expression for QL:

hQLðτÞiin−in ¼
Z

dτ0Gret
L0
L ðτ − τ0ÞEL0 ðxðτ0ÞÞ; ð2:10Þ

where we have introduced the retarded Green function

Gret
L0
L ðτ − τ0Þ ¼ ih½QLðτÞ; QL0 ðτ0Þ�iθðτ − τ0Þ; ð2:11Þ

where θðτÞ is the Heaviside step function. Since the
retarded Green function in the complex frequency domain
is analytic around ω ¼ 0, we can parametrize its Taylor
expansion around the origin as [20,34]

Gret
L0
L ðωÞ ¼ ðλloc0 þ iλnon−loc1 ðrsωÞ þ λloc2 ðrsωÞ2 þ � � �ÞδhLihL0i;

ð2:12Þ

where � � � denote terms higher order in frequency and λloc0 ,
λnon−loc1 , and λloc2 are free parameters (Wilson coefficients).
They all have the dimensionality Oðr2lþ1

s Þ. There are three
comments in order:

(i) Tensorial structure. The rotational symmetry of the
Schwarzschild background dictates that the retarded
Green function can only be an STF version of the
Kronecker symbol.

(ii) Time-reversal symmetry. The terms with even and
odd powers of frequency in the retarded Green
function transform differently under time reversal.
The part which is even under the exchange ω → −ω
describes conservative effects, while the time-rever-
sal odd part captures dissipation.

(iii) Locality. The time-reversal invariant terms can be
absorbed into local counterterms in the point-particle
action (2.8). In this sense they just renormalize the
Wilson coefficients that we already had in Eq. (2.8).
In contrast, the time-reversal odd terms, cannot be
recast into a local worldline action, and therefore we
call them “nonlocal.”

It is instructive to compare Eq. (2.12) with the Feynman
time-ordered Green function,

GFey
L0
L ðτ − τ0Þ ¼ hTQLðτÞQL0 ðτ0Þi: ð2:13Þ

Its Fourier transform is symmetric under ω → −ω but
not analytic aroundω ¼ 0. The second relevant observation
is that the Feynman and the retarded Green functions
are equivalent for conservative effects (i.e., off-shell modes)
[10]. The third important observation is a variant of the
fluctuation-dissipation theorem for static BHs [44],

Z þ∞

−∞
dτeiωτhQLðτÞQL0 ð0Þi

¼ 2Im

�
i
Z þ∞

−∞
dτeiωτhTQLðτÞQL0 ð0Þi

�
; ð2:14Þ

valid for ω > 0. All together, the above facts completely fix
the form of the Feynman propagator in terms of the Wilson
coefficients that we had in the EFT expansion of the
retarded Green function. If we restrict the latter to the
form (2.12), the Feynman propagator would take the form

GFey
L0
L ðωÞ¼ð−iλloc0 þλnon−loc1 rsjωj− iλloc2 ðrsωÞ2þ���ÞδhL0i

hLi :

ð2:15Þ

The modulus of frequency next to the λnon−loc1 term
above explicitly reflects the nonanalyticity of the
Feynman propagator at ω ¼ 0.

1. Love numbers

Let us focus on conservative effects. It is instructive to
start with the finite-size action Eq. (2.9), and use the
standard EFT definition for the point-particle in-out effec-
tive action,

expðiSin−outeff ðxμ; FÞÞ≡
Z

DX eiS½X;xμ;F�; ð2:16Þ

where X is the unknown degrees of freedom on the
worldline and F ¼ ðhμν; Aμ;φÞ is the collective notation
of long-wavelength probe fields. The effective action (2.16)
results from integrating out all relevant short scale degrees
of freedom plus the internal degrees of freedom X. We will
suppress the explicit dependence on F in what follows. The
leading order interaction term for a spin-s field for an
individual orbital sector l is given by

Sin−outint ðxÞ ¼ i
2

Z
dτdτ0hTQLðτÞQL0 ðτ0ÞiELðτÞEL0 ðτ0Þ:

ð2:17Þ

In the static case it is sufficient to consider the Oðω0Þ
conservative part. After performing the Fourier transform,
we get a local in time operator

hTQLðτÞQL0 ðτ0Þi ¼ −iλloc0 δðτ − τ0ÞδhL0i
hLi : ð2:18Þ

As anticipated, after plugging this into Eq. (2.17), we
find that conservative effects can be captured by the
local action

Slocalfinite size ¼
λl
2l!

Z
dτELEL; ð2:19Þ
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where λl ≡ l!λloc0 . The Wilson coefficients λl define static
Love numbers in the point-particle EFT.
Let us focus now on the scalar-type Love numbers,

for which EL ¼ ∂hLiφ. To extract the Love numbers, we
decompose the profile φ into a background and fluctuation
parts as in Eq. (2.4), and assume the background that solves
the static bulk Klein-Gordon equation at r → ∞,

φ̄ ¼ Ei1���ilx
i1 � � � xil ∝ rlYlmðθ;ϕÞ; ð2:20Þ

where Ei1���il is a constant tidal moments’ tensor. Plugging
this ansatz into the action Eq. (2.19), and taking into
account the bulk scalar field action, we can perform a
simple linear response calculation, whose diagrammatic
representation is given below:

ð2:21Þ

Thus, we see that the Wilson coefficient λl exactly
coincides with the classic Love number in the
Newtonian limit. The generalization to spin-1 and spin-2
perturbations is straightforward, and the corresponding
Feynman rules are given in Appendix A (see also [20,21]).

C. Dissipation numbers

The dissipation can be analyzed both within the in-out
approach by matching to the total BH absorption cross
section, or in the in-in formalismbymatching to the frequency
dependent one-point function of the external test field.
From the in-out formalism point of view, the OðωÞ

dissipative effect cannot be described by a local Lagrangian.
Indeed, the term _ELEL is a total derivative and thus can be
removed from the Lagrangian.5 To compute the cumulative
power loss due to BH absorption, one can introduce a
nonlocal in time action [44]. Indeed, plugging the Feynman
and Green function (2.15) into (2.9), we get

Sdiss ¼ i
2

Z
dτdτ0

�Z
dω
ð2πÞ ðλ

non−loc
1 rsjωjÞe−iωðτ−τ0Þ

�

× ELðτÞELðτ0Þ: ð2:22Þ

The parameter λnon−loc1 can be determined from matching
to the absorption cross section. For instance, the EFT

absorption cross section in the sector s ¼ l is given by
[44] (see Appendix F for a derivation in our unit system)

σðl¼sÞ
abs;EFTðωÞ ¼ 2sl!ω2srsλnon−loc1 js¼l: ð2:23Þ

Comparing this with the BH perturbation theory result in
general relativity [54,55],

σðl¼sÞ
abs;GRðωÞ ¼

8πðlþ sÞ!2s
ð2lþ 1Þ!!ðð2l − 1Þ!!Þ222lþ1

r2sðrsωÞ2l;

ð2:24Þ

we obtain the following dissipation number:

λnon−loc1 js¼l ¼ 8πðlþ sÞ!
ð2lþ 1Þ!!ðð2l − 1Þ!!Þ222lþ1l!

r2lþ1
s :

ð2:25Þ

Alternatively, the dissipation number can be read off
from the one-point function of the external field computed
within the Schwinger-Keldysh formalism. To that end, we
compute the in-in effective action Γin−in

eff defined through

expðiΓin−in
eff ðx1; F1; x2; F1ÞÞ

¼
Z

DX1DX2eiS½X1;x1;F1�−iS½X2;x2;F2�; ð2:26Þ

where x1 and x2 are the worldline coordinates and the
subscripts 1,2 denote forward and backward indices in the
closed time path (CTP) (we follow the notation of [53]).
The path integral here is done over two copies of the X
field. All fields satisfy the boundary condition X1 ¼ X2,
F1 ¼ F2, and x1 ¼ x2 ¼ x0 at the final time slice t ¼ þ∞
and the vacuum boundary condition at the initial time slice
t ¼ −∞. We also use our freedom to choose x0 and place
the BH at the origin. It is convenient to work in the Keldysh
representation [48],

X− ≡ X1 − X2; Xþ ≡ 1

2
ðX1 þ X2Þ;

F− ≡ F1 − F2; Fþ ≡ 1

2
ðF1 þ F2Þ;

x− ≡ x1 − x2; xþ ≡ 1

2
ðx1 þ x2Þ: ð2:27Þ

The 2 × 2 Green function of each field in F ¼ ðhμν; Aμ;φÞ
is given by

GAB ¼
�

0 −iGadv

−iGret
1
2
GH

�
; ð2:28Þ

where A;B¼�, and Gadv, GH are the advanced and
Hadamard two-point functions, respectively. The Feynman

5More generally, all the terms involving an odd number of
derivatives are actually total derivatives and cannot be inserted
into the local Lagrangian.
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rules in the in-in formalism are very similar to those of the
in-out formalism, but with contractions made over all closed
time path indices A, B with the “effective metric”

cAB ¼ cAB ¼
�
0 1

1 0

�
: ð2:29Þ

Now we can write down the leading order interaction term in
the in-in action,

Γin−in
int ðx�; F�Þ ¼

i
2

Z
dτdτ0hQA

LðτÞQL0Bðτ0ÞiEL
AðτÞEL0Bðτ0Þ:

ð2:30Þ

Now let us focus on the scalar field case, F ¼ φ. To
account for the external source component φ̄ðx; tÞ, we
choose φ̄1 ¼ φ̄2 ¼ φ̄ so that φ̄− ¼ 0, φ̄þ ¼ φ̄. It is now
straightforward to compute the one-point function,

hδφðx; tÞiin−in ¼
Z

DδφþDδφ−

�
δφþðx; tÞeiΓin−in

int eiS½δφ1�−iS½δφ2�
�

≈ −
Z

dt1dt01hQAðt1ÞQBðt01Þi∂hLihδφþðx; tÞδφAðx0; t1Þi∂hLiφ̄Bðt01Þ

¼
Z

dt1dt01hQðt1ÞQðt01Þiret∂hLihδφðx; tÞδφðx0; t1Þiret∂hLiφ̄ðt01Þ: ð2:31Þ

Let us compute now the dissipative contribution to the one-point function generated by the time-dependent generalization of
the profile (2.20),

φ̄ ¼ e−iωtEi1���ilx
i1 � � � xil : ð2:32Þ

We insert this into Eq. (2.31) and use the static (instantaneous) propagator for δφ, which is sufficient to obtain the response
at OðωÞ. This calculation is almost identical to the above Love number calculation, and it can be represented by the
following Feynman diagram:

ð2:33Þ

where we showed results in time-domain Fourier space.
For future convenience, we have also redefined the coef-
ficient λnon−loc1 as

λlðωÞ ¼ l!λnon−loc1 : ð2:34Þ

From (2.33), we explicitly see that the dissipation effect
corresponds to the imaginary part of the one-point function
of the external fields. The calculations for spin-1 and spin-2
perturbations are identical to the scalar field case, and the
Feynman rules are given in Appendix A. We will perform
an explicit matching to the UV theory in Sec. VI.

III. PN CORRECTIONS TO EXTERNAL
FIELDS: GENERALITIES

In the previous section we have introduced the BH
response to external probes. If the external field profile has
an asymptotic behavior ∝ rl at spatial infinity, the response
function would generate a correction to the field profile

scaling as ∼r−l−1. These corrections may be degenerate
with the 2lþ 1PN corrections to the source due to
gravitational nonlinearities. Calculation of these correc-
tions may be quite laborious given that GR is an effective
theory with an infinite number of interaction vertices. In
this section we show that this calculation is still possible
thanks to a particular structure of the worldline EFT.
First, we introduce power counting rules and single out

the relevant type of diagrams producing PN corrections.
Second, we show that every such PN diagram can be
presented as a “ladder” diagram built out of basic building
blocks, which we call “pyramids.” This decomposition
structure naturally leads to a recurrence relation between
ladder diagrams of different PN orders. In passing, we
introduce an off-shell amplitude approach that allows us to
estimate the momentum dependence of each PN diagram,
which will be important for their future evaluation.
The discussion of this section is quite general, so we do

not specify any gauge in GR calculations at the moment.
For simplicity we focus on the case of the scalar test field
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profile here, although all results can be carried over to a
general spin-s case. We do that explicitly in the next section.

A. Power counting

The relevant small parameter in our discussion is the PN
expansion parameter m=r ≪ 1. The point-particle mass m
is present only in the worldline point-particle action, so if
we insert Nm point masses in our wordline we expect that it
should modulate the static field profile by a factor ðm=rÞNm.
We assume that the vacuum scalar field profile, i.e., in the
absence of point masses and graviton, is simply equal to
φ̄ðxÞ ∝ rl. Then we are interested in diagrams that produce
the following corrections:

ð3:1Þ

where the blob diagram inside is made of various GR
vertices connected by propagators in the static limit.
The first relevant observation is that the scaling above is

valid for any type of the blob diagram inside (3.1), provided
that there are no quantum graviton loops. These loops are
irrelevant in classical GR calculations that we do here and
hence can be ignored.6 In general, the number of bulk
quantum loops LBulk is given by

LBulk ¼ Ph þ Pδφ − V þ 1; ð3:2Þ

where Ph is the number of corresponding bulk graviton
propagators, Pδφ is the number of δφ propagators, and V is
the number of bulk vertices. Let us see now that LBulk ¼ 0
ensures that the scaling (3.1) is always correct. Each
propagator scales as 1=r. Each bulk vertex scales as r since
in gravity we only have the derivative couplings producing
the

R
d3x∂∂ contribution. Now we can compute the total

correction to the one-point function δφðxÞ, from a diagram
with Nm worldline point mass insertions, V vertices, Ph
graviton propagators, and Pδφ scalar propagators,

Ph þ Pδφ − V þ ðNm þ 1Þ ¼ LBulk þ Nm ¼ Nm; ð3:3Þ

where in the last equality above we used LBulk ¼ 0.

Two comments are in order here. First, the power
counting above does not capture logarithmic corrections,
which can give rise to the renormalization group (RG) flow
of Love numbers. In this sense it is appropriate to call it a
“naive power counting.” Second, this power counting is
gauge invariant, as it is based on the requirement that there
are no quantum loops, which is clearly a gauge-indepen-
dent statement.

B. EFT diagrammatic structure

Let us discuss now the general form of the EFTworldline
diagrams. We first show that each diagram has a typical
“ladder” structure made of “pyramids.” These pyramid
graphs are similar to the one-particle irreducible (1PI)
diagrams because they cannot be reduced by cutting an
external test field line. The 1PI diagrams are the simplest
building blocks in our expansion. Any complicated “reduc-
ible” worldline graph can be presented as a product of these
“1PI” diagrams.
It is also convenient to discuss diagrams assuming that

the worldline is “amputated.” In this case each PN EFT
diagram can be thought of as an off-shell scattering
amplitude.

1. Pyramids and ladders

The basic building block in our diagrammatic expansion
is a diagram that corresponds to an off-shell scattering
process between a scalar and a gravitationally dressed
worldline,

ð3:4Þ

The above dots denote any number of graviton propagators
that can be inside the diagram.
We call this diagram a “pyramid” because characteristic

diagrams of this type have a pyramid shape. In what follows
we use the term “connecting point” for the interaction vertex
between φφ and bulk gravitons. We denote it with a black
dot. Since we do not have quantum loops and the external
source field cannot become virtual, the only diagrammatic
structure compatible with bulk Feynman rules is the one
where different pyramid graphs are connected to each
other by scalar leg links between the connecting points.
Such graphs are called “uncrossed ladder diagrams.”7

6Note that in principle we can use the worldline EFT for
quantum calculations as well.

7The crossed ladder diagrams are not possible in the static
limit.
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Thus, a general PN diagram can be represented as a ladder
graph made of pyramids,

ð3:5Þ

Physically, this ladder structure has the interpretation that the
gravitational nonlinear corrections to the source are gen-
erated by multiple scatterings between the off-shell scalars
and gravitationally dressed point masses. As we will show
shortly, the repetition of the same pyramid diagrams in a
more complicated graph indicates that there should be a
diagrammatic recurrence relation between corrections of
different PN order.
Now, let us consider the pyramid diagram in detail.

Starting from a single connecting point, diagrams connect-
ing a scalar with the worldline have the following typical
pyramid structure:

ð3:6Þ

2. Power-law divergences

An important technical point is the presence of power-
law divergences in our calculations. These divergences are
unphysical and can be removed by local counterterms. The
power-law divergences should be contrasted with logarith-
mic singularities, which have consequences on large scales
and capture the physical effect of short modes that we have
integrated out in the EFT.
Let us first discuss the mass renormalization [37].

Naively, there are infinite many diagrams renormalizing
the point mass that we need to compute even in the static
case. However, we will see now that it is sufficient to ignore
these diagrams and just replace the bare point-particle mass
m with the physical renormalized BH mass M in all final
answers.
The renormalized mass M is defined as the dressed

0-point function on the worldline,

ð3:7Þ

Physically, this renormalized mass M can be viewed as the
BH asymptotic ADM mass measured at the spatial infinity.
Importantly, all loop corrections above lead to power-law
divergences, and hence the presence of these diagrams does
not change our power counting. These divergences can be
absorbed into local counterterms. Thus, for all practical
applications we can just first perform all calculations with

the point-particle bare mass m and then replace it with the
physical renormalized mass M.
The second problematic aspect is the field strength

renormalization of h. For example, if we assume a cutoff
regularization, the following diagram would be linearly
divergent:

ð3:8Þ

In principle, the divergent part can be absorbed into the
renormalized field strength h. We need to keep the physical
finite part though as it produces a nonvanishing contribu-
tion to the amplitude.
An alternative option is to work in dimensional regu-

larization, where all power-law divergences are automati-
cally set to zero. This means, in particular, that there would
be no difference between M and m. This is the approach
that we will employ in what follows.

3. Off-shell amplitudes

It is useful to focus on a blob diagram inside the pyramid
and “amputate” the worldline and external scalar legs. This
reduced blob diagram can be treated now as an off-shell
amplitude. Let us estimate how this amplitude scales with
external momentum in Fourier space. To that end we
introduce NPyr

m , PPyr
h , NPyr

h , and VPyr to denote the number
of worldline vertices, bulk graviton propagators, external
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graviton legs, and the bulk vertices in a pyramid diagram,
respectively.
The point mass contribution is a delta function in

position space. Hence, each point mass leg scales as jkj3,
giving a total momentum jkj3NPyr

m . Every graviton vertex
∼
R
d3x∂∂ has two derivatives; i.e., it scales as jkj2, giving a

total of jkj2VPyr
. All together, this gives a total number of

momenta in the numerator 3NPyr
m þ 2VPyr. The momenta

in the denominator come from static propagators ∼k−2.
Then the cumulative number of the momenta in the
amplitude denominator from graviton propagators connect-
ing point particles, scalar fields, and bulk vertices is
2ðNPyr

m þ NPyr
h þ PPyr

h Þ. Note that the momenta flowing
into our diagram from the connecting point must satisfy
momentum conservation. The number of quantum loops in
a pyramid diagram satisfies

LPyr ¼ PPyr
h − VPyr þ NPyr

h ≡ 0: ð3:9Þ

This yields the total momentum scaling of an off-shell blob
diagram

D ¼ NPyr
m − 3: ð3:10Þ

Let us study now off-shell scattering amplitudes shown in
Eq. (3.6).Recall that they serve as buildingblocks for ourEFT
one-point function calculation. From the symmetry perspec-
tive, this amplitude should be SOð3Þ invariants. Suppose that
the two external φ fields have momenta k1 and k2. Then the
amplitude of a generic pyramid diagram can only be a

function of jk1 þ k2j and k1 · k2. By using the momentum
counting formulaD ¼ NPyr

m − 3 and taking into account two
spatial derivatives acting on external φ legs, we get the
following estimate for the total amplitude:

ð3:11Þ

C. EFT diagrammatic recurrence relation

As we discussed in Sec. III B, the ladder structure hints
on a relationship between EFT PN diagrams of various
orders. In other words, it suggests that a higher order PN
correction can be built from the lower order PN diagrams.
Imagine that we want to compute the nPN correction to
the scalar field profile δφn. It can be built from
ðn − 1ÞPN; ðn − 2ÞPN;…, by combining them with appro-
priate off-shell scattering amplitudes.
Suppose that we have a diagram made of two ladders.

Each ladder has j1 and j2 mass insertions, respectively.
This diagram can be represented as a product of two
diagrammatic elements. The first one is a single ladder
corresponding to a one-point function correction produced
by j1 mass insertions. The second element is an off-shell
amplitude at j2PN order. We have

ð3:12Þ

It is convenient to use the inverse Laplacian ∂
−2 and the integration variable k0 defined as k ¼ k0 þ k1. Then the above

integral can be rewritten as
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ð3:13Þ

Based on this factorization property, all higher order PN corrections can be constructed from lower order PN diagrams.
Suppose that we want to compute an nPN correction δφnðxÞ. It can be built from a sum of all ðn − jÞPN corrections
δφn−jðxÞ (j ¼ 0; 1;…; n) by combining them with the corresponding off-shell amplitudes

ð3:14Þ

where inside the large brackets we sum over all possible off-shell amplitudes with j worldline point mass vertices.
Importantly, when the operator ∂−2 hits corrections scaling as r−l−3, it gives rise to logarithmic divergences,

∂
−2ðrl × r−2l−3Ylmðθ;ϕÞÞ ∼ rl × r−2l−1 ln ðrμÞYlmðθ;ϕÞ; ð3:15Þ

where μ is the renormalization (momentum) scale (sliding scale). As we can see, the logarithmic divergences are generically
present for each 2lþ 1 PN order graph in an arbitrary gauge. But we should notice that only the sum over all graphs is
physical, which we denote by c2lþ1:

ð3:16Þ
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Physically, if c2lþ1 ≠ 0, the Love numbers will exhibit a running behavior. Indeed, the total term of order r−l−1 in the test
field profile is given by

ð3:17Þ

Since the physical one-point function should not depend
on the renormalization scale μ, the Love number needs to
flow with energy. The corresponding classical RG flow is
given by

μ
d
dμ

λlðμÞ ¼ −c2lþ1m2lþ1
4π

ð2l − 1Þ!! : ð3:18Þ

We see that the condition of the absence of RG running for
Love numbers is c2lþ1 ¼ 0. To determine c2lþ1, we have
two ways. The first one is by summing over all the related
EFT diagrams, and the second one is by matching to the UV
theory to see whether there are any logarithmic terms. In the
following sections, we will first give some specific examples
of the EFT diagrammatic computations of the spin-1 dipole,
and general spin-0 and spin-2 electric perturbations. These
calculations indeed imply a vanishing c2lþ1. After that we
will match the EFT and UV calculations, which confirm that
the Love numbers indeed vanish.

IV. PN CORRECTIONS TO EXTERNAL FIELDS:
EXPLICIT CALCULATIONS

Let us demonstrate the general arguments given above
on a concrete example. In this section we will explicitly
compute ð2lþ 1ÞPN corrections to the spin-0,1,2 test field
profiles. Our main result will be that the coefficient c2lþ1

vanishes for all types of perturbations. This means that the
ð2lþ 1ÞPN corrections to the source terms vanish iden-
tically for Schwarzschild black holes, and hence Love
numbers do not run. We prove that for a general orbital
number l in the case of spin-0 and spin-2 fields, and for the
dipolar sector (l ¼ 1) in the Maxwell field case.

A. Consistent gauge

As a first step, we choose a convenient coordinate
system. Since we are interested in the nonrelativistic
regime, it is customary to use the 3þ 1 metric decom-
position based on the Kaluza-Klein reduction formula [16]

ds2 ¼ e2ϕðdt −AidxiÞ2 − e−2ϕγijdxidxj; ð4:1Þ
where ϕ;Ai; γij are the Newtonian gravitational potential
(dilaton field), the gravitomagnetic vector, and three-
dimensional (3D) metric fields, respectively. They satisfy
γijγik ≡ δik and Ai ≡ γijAj. The background field decom-
position in this setup can be written as

γij ≡ δij þ σij; ð4:2Þ
where σij is the fluctuating part.
As a second step, we fix the gauge. This is an important

aspect since all EFTand GR calculations, in practice, have to
be carried out in a specific gauge (i.e., coordinate system).
Ideally, one would want to match manifestly gauge-
independent results, such as cross sections. In principle,
one could also directly match one-point functions provided
that they are computed in similar gauges. We formalize this
statement by defining a notion of a “consistent gauge.” We
call an EFT gauge consistent with the underlying GR back-
ground metric if the EFT calculation of the off-shell graviton
one-point function reproduces the background metric pertur-
batively. The use of a consistent gauge ensures a correct
matching between IR (EFT) and UV (GR) observables.
In practice, we choose a gauge that matches isotropic

Schwarzschild coordinates. Recall that in these coordinates
the BH solution takes the following form:

ds2 ¼
�
1 −M=2r
1þM=2r

�
2

dt2 − ð1þM=2rÞ4ðdr2 þ r2dΩ2Þ;

ð4:3Þ
where M is the BH mass. From the EFT point of view,
a gauge consistent with Eq. (4.3) can be fixed by the
following requirements:

σij ¼ σδij; Ai ¼ 0: ð4:4Þ
In the static case, it is sufficient to consider off-shell
potential modes for both external fields and GR degrees
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of freedom. There are no propagating degrees of freedom.
Now let us expand the action in field perturbations. We
have the following:

(i) Point-particle term:

Spp¼
Z

dt

�
−m−mϕ−

mϕ2

2
− �� �−mϕn

n!

�
: ð4:5Þ

(ii) Bulk graviton term: the EH action in the static limit
takes the form

SEH ¼ −
1

16π

Z
dtd3x

ffiffiffi
γ

p �
−R½γ� þ 2γij∂iϕ∂jϕ

−
1

4
e4ϕγikγjlF ijF kl

�
; ð4:6Þ

where R½γ� is the 3D Ricci scalar of γij and
F ij ¼ ∂iAj − ∂jAi. Perturbations in the isotropic
gauge take the form

Sð2ÞEH ¼ 1

8π

Z
dtd3x

�
−∂iϕ∂iϕþ 1

4
∂iσ∂

iσ

�
;

Sð3ÞEH ¼ 1

8π

Z
dtd3x

�
−
3

8
σ∂iσ∂

iσ −
1

2
σ∂iϕ∂

iϕ

�
;

� � � � � � ð4:7Þ

while the two-point correlation functions of ϕ and σ
are given by

ð4:8Þ

ð4:9Þ

Feynman rules for the above interactions are presented in Appendix A. For convenience, some of them are presented below:

ð4:10Þ

Now we can explicitly check that we reproduce the Schwarzschild metric in isotropic coordinates using our isotropic gauge;
see Appexdix C for more detail. Focusing on corrections up to Oððm=rÞ5Þ, we get

ð4:11Þ

ð4:12Þ
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Plugging these expressions into Eq. (4.1), we obtain

g00¼1−2

�
m
r

�
þ2

�
m
r

�
2

−
3

2

�
m
r

�
3

þ
�
m
r

�
4

þO

�
m
r

�
5

;

ð4:13Þ

gij ¼
�
1þ 2

�
m
r

�
þ 3

2

�
m
r

�
2

þ 1

2

�
m
r

�
3

þ 1

16

�
m
r

�
4

þO

�
m
r

�
5
�
δij: ð4:14Þ

After identification m → M, we see that this metric
coincides with the Schwarzschild metric in isotropic
gauge (4.3) expanded up toOððm=rÞ5Þ. Thus, our isotropic
KK gauge choices (4.1) and (4.4) are indeed consistent with
the Schwarzschild metric.
In addition, let us point out that the commonly used de

Donder gauge in the EFT is consistent with the harmonic
Schwarzschild coordinates [57,58]

ds2 ¼ r −M
rþM

dt2 −
rþM
r −M

dr2 − ðrþMÞ2dΩ2: ð4:15Þ

B. Spin-0=2

We analyze now the spin-0 and the spin-2 electric-type
perturbations. These two types of perturbations share the
same structure in the isotropic gauge, and hence it is natural
to analyze them together. The bulk action for perturbations
of a test scalar field Φ is given by

SΦ ¼ −
1

2

Z
dtd3x

ffiffiffi
γ

p
γij∂iΦ∂jΦ: ð4:16Þ

The first important observation is thatΦ only couples to the
σ in the isotropic gauge, which significantly simplifies our
computations.
As far as the static spin-2 electric perturbations are

concerned, we perform the following decomposition of the
dilaton:

ϕ ¼ ϕBH þ δϕ

2
ffiffiffi
2

p
Mpl

; ð4:17Þ

where the Planck mass Mpl ≡ 1=
ffiffiffiffiffiffiffiffi
32π

p
in our unit system

with G ¼ 1. Physically, δϕ is the perturbation of the

Newtonian potential caused by an external metric fluc-
tuation, while ϕBH is the background part that matches the
Schwarzschild metric. Plugging this into the static Einstein-
Hilbert action (4.6), we obtain the following effective
action for δϕ:

Sδϕ ¼ −
1

2

Z
dtd3x

ffiffiffi
γ

p ðγij∂iδϕ∂jδϕÞ; ð4:18Þ

which is the same as the scalar field action (4.16).
Now let us move on to the finite-size effects. In the spin-

2 case they are controlled by the electric tidal field related
to the Weyl tensor. In the Newtonian limit, sufficient for the
extraction of the finite-size effects from the worldline
action, it is straightforward to get

Eij ≡ 2
ffiffiffi
2

p
MplC0i0j ¼ −

�
∂i∂j −

1

3
δij∂

2

�
δϕ; ð4:19Þ

where C0i0j is the parity even component of the Weyl
tensor.
Plugging this into (2.7) we find an expression for the

static worldline action identical to that of the spin-0 case,

SLoves¼0 ¼ 1

2l!

Z
dtλs¼0

l ∂hi1���iliδϕ∂
hi1���iliδϕ;

cf: SLoves¼2 ¼ 1

2l!

Z
dtλs¼0

l ∂hi1���iliΦ∂
hi1���iliΦ: ð4:20Þ

Since the spin-0 and the electric spin-2 sectors are
described by identical actions, we focus on the spin-0 case
in what follows. Expanding in the number of fields and
splitting each field componentΦ into external source Φ̄ and
response δΦ, we obtain, at quartic order,

Sð2ÞΦ ¼
Z

dtd3x

�
−
1

2
ð∂iδΦ∂

iδΦÞ−ð∂iΦ̄∂
iδΦÞ

�
;

Sð3ÞΦ ¼
Z

dtd3x

�
−
1

4
σð∂iδΦ∂

iδΦÞ−1

2
σð∂iΦ̄∂

iδΦÞ
�
;

Sð4ÞΦ ¼
Z

dtd3x

�
1

16
σ2∂iδΦ∂

iδΦþ1

8
σ2∂iΦ̄∂

iδΦ
�
: ð4:21Þ

The corresponding two-point function takes the form

ð4:22Þ
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Feynman rules for propagators and the above interaction vertices are given in Appendix A. The most important interaction
vertices are

ð4:23Þ

C. Nonrenormalization of Love numbers

Crucially, one may notice that the absence of Love
numbers’ running follows from the structure of metric
perturbations in the isotropic Kaluza-Klein gauge. Indeed,
in this gauge the point mass m couples to one ϕ, at leading
order.8 The Einstein-Hilbert action (4.6), however, contains
two ϕ’s; i.e., one can only have interactions such as ϕ2σ,
ϕ2σ2 (we ignore derivatives here as they are irrelevant for
our discussion). This means that it is only possible to draw
a classical worldline diagram with an even number of ϕ’s
and hence an even number of point masses. Therefore, it is
impossible to construct a diagram producing a ð2lþ 1ÞPN
order correction to the one-point function, as this diagram
obviously requires an odd number of point mass insertions
on the worldline,9 2lþ 1. Hence, c2lþ1 ¼ 0. This means
that Love numbers do not get renormalized by graviton
corrections. Recalling Eq. (3.18), this also implies that
Love numbers do not run. Since Love numbers are defined
as gauge-invariant EFT Wilson coefficients, the absence of
their logarithmic running is a gauge-independent statement.
Note that the absence of logarithmic corrections does not

follow from EFT power counting rules. Indeed, as we have
mentioned earlier, in an arbitrary gauge one generally
obtains nontrivial ð2lþ 1ÞPN corrections from individual
diagrams to the one-point function. Every such diagram
would naively imply a logarithmic running. However, when
summed together, these logs must cancel identically. From
the EFT point of view, this cancellation is fine-tuning,
which is reminiscent of the apparent cancellation of loop
corrections to the Higgs mass in the usual QFT.
Note that logarithmic contributions to Love numbers, if

present, can be found in both the UV (full GR) and the IR
(EFT) calculations; see, e.g., [16]. In Ref. [20] the absence
of logarithmic running in four dimensions was interpreted
as a constraint imposed by the Love symmetry of GR,
which is a UV symmetry from the EFT point of view. Since
the EFT must be a consistent description of the UV theory,

the logs should be absent in the EFT as well. In an arbitrary
gauge this appears as a miraculous cancellation between
different Feynman diagrams. The choice of the isotropic
gauge makes this cancellation manifest for spin-0 and spin-
2 fields, but does not explain its origin. In this sense we
cannot claim that the nonrenormalization of Love numbers
is a consequence of some hidden structure of the GR action
that is apparent in the isotropic gauge. As an explicit
example supporting this statement, we will compute the
running of the spin-1 Love number corrections shortly. We
will see that in this case the isotropic gauge itself does not
forbid Love numbers to run; i.e., individual ð2lþ 1ÞPN
diagrams will contain logs as expected on general grounds.
However, these contributions will sum to zero, implying the
absence of running as enforced by the Love symmetry.

1. Reconstruction of the full one-point function

Thanks to significant simplifications that take place in the
isotropic gauge,wecan actually computePNcorrections to the
test field profiles to all PN orders. Let us show this explicitly.
The first important observation is that all pyramid

diagrams with more than two worldline point masses are
unphysical and hence must exactly cancel with each other.
Indeed, each pyramid diagram with Nm mass insertions

scales as jk1 þ k2jN
Pyr
m −3ðk1 · k2Þ (3.11). Physical ampli-

tudes should peak at the momentum conserving configu-
rations k1 þ k2 ¼ 0 because the momenta of external legs
do not change drastically in a soft scattering process
characterized by jkjm ≪ 1. In contrast to this physical
expectation, the amplitudes do not peak within the momen-
tum conserving region if NPyr

m ≥ 4. For these diagrams they
peak when the momentum transfer is large, instead. Since
this behavior is clearly unphysical, the corresponding
amplitudes must cancel with each other at any given order
in m=r. To illustrate this argument explicitly, we provide a
concrete example for the NPyr

m ¼ 4 case. There are four
possible diagrams in total:

ð4:24Þ

8This order will be sufficient as diagrams with higher order
interactions generate quantum loops and hence vanish in the
classical limit.

9An equivalent argument was used in [16,41,42], which argue
for the absence of logs by clashing the ϕ → −ϕ symmetry of the
Einstein-Hilbert action in the isotropic Kaluza-Klein gauge and
the ϕ → −ϕ to m → −m symmetry of the leading order point-
particle interaction.
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ð4:25Þ

ð4:26Þ

ð4:27Þ

Obviously, these diagrams cancel when summed over. One can explicitly check that the same is true for any N1PI
m > 4.

We conclude that only the amplitudes withN1PI
m ¼ 2 have the expected physical behavior. These amplitudes have poles in

jk1 þ k2j; i.e., they indeed peak at the momentum conserving region. This means that, in particular, the only diagram at
leading order that is relevant for the pyramid structure is

ð4:28Þ

Knowing this diagram, we can compute the scalar field profile at all PN orders. In analogy with Eq. (3.12), we first establish
the relation 4PN and 2PN corrections,

ð4:29Þ

This expression can readily be generalized to an arbitrary ð2nÞPN order,
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ð4:30Þ

Now let us assume an ansatz

δΦ2nðxÞ ¼ Ei1���ilx
i1 � � � xil × c2n

�
m
2r

�
2n
: ð4:31Þ

Then from Eq. (4.30) we obtain

δΦ2ðnþ1ÞðxÞ ¼ Ei1���ilx
i1 � � � xil ×

� ðn − lÞð2nþ 1Þ
ðnþ 1Þð2nþ 1 − 2lÞ c2n

�
×

�
m
2r

�
2ðnþ1Þ

; ð4:32Þ

implying the following recurrence relation for the PN coefficients c2n:

c2ðnþ1Þ ¼
ðn − lÞð2nþ 1Þ

ðnþ 1Þð2nþ 1 − 2lÞ c2n: ð4:33Þ

Note that the recurrence series truncates at n ¼ l, which means that the static one-point function (in the absence of finite-
size effects) is a polynomial in r. The truncation of the EFT solution can be seen as fine-tuning. Indeed, this means that
diagrams of ðlþ 1ÞPN order and higher all cancel identically. Equation (4.33) allows us to “resum” PN corrections to all
orders and obtain the full GR solution for the external field with a source boundary condition at spatial infinity,

ΦðxÞ ¼ Φ̄ðxÞ þ
X∞
n¼1

δΦ2nðxÞ

¼ Ei1���ilx
i1 � � � xil

�
1þ c2

�
m
2r

�
2

þ c4

�
m
2r

�
4

þ � � � þ c2n

�
m
2r

�
2n
þ � � �

�

¼
Xl
m¼−l

ElmYlmðθ;ϕÞrl
�
1þ c2

�
m
2r

�
2

þ c4

�
m
2r

�
4

þ � � � þ c2n

�
m
2r

�
2n
þ � � �

�
; ð4:34Þ

where the coefficients c2n satisfy Eq. (4.33). One can easily
identify this series with the Gauss hypergeometric function,
giving

ΦðxÞ ¼
Xl
m¼−l

ElmYlmðθ;ϕÞrl2F1

�
1

2
;−l;

1

2
− l;

�
m
2r

�
2
�
:

ð4:35Þ

It is straightforward to write down an equation that is solved
by this function,

R00
lðrÞ þ

�
2

2r−m
þ 2

mþ 2r

�
R0
lðrÞ−

lðlþ 1Þ
r2

RlðrÞ ¼ 0:

ð4:36Þ

Upon identification m ¼ M we see that this equation
exactly coincides with the radial part of the Klein-
Gordon equation in Schwarzschild isotropic coordinates;
see Appendix E for more detail. The fact that we could
completely reconstruct the Klein-Gordon equation even
when we have ignored the finite-size effects suggests that
Love numbers must be zero.

2. Toward reconstructing the spin-2 Teukolsky equation

As an additional consistency check, let us see if we can
reproduce the spin-2 Teukolsky master equation. To that
end we need to convert our metric perturbations into the
Newman-Penrose Weyl scalar. In the isotropic coordinates,
the background Schwarzschild metric is given by (4.3). The
Kinnersley tetrads read [71]

REVISITING THE MATCHING OF BLACK HOLE TIDAL … PHYS. REV. D 107, 084030 (2023)

084030-19



lμ ¼
�ðM þ 2rÞ2
ðM − 2rÞ2 ;−

4r2

M2 − 4r2
; 0; 0

�
;

nμ ¼
�
1

2
;
2ðM − 2rÞr2
ðM þ 2rÞ3 ; 0; 0

�
;

mμ ¼
�
0; 0;

2
ffiffiffi
2

p
r

ðM þ 2rÞ2 ;
i

sin θ
2

ffiffiffi
2

p
r

ðM þ 2rÞ2
�
;

m̄μ ¼
�
0; 0;

2
ffiffiffi
2

p
r

ðM þ 2rÞ2 ;−
i

sin θ
2

ffiffiffi
2

p
r

ðM þ 2rÞ2
�
: ð4:37Þ

They satisfy lμnμ ¼ 1; mμm̄μ ¼ −1. The Weyl scalar ψ0 is
defined as [72,73]

ψ0 ¼ −Cμναβlμmνlαmβ: ð4:38Þ

Using the Kaluza-Klein decomposition Eq. (4.1), let us
choose σ ¼ σBH, ϕ ¼ ϕBH þ δϕ=ð2 ffiffiffi

2
p

MplÞwhere σBH and
ϕBH are determined by the background Schwarzschild
metric; see Appendix C. Let us obtain now a linear
perturbation equation for ψ0. In the Newtonian limit, the
perturbed Weyl scalar ψ0 is sourced by the Newtonian
potential δϕ. Making use of the usual spin raising operator
ðs (provided in Appendix B 1), we get the following
expression in linear theory:

ψ0 ¼ 8
ffiffiffi
2

p
Mpl

r2

ðM2 − 4r2Þ2 ð
1ð0δϕ

≡X∞
l¼2

Xl
m¼−l

RlðrÞ2Ylmðθ;ϕÞ; ð4:39Þ

where 2Ylmðθ;ϕÞ is the spin-2 spherical harmonics and
RlðrÞ is the radial part of ψ0. Recall now that δϕ has the
same description as a test scalar in the PN EFT. Hence, it
also satisfies the Klein-Gordon equation (4.36). Acting on
this equation with the spin raising operators and substitut-
ing Rl ¼ Rl

r2

ðM2−4r2Þ2 as dictated by Eq. (4.39), we obtain

R00
lðrÞ þ

�
−

10

M − 2r
−
4

r
þ 10

M þ 2r

�

R0
lðrÞ −

−6þ lþ l2

r2
RlðrÞ ¼ 0: ð4:40Þ

We see that this equation reproduces the Teukolsky
equation only up to subleading terms OðRlM=rÞ. This
is because the full relativistic Weyl scalar ψ0 is not
completely determined by the Newtonian potential ϕ. It
also depends on the metric perturbations δγij and the
gravitomagnetic field δAi. We have not included these
perturbations because they do not affect the extraction of
Love numbers from the one-point function matching.
Indeed, for this purpose it is sufficient to use only ϕ. In
principle, we could also perform matching at the level of
the full Weyl scalar. In this case we would need to include
fluctuations of the δγij and δAi components as well.

D. Spin-1 electric dipole

Let us now focus on spin-1 perturbations. The action for
a Maxwell field in a curved spacetime is given by

SEM¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
gμαgνβð∂μAν−∂νAμÞð∂αAβ−∂βAαÞ

�
;

ð4:41Þ

where Aμ is the vector potential. The electric-magnetic
duality of the Schwarzschild spacetime dictates that the
spin-1 electric and magnetic Love numbers coincide.
Hence, it will be sufficient to consider only the electric
field, which is fully determined by the Coulomb potential,
Ei ¼ −∂iA0. Now we expand out the Maxwell action
around the Minkowski spacetime using the isotropic gauge
for gravitational perturbations, and separate the Coulomb
potential into a source part Ā0 and the response part A0. We
get the following interaction terms up to the fourth order in
the number of fields:

Sð2ÞA0
¼
Z

dtd3x

�
1

2
ð∂iA0∂

iA0Þþð∂iĀ0∂
iA0Þ

�
;

Sð3ÞA0
¼
Z

dtd3x

�
1

4
σð∂iA0∂

iA0Þþ
1

2
σð∂iĀ0∂

iA0Þ−ϕð∂iA0∂
iA0Þ−2ϕð∂iĀ0∂

iA0Þ
�
;

Sð4ÞA0
¼
Z

dtd3x

�
−

1

16
σ2ð∂iA0∂

iA0Þ−
1

8
σ2ð∂iĀ0∂

iA0Þþϕ2ð∂iA0∂
iA0Þþ2ϕ2ð∂iĀ0∂

iA0Þ−
1

2
ϕσð∂iA0∂

iA0Þ−ϕσð∂iĀ0∂
iA0Þ

�
:

ð4:42Þ

The static propagator reads

ð4:43Þ
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The Feynman rules for these vertices are included in
Appendix A. As shown in Sec. II B, the effective action
for the spin-1 electric response has the form

SLoves¼1 ¼ 1

2l!

Z
dτλs¼1

l ð∂hi1���il−1EiliÞð∂hi1���il−1EiliÞ

¼ 1

2l!

Z
dτλs¼1

l ð∂hi1���iliA0Þð∂hi1���iliA0Þ; ð4:44Þ

where in the last equation we used Ei ¼ −∂iA0. We see that
the finite-size action is determined by A0 and it has the same
complexity as the scalar field worldline action. The spin-1

case is, however, very different from the spin-0 and spin-2 in
what the A0 bulk action (4.42) contains all possible
interactions between A0 and the gravitational scalars ϕ; σ.
Because of this reason, the Maxwell action generates new
interaction terms at every new order in gravitational pertur-
bations. Thus, we could not find a systematic way to study
PN corrections to A0, and we restricted our analysis to the
dipole-type (l ¼ 1) external perturbations.
To determine c3 we need to compute all diagrams up to

3PN order. This calculation is laborious, but straightfor-
ward. We present it in detail in Appendix D. The final
result is

ð4:45Þ

This tells us that for the spin-1 electric dipole case c3 ¼ 0,
which means that the spin-1 dipole polarization coefficients
do not flow under RG [see Eq. (3.18)]. Just as in the spin-0
and spin-2 examples, the absence of logarithmic running is
fine-tuning from the worldline EFT perspective. Its origin
can be traced to the Love symmetry in the UV [22].
Note that in contrast to the spin-0=2 cases, the isotropic

gauge does not seem to be particularly useful for the spin-1
perturbations. As expected in the general case, here each
PN EFT diagram carries a logarithm, which all cancel when
all diagrams are summed together. We believe that there
should exist a gauge where the cancellation of PN correc-
tions to the spin-1 one-point functions is manifest to begin
with. Since there are no logs in the UV theory, in such a
gauge it should be possible to prove that c2lþ1 ¼ 0 for the
electromagnetic (EM) perturbations for general l. We leave
an explicit construction of this gauge for future work.

V. BLACK HOLE PERTURBATION THEORY

To determine the Love numbers we need to match the
full EFT calculation, including finite-size effects, to the UV
theory result. The UV theory for our problem is the black
hole linear perturbation theory. We will see now that one
can match the EFT and UV expressions without any need
for an analytic continuation. First, we will point out that the

EFT calculation of the PN corrections to the source term is
equivalent to constructing the solution with the Frobenius
method. Then we will obtain spin-0,1,2 solutions in BH
perturbation theory. Remarkably, these always coincide
with the EFT solutions that describe external sources with
PN corrections attached to them. Since the full solution is
reproduced by the PN corrections alone, without any finite-
size effects, the Love numbers must vanish identically.
Note that for the spin-1 and spin-2 perturbations we will

match directly the Coulomb potential and the dilaton field
profiles, respectively. These choices are gauge-dependent,
but the results of our matching are not, as our EFT
calculations are carried out in the gauges consistent with
the background geometry and the gauge choice of the UV
solution.

A. EFT versus the Frobenius method

The Frobenius method is a method to construct a power
series solution to a differential equation. We will see now
that this power series exactly maps onto the PN diagram-
matic method.
Let us start with the spin-0 case. For the spin-0 case, the

corresponding Teukolsky equation is covariantly written as

∇μ∇μΦðx; tÞ ¼ 0: ð5:1Þ
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Separating the variable as Φðx; tÞ ¼ P
lm RlðrÞYlme−iωt, we obtain the following equation for the radial function in the

static limit:

Rl
00ðrÞ þ

�
2

2r −M
þ 2

M þ 2r

�
R0
lðrÞ −

lðlþ 1Þ
r2

RlðrÞ ¼ 0; ð5:2Þ

which is exactly the same as the equation obtained by the “resummation” of the EFT diagrams; see Eq. (4.36) with bare
mass m replaced by BH mass M. The power series ansatz to solve (5.2) takes the form

RlðrÞ ¼ rl
�
1þ c1

�
M
2r

�
þ c2

�
M
2r

�
2

þ � � � þ cNm

�
M
2r

�
Nm þ � � �

�
: ð5:3Þ

Note that this ansatz has an ambiguity for Nm ≥ 2lþ 1, which corresponds to a freedom of adding a decaying solution
∼r−l−1 at r → ∞. We will see in the next section that the series actually truncates at Nm ¼ l. Plugging (5.3) into Eq. (5.2),
it is straightforward to find that recurrence relation

ðnþ 1Þð2nþ 1 − 2lÞc2ðnþ1Þ ¼ ð2nþ 1Þðn − lÞc2n; ð5:4Þ

which coincides with the EFT diagrammatic recurrence relation Eq. (4.33). This relation can be solved iteratively,

c1 ¼ c3 ¼ � � � ¼ c2l−1 ¼ 0;

c2 ¼
l

−1þ 2l
; c4 ¼

3ð−1þ lÞl
2ð−3þ 2lÞð−1þ 2lÞ ;…;

c2n ¼ ð−1Þn ð2n − 1Þ!!
2nn!

ð−nþ 1þ lÞ � � � ð−1þ lÞl ×
Γð1

2
− lÞ

Γð2nþ1
2

− lÞ ; n ≤ l: ð5:5Þ

Indeed, from the EFT diagrams we have

ð5:6Þ

where we took into account only the physical pyramid graphs. The argument would be the same for static spin-2 electric
perturbations captured by the dilaton field.
As far as the spin-1 perturbations are concerned, they satisfy the covariant Maxwell equation

∇μFμν ¼ 0; ð5:7Þ

where Fμν ¼ ∂μAν − ∂νAμ. In the static case, the equation for A0 and Ai decouples. Using A0ðx; tÞ ¼
P

lm RlðrÞYlme−iωt

and taking the static limit, we find

R00
lðrÞ þ

�
2

M − 2r
þ 6

M þ 2r

�
R0
lðrÞ −

lðlþ 1Þ
r2

RlðrÞ ¼ 0: ð5:8Þ
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Focusing on the dipole case, we can get the following
coefficients with the Frobenius method:

c1 ¼ −2; c2 ¼ 1; cn;n>2 ¼ 0; ð5:9Þ

which coincides with the explicit EFT diagrammatic
computation presented in Appendix D.
All in all, the upshot of this section is that the EFT

calculation of the PN corrections to the source has a one-to-
one mapping onto the Frobenius method of solving field
perturbations in the Schwarzschild background. The
Frobenius method builds a solution in terms of a power
series in m=r, attached to the growing source asymptotic
rl. In our case this solution happened to be a polynomial,
which is also regular at the BH horizon. By the uniqueness
theorem, another linearly independent solution is singular
at the horizon, and hence it does not contribute to the
physical profile. In other words, the Frobenius solution is
the full solution. The structure of this solution implies that
the PN corrections to Love numbers and Love numbers
vanish altogether.

B. UV calculation

1. Spin-1

We seek a solution of the Maxwell equation (5.8)
rewritten in a new variable z ¼ M=ð2rÞ,

Rl
00ðzÞ þ

�
1

1 − z
þ 3

1þ z

�
R0
lðzÞ −

lð1þ lÞ
z2

RlðzÞ ¼ 0:

ð5:10Þ

The above equation can be recast into the standard form of
the hypergeometric equation by redefining the field
RlðzÞ ¼ z−lð1 − zÞ2ulðzÞ and introducing x ¼ z2,

u00lðxÞ þ
�

3

−1þ x
þ 1 − 2l

2x

�
u0lðxÞ

þ
�
−
3ð−1þ lÞ
2ð−1þ xÞ þ

3ð−1þ lÞ
2x

�
ulðxÞ ¼ 0: ð5:11Þ

This equation has two linearly independent solutions

u1lðxÞ ¼ 2F1

�
3

2
; 1 − l;

1

2
− l; x

�
;

u2lðxÞ ¼ x
2lþ1
2 2F1

�
3

2
; 2þ l;

3

2
þ l; x

�
: ð5:12Þ

For physical values l ∈ N, only the first solution is regular
at the horizon x ¼ 1. The full solution then is a polynomial
of order l,

Rfull
l ðzÞ ¼ z−lð1 − zÞ22F1

�
3

2
; 1 − l;

1

2
− l; z2

�

¼ z−lð1 − zÞ2
Xl−1
n¼0

ð−1Þn
�
l − 1

n

� ð3
2
Þn

ð1
2
− lÞn

z2n:

ð5:13Þ

This tells us that there are no logarithmic corrections at
2lþ 1 PN order and the Love numbers vanish identically.
Indeed, matching the one-point functions in the EFT and
the full theory we get

c2lþ1 log ðrμÞ−m−2l−1 ð2l− 1Þ!!
4π

λs¼1
l ðμÞ≡ 0; ∀ r > 0:

ð5:14Þ

Since the renormalized Love number is a coupling constant
on the worldline, it could only depend on the renormaliza-
tion scale μ and does not depend on r. This implies that

c2lþ1 ¼ 0; λs¼1
l ðμÞ ¼ 0: ð5:15Þ

This confirms the computation shown in the specific
examples in Sec. IV D that the ð2lþ 1ÞPN order gravita-
tional nonlinear correction vanishes, and the Love number
has no RG running behavior. Thus, the vanishing of the
ð2lþ 1ÞPN term in the full theory tells us that the
gravitational nonlinear correction c2lþ1 and the Love
number λl vanish altogether.

2. Spin-0/2

The argument is similar for the spin-0 and spin-2
perturbations. Introducing RðzÞ ¼ z−luðzÞ and x ¼ z2,
we rewrite Eq. (5.2) as

u00ðxÞ þ
�

1

−1þ x
þ 1 − 2l

2x

�

u0ðxÞ þ
�

l
2 − 2x

þ l
2x

�
uðxÞ ¼ 0: ð5:16Þ

This equation admits two linearly independent solutions

u1ðxÞ ¼ 2F1

�
1

2
;−l;

1

2
− l; x

�
;

u2ðxÞ ¼ x
2lþ1
2 2F

�
1

2
; 1þ l;

3

2
þ l; x

�
: ð5:17Þ

For l ∈ N, only u1ðxÞ is regular at event horizon x ¼ 1.
Thus, the full theory solution is

Rfull
l ðzÞ ¼ z−l2F1

�
1

2
;−l;

1

2
− l; z2

�
: ð5:18Þ
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This is a polynomial of order l, which fully coincides
with the result of the EFT PN calculations. Matching
this to the full EFT calculation including finite-
size effects, we obtain that the Love numbers vanish
identically,

λs¼0
l ¼ 0; λs¼2

l ¼ 0: ð5:19Þ

All in all, we have shown that the worldline EFT approach
allows one to unambiguously separate the source and response
components of external fields in the response problem in
full general relativity. In particular, we have shown that the
ð2lþ 1ÞPN corrections to the source profiles vanish, which
implies the absence of RG running of Love numbers. The
Love numbers vanish as well, so our final results can be
represented in the following diagrammatic form:

ð5:20Þ

C. Analytic continuation

For completeness, let us match the Love numbers for the spin-0 case using the analytic continuation prescription. This
prescription amounts to treating multipole orbital numbers as rational numbers, l ∈ R. This approach is motivated by
higher-dimensional black hole perturbation theory, where the relevant parameter in perturbation equations is l=ðd − 3Þ,
where d is the number of spacetime dimensions [16].
For a generic l neither of the two solutions u1ðxÞ and u2ðxÞ in Eq. (5.17) is regular at the event horizon x ¼ 1. Instead,

one obtains a regular solution by combining the two,

ulðxÞ ¼
Γð1

2
þ lÞ

Γðlþ 1ÞΓð1
2
Þ 2F1

�
1

2
;−l;

1

2
− l; x

�
þ Γð− 1

2
− lÞ

Γð1
2
ÞΓð−lÞ x

2lþ1
2 2F

�
1

2
; 1þ l;

3

2
þ l; x

�

¼ 2F1

�
1

2
;−l; 1; 1 − x

�
: ð5:21Þ

The corresponding full theory solution then reads

Rfull
l ðzÞ ¼ z−l2F1

�
1

2
;−l; 1; 1 − z2

�
: ð5:22Þ

Now, we keep l generic and do the asymptotic expansion of the full theory solution at the asymptotic infinity,

lim
r→∞

Rfull
l ðrÞ ∝ rl

�
1þ c1

�
M
2r

�
þ c2

�
M
2r

�
2

þ � � � þ cNm

�
M
2r

�
Nm þ � � �

�

þ r−l−1
�
−
�
M
2

�
2lþ1 Γð1

2
− lÞΓð1þ lÞ

Γð−lÞΓð3
2
þ lÞ þ � � �

�
; ð5:23Þ

where c1; c2;…, are the coefficients given in Eq. (5.5). For
generic noninteger and non-half-integer l, the first series
describes the PN correction to the source rl, while the
second series describes the BH response. Importantly, these

two asymptotic series never mix. This is a celebrated
success of the analytic continuation.
Now we take the physical limit l ∈ N. The source series

then exactly reduces to our results obtained with the
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diagrammatic method. The response part, however, van-
ishes since Γð−lÞ → ∞ when l ∈ N.

VI. DISSIPATION NUMBERS

One can extract the dissipation number by matching one-
point functions in the EFT and UV theories. In this section
we perform this matching explicitly. Importantly, this
procedure gives the same dissipation numbers as a match-
ing of absorption cross sections. This is a valuable con-
sistency check of the EFT approach.
To match the dissipation numbers, we solve the time-

dependent Teukolsky equation in the near zone approxi-
mation. Note that the near zone approximation does not
exactly correspond to a low-frequency expansion [20,22].

As a result, the near zone approximation does not correctly
reproduce the time-dependent conservative effects [20].
However, it is sufficient for the matching of the dissipation
number, and hence it is adequate for our purposes.

A. Near horizon Teukolsky equation

The near horizon approximation is based on the fact that
the Teukolsky equation simplifies drastically in the regime

ωr ≪ 1; Mω ≪ 1: ð6:1Þ

Under these assumptions, the spin-s Teukolsky equation
can be truncated as (see Appendix E)

Rl
00ðrÞ þ

�
−
2þ 4s
M − 2r

−
2s
r
þ 2þ 4s
M þ 2r

�
R0
lðrÞ þ

�ðs − lÞð1þ sþ lÞ
r2

þ 128M3ωð−isþ 2MωÞ
ð4r2 −M2Þ2

�
RlðrÞ ¼ 0: ð6:2Þ

Note that this equation enjoys an SLð2;RÞ near horizon symmetry [22].
The physical frequency dependent solution has the ingoing boundary condition at the black hole horizon [54,74],

RlðrÞ ¼ const ×

�
r −

M
2

�
−4iMω−2s

; r →
M
2
: ð6:3Þ

Using the field redefinition RlðzÞ ¼ zs−lð1 − z2Þ−4iMω−2sulðzÞ and introducing a new variable x ¼ z2 ¼ M2=ð4r2Þ we get

ul00ðxÞ þ
�
1 − 2l
2x

þ 1 − 2s − 8iMω

−1þ x

�
u0lðxÞ

þ
�ðsþ lþ 4iMωÞð−1þ 2sþ 8iMωÞ

2ð−1þ xÞ −
ðsþ lþ 4iMωÞð−1þ 2sþ 8iMωÞ

2x

�
ulðxÞ ¼ 0: ð6:4Þ

This equation has two linearly independent solutions

u1lðxÞ ¼ 2F1

�
1

2
− s − 4iMω;−s − l − 4iMω;

1

2
− l; x

�
;

u2lðxÞ ¼ x
2lþ1
2 2F1

�
1

2
− s − 4iMω; 1 − sþ l − 4iMω;

3

2
þ l; x

�
: ð6:5Þ

For l ∈ N; s ∈ N, and nonzero ω, only the linear combination of these two solutions is regular at the horizon,

ulðxÞ ¼ 2F1

�
1

2
− s − 4iMω;−s − l − 4iMω; 1 − 2s − 8iMω; 1 − x

�

¼ Γð1
2
þ lÞΓð1 − 2s − 8iMωÞ

Γð1
2
− s − 4iMωÞΓð1 − sþ l − 4iMωÞ 2F1

�
1

2
− s − 4iMω;−s − l − 4iMω;

1

2
− l; x

�

þ Γð− 1
2
− lÞΓð1 − 2s − 8iMωÞ

Γð1
2
− s − 4iMωÞΓð−s − l − 4iMωÞ x

2lþ1
2 2F1

�
1

2
− s − 4iMω; 1 − sþ l − 4iMω;

3

2
þ l; x

�
: ð6:6Þ

To get the dissipation number we need to read off the coefficient in front of the ∼r−s−l−1 term in the Taylor expansion
of Rl. This is particularly easy with our variable choice x ¼ M2=ð4r2Þ. Indeed, Taylor expansions of the prefactor
ð1 − z2Þ−4iMω−2s and the first hypergeometric function in the right-hand side of Eq. (6.6) produce only even powers of r, and
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hence they do not contribute to the r2lþ1 term. This term stems only from the second term (6.6) proportional to x
2lþ1
2 .

Therefore, Taylor expanding (6.6) at r → ∞, we get

Rnear zone
l ðrÞ ∝ rl−s

�
1þ � � � þ r−2l−1

�
i
4ð−1Þsðl − sÞ!ðlþ sÞ!
ð2lþ 1Þ!!ð2l − 1Þ!! M2ðlþ1Þω

�
þ � � �

�
: ð6:7Þ

We stress that we have not used any analytic continuation in
l to obtain the above formula. With our choice of variables,
it is obvious that there is no source/response mixing in the
full solution. Shortly we will give a simple EFT argument
of why the source/response mixing at order rsω is absent in
many popular gauges.

B. Dissipation number matching

Now we can match the EFT one-point function correc-
tion due to the dissipation number (2.33) and the UV
result (6.7). Note that this matching is actually completely
unambiguous in the isotropic gauge, because the finite-
frequency PN corrections are proportional to ω2. Thus,
linear in ω terms unambiguously correspond to the finite-
size dissipation contributions. In other words, the dissipa-
tion diagram cannot be canceled by any source corrections
at the 2lþ 1 order PN level in the isotropic gauge.
Now we can do the matching easily. In the spin-0 case,

the Teukolsky variable ψ ½0� ¼ Φ, with the Feynman rules
provided in Appendix A, we can get the spin-0 dissipation
number

λs¼0
lðωÞ ¼

8πðl!Þ2
ð2lþ 1Þ!!ðð2l − 1Þ!!Þ2M

2lþ1: ð6:8Þ

In the spin-1 case, the Teukolsky variable ψ ½�1� is
functions of the Maxwell-Newman-Penrose scalars Φ0,
Φ1, and Φ2 [72,73]:

Φ0¼Fμνlμmν; Φ1¼
1

2
Fμνðlμnνþm̄μmνÞ; Φ2¼Fμνm̄μnν:

ð6:9Þ

In the isotropic coordinates, it is more convenient to work
with the rescaled scalars

Φ̃0 ¼ Φ0; Φ̃1 ¼
ðM þ 2rÞ4
64M2r2

Φ1; Φ̃2 ¼
ðM þ 2rÞ4
64M2r2

Φ2:

ð6:10Þ

The Teukolsky variables in this formalism take the form
ψ ½1� ¼ Φ̃0, ψ ½−1� ¼ Φ̃2. To match the spin-1 dissipation
number it is sufficient to use ψ ½1�,

ψ ½1� ¼ 2
ffiffiffi
2

p r
ðM − 2rÞ2 ð

0A0; ð6:11Þ

where ð0 is the spin raising operator defined inAppendix B 1.
This simplification appears because the electric andmagnetic
fields are clearly separated in ψ ½1�, sowe can set the magnetic
source to zero. In this case the real part of ψ ½1� is sourced by
the electric field and hence entirely by A0 (see Appendix E 3
for more detail). With the Feynman rules provided in
Appendix A, we get the spin-1 electric dissipation number

λs¼1
lðωÞ ¼

8πðl − 1Þ!ðlþ 1Þ!
ð2lþ 1Þ!!ðð2l − 1Þ!!Þ2M

2lþ1: ð6:12Þ

In the spin-2 electric case, the Weyl scalar ψ ½2� ¼ ψ0 is
sourced, at the leading order, by the perturbation of the
Newtonian potential δϕ; see (4.39). Since we focus on the
parity even sector, the magnetic contributions to the Weyl
scalar can be ignored. The responses from other parity-even
metric fluctuations only appear at higher orders in the distance
expansion, and hence can be ignored when calculating the
Weyl scalar in the EFT. Hence, matching the EFTand the GR
expressions we get

λs¼2
lðωÞ ¼

8πðl − 2Þ!ðlþ 2Þ!
ð2lþ 1Þ!!ðð2l − 1Þ!!Þ2M

2lþ1: ð6:13Þ

All together, these results can be combined in a master
formula for a generic spin-s field,

λnon−loc
1ðsÞ ¼ 8πðl − sÞ!ðlþ sÞ!

ð2lþ 1Þ!!ðð2l − 1Þ!!Þ2l!22lþ1
r2lþ1
s ; ð6:14Þ

where we used (2.34) and expressed the result in terms of the
Schwarzschild radius rs ¼ 2M. This expression coincides
with the dissipation numbers extracted from the absorption
cross sections for l ¼ s; see Eq. (2.25).

C. On cancellations of dissipative response
in advanced coordinates

In Sec. III C we have shown that individual static PN
diagrams always produce logarithmic divergences at the
ð2lþ 1ÞPN order. These logs then cancel after all diagrams
are summed over. The situation is different at OðωrsÞ,
where gravitational nonlinear corrections are absent in most
gauges. Indeed, in Schwarzschild, isotropic, and harmonic
coordinates, the Schwarzschild metric is diagonal in time,
which means that any finite frequency interaction is
quadratic in frequency, and has the typical form
g00∂tΦ∂tΦ ∝ ω2. Thus, at OðrsωÞ, there is no source/
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response mixing, and hence there is no ambiguity in the
matching procedure.
However, the situation is different in the advanced

(Eddington–Finkelstein) coordinates, which have a non-
vanishing off-diagonal term g0i [20]. Therefore, in these

coordinates we always have the interactions g0i∂tΦ∂iΦ ∝
iω, which can cancel the dissipative response. In the
diagrammatic language, the imaginary part of the full
theory solution at ð2lþ 1.5ÞPN order in the advanced
coordinates has two distinctive contributions now,

ð6:15Þ

where A is an order-one numerical coefficient. As argued in
[20], these two different diagrams must exactly cancel each
other out in order to reproduce the full theory calculation in
the advanced coordinates. In contrast to the Love number
vanishing, this particular cancellation does not represent
fine-tuning, as the actual physical dissipative response does
not vanish, and can be easily extracted in other gauges. The
fact that the cancellation between the ð2lþ 1.5ÞPN grav-
iton corrections and the dissipative response happens only
in the advanced coordinates suggests that this cancellation
is merely a gauge artifact. Indeed, the physical dissipation
is not zero and has a scaling consistent with the Wilsonian
naturalness principle; cf. (6.14).
An interesting implication of this argument is that the

source/response mixing should generally be present for
Kerr BHs. Indeed, the Kerr metric has nonvanishing off-
diagonal components in any coordinate system. This is the
reason why the Kerr Love response coefficients’ calcula-
tion is obscured by the source/response mixing [20].
Although the analytic continuation prescription allows
one to correctly extract the response coefficients, we
believe that any robust analysis should be based on using
the EFT. We leave a detailed EFT calculation of the Kerr
response coefficients for future work.

VII. CONCLUSIONS AND OUTLOOK

We have computed the EFT one-point functions of
static scalar, photon, and graviton perturbations of four-
dimensional Schwarzschild black holes. We developed a
diagrammatic expansion that computes post-Newtonian
corrections to the external field sources. Using the isotropic
Kaluza-Klein gauge, we have explicitly resummed the EFT
PN diagrams to an arbitrary PN order in the case of spin-0
and spin-2 dilaton fluctuations. These results are valid for
any multipolar index l. For the Maxwell field we have
obtained explicit results for the l ¼ 1 case, i.e., at the
3PN order.

Comparing our results with the full BH perturbation
theory calculations we have found that the static PN one-
point functions explicitly reproduce the full general rela-
tivity results without having to include any finite-size
effects. This implies that Love numbers vanish identically.
In the second part of our paper we have matched the

Schwarzschild BH dissipation numbers. Using the in-in
approach we have computed the dissipative corrections to
the one-point functions and extracted the dissipation
numbers by comparing our EFT field profiles to the general
relativity results. Our expressions for the dissipation
numbers exactly coincide with the results of matching in
a gauge-invariant manner obtained by comparing cross
sections for the absorption of massless particles by black
holes versus the absorption cross sections in the point-
particle theory.
We have also obtained some important results clarifying

the EFT description of black holes. At the conceptual level,
we have shown how the EFT resolves the so-called source/
response ambiguity. Using the EFT we can extract the
finite-size effects without having to use the so-called
analytic continuation prescription. The second important
result is that the individual EFT diagrams generically
produce logarithmic corrections to Love numbers. These
corrections, however, cancel when all diagrams of the
ð2lþ 1ÞPN order are summed over. We interpret this
apparent fine-tuning as a manifestation of the Love
symmetry of BH perturbations [22]. The third important
result is a consistent definition of dissipation numbers in
the EFT, and their explicit relation to the absorption cross
sections.
We have also obtained some new results at the technical

level, which will be useful in future studies of BH within
the worldline EFT formalism. First, we have defined a
notion of a consistent gauge that allows for unambiguous
matching. Second, we have set up an EFT diagrammatic
expansion for external probes and studied its topological
properties. Our analysis facilitates the resummation of
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Feynman diagrams at high PN orders. Key to this resum-
mation is the diagrammatic recurrence relation between PN
diagrams of different orders. This recurrence relation is,
essentially, the diagrammatic version of the recurrence
relation that appears in the Frobenius solution to the
Teukolsky equation. Thus, one can use it to systematically
resum the EFT diagrams and in this way to recover the
entire static solution to the Teukolsky equation that
includes all necessary relativistic corrections.
Our study can be extended in multiple ways. First, it will

be important to include BH spin and generalize our EFT PN
expansion to the case of Kerr black holes along the lines of
[9,34,59]. Although the Kerr BH Love numbers were shown
to vanish [19,20], these results relied on the analytic
continuation prescription, whose validity is not completely
warranted. Another project in this research direction would
be an explicit matching of dissipation numbers for Kerr
black holes, which do not vanish even for static external
perturbations. The second potential line of research is to
better understand the nature of fine-tuning in the EFT PN
expansion. This fine-tuning includes the cancellation of

logarithmic corrections to static Love numbers. In four
dimensions this can be explained as a result of the Love
symmetry, which enforces the polynomial structure of one-
point functions. It would be interesting to study higher-
dimensional BHs in the EFT framework and see how the
Love symmetry manifests itself there. Finally, it will be
important to extract the Love numbers in a fully gauge-
invariant manner by comparing the elastic scattering cross
sections of external fields off the BH geometry against the
EFT on-shell scattering amplitude (see [39] for recent
progress). We leave these research directions for futurework.
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APPENDIX A: FEYNMAN RULES

In this section we present Feynman rules for the EFT diagrammatic computation. We work in the isotropic gauge of the
background gravitational field. Since the spin-2 electric perturbations share the same structure with the spin-0 perturbations,
we only provide the related Feynman rules for the spin-0 case.
Gravitational sector:
(i) Propagators:

ðA1Þ

(ii) Static vertices:
Worldline vertex:

ðA2Þ

Bulk vertices:

ðA3Þ
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Spin-0 perturbations:
(i) Propagator:

ðA4Þ

(ii) Source vertices:

ðA5Þ

(iii) Bulk vertices:

ðA6Þ

(iv) Love number vertex:

ðA7Þ

(v) Dissipation nonlocal vertex:

ðA8Þ
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Spin-1 electric perturbations:
(i) Propagator:

ðA9Þ

(ii) Source vertices:

ðA10Þ

(iii) Bulk vertices:

ðA11Þ

(iv) Love number vertex:

ðA12Þ

(v) Dissipation nonlocal vertex:

ðA13Þ
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APPENDIX B: USEFUL MATHEMATICAL RELATIONS

1. (Spin-weighted) Spherical harmonics

(Scalar) Spherical harmonics: We use the following definition of the (scalar) spherical harmonics:

Ylmðθ;ϕÞ ¼
ð−1Þlþjmjþm

2

2ll!

�
2lþ 1

4π

ðl − jmjÞ!
ðlþ jmjÞ!

�
1=2

eimϕðsin θÞjmj
�

d
d cos θ

�
lþjmj

ðsin θÞ2l; ðB1Þ

with the parameter range l ≥ 0, −l ≤ m ≤ l, and l; m are all integers. These harmonics obey the following relations:

ΔS2Ylm ¼ −lðlþ 1ÞYlm; Y�
lmðθ;ϕÞ ¼ ð−1ÞmYlð−mÞðθ;ϕÞ;

Z
S2

dΩYlmY�
l0m0 ¼ δll0δmm0 ; ðB2Þ

where ΔS2 is the two-sphere Laplacian.
With the spherical harmonics, we can represent the scalar field contracted between STF tensor EL and l copies of normal

vector nL with the spherical harmonic basis

nLðθ;φÞEL ¼
Xl
m¼−l

ElmYlmðθ;φÞ; where Elm ¼ EL

Z
S2

nLY�
lmdΩ: ðB3Þ

This is equivalent to say

Ei1���ilx
i1 � � � xil ¼

Xl
m¼−l

ElmrlYlmðθ;ϕÞ: ðB4Þ

Spin-weighted spherical harmonics: To study the spin-1 and spin-2 perturbations, it is useful to review basic properties of
spin-weighted spherical harmonics. We introduce the spin raising and lowering operator

ðs ≡ −
�
∂θ þ

i
sin θ

∂ϕ − s
cos θ
sin θ

�
; ð̄s ≡ −

�
∂θ −

i
sin θ

∂ϕ þ s
cos θ
sin θ

�
; ðB5Þ

with raising and lowering operation

ðsðsYlmÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Ylm;

ð̄sðsYlmÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Ylm; ðB6Þ

where l ≥ jsj. Here, sYlm is defined as the spin-s spherical harmonics. These harmonics obey

sY�
lmðnÞ ¼ ð−1Þmþs

−sYlð−mÞðnÞ;
Z
S2

dΩsYlmsY�
l0m0 ¼ δll0δmm0 : ðB7Þ

2. Master integrals

Dimensional regularization is widely used in the EFT diagrammatic computation. In this appendix, we summarize the
useful d-dimensional momentum integration and Fourier transformation formula [38]. The momentum integration formula

J ¼
Z

ddq
ð2πÞd

1

ðq2Þα½ðqþ kÞ2�β ¼
ðk2Þd=2−α−β
ð4πÞd=2

Γðαþ β − d=2Þ
ΓðαÞΓðβÞ

Γðd=2 − αÞΓðd=2 − βÞ
Γðd − α − βÞ ; ðB8Þ

Ji ¼
Z

ddq
ð2πÞd

qi
ðq2Þα½ðqþ kÞ2�β ¼ −

d=2 − α

d − α − β
Jki; ðB9Þ
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Jij ¼
Z

ddq
ð2πÞd

qiqj
ðq2Þα½ðqþ kÞ2�β

¼ 1

ð4πÞd=2
Γðαþ β − d=2 − 1Þ

ΓðαÞΓðβÞ
Γðd=2 − αþ 1ÞΓðd=2 − βÞ

Γðd − α − β þ 2Þ

×

�
ðd=2 − αþ 1Þðαþ β − d=2 − 1Þkikj þ ðd=2 − βÞ k

2

2
δij

�
ðk2Þd=2−α−β; ðB10Þ

Jijk ¼
Z

ddq
ð2πÞd

qiqjqk
ðq2Þα½ðqþ kÞ2�β

¼ ðk2Þd=2−α−β
ð4πÞd=2

Γðαþ β − d=2 − 1Þ
ΓðαÞΓðβÞ

Γðd=2 − αþ 2ÞΓðd=2 − βÞ
Γðd − α − β þ 3Þ

×

�
−ðd=2 − αþ 2Þðαþ β − d=2 − 1Þkikjkk þ ðd=2 − βÞ k

2

2
ðδijkk þ δjkki þ δikkjÞ

�
; ðB11Þ

Jijkl ¼
Z

ddq
ð2πÞd

qiqjqkql
ðq2Þα½ðqþ kÞ2�β ¼

ðk2Þd=2−α−β
ð4πÞd=2

Γðd=2 − αþ 2ÞΓðd=2 − βÞ
Γðd − α − β þ 4Þ

×
Γðαþ β − d=2 − 2Þ

ΓðαÞΓðβÞ
�
ðd=2 − βÞðd=2 − β þ 1Þðδijδkl þ δikδjl þ δilδjkÞ

ðk2Þ2
4

þ ðδijkkkl þ δikkjkl þ δilkjkk þ δjkkikl þ δjlkikk þ δklkikjÞ
k2

2
ðαþ β − d=2 − 2Þðd=2 − αþ 2Þðd=2 − βÞ

þ kikjkkklðαþ β − d=2 − 2Þðαþ β − d=2 − 1Þðd=2 − αþ 2Þðd=2 − αþ 3Þ
�
: ðB12Þ

Fourier transformation formula:

Z
ddk
ð2πÞd

eik·r

ðk2Þα ¼
1

ð4πÞd=2
Γðd=2 − αÞ

ΓðαÞ
�
r2

4

�
α−d=2

; ðB13Þ

Z
ddk
ð2πÞd

ki
ðk2Þα e

ik·r ¼ ixi
Γðd=2 − αþ 1Þ
2ð4πÞd=2ΓðαÞ

�
r2

4

�
α−d=2−1

; ðB14Þ

Z
ddk
ð2πÞd

kikj
ðk2Þα e

ik·r ¼ Γðd=2 − αþ 1Þ
ð4πÞd=2ΓðαÞ

�
δij
2
þ ðα − d=2 − 1Þ xixj

r2

��
r2

4

�
α−d=2−1

; ðB15Þ

Z
ddk
ð2πÞd

kikjkl
ðk2Þα eik·r ¼ iΓðd=2 − αþ 2Þ

16ð4πÞd=2ΓðαÞ
�
r2

4

�
α−d=2−3

½r2ðδilxj þ δjlxi þ δijxlÞ − ðd − 2αþ 4Þxixjxl�; ðB16Þ

Z
ddk
ð2πÞd

kikjklkm
ðk2Þα eik·r ¼ Γðd=2 − αþ 3Þ

32ð4πÞd=2ΓðαÞ
�
r2

4

�
α−d=2−4�

ðd − 2αþ 6Þxixjxlxmr2ðδimxjxl þ δjmxixl þ δlmxixj þ δilxmxj

þ δjlxixm þ δijxlxmÞ þ
ðr2Þ2

ðd − 2αþ 4Þ ðδilδjm þ δjlδim þ δijδlmÞ
�
: ðB17Þ

APPENDIX C: REPRODUCING SCHWARZSCHILD METRIC AT Oððm=rÞ4Þ
As a consistency check, in this Appendix we show that the graviton one-point function in the EFT can actually reproduce

the Schwarzschild metric perturbatively. We have

MIKHAIL M. IVANOV and ZIHAN ZHOU PHYS. REV. D 107, 084030 (2023)

084030-32



(i) Oððm=rÞÞ:

ðC1Þ

(ii) Oððm=rÞ2Þ:

ðC2Þ

Oððm=rÞ3Þ:

ðC3Þ

(iii) Oððm=rÞ4Þ:

ðC4Þ

ðC5Þ

ðC6Þ

After combining all these results, we get the one-point
function

ϕðxÞ ¼ −
m
r
−

1

12

�
m
r

�
3

;

σðxÞ ¼ −
1

2

�
m
r

�
2

þ 1

16

�
m
r

�
4

: ðC7Þ

Substituting this into Eq. (4.1), we perturbatively derive the
metric of Schwarzschild BH in isotropic gauge,

g00¼1−2

�
m
r

�
þ2

�
m
r

�
2

−
3

2

�
m
r

�
3

þ
�
m
r

�
4

þO

�
m
r

�
5

;

ðC8Þ

gij ¼
�
1þ 2

�
m
r

�
þ 3

2

�
m
r

�
2

þ 1

2

�
m
r

�
3

þ 1

16

�
m
r

�
4

þO

�
m
r

�
5
�
δij: ðC9Þ

APPENDIX D: ONE-POINT FUNCTION
OF SPIN-1 ELECTRIC DIPOLE

In this appendix, we provide the explicit one-point
function computation for the spin-1 electric dipole case:

(i) Oðm=rÞ:

ðD1Þ

(ii) Oððm=rÞ2Þ:

ðD2Þ

ðD3Þ
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ðD4Þ

(iii) Oððm=rÞ3Þ:

ðD5Þ

ðD6Þ

ðD7Þ

ðD8Þ

ðD9Þ
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APPENDIX E: TEUKOLSKY EQUATION IN SCHWARZSCHILD BH

1. Equation in different coordinates

We derive now the Teukolsky master equation for radial functions in an isotropic coordinate. The full spin-s Teukolsky
equation in the Boyer-Lindquist coordinate of Kerr BH for a generic spin-s field reads [74–77]

�ðr2 þ a2Þ2
Δ

− a2sin2θ

�
∂
2ψ ½s�

∂t2
þ 4Mar

Δ
∂
2ψ ½s�

∂t∂ϕ
þ
�
a2

Δ
−

1

sin2θ

�
∂
2ψ ½s�

∂ϕ2
− Δ−s ∂

∂r

�
Δsþ1

∂ψ ½s�

∂r

�
−

1

sin θ
∂

∂θ

�
sin θ

∂ψ ½s�

∂θ

�

− 2s

�
aðr −MÞ

Δ
þ i cos θ

sin2θ

�
∂ψ ½s�

∂ϕ
− 2s

�
Mðr2 − a2Þ

Δ
− r − ia cos θ

�
∂ψ ½s�

∂t
þ ðs2cot2θ − sÞψ ½s� ¼ 0; ðE1Þ

where Δ ¼ ðr − rþÞðr − r−Þ, rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, and r− ¼ M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. In the Schwarzschild limit a ¼ 0, and in

the static limit ∂t → 0, we use the variable separation ansatz ψ ½s� ¼ P
lmRlðrÞsYlmðθ;ϕÞ and get the radial equation in the

Schwarzschild coordinates:

R00
lðrÞ þ

�
1þ s
r

þ 1þ s
−2M þ r

�
R0

lðrÞ þ
�
−
ðs − lÞð1þ sþ lÞ

2Mr
þ ðs − lÞð1þ sþ lÞ

2Mð−2M þ rÞ
�
RlðrÞ ¼ 0: ðE2Þ

Transforming from the Schwarzschild coordinates to the isotropic coordinates, we get the version of this equation in the
isotropic coordinates,

R00
lðrÞ þ

�
−
2þ 4s
M − 2r

−
2s
r
þ 2þ 4s
M þ 2r

�
R0

lðrÞ þ
ðs − lÞð1þ sþ lÞ

r2
RlðrÞ ¼ 0: ðE3Þ

For the finite frequency perturbations in the Schwarzschild background we use the variable separation ansatz
ψ ½s� ¼ P

lm RlðrÞsYlmðθ;ϕÞe−iωt, and the corresponding radial equation in the Schwarzschild coordinates reads

rðr − 2MÞRl
00ðrÞ þ 2ðr −MÞð1þ sÞR0

lðrÞ þ
�
sð1þ sÞ − lð1þ lÞ þ 4isrωþ −2isωr2ðr −MÞ þ r4ω2

rðr − 2MÞ
�
RlðrÞ ¼ 0:

ðE4Þ

In the near zone region ωr ≪ 1, the above equation simplifies:

rðr − 2MÞRl
00ðrÞ þ 2ðr −MÞð1þ sÞR0

lðrÞ þ
�
sð1þ sÞ − lð1þ lÞ þ −8isM3ωþ 16M4ω2

rðr − 2MÞ
�
RlðrÞ ¼ 0: ðE5Þ

In the isotropic coordinates, the finite frequency radial equation takes the following form:

R00
lðrÞ þ

�
−
2þ 4s
M − 2r

−
2s
r
þ 2þ 4s
M þ 2r

�
R0

lðrÞ þ
�ðs − lÞð1þ sþ lÞ

r2
þ Fðω; rÞ
ð4r2 −M2Þ2

�
RlðrÞ ¼ 0; ðE6Þ

where

Fðω; rÞ ¼ ðM þ 2rÞ4ð8isωrðM2 − 8Mrþ 4r2Þ þ ðM þ 2rÞ4ω2Þ
16r4

: ðE7Þ

In the near zone region, we use the approximation Fðω;M=2Þ ≈ 128M3ωð−isþ 2MωÞ.
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2. Matching dissipation number in Schwarzschild
coordinate

Based on the near zone spin-s Teukolsky equation in
Schwarzschild coordinate Eq. (E5), we introduce the
following raising and lowering operator to explicitly see
the SLð2;RÞ symmetry:

L1 ¼ exp

�
t

4M

�
ðΔ1=2

∂r − 4Mðr −MÞΔ−1=2
∂t

þ 2ðr −MÞsΔ−1=2Þ;

L−1 ¼ − exp

�
−

t
4M

�
ðΔ1=2

∂r þ 4Mðr −MÞΔ−1=2
∂tÞ;

L0 ¼ −4M∂t þ s; ðE8Þ

where Δ ¼ rðr − 2MÞ. These operators obey the SLð2;RÞ
commutation relations

½L0; L�1� ¼∓ L�1; ½L1; L−1� ¼ 2L0: ðE9Þ

The near zone equation (E5) can be written as

C2ψ ½s� ¼ lðlþ 1Þψ ½s�; ðE10Þ

where C2 is the quadratic Casimir operator. The ingoing
boundary condition at the event horizon in these coordi-
nates takes the form

RlðrÞ ¼ const × ðr − 2MÞ−2iMω−s; r → 2M: ðE11Þ

It is useful to introduce the near zone variable z ¼ ðr −
2MÞ=2M and rewrite Eq. (E5) as

zð1þzÞR00
lðzÞþð1þsÞð1þ2zÞR0

lðzÞ

þ
�
ðs−lÞð1þsþlÞ−−2isMωþ4ðMωÞ2

zð1þzÞ
�
RlðzÞ¼0:

ðE12Þ

The solution that satisfies the ingoing boundary
condition is

Rfull
l ðzÞ ¼ z−s=2ð1þ zÞ−s=2Psþ4iMω

l ð1þ 2zÞ; ðE13Þ

where Pm
n ðzÞ is the associated Legendre function. We

perform the asymptotic expansion of Rfull
l and find that

the coefficient in front of the rl−s × r−2l−1 term is the same
as Eq. (6.7). This will lead to the same dissipation number
as in Eq. (6.14).

3. Comments on Maxwell-Newman-Penrose Φ̃0

In this appendix, we show it is sufficient to consider A0

for the spin-1 dissipation number matching. The Newman-
Penrose-Maxwell scalar Φ̃0 in Eq. (6.10) takes the follow-
ing form in the isotropic coordinates:

Φ̃0 ¼ 2
ffiffiffi
2

p r
ðM − 2rÞ2

�
F0θ þ i

1

sin θ
F0ϕ

�

− 8
ffiffiffi
2

p r3

ðM − 2rÞðM þ 2rÞ3
�
Frθ þ i

1

sin θ
Frϕ

�
:

ðE14Þ
In the quasistatic approximation we can ignore the temporal
components. Let us focus on the magnetic part of the vector
potential satisfying ∂iAi ¼ 0. It is convenient to rewrite it as

Ai ¼ ϵijkxj∂kΨ; ðE15Þ
which is automatically transverse. In the spherical coor-
dinates, the vector potential can be written as

Ar ¼ 0; Aθ ¼ −r2 sin θ × r
1

r2sin2θ
∂ϕΨ ¼ −

r
sin θ

∂ϕΨ;

Aϕ ¼ r2 sin θ × r ×
1

r2
∂θΨ ¼ r sin θ∂θΨ: ðE16Þ

Plugging this into Eq. (E14) and taking the long-distance
limit, we obtain

Φ̃0 ∼
1

r
ð0ðA0 þ iΨÞ: ðE17Þ

This gives us the simplification in the matching procedure
because the response of the electric and magnetic fields are
separated. When applying the electric source, there is no
ambiguity: the real part of the radial function of Φ̃0

corresponds to the electric conservative response, i.e.,
the Love number, while the imaginary part corresponds
to the dissipation number.

APPENDIX F: MATCHING DISSIPATION
NUMBERS FROM AMPLITUDES

In this appendix, we compute the EFT absorption cross
section for the spin-2 perturbations.

1. Fluctuation-dissipation relation

Let us first prove the fluctuation-dissipation theorem for
Schwarzschild black holes [44]. To do this, we will use
positive and negative frequency Wightman functions
defined as

WþL0
L ðτ − τ0Þ ¼ hQLðτÞQL0 ðτ0Þi;

W−
L0
L ðτ − τ0Þ ¼ hQL0 ðτ0ÞQLðτÞi: ðF1Þ
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With this definition, we can easily rewrite the Feynman
Green function and the retarded Green functions in terms of
Wightman functions,

GFey
L0
L ðτ − τ0Þ ¼ θðτ − τ0ÞWþL0

L ðτ − τ0Þ
þ θðτ0 − τÞW−

L0
L ðτ − τ0Þ; ðF2Þ

Gret
L0
L ðτ − τ0Þ ¼ iθðτ − τ0Þ

�
WþL0

L ðτ − τ0Þ −W−
L0
L ðτ − τ0Þ

�
:

ðF3Þ

We assume that QL is a Hermitian operator,

WþL0
L ðτ − τ0Þ� ¼ W−

L0
L ðτ − τ0Þ; ðF4Þ

and thus

hTQLðτÞQL0 ðτ0Þi� ¼ hT̄QLðτÞQL0 ðτ0Þi; ðF5Þ

where T̄ is the anti-time ordering operator. With the
above definitions, we can also rewrite the positive fre-
quency Wightman function in terms of the Feynman Green
function,

WþL0
L ðτ − τ0Þ ¼ θðτ − τ0ÞGFey

L0
L ðτ − τ0Þ þ θðτ0 − τÞ

×GFey
L0
L ðτ − τ0Þ�: ðF6Þ

In the frequency space, we will use the dispersive
representation

Gret
L0
L ðωÞ ¼ i

Z
dω0

2π

WþL0
L ðω0Þ −W−

L0
L ðω0Þ

ω − ω0 þ iϵ
: ðF7Þ

After expanding this relation into real and imaginary parts,
we get

ReGret
L0
L ðωÞ ¼ −

1

2
Im½WþL0

L ðωÞ −W−
L0
L ðωÞ�

− Pr
Z

∞

0

ω0dω0

π

Re½WþL0
L ðω0Þ −W−

L0
L ðω0Þ�

ω2 − ω02

ðF8Þ

and

ImGret
L0
L ðωÞ ¼

1

2
Re½WþL0

L ðωÞ −W−
L0
L ðωÞ�

− ωPr
Z

∞

0

dω0

π

Im½WþL0
L ðω0Þ −W−

L0
L ðω0Þ�

ω2 − ω02 :

ðF9Þ

Here, we mention clearly that the above equation holds for
a generic tensor structure in L and L0. For the special
situation of Schwarzschild BHs the tensorial structure

consistent with spherical symmetry is only δhLihL0i, i.e.,

WþL0
L ðωÞ ¼ wþðωÞδhLihL0i: ðF10Þ

In this case one can show that WþL0
L ðωÞ� ¼ WþL0

L ðωÞ, and
thus WþL0

L ðωÞ is real.
Now we make use of Eq. (F6), and express the positive

frequency Wightman function as

WþL0
L ðωÞ ¼

Z þ∞

0

dτeiωτhTQLðτÞQL0 ð0Þi þ
Z

0

−∞
dτeiωτhTQLðτÞQL0 ð0Þi�

¼
Z þ∞

0

dτeiωτhTQLðτÞQL0 ð0Þi þ
Z þ∞

0

dτe−iωτhTQLð−τÞQL0 ð0Þi�

¼
Z þ∞

0

dτeiωτhTQLðτÞQL0 ð0Þi þ
Z þ∞

0

dτe−iωτhTQLð0ÞQL0 ðτÞi�

¼ 2Im

�
i
Z þ∞

0

dτeiωτhTQLðτÞQL0 ð0Þi
�
; ðF11Þ

where we have used the translation invariance of the Green function

hTQLð−τÞQL0 ð0Þi ¼ hTQLð0ÞQL0 ðτÞi ðF12Þ

and the definition of the Feynman Green function that implies invariance under the exchange of the time argument

hTQLðτÞQL0 ð0Þi ¼ hTQLð0ÞQL0 ðτÞi: ðF13Þ
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Since we are interested in classical black holes, we
assume the Boulware state, so that the response is purely
absorptive,

wþðω < 0Þ ¼ 0: ðF14Þ

Thus, for ω > 0 we have from (F11)

0 ¼ WþL0
L ð−ωÞ ¼ 2Im

�
i
Z þ∞

0

dτe−iωτhTQLðτÞQL0 ð0Þi
�

¼ 2Im

�
i
Z

0

−∞
dτeiωτhTQLðτÞQL0 ð0Þi

�
; ðF15Þ

which then allows us to complete the integral in (F11) and
finally obtain

WþL0
L ðωÞ¼2Im

�
i
Z þ∞

−∞
dτeiωτhTQLðτÞQL0 ð0Þi

�
; ω>0:

ðF16Þ

Now we can establish the relationship between the
Feynman and the retarded Green functions in the EFT.
Using Eq. (F9) we get

ImGret
L0
L ðωÞ ¼ ReGFey

L0
L ðωÞ; ðF17Þ

which fixes the odd frequency terms in Eq. (2.15).

2. Spin-2 absorption cross section in the EFT

We start with the definition of the electric-type tidal field,

Eij ¼ 2
ffiffiffi
2

p
MplC0i0j ≃ −

ffiffiffi
2

p
Mpl∂

2
0hij: ðF18Þ

The electric part of the absorption cross section can be
obtained from the optical theorem: it is given by the
imaginary part of the forward amplitude

σEabsðωÞ ¼
2

ω
×
1

2
× 2Imi

Z
dτeiωτ½ω4ϵ�ijðk; hÞϵklðk; hÞhTQijðτÞQklð0Þi�; ðF19Þ

where 1=ω is the phase space factor and 1=2 comes from
the Taylor expansion of the S-matrix. ϵijðk; hÞ above is the
polarization tensor. The first factor of 2 comes from the
definition of the tidal field (F18), and the second factor of 2
comes from the symmetry factor of the Feynman diagrams.
We choose k==ẑ, and then the polarization tensor takes
the form

ϵijðk;�2Þ ¼

0
B@

1
2

� i
2

0

� i
2

− 1
2

0

0 0 0

1
CA: ðF20Þ

Using the explicit expressions (2.15) and

δhklihiji ¼
1

2

�
δki δ

l
j þ δliδ

k
j −

2

3
δijδ

kl

�
; ðF21Þ

we find the electric part of the total cross section

σEabsðωÞ ¼ 4ω4λnon−loc1 jl¼s¼2; ω > 0: ðF22Þ

The magnetic part of the total cross section is the same as
the electric part thanks to the “electric-magnetic” duality
[21,44,59] of the Schwarzschild black holes. Thus, the total
cross section is given by

σabsðωÞ ¼ 2σEabsðωÞ ¼ 8ω4λnon−loc1 jl¼s¼2: ðF23Þ
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